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ABSTRACT 

The mechanism for growth, spread and vegetation pattern formation is largely unknown 

and poorly understood. To improve understanding of this mechanism, two mathematical 

models each consisting of three nonlinear partial differential equations for surface water 

balance (W), soil water balance (N) and plant biomass density variable (P) to investigate 

the dynamics of forest growth and vegetation pattern formation were developed. The 

models have a parameter   that accounts for the influence of the interactions among 

multiple resources such as light, water, temperature and nutrients on the growth, spread and 

vegetation pattern formation. The methods used include Michaelis-Menten Kinetics for the 

rate of nutrients uptake by a cell or organism for growth; Continuous-Time Markov (CTM) 

method as a standardised methodology that describes plant metabolism responses to 

multiple resource inputs and the Taylor Series Expansion method used to linearise the 

nonlinear models formulated in order to explain the dynamics of the growth, spread and 

vegetation pattern formation of the forest. The linear stability analysis of homogeneous 

steady-state solutions provided a reliable predictor of the onset and nature of pattern 

formation in the reaction-diffusion systems. The results revealed that, stability conditions 

needed for pattern formation is possible provided that  0 0 0 0,aN aN m rN l    

as 0a . Thus, the homogeneous plant equilibrium decreases with decreasing rainfall 

until plant become extinct. Based on this condition, the trace and determinant criteria for 

stability were obtained as  m u   and mu  respectively. Thus, as 0N  increases or 

decreases,  0 0 0aN aN m rN l     also increases or decreases respectively irrespective of 

the values of the other parameters; where 00 N   . This suggests that 0N  which is a 

surrogate for dimensionless infiltration capacity prohibits pattern formation at high levels. 

In the non-trivial case, the linear stability analysis of the study shows that the conditions 

needed for pattern formation to be satisfied is that Srmu a lw   and Sw gu . Thus, 

ecologically feasible region of the parameter space that gives rise to Turing regimes in 

which vegetation patterns continuously evolve in space is such that ( ) .Sgu w a rmu l  

Finally, numerical simulations of system of partial differential equation models were 

carried out based on different fertility levels under different water conditions. The 

simulation results show that, regardless of the parameter space, and the level of 
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precipitation, the shift of the vegetation cover from uniform to gaps, labyrinths, spots, and 

into bare soil or almost bare soil is possible. The proposed model derived in the study could 

be applied to any vegetation type. The model could be used to further analyse the conditions 

for the development of dynamic patterns and their occurrence in different biological 

systems. 
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1 CHAPTER 1 

INTRODUCTION  

1.1 Preamble 

Mathematics is notably known as the Queen of sciences and permeates every discipline as 

well as every area of our lives. Mathematics as a discipline has two broad divisions which 

provide one with the skills or tools one needs to shape the world around us. This starts from 

simple arithmetic computations in business transactions to complex functions. This field is 

the practical side of mathematics and permeates also into forestry and ecology.   

1.2 Ecological Background 

Forests are long-lived dynamic biological systems that are continuously changing. The 

study of forest dynamics which is concerned with the changes in forest structure and 

composition over time, including its behaviour in response to anthropogenic and natural 

destructions is therefore crucial. Tree growth and forest destructions are primary evidence 

of forest dynamics. They are determined by resources (such as radiation, water, nutrients 

supply) and environmental conditions (such as temperature, soil acidity, air pollution and 

human activities). It is therefore often necessary to project these changes in order to obtain 

relevant information for sound decision making. Forest management decisions are made 

based on information about both current and future resource conditions. Inventories taken 

at one instant in time provide information on current wood volumes and related statistics. 

Growth and yield models describe forest dynamics (that is, the growth, mortality, 

reproduction and associated changes in the stand) over time. These models have been 

widely used in forest management because of their ability to update inventories, predict 

future yields, and to explore management alternatives and silvicultural options, thus 

providing information for decision-making (Vanclay, 1994). 

Human activities affect forest growth in many diverse ways. To begin with, human 

activities influence the composition, cover, age and density of the vegetation. The 

landscapes for these forests systems are altered by human activities. Thus, changing the 

kinds of stands present and their spatial arrangement, which influences the movement of 

wind, water, animals and soils. At the regional level, humans introduce by-products into 

the air that may fertilize or kill forests. At the global scale, human consumption of fossil 
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fuels has increased atmospheric carbon dioxide levels and changed the way that carbon is 

distributed in vegetation, soils and the atmosphere, with implications on global climate. 

The worldwide demand for forests products has stimulated not only the transfer of 

processed wood products from one country to another, but also the introduction of non-

native tree species, along with associated pests, that threaten native forests and fauna. While 

the management of forested lands is becoming increasingly important, it is also becoming 

more contentious because less forested land is available for an increasing range of demands. 

The 1985 Tropical Forestry Action Plan of the FAO contends that 7.5 million hectares of 

closed forest and 3.8 million hectares of open forest are cleared in the tropics each year. 

Globally, the major cause of deforestation is shifting cultivation by landless farmers (not 

traditional forest dwellers) who account for nearly half the deforestation. The second is the 

clearing of forest for permanent agriculture and settlement programmes. The next most 

important cause is gathering of wood as a source of fuel, whilst commercial timber 

harvesting ranks fourth. The pressure to extract more resources from a dwindling base is 

leading to a number of challenging questions. These include whether there are any or no 

environmental, economic and social values of the forest. If there are, has there been enough 

research on the growth processes of the forest and the timescale to replenish the forest 

resource once it is devastated? 

1.2.1 Environmental and Economic Values of the Forest 

It is becoming increasingly clear that, forests that are managed in a sustainable manner are 

able to produce both high quality wood products and other ecological goods and services 

such as water purification, wildlife habitat and carbon sequestration. Forest management 

practices that protect aquatic systems, minimise soil disturbance and erosion, and promote 

rapid forest regeneration are all components of sustainable forestry. When forests are 

managed in a sustainable manner, the environmental values can be explained along the 

following lines of action: 

(i) the forests play an important role in our water cycle by pumping water from 

the soil back into the atmosphere through transpiration. This process also 

helps to cool the surrounding environment; 

(ii) the forests stabilise soil and reduce erosion and sedimentation into aquatic 

systems thereby help maintain water quality; and  
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(iii) the forests remove airborne particles and ozone from our air and improve 

air quality.   

In similar manner, forests have natural economic values that are often overlooked by 

society. When forests are degraded, there is a financial cost incurred by society to replace 

the lost ecological goods and services through the following: 

(i) increased water treatment cost; 

(ii) increased illness and health care costs due to decreased water and air quality; 

(iii) decreased property value due to degraded aesthetic qualities; and  

(iv) decreased revenues from tourism and other non-timber commercial 

activities associated with healthy ecosystems. 

It is therefore worth noting that “the contribution of forests to the country’s economy, 

environment and social well-being is significant. Our forests therefore form an important 

part of our roots as a nation and a big part of our future. Taking care of them and ensuring 

their ongoing health, is a key priority”. 

Despite these numerous benefits of our forest to the country’s economy, environment and 

social well-being, the level of degradation of the forest reserves is high. Studies on the 

forests therefore cannot be over emphasized due to its economic, environmental and health 

importance to the society. Although, a large fraction of forestland has been converted to 

agricultural and urban uses, humans remain dependent on that remaining for the production 

of paper products, lumber and fuel wood. In addition to wood products, forested lands serve 

as a cover for the production of freshwater from mountain watersheds, cleans the air of 

many pollutants, offer habitat for wildlife and domestic grazing animals, and provide 

recreational opportunity (Keto et al., 1990). With projected increases in human population 

and rising standards of living, the importance of the world’s remaining forests will likely 

continue to increase, and along with it, the challenge to manage and sustain this critical 

resource.  

However, sustainability depends on management policies applied to the forest. Information 

about forest composition which is often inferred through modelling studies is fundamental 

for understanding rainforest resilience and dynamics.  
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1.3 Statement of the Problem 

The forest stand consists of trees with different diameters and heights which depend on a 

lot of unsearchable genetic and environmental factors. Its dynamics is affected by many 

processes and varies among stands (Temesgen and Gadow, 2004). Over the years, an 

extensive amount of research has been conducted by several researchers in various parts of 

the world. 

The early studies on forests growth were basically on continuous population dynamics and 

the original research on growth models was attributed to Thomas Malthus (1798). He was 

therefore considered as the originator of growth models and asserted that, every population 

is considered to grow in size when the birth rate exceeds the death rate and proposed a 

model given by dN dt rN where N  is the population after some time t . dN dt  is the 

rate of change in population with respect to time while r  is the intrinsic growth rate. Forty 

years later, Verhulst (1838), in his research on growth models, indicated that growth in 

general must be limited by over-consumption of resources and therefore, exponential 

growth for population size as indicated by Malthus is unrealistic over a long period. The 

works of Smith (1963), Pearl and Reed (1920), Turner et al. (1969, 1976), Nelder (1961) 

and Pearl (1920) are few examples of research works associated with continuous population 

dynamics.  

In the early 1960s, there was a paradigm shift and studies on forest growth were more into 

the modelling of nutrient uptake as a key component for plant growth. Bouldin (1961) and 

Olsen et al., (1962) proposed mathematical models to simulate diffusion of solutes through 

soils, which were used to explain phosphate movement and uptake. Nye and Spiers (1964) 

subsequently developed the partial differential equations used to describe simultaneous 

mass flow and diffusion for nutrient uptake by a unit length of root. Nye and Marriot (1969) 

defined boundary conditions for the equations and solved them numerically, while Baldwin 

et al. (1973), on the other hand, solved the equations analytically with steady state 

approximations. Their work became the foundation for mechanistic nutrient uptake models. 

Building on this, Claassen and Barber (1976), Nye and Tinker (1977), Barber and Cushman 

(1981), Claassen et al. (1986), Smethurst and Comerford (1993), Yanai (1994), Smethurst 

et al. (2004), and Comerford et al. (2006) proposed model revisions to cover the major sub-

processes of nutrient uptake and to accommodate a variety of additional conditions.  Other 
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researchers such as Wu et al. (1985), Wu et al. (1994) and Sharpe et al. (1985) modelled 

the physical growth of the forest by considering the influence of stem, crown and roots. 

Others just considered the effect of either one of the following: availability of light, surface 

water or nutrients to the growth of the tree and subsequently to the growth of the forest. 

Rangel (1993) indicated that, two general models, empirical and mechanistic have been 

developed for such a study. The empirical model is based mainly on regression as well as 

statistical means, often for practical use (Classen and Steingrobe, 1999). The mechanistic 

model on the other hand, requires an understanding of the mechanisms and a quantitative 

description of the phenomena (Rengel, 1993). Mechanistic models were therefore 

considered useful to test the correctness of one’s knowledge of the phenomena (Claassen 

and Steingrobe, 1999). Extrapolation of a verified mechanistic model was thus more 

reliable than that of an empirical model (Claassen and Steingrobe, 1999). The typical 

mechanistic nutrient uptake model describes the supply of nutrients from bulk soil to root 

surfaces, root growth and morphology, and root uptake kinetics (Barber, 1995). 

In recent times, almost all vegetation modelling studies have been redirected to pattern 

formation. It is assumed that pattern formation, is from a starting point of uniform 

vegetation, as a response to a decrease in mean annual rainfall and human activities. Many 

authors have additionally investigated the subsequent transitions between different 

patterned states when environmental conditions such as rainfall are varied (Meron, 2012; 

Gowda et al., 2014). Studies on the vegetation is now concentrated on pattern formation. 

Vegetation patterns are examples of ecosystem-scale and self-organisation. In addition to 

this, they are very important and serve as a potential early warning signals of climate change 

and imminent regime shifts (Bentil and Murray, 1993; Rietkerk et al., 2004; Kéfi et al., 

2007; Corrado et al., 2014). Therefore, they have been the subject of intensive study over 

the last decade.  

Vegetation patterns occur in many semi-arid regions of the world, including Africa 

(Deblauwe et al., 2012; Müller, 2013), Australia (Berg and Dunkerley, 2004; Moreno-delas 

Heras et al., 2012), North America (Pelletier et al., 2012; Penny et al., 2013), the Middle 

East (Buis et al., 2009; Sheffer et al., 2013), and Asia (Yizhaq et al., 2014). Such patterns 

consist of vegetated regions separated by bare ground. They are usually labyrinthine or 

spotted on flat terrain, but on slopes the typical form is stripes running parallel to the 
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contours, known as “banded vegetation” or “tiger bush” (Deblauwe et al., 2008, 2011; 

Meron, 2012). Most authors attributed the underlying cause of vegetation pattern formation 

to competition for water and positive feedback between vegetation and water availability. 

Some of the researchers in this field include (Bel et al., 2012). They investigated the 

formation and spread of isolated regions of patterned vegetation within an unvegetated 

background state, on flat terrain in semi-arid environment. Deblauwe et al., (2012) and 

Dralle et al., (2014), in their studies asserted that, slope can have a major effect on processes 

governed by water redistribution, due to the downhill flow of water both on the surface and 

within the soil. Available literature on the subject indicates that, in all these afore mentioned 

works on forest growth, and pattern formation the researchers never considered the effect 

of interactions among these multiple resources on the growth, spread and vegetation pattern 

formation. 

This research seeks to model the dynamics of the forest by determining the influence of the 

interactions among multiple resources such as light, water, temperature and nutrients on 

the growth, spread and vegetation pattern formation using Continuous Time Markov Chain. 

These and many other factors have therefore necessitated the study into the modelling of 

the dynamics of pattern formation of the vegetation in Ghana by means of a system of 

nonlinear partial differential equation models. 

1.4 Objectives of the Study 

The objectives of this research are to: 

(i) formulate a mathematical model for the growth, spread and vegetation 

pattern formation.  

(ii) investigate the homogeneous and heterogeneous dynamics of the forest 

reserves. 

(iii) simulate the dynamics of the forest reserves using model designed in (i) 

above. 

1.5 Methods Used for the Study 

The methods used to achieve the desired objectives included Literature Survey from 

journals, textbooks and from internet sources; Taylor Series expansion method for the 

linearization of the nonlinear partial differential equations; Michaelis-Menten method was 
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used to determine the rate of nutrients uptake by a cell or organism; Continuous-time 

Markov (CTM) method for synthesising the four resources (light, water and nutrients 

together with temperature) and Finite Difference Method for discretisation schemes. 

1.6 Facilities Used for the Research 

The facilities and resources used in this research include: 

Computers, library and internet facilities at University of Mines and Technology, Tarkwa. 

GIS images of some selected forests in Western region of Ghana from Western Regional 

Library of the forestry Commission 

1.7 Organisation of the Thesis 

This thesis is divided into seven chapters. Chapter 1 provides the general overview and 

ecological background of the study, statement of the problem, the objectives of the study, 

the methods used to achieve the objectives and the facilities that were available for the 

development and writing of the thesis. The chapter also covers the expected outcomes and 

the organization of the thesis. Chapters 2 deals with theoretical background and some 

fundamental concepts. The chapter basically focusses on continuous-time Markov chain 

method, linearisation of nonlinear systems, and description of nutrient-cell plant growth, 

discretisation schemes and other fundamental definitions that are relevant to the study. 

Chapter 3 examines a number of literatures on forest growth, spread and vegetation pattern 

formation. Chapter 4 presents the mathematical model formulation of forest growth, spread 

and vegetation pattern formation and its dimensionless form to reduce the parameters 

associated with the original model. Analysis of the models were considered in chapter 5. 

Chapter 6 was dedicated to the simulation processes where computer simulations in Python 

were used, discussion and interpretation of the results obtained from the study. Chapter 7 

is the summary of the work. In this chapter, the major findings from the study are 

summarised, the conclusions drawn and the recommendations provided for future research. 
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2 CHAPTER 2 

LITERATURE REVIEW 

2.1 Preamble 

This Chapter presents review of a number of literatures on some previous works, 

components of growth, the framework of existing theories and review of some previously 

developed models on the dynamics of the forest growth, spread and vegetation pattern 

formation. 

2.2 Forest Growth Models 

The concept of modelling forest growth, dates as far back as 1798 when Thomas Malthus, 

in “An Essay on the Principle of Population”, used unchecked population growth to 

famously predict a global famine. Since then, studies on vegetation has graduated steadily 

from continuous population dynamics through to the early 1960s when there was a 

paradigm shift and studies on forest growth were more into the modelling of nutrient uptake 

as a key component for plant growth. In recent times, almost all vegetation modelling 

studies have been redirected to pattern-formation. Studies on the vegetation is now 

concentrated on pattern formation and are considered as examples of ecosystem-scale and 

self-organisation.  

Models assist forest researchers and managers in many ways. Some important uses include 

the ability to predict future yields and to explore silvicultural options. They provide an 

efficient way to prepare resource forecasts, but a more important role may be their ability 

to explore management options and silvicultural alternatives. For example, foresters may 

wish to know the long-term effect on both the forest and on future harvest of a particular 

silvicultural decision, such as changing the cutting limits for harvesting. With a growth 

model, they can examine the likely outcomes, both with the intended and alternative cutting 

limits, and can make their decisions objectively. The process of developing a growth model 

may also offer interesting new insights into stand dynamics. 

Many nonlinear theoretical models such as the Logistic, the Gompertz, the Bertalanffy-

Richards and the Schnute rather than empirical models like the polynomial models have 

been used to model forest growth and yield and tree height-diameter relationships (Pienaar 
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and Turnbull, 1973; Payandeh, 1983; Huang et al., 1992; Zeide, 1993; and Fang and Bailey, 

1998) because theoretical models have an underlying hypothesis associated with cause or 

function of the phenomenon described by the response variable (Vanclay, 1994). However, 

empirical models such as polynomial equations were not considered as modeling nonlinear 

growth and yield in forestry because they are devoid of any biological interpretation and 

do not have meaningful parameters from forestry.  

Growth studies in many branches of science have demonstrated that more complex 

nonlinear functions are justified and required if the range of the independent variable 

encompasses juvenile, adolescent, mature and senescent stages of growth (Philip, 1994). 

Thus, a function with a sigmoid form, ideally its origin at  0,0 , a point of inflection 

occurring early in the adolescent stage and either approaching a maximum value, an 

asymptote, or peaking and falling in the senescent stage, is justified. It is therefore prudent 

to begin the study with results of some previous works. 

2.3 Some Previous Works 

The study reviewed works associated with continuous population dynamics, environment 

factors and plant resource competition dynamics of the forest. Other works on extensions 

of logistic growth model were also considered and these include the works of Von 

Bertalanffy, Richard, Smith (1963), Blumberg (1968), Schnute (1981), Pearl and Reed 

(1920), Pearl (1920), Nelder (1961) and Turner et al., (1950). 

2.3.1 Continuous Population Dynamics 

The early studies on forests growth were basically on continuous population dynamics and 

the original research on growth models was attributed to Thomas Malthus (1798). He was 

therefore considered as the originator of growth models. The works of Smith (1963), Nelder 

(1961), Pearl (1920) Pearl and Reed (1920), Turner et al. (1969; 1976), are few examples 

of research works associated with continuous population dynamics.  

The Malthusian Growth Model 

Thomas Malthus proposed an exponential growth model and assumed that, if  N t  is the 

number of individuals in a population at time t , and let b  and d  be the average per capita 
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birth and death rates, respectively, then in a short time t , the number of births in the 

population is  b tN t , and the number of deaths is  d tN t . Thus, the change in 

population between the times t  and  t t   is determined by the relation 

       N t t N t t b d N t      which can be rearranged as 

        /N t t N t t b d N t     . Now, the limit as 0t , this expression was 

obtained as Equation (3.1) 

 
 

dN t
rN t

dt
          (2.1) 

with the integral form which proposes an exponentially growth as Equation (2.2)  

  0

rtN t N e          (2.2) 

where, 0N  is the initial population,  N t is the population after some time t  and dbr   

being the intrinsic growth rate. 

The Logistic Growth Model 

One of the two regulation models to the Malthus exponential growth model is the logistic 

growth model by Verhulst. Verhulst’s findings in 1838 revealed that, Malthus exponential 

growth for population size is unrealistic over a long period since growth will eventually be 

checked by over-consumption of resources.  He therefore proposed a model called the 

Logistic growth model which is of the form given by Equation (2.3) 

  NrNF
dt

dN
          (2.3) 

where  NF  provides a model for environmental regulation. He indicated that, this function 

should satisfy   10 F when the population grows exponentially with growth rate r  and 

N  is small,   0kF  indicating that the population stops growing at the carrying capacity, 

and   0NF  when kN   thus the population decays when it is larger than the carrying 

capacity. The simplest function,  NF  satisfying these conditions is linear and was given 

by   1 /F N N K  . The resulting model is the well-known logistic equation given as 

Equation (2.4)  
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 









k

N
rN

dt

dN
1         (2.4) 

where  1 N k  represents the fractional deficiency of the current size from the saturation 

level, .k  This is an important model for many processes besides bounded population 

growth. 

Verhulst Logistic Growth Scaled by the ‘Delaying’ Factor  
1

1 c N K


    

The other regulation model to the Malthus exponential growth model is by Smith (1963). 

Smith also reported that the Verhulst logistic growth equation did not fit experimental data 

satisfactorily due to problems associated with time lags. According to Smith, the major 

problem in applying the logistic growth equation to data concerns an accurate portrayal of 

the portion of the limiting factor as yet unutilized given by  1 N k . He then argued that 

for a food-limited population, the term  1 N k  should be replaced with a term 

representing the proportion of the rate of food supply currently unutilized by the population. 

Thus. if F  is the rate at which a population of size N  uses food and T  is the 

corresponding rate at saturation level, then the model can best be represented as Equation 

(2.5) 

 1
dN F

rN
dt T

 
  

 
          (2.5)  

where    F T N K , since a growing population will use food faster than a saturated 

population. F  must depend on N  and dN dt , and the simplest relationship was identified 

to be linear indicated as Equation (2.6) 

 , 0,
dN

F aN b a b o
dt

           (2.6) 

At saturation ,0,, 
dt

dN
kNTF  hence akT   and as a result the modified Verhulst 

logistic growth equation is given as Equation (2.7) 



 

12 

 

























k

N
c

k

N

rN
dt

dN

1

1

         (2.7) 

where 
a

rb
c  . 

2.3.2 Extensions of the Logistic Growth Model  

In this section, some other well-known growth models that are extensions to the logistic 

growth model were considered. In addition, the existence of the sigmoidal feature that 

characterizes most growth curves was established. This is normally responsible for the 

existence of an inflection point, where present. Since the original work of Verhulst (1938) 

and Pearl and Reed (1920), there have been several contributions suggesting alternative 

functional forms  Nf  for growth whilst retaining the sigmoidal and asymptotic property 

of the Verhulst logistic curve. In plant sciences, Richards (1959) was the first to apply a 

growth equation developed by Von Bertalanffy (1938) to describe the growth of animals. 

Richard’s growth curve was used for fitting experimental data by Nelder (1961) who 

introduced the term generalized logistic equation to describe the equation. Blumberg (1968) 

introduced the hyperlogistic equation as a generalization of Richard’s equation. Turner et 

al. (1969; 1976) suggested a further generalization of the logistic growth and termed their 

equation the generic logistic equation. In a survey paper, Buis (1991) revisited several 

previous logistic growth derived functions that have been introduced and outlined some of 

their respective properties. The generalised logistic growth model was deduced based on 

the three postulates of the kinetic theory of growth. The three postulates are stated as 

follows:  

P1: The rate of change of size is jointly proportional to a monotonically increasing 

function 1  of the distance between the origin and the size, and to a monotonically 

increasing function 2  of the distance between size and ultimate size. This is 

represented mathematically as Equation (2.8) 

    1 20, ,n n

dN
N N k

dt
                  (2.8) 
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P2: The monotonically increasing functions 1  and 2  are power functions where 

1 2, 0   . These are represented by Equations (2.9) and (2.10) 

    
1

1 0, 0,n nN N


                (2.9) 

     
2

2 , ,n nN k N k


                (2.10) 

P3: The exponents 1  and 2  obey the constraints represented by Equations (2.11) and 

(2.12) 

1 1 np             (2.11) 

 2 n np             (2.12) 

where 
1 2

10, 1 , 1n p n
n

         

Based on these postulates of the kinetic theory of growth, the generalized logistic function 

is defined as Equation (2.13):  



























k

N
rN

dt

dN
1         (2.13) 

where  ,  and   are positive real numbers. The emphasis is mostly on positive values 

for these parameters, as negative exponents do not always provide a biologically plausible 

model. Other growth models that follow come under extensions of generalised logistic 

growth model. Three main features that can be made out of the generalized logistic growth 

model are as follows: 

(i)   ktNit
t




lim , the population will ultimately reach its carrying capacity. 

(ii) the relative growth rate dN Ndt  attains its maximum value at. N   given by 

Equation (2.14) 

 1

1
1

N k






  
  

 
          (2.14) 

provided N   is real and greater than 0N , otherwise it declines non-linearly reaching its  
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minimum zero value at kN  . The maximum relative growth rate is given by 

Equation (2.15) 

 1

1

max

1 1

1 1

dN
rk

N dt





  

   



     
     

        
     (2.15) 

Important limit values of N   are 

  0lim
0




Nit


 

   







 1

0
lim eNit  

  kNit 

0
lim


 

(iii) The population at the inflection point (where growth rate is maximum), is given 

by Equation (2.16) 

 

 1

inf 1N k N






 
   
 

        (2.16)  

Few examples of growth equations that are derived from the generalised logistic growth 

model are considered below. 

Von Bertalanffy’s Growth Equation 

Von Bertalanffy (1938) introduced his growth equation to model fish weight growth. Here 

the Verhulst logistic growth curve was modified to accommodate crude ‘metabolic types’ 

based upon physiological reasoning. He proposed the form given as Equation (2.17) which 

can be seen to be a special case of the Bernoulli differential equation 

 























3
1

3
2

1
k

N
rN

dt

dN
        (2.17) 

which has the solution given as Equation (2.18) 

  

3

3
3

1

0 3
1
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ktN        (2.18) 
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 Here, 
infN  is given by Equation (2.19) 

 
27

8
inf

k
N            (2.19) 

The time to inflection was found and represented as Equation (2.20) 
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
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inf 1ln
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t  
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
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
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inf 13ln
3

k

N
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t        (2.20) 

and the maximum growth rate was represented as Equation (2.21): 

 3
2

max 27

4
rk

dt

dN









          (2.21) 

Richard’s Growth Equation 

Richard extended the growth equation developed by Von Bertalanffy to fit empirical plant 

data (Richards, 1959). In Richard’s suggestion, he came up with Equation (3.22) which is 

also a special case of the Bernoulli differential equation:  

 























k

N
rN

dt

dN
1          (2.22) 

This has a solution given by Equation (2.23) 

  
   

1

00

0

rteNkN

kN
tN



        (2.23) 

Here, the inflection infN  occurs at a value given by Equation (2.24) 

 kN




1

inf
1

1










          (2.24) 
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Richard’s form is readily deduced from generalised logistic function (2.13) with 1.  

For 1 , Equation (2.22) trivially reduces to the Verhulst logistic growth equation (2.4) 

and similarly exhibits the same inflexible inflection point value. 

Blumberg’s Growth Equation 

Blumberg (1968) introduced another growth equation based on a modification of the 

Verhulst logistic growth equation to model population dynamics of organ size evolution. 

He observed that the major limitation of the logistic curve was the inflexibility of the 

inflection point. He further observed that attempts to modify the constant intrinsic growth 

rate term r , treating this as a time-dependent polynomial to overcome this limitation, often 

led to under estimation of future values. Blumberg therefore introduced what he called the 

hyperlogistic function, given as Equation (2.25) 

 














k

N
rN

dt

dN
1          (2.25) 

Equation (2.25) was reformulated as the integral of the form given by Equation (2.26) 

  

 




K
tN

K
N

trkdxxx

0

11 
        (2.26) 

This does not always afford a closed form analytical solution for 1,1   . Blumberg 

therefore catalogued analytic expressions of the growth function  tN  for various values 

of the parameters   and  . The population at the inflection point, infN , was given by 

Equation (2.27) 

 





infN          ` (2.27) 

This also coincides with that of the Verhulst logistic equation when 1   . For    

the inflection occurs very near the carrying capacity, and for   , infN  approaches 0 

and inflection occurs only if inf0 NN  . Equation (2.25) is obtained by setting 1 in 

equation (2.13). 
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Schnute’s Growth Equation 

Schnute (1981), in his paper, suggested the use of the relative growth rate as the quantity 

of interest. Thus, if  1z N dN dt  is the relative growth rate, then  1 Z dZ dt  is the 

relative growth rate of the relative growth rate. Schnute’s assumption was that  1 Z dZ dt  

is a linear function of Z represented as Equation (2.28) 

  bZa
dt

dZ

Z


1
         (2.28) 

where ,a b  are positive, negative, or zero constants, and the minus sign on the right-hand 

side indicates that the growth rate typically decreases. For appropriate values of ,a  and b , 

some growth models can be derived from (2.28). In contrast, for the generalized logistic 

model (2.13),  1 Z dZ dt  has the following form given as Equation (2.29): 

  
 























111

1
1

ZNrZ
dt

dZ

Z
      (2.29) 

which clearly indicate that Equation (2.29) is not a linear function of Z, but rather of the 

form given as Equation (2.30) 

   cZNbaZ
dt

dZ

Z


1
       (2.30) 

where 1 a  is a constant, b  a function of N , and c  a constant. From (2.29) with 

1   one obtains the Verhulst logistic growth form given as Equation (2.31) 

 rZ
Z

r
Z

dt

dZ

Z









 1

1
        (2.31) 

2.3.3 Environment Factors and Plant Resource Competition Dynamics 

Another field of study under plant growth models in biology reviewed is associated with 

environment and plant resource competition. These run from the simple single-variable 

equation to the complex dynamic model which contain the form process of plant biomass. 

These models often pay more attention to the action of individual environment factors and 

plant competition for resources. Gates (1980) growth equation stressed the space 

interaction of the individual plants; McMartrie and Wolf (1983) considered the light use; 
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Walker et al. (1981) studied plant on the water use; Yin-ping et al. (2000) and Rui-hai et 

al. (2000) have studied the dynamic mechanism using the determined method. Olson 

(1985) and Sharpe et al. (1985) arose the Continuous-time Markov (CTM) approach in 

ecological view. These examples are few works associated with environment factors and 

plant resource dynamics. 

In the early 1960s, there was a paradigm shift and studies on forest growth were more into 

the modelling of nutrient uptake as a key component for plant growth. Bouldin (1961) and 

Olsen et al. (1962), proposed mathematical models to simulate diffusion of solutes through 

soils, which were used to explain phosphate movement and uptake. Nye and Spiers (1964) 

subsequently developed the partial differential equations used to describe simultaneous 

mass flow and diffusion for nutrient uptake by a unit length of root. Nye and Marriot (1969) 

defined boundary conditions for the equations and solved them numerically, while Baldwin 

et al. (1973), on the other hand, solved the equations analytically with steady state 

approximations. Their work became the foundation for mechanistic nutrient uptake models. 

Building on this, Claassen and Barber (1976), Nye and Tinker (1977), Barber and Cushman 

(1981), Claassen et al. (1986), Smethurst and Comerford (1993), Yanai (1994), Smethurst 

et al. (2004), and Comerford et al. (2006) proposed model revisions to cover the major sub-

processes of nutrient uptake and to accommodate a variety of additional conditions.  Other 

researchers such as Wu et al. (1985), Wu et al. (1994) and Sharpe et al. (1985) modelled 

the physical growth of the forest by considering the influence of stem, crown and roots. 

Others just considered the effect of either one of the following: availability of light, surface 

water or nutrients to the growth of the tree and subsequently to the growth of the forest. 

Rangel (1993) indicated that, two general models, empirical and mechanistic have been 

developed for such a study. The empirical model is based mainly on regression as well as 

statistical means, often for practical use (Classen and Steingrobe, 1999). The mechanistic 

model on the other hand, requires an understanding of the mechanisms and a quantitative 

description of the phenomena (Rengel, 1993). Mechanistic models were therefore 

considered useful to test the correctness of one’s knowledge of the phenomena (Claassen 

and Steingrobe, 1999). Extrapolation of a verified mechanistic model was thus more 

reliable than that of an empirical model (Claassen and Steingrobe, 1999). The typical 

mechanistic nutrient uptake model describes the supply of nutrients from bulk soil to root 

surfaces, root growth and morphology, and root uptake kinetics (Barber, 1995). 
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In recent times, almost all vegetation modelling studies have been redirected to pattern 

formation. It is assumed that patterns form from a starting point of uniform vegetation, as 

a response to a decrease in mean annual rainfall and human activities. Many authors have 

additionally investigated the subsequent transitions between different patterned states when 

environmental conditions such as rainfall are varied (Meron, 2012; Gowda et al., 2014). 

Studies on the vegetation is now concentrated on pattern formation. Vegetation patterns are 

examples of ecosystem-scale and self-organisation. In addition to this, they are very 

important and serve as a potential early warning signals of climate change and imminent 

regime shifts (Rietkerk et al., 2004; Kéfi et al., 2007; Corrado et al., 2014). Therefore, they 

have been the subject of intensive study over the last decade.  

Vegetation patterns occur in many semi-arid regions of the world, including Africa 

(Deblauwe et al., 2012; Müller, 2013), Australia (Berg and Dunkerley, 2004; Moreno-delas 

Heras et al., 2012), North America (Pelletier et al., 2012; Penny et al., 2013), the Middle 

East (Buis et al., 2009; Sheffer et al., 2013), and Asia (Yizhaq et al., 2014). Such patterns 

consist of vegetated regions separated by bare ground. They are usually labyrinthine or 

spotted on flat terrain, but on slopes the typical form is stripes running parallel to the 

contours, known as “banded vegetation” or “tiger bush” (Deblauwe et al., 2008, 2011; 

Meron, 2012). Most authors also attributed the underlying cause of vegetation pattern 

formation to competition for water and positive feedback between vegetation and water 

availability. Some of the researchers in this field include Bel et al., (2012). They 

investigated the formation and spread of isolated regions of patterned vegetation within an 

unvegetated background state, on flat terrain in semi-arid environment. Others including 

(Deblauwe et al., 2012; Dralle et al., 2014) in their study asserted that, slope can have a 

major effect on processes governed by water redistribution, due to the downhill flow of 

water both on the surface and within the soil. 

In all, a number of hypotheses have been suggested about the origin of this vegetation 

pattern formation. Yet no consensus has been reached. For instance, Boaler and Hodge 

(1962), attributed the presence of vegetation stripes to the variation in texture of soil parent 

material. Belsky (1986), suggested that the initiation of the vegetation mosaics was caused 

by soil sodicity and salinity through differential leaching of salts from the sodic soils. 

Kellner and Bosch (1992), suggested that vegetation patterns in semi-arid grassland were 

created through selective grazing by herbivores. Thiery et al. (1995), demonstrated that 
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patterns such as those in tiger bush can be generated if plants are positively affected by 

lateral and downslope plants, but negatively affected by upslope plants. Jeltsch et al. 

(1997), related vegetation patterns to the interplay of factors such as competition, 

colonization and changes in the vegetation caused by fire and grazing. Similarly, Bromley 

et al. (1997), suggested that vegetation mosaics develop out of a complete cover of 

vegetation through the creation of patches by termites, grazing or fire. Lefever and Lejeune 

(1997), found vegetation mosaics resulting from the “interplay between short-range 

cooperative interactions controlling plants reproduction and long-range self-inhibitory 

interactions originating from plant competition for environmental resources. 

2.4 The Primary Components of Growth 

Growth results from the interaction of two opposing forces. The positive component, 

mostly manifested in expansion of an organism, represents the innate tendency towards 

exponential multiplication. This component is associated with biotic potential, 

photosynthetic activity, absorption of nutrients, constructive metabolism, anabolism and 

many others. The opposing component represents the restraints imposed by external 

(competition, limited resources, respiration and stress) and internal (self-regulatory 

mechanisms and aging) factors. Those factors that adversely affect growth have been 

referred to as environmental resistance, destructive metabolism, catabolism, respiration and 

so on. 

Appropriately, laws or postulates of growth are often formulated in pairs that reflect both 

the multiplicative and limiting components. One of such is Hutchinson’s (1978), two 

postulates of population growth stated as below: 

i. Every living organism has arisen from at least one parent in like kind (the postulate 

of parenthood); 

ii. In a finite space there is an upper limit to the number of finite beings that can occupy 

or utilize the space under consideration (the postulate of an upper limit). The relative 

growth rate is always decreasing (Minot’s law). 

The conflict between infinity implicit in multiplicative reproduction and the limit imposed 

by finite space is the chief source of all challenge in living being, including growth. This 

conflict is the driving force of evolution and is crucial to understanding virtually all 
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biological and social phenomena. Growth equations provide a succinct expression of this 

conflict and its resolution.  

2.5 Review of Some Related Past Works 

Theoretical studies have shown that, local interactions coupled by dispersal can cause non-

uniform distributions of organisms to develop in the absence of underlying heterogeneity. 

Most of these studies have focused on interactions between animal populations, not on the 

interaction of plants and their abiotic resources. Klausmeier (1999), having observed a 

striking vegetation pattern of regular stripes on hillsides and irregular mosaic on flat ground 

developed a mathematical model of plant and water dynamics based on ecologically 

realistic assumptions and reasonable parameter values to study the conditions that led to 

such observations. He developed a model to investigate into the causes and effects. The 

developed model is given by Equation (2.32) 
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where T  is the time coordinate, and  ,X Y  represents the spatial domain. In order to 

narrow down to the causes and effects of his observations, the model Equation (2.32) was 

non-dimensionalised to obtain dimensionless model given by Equation (2.33) 
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       (2.33) 

The dimesionless model Equation (2.33) has only three parameters and these are: a , which 

controls water inputs, m , which measures plant losses; and v , which controls the rate at 

which water flows downhill. The two cases examined were hillside and flat ground. In his 

analysis it was found that, for given mortality rate m and water flow speed v, there is a 

critical value of water input a below which regular stripes form on the hillside. He further 

indicated that a potential explanation for the irregular mosaics is that slight topographic 

variation can lead to large variation in plant density. Thus, higher ground is left bare 
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whereas lower points support dense vegetation. Thus, the ecological dynamics amplify the 

underlying heterogeneity into a sharply differentiated mosaic. This hypothesis is supported 

by Belsky’s observation that water flows from sparsely to densely vegetated patches in a 

grassland mosaic. It supports the verbal argument that water-plant dynamics can explain 

the formation and maintenance of striped vegetation patterns and suggests that irregular 

mosaics are most likely due to slight topographic variation. These results show that spatial 

pattern in ecological systems can result from both self-organization and amplification of 

underlying heterogeneity. 

Rietkerk et al. (1997), by means of a bifurcation analysis of two mathematical models 

indicated how site specific properties determine the resilience of vegetation changes in 

semi-arid grazing systems. This concept of vegetation change came about as a result of 

more than a decade of thinking about resilience by Walker et al. (1981), and Noy-Meir 

(1982). Closely related to the definition of resilience, there has persisted the notion that 

grazing systems are intrinsically resilient because they have persisted for decades or more 

in Africa despite large and frequent environmental fluctuations (Ellis and Swift, 1988; Abel 

and Blaikie, 1989; Behnke and Scoones, 1992). To these authors, this meant that there is 

some sort of in-built resistance to land degradation to these systems and that vegetation 

change is mainly determined by rainfall variations and not by herbivory. This implies that 

when vegetation is drastically reduced as a result of intense herbivory during drought, it 

will nevertheless always recover if periods with higher rainfall follow. The two 

mathematical models that were presented by Rietkerk and his co-authors were water-

limited model and nutrient-limited model. For the water-limited model, the rate of change 

of both plant density and soil water availability is presented by the system of differential 

Equation (2.34). 
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where P  and W  denote plant density and soil water availability and  g W  is specific 

plant growth as a function of soil water availability, d  is specific plant loss due to mortality 

and b  is specific plant loss due to herbivory.  inW P  describes water infiltration into the 

soil as a function of plant density.  c W  is the specific soil water uptake by the plants as a 
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function of soil water availability and Wr  is the specific soil water loss due to soil 

evaporation and deep percolation. In their presentation, they assumed that specific plant 

growth and specific soil water uptake are both saturation functions of soil water availability 

with Michaelis-Menten equation as an example of a saturation function. Thus, the specific 

plant growth was given by Equation (2.35) 
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         (2.35) 

and the specific soil water uptake by plants was also given by Equation (2.36) 
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where maxg  is the maximum specific plant growth, maxc  is the maximum specific soil water 

uptake by the plants and 1k  is a half saturation constant. The relationship between water 

infiltration into the soil and plant density was given by the authors based on (Walker et al., 

1981) by Equation (2.37) 
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where PPT  stands for rainfall, 0W  is the minimum water infiltration in the absence of 

plant, and 2k  is a half saturation constant. 

For the nutrient-limitation model, the rate of change of both plant density and soil nutrient 

availability is represented by the system of differential Equations (2.38). 
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where P  and N  denote plant density and soil nutrient availability and  g N  is specific 

plant growth as a function of soil nutrient availability, d  is specific plant loss due to 

mortality and b  is specific plant loss due to herbivory. inN  describes nutrient release from 

geochemical cycle which is considered independent of plant density.  c N  is the net plant 
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specific soil nutrient loss as a function of soil nutrient availability and  Nr P  is the specific 

soil nutrient loss due to water and wind erosion. Now in their presentation, they assumed 

that specific plant growth and specific nutrient release are both saturation functions of soil 

nutrient availability with Michaelis-Menten equation as an example of a saturation 

function. Thus, the specific plant growth as a function of soil nutrient availability was given 

by Equation (2.39) 
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1

N
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         (2.39) 

The parameter maxg  is the maximum specific plant growth, 1k  is a half saturation constant. 

 c N  consists of two terms: the specific soil nutrient uptake by the plants as a Michaelis 

Menten function of soil nutrient availability and the specific nutrient release from plant 

mortality. Specific plant growth increases linearly with increasing specific soil nutrient 

uptake and is at its maximum if the availability of soil nutrients permits maximum specific 

soil nutrient uptake. This can be written as Equation (2.40) 
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The parameter maxc  is the maximum specific soil water uptake by the plants. The factor 

max maxd c g  is the nutrient release as a consequence of plant mortality d  whereby 

max maxg c  is the C N  ratio of the plant material. The relationship between the specific soil 

nutrient loss due to water and wind erosion and plant density was given by the authors as 

Equation (2.41) 
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where  ,maxNr P  is the maximum specific soil nutrient loss when plant density is zero and 

2k  is a half saturation constant. In their results by the water limitation model, it was 

indicated that the rate at which water infiltration increases with plant density ( 2k ), can be 

interpreted as the capacity of the vegetation to improve the structural and water-holding 

capacities of the soil. Clayey and sandy soils were two examples that were considered. 
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Their results indicate that herbivory is likely to trigger continuous and irreversible 

vegetation changes on soils with a low infiltration capacity. As a result, on clayey soil the 

vegetation will be neither resilient to herbivore impact nor to disturbances. Again, 

fluctuating rainfall may trigger discontinuous and irreversible changes in plant density if 

water infiltration in the absence of plant is relatively low. So under these conditions, the 

vegetation will not be resilient to fluctuating rainfall. In the case of nutrient limitation 

model, the rate at which specific nutrient loss decreases with plant density ( 2k ) can be 

interpreted as the nutrient retention capacity of the vegetation. Herbivory is likely to trigger 

continuous and irreversible vegetation changes in plant density on soils with a high 

erodibility. So on sandy soils, the vegetation will be neither resilient to herbivore impact 

nor to disturbances for certain ranges of herbivore action. 

2.6 Summary of Review of Literature 

Over the years, extensive research works have been conducted by several researchers in 

various parts of the world. The early studies on forests growth were basically on continuous 

population dynamics and the original research on growth models was attributed to Thomas 

Malthus (1798). He was therefore considered as the originator of growth models and 

asserted that, every population is considered to grow in size when the birth rate exceeds the 

death rate. He further proposed a model given by dN dt rN  where N  is the population 

after some time t . dN dt  is the change in population with time and r  is the intrinsic 

growth rate. Forty years later, Verhulst (1838), in his research on growth models, indicated 

that growth in general will be limited by over-consumption of resources and therefore, 

exponential growth for population size as indicated by Malthus is unrealistic over a long 

period. The works of Smith (1963), Pearl and Reed (1920), Turner et al. (1969; 1976), 

Nelder (1961) and Pearl (1920), are few examples of research works associated with 

continuous population dynamics.  

Another field of study under plant growth models in biology is associated with environment 

and plant resource competition. These run from the simple single-variable equation to the 

complex dynamic model which contain the form process of plant biomass. These models 

often pay more attention to the action of individual environment factors and plant 

competition for resources. Gates (1980) growth equation stressed the space interaction of 
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the individual plants; McMartrie and Wolf et al. (1983), considered the light use; Walker 

et al. (1981), studied plant on the water use; Zhang Yin-ping et al. (2000) and Guo Rui-hai 

et al. (2000), also studied the dynamic mechanism using the determined method. Olson 

(1985) and Sharpe et al. (1985), used the Continuous-time Markov (CTM) approach in 

ecological view. These examples are few works associated with environment factors and 

plant resource dynamics. 

This research however, seeks to model the dynamics of the forest by determining the 

influence of the interactions among these multiple resources such as light, water, 

temperature and nutrients on the growth, spread and vegetation pattern formation which 

had never been done in any of the literatures reviewed. 
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3 CHAPTER 3 

THEORETICAL BACKGROUND AND SOME FUNDAMENTAL 

CONCEPTS 

3.1 Preamble 

This chapter discusses the definitions of some fundamental terms used in the thesis together 

with existing theories and methods. These include Markov process for synthesising 

multiple resource availability for growth, linearisation procedure based on the Taylor series 

expansion and on knowledge of nominal system trajectories and inputs. Others include 

Michaelis-Menten Kinetics used to model the rate of nutrients uptake by a cell of a plant 

and both local and global sensitivity analyses that emphasise how the behaviour of physical 

and chemical systems is affected by many parameters that characterise the system. 

3.2 The Continuous-Time Markov Chain (CTMC) 

A continuous-time Markov Chain  
0t t

X


 is defined by a finite or countable state space S, 

a transition matrix Q with dimensions equal to that of the state space for which the element 

ijq  for i j  are non-negative and describe the rate of the process transitions from state i 

to state j . The elements iiq  are also chosen such that each row of the transition rate matrix 

sums to zero. A state j  is said to be accessible from a state i  (written i j ) if it is possible 

to get to j  from i , and this is indicated as Equation (3.1) 

  Pr 0 0i tX j for some t          (3.1) 

These Markov chains are used to model interactions between components and therefore, 

many examples of dependencies among system components have been observed in practice 

and captured by Markov models. The interactions among the multiple resources such as 

light, water, temperature and nutrients were modelled by use of the Markov chains. They 

are considered as State-Space based models where the states represent various conditions 

of the system and the transitions between states indicate occurrences of events. An example 

of growth model in which continuous-time Markov chains has been used is “Dynamic 

model of crop growth system and numerical simulation of crop growth process under the 

multi-environment external force action” by Li et al. (2003). 
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CTMC is the type in which the time variable associated with the system evolution is 

continuous. It is characterised by state changes that can occur at any arbitrary time with a 

continuous index space. However, the state space is discrete valued. A CTMC can be 

completely described by an initial state probability vector for  0X t  given by Equation 

(3.2) 

   0 0,1, 2,P X t k k          (3.2) 

The transition probability functions (over an interval) are given by Equations (3.3) and (3.4)  

       , |ijP v t P X t j X v i    for 0 v t   and 0,1, 2,ij   (3.3) 
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 
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 and  , 1 ; 0ij

J I

P v t i v t


       (3.4) 

3.2.1 The Transition Rate Matrix 

A transition rate matrix (also known as an intensity matrix or infinitesimal generator 

matrix) is defined in probability theory as an array of numbers describing the rate a 

continuous time Markov chain moves between states. The elements of the transition rate 

matrix Q, given by  for ijq i j  denotes the rate departing from state i  and arriving in state 

j  and the diagonal elements iiq  are defined as indicated by Equation (3.5)  

 
ii ij

j i

q q


            (3.5) 

and therefore the rows of the matrix sum to zero. This matrix is a fundamental quantity 

associated with the continuous-time Markov chain   : 0X t t   and it is also called the 

infinitesimal generator, or simply generator, of the chain. Suppose ijg  denote the  ,i j th  

entry of generator matrix G, then the off-diagonal entries of G are represented by Equation 

(3.6) 

 ij ijg q  for i j          (3.6) 

and the diagonal entries are represented by Equation (3.7) 

 ii ig v            (3.7) 
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The generator matrix G contains all the rate information for the chain and, even though its 

entries are not probabilities, it is the counterpart of the one-step transition probability matrix 

P for discrete time Markov chains. According to Kolmogorov’s (1931) Backward 

equations, if one had conditioned on  X t  instead of  X h , one would have derived 

another set of differential equations called Kolmogorov’s Forward equations, which in 

matrix form are given by Equation (3.8) 

    /P t P t G          (3.8)  

For both the backward and the forward equations, the common boundary condition used is 

given by Equation (3.9) 

  0P I           (3.9)  

where I  is the |S| × |S| multiplicative identity matrix. For an identity matrix, if i j  then 

the boundary condition satisfies the expression given in Equation (3.10) 

       0 0 | 0 1iiP P X i X i           (3.10)  

and, for i j , it is given as in Equation (3.11)  

       0 0 | 0 0ijP P X j X i           (3.11) 

3.2.2 Properties of Continuous-Time Markov Chains 

Though the backward and forward equations are two different sets of differential equations, 

with the above boundary condition given by Equation (3.9), they have the same solution, 

given by Equation (3.12) 

  
 

0 !

n

tG

n

tG
P t e

n





           (3.12) 

where n  is an integer.  

The expanded form of Equation (3.12) is given by Equation (3.13) where I  is the 

multiplicative identity matrix.     

 
     

2 3 4

2! 3! 4!

tG tG tG
P t I tG                       (3.13) 
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It must be noted that the notation t Ge  is meaningless except as shorthand notation for the 

infinite sum above. To see that the above satisfies the backward equations one will simply 

plug it into the differential equations and check that it solves them. Differentiating with 

respect to t, one get Equation (3.14) 

  
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tGd d
P t e
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In its expanded form, Equation (3.14) leads to Equation (3.15) 
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 GP t         (3.15) 

and,  0P I  is clearly satisfied. Moreover, one could also have written the expanded form 

as Equation (3.16) 
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  ( )P t G           (3.16)  

Thus, even though one cannot normally obtain  P t  in an explicit closed form, the infinite 

sum representation tGe  is general, and can be used to obtain numerical approximations to 

 P t  if |S| is finite, by truncating the infinite sum to a finite sum. In some text, the notation 

R is used for the generator matrix, presumably to stand for the Rate matrix. However, in 

this thesis, the notation G which is more common will be adopted, and the terminology 

“generator matrix” or “infinitesimal generator matrix” as standard. 

The solution   tGP t e  shows how basic the generator matrix G is to the properties of a 

continuous-time Markov chain. It can be shown that the generator matrix G is also the key 

quantity for determining the stationary distribution of the chain. First, one can define what 

is meant by a stationary distribution for a continuous-time Markov chain. 
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3.2.3 Stationary Distributions 

Let   : 0X t t   be a continuous-time Markov chain with state space S, generator matrix 

G, and matrix transition probability function  P t . An |S|-dimensional row vector 

 i i S
 


 with 0i   for all i  and 1i

i S




 , is said to be a stationary distribution if 

 P t   for all 0t  . 

Thus, a vector   which satisfies  P t   for all 0t   is called a stationary 

distribution. This makes the process stationary. That is, if one sets the initial distribution of 

 0X  to be such a , then the distribution of  will also be  for all . That is 

 for all and all . To see this, set the initial distribution of 

 to be  and compute  by conditioning on . This gives Equation 

(3.17) 

     

         (3.17) 

It must be noted that, the relation between the generator matrix G and the definition of a 

stationary distribution can be represented as equivalence Equation (3.18) 

  for all         (3.18) 

 in the definition of  in Equation (3.18) can be replaced with . By so doing, one 

obtains an equivalence as Equation (3.19) 

  for all        (3.19) 

Rewriting Equation (3.19) with the summation sign starting from 1n   gives Equation 

(3.20) 

 
 

1 !

n

n

tG

n
  





     for all 0t         (3.20) 
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Equation (3.20) then simplifies to Equation (3.21) 

  for all        (3.21) 

For 1n  , Equation (3.21) converges to Equation (3.22) 

  for all         (3.22) 

And finally settles as Equation (3.23)      

           (3.23) 

To be convinced that the implications are true in both directions in each of the lines above, 

it could be seen that the condition  for all , which would be quite difficult 

to check, reduces to the much simpler condition  in terms of the generator matrix 

G. The equation  is a set of |S| linear equations which, together with the 

normalization constraint  determines the stationary distribution  if one exists. 

The  equation in  is given by Equation (3.24)  

          (3.24) 

and Equation (3.24) is equal to Equation (3.25) 

          (3.25) 

This Equation (3.25) has the following interpretation. On the left-hand side,  is the long 

run proportion of time that the process is in state j, while  is that rate of leaving state j 

when the process is in state j. Thus, the product  is interpreted as the long run rate of 

leaving state j. On the right hand side,  is the rate of going to state j when the process is 

in state i, so the product i ijq  is interpreted as the long run rate of going from state i to state 

j. Summing overall  then gives the long run rate of going to state j given by Equation 

(3.26) 
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The Equation (3.26) is interpreted as “the long run rate out of state j” equals “the long run 

rate into state j”. For this reason, the equations 0G   are called the Global Balance 

Equations, or just Balance Equations. Equation (3.26) expresses the fact that when the 

process is made stationary, there must be equality, or balance, in the long run rates into and 

out of any state. 

3.3 Linearisation of Nonlinear Systems 

Consider the linearisation of systems described by nonlinear partial differential equations. 

The procedure is based on the Taylor series expansion and on knowledge of nominal system 

trajectories and nominal system inputs. Suppose one has a simple scalar first-order 

nonlinear dynamic system given by Equation (3.27) 

       0, ,
x

F x t f t x t
t





 given        (3.27) 

Assume that this system operates along the trajectory  nx t  while it is driven by the system 

input  nf t .  nx t  and  nf t  are the nominal system trajectory and the nominal system 

input respectively. On the nominal trajectory the partial differential equation in Equation 

(3.28) is satisfied 

 
 

    ,
n

n n

x t
F x t u t

t





        (3.28) 

Assume that the motion of the nonlinear system is in the neighbourhood of the nominal 

system trajectory given by (3.29), 

      nx t x t x t            (3.29) 

where  x t  represents a small quantity. It is natural for one to assume that the system 

motion in close proximity to the nominal trajectory will be sustained by a system input 

which is obtained by adding a small quantity to the nominal system input given by Equation 

(3.30)  

      nf t f t f t            (3.30) 

For the system motion in close proximity to the nominal trajectory, one obtains Equations 

(3.31) 
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 

          x ,
n

n n

x t
x t F x t t f t f t

t


      


     (3.31) 

Since  x t  and  f t  are small quantities, the right-hand side can be expanded into a 

Taylor series about the nominal system trajectory and input, which produces Equation 

(3.32) 

 
       , ( , ) ( , )

n

n n n n n n

x t F F
x t F x f x f x t x f f t higher order terms

t x f

  
       

  
   (3.32) 

Cancelling higher-order terms (which contain very small quantities 

2 2 3, , , ,x f x f x     ), the linear partial differential equation is obtained as Equation 

(3.33)  

      ( , ) ( , )n n n n

F F
x t x f x t x f f t

x f

 
    

 
     (3.33) 

The partial derivatives in the linearisation procedure are evaluated at the nominal points. 

Introducing the notation given by Equation (3.34) 

    0 0, ,n n n n

F F
a x f b x f

x f

 
  

 
      (3.34) 

the linearised system can be represented as Equation (3.35) 

        0 0(t)x t a x t b t f t            (3.35) 

In general, the obtained linear system is time varying. One will therefore consider situations 

for which the linearisation procedure produces time invariant systems. The initial condition 

for the linearised system can be obtained from Equation (3.36) 

      0 0 0nx t x t x t           (3.36) 

Similarly, one can linearise the second-order nonlinear dynamic system given by Equation 

(3.37) 

      
 2

0

02
, , , ,

x tx x f
F x t f t x t

t t tt

   
  

    
 given    (3.37) 

by assuming Equations (3.38) and (3.39) 
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      
   

 n

n

x t x t
x t x t x t x t

t t

 
     

 
     (3.38) 

      
   

 n

n n

f t f t
f t f t f t f t

t t

 
     

 
     (3.39)  

By expanding Equation (3.40) 

 
 

 
 2

2
x , , ,

n n n

n n n

x t x t f
x t F x x f f f

t tt

   
               

   (3.40) 

into a Taylor series about nominal points  , , ,n n n nx x t t f f t     leads to Equation (3.41) 

                  1 0 1 0x t a t x t a t x t b t f t b t f t            (3.41) 

where the corresponding coefficients are evaluated at the nominal points given by 

Equations (3.42) and (3.43) 

 
   

1 0, , , , , ,
n nn n

n n n n

x t x tf fF F
a x f a x f

x t t x t t

      
                

   (3.42) 

 
   

1 0, , , , , ,
n nn n

n n n n

x t x tf fF F
b x f b x f

t t f t tf

      
               

   (3.43) 

The initial conditions for the second-order linearised system are obtained from Equation 

(3.44) 

        
   0 0

0 0 0 0,
n

n

x t x t
x t x t x t x t

t t

 
     

 
    (3.44) 

The linearisation procedure to an n-order nonlinear dynamic system with one input and one 

output can be extended in straightforward way. However, for multi-input multi-output 

systems this procedure becomes cumbersome. Using the state space model, the linearisation 

procedure for the multi-input multi-output case is simplified. 

Consider the general nonlinear dynamic control system in matrix form given by Equation 

(3.45) 

         0,
d

x t F x t f t x t
dt

  given       (3.45) 
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where    ,x t f t , and F  are respectively, the n-dimensional system state space vector, 

the r-dimensional input vector, and the n-dimensional vector function. Assume that the 

nominal (operating) system trajectory  nx t  is known and that the nominal system input 

that keeps the system on the nominal trajectory is given by  nf t . Using the same logic 

as for the scalar case, one can assume that the actual system dynamics in the immediate 

proximity of the system nominal trajectories by approximating the first terms of the Taylor 

series. Thus, one starts with Equations (3.46) and (3.47) respectively 

            ,n nx t x t x t f t f t f t            (3.46) 

       F ,n n

d
x t x t f t

dt
         (3.47) 

Expanding the right-hand side into a Taylor series yields Equation (3.48) and its simplified 

form as Equation (3.49) 

 
 

          x ,
n

n n

dx t d
x t F x t t f t f t

dt dt
           (3.48)

 
   

 
   

 
, ,

,  higher-order terms

n n n n

n n

x t f t x t f t

F F
F x f x t f t

x f

   
       

    
 (3.49) 

Higher-order terms contain at least quadratic quantities of x  and f . Since x  and f  are 

small, their squares are even much smaller, and hence the high-order terms can be 

neglected. Neglecting higher-order terms, Equation (3.50) is obtained 

  
   

 
   

 
, ,n n n n

x t f t x t f t

d F F
x t x t f t

dt x f

   
      

    
    (3.50) 

The partial derivatives represent the Jacobian matrices given by Equations (3.51) and (3.52)  
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   

 

   

1 1 1

1 2

2 2 2

1 2

,

1 2 ,

n n

n n

n

n

x t f t

n n n

n x t f t

F F F

x x x

F F F

x x xF
A n n

x

F F F

x x x

   
   
 
   
 
            

 
 
   
 
    

   (3.51) 

   

 

   

1 1 1

1 2

2 2 2

1 2

,

1 2 ,

n n

n n

r

r

x t f t

n n n

r x t f t

F F F

f f f

F F F

f f fF
B n r

f

F F F

f f f

   
   
 
   
 
            

 
 
   
 
    

   (3.52) 

The Jacobian matrices are evaluated at the nominal points, that is, at  nx t  and  nf t . The 

linearised system to Equation (3.50) has the form given by Equation (3.53) 

            0 0 0n

d
x t A x t B u t x t x t x t

dt
             (3.53)  

The output of a nonlinear system satisfies a nonlinear algebraic equation of the form given 

by Equation (3.54) 

       ,y t G x t f t         (3.54) 

This equation can also be linearised by expanding its right-hand side into a Taylor series 

about nominal points  nx t  and  nf t . This leads to Equation (3.55) 

 
   

 
   

 
, ,

,

n n n n

n n n

x t f t x t f t

G G
y y G x f x t f t higher order terms

x f

   
          

    
  (3.55) 

It must be noted from Equation (3.54) that,  ny t  cancels the term     ,n nG x t f t  in 

Equation (3.55). By neglecting higher-order terms, the linearised part of the output 

Equation (3.55) is given by Equation (3.56) 
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      y t C x t D f t              (3.56) 

where the Jacobian matrices C  and  D  are indicated by Equations (3.57) and (3.58) 

 

   

 

   

1 1 1

1 2

2 2 2

1 2

,

1 2 ,

n n

n n

n

n

x t f t

p p p

n x t f t

G G G

x x x

G G G

x x xG
C p n

x

G G G

x x x

   
   
 
   
 
            

 
 
   
 
    

  (3.57) 

 

   

 

   

1 1 1

1 2

2 2 2

1 2

,

1 2 ,

n n

n n

r

r

x t f t

p p p

r x t f t

F F F

f f f

F F F

f f fG
D p r

f

F F F

f f f

   
   
 
   
 
            

 
 
   
 
    

  (3.58) 

3.4 Michaelis-Menten Kinetics 

An expression widely used to model the rate of nutrient uptake by a cell follows what is 

known as Michaelis-Menten kinetics. According to Michaelis and Menten (1913), the rate 

of change of the nutrients concentration  used by a cell for growth and development 

is modeled by the differential equation given by Equation (3.59) 

                       (3.59)  

where  is the maximum rate of uptake of nutrient by the tree and  is the half-

saturation constant, that is, the amount of nutrient such that . The rate of 

growth  from Michaelis-Menten kinetics is also referred to as Michaelis-Menten-

Monod kinetics (Smith and Waltman, 1995).  

 N t

  max

N

k NdN
K N

dt k N
   



maxk Nk

  max

2

k
K N 

 K N
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3.4.1 Description of Nutrient-Cell Plant Growth 

A brief description of how nutrients enter the cell of the root of a tree and contribute to the 

growth of the tree is made by Edelstein-Keshet, (1988). Nutrient molecules  (substrate) 

enter the tree cell membrane by attaching to membrane-bound receptors . If a nutrient 

molecule is captured by a cell of the tree, it is denoted as  for the product. The notation 

 denotes a receptor not occupied by a nutrient molecule.  denotes a receptor occupied 

by a nutrient molecule (or a complex formed from the tree and the nutrient molecule), and 

the resulting product is denoted by . The following relationships summarize the direction 

and the rates of the reactions. This is given by Equation (3.60) 

        (3.60) 

where the constants  are the rate constants. The arrows indicate that, the first 

reaction is reversible. An occupied receptor can lose the nutrient molecule before the 

nutrient molecule is captured by the tree cell. The reaction relationships between the 

molecules can be expressed as differential equations. Consider the law of mass action which 

states that, the rate of reaction between two quantities is proportional to the product of their 

concentrations, and let the variables  and  denote the concentrations (average 

number per unit volume) of nutrient, unbounded receptors, bound receptors and product 

respectively. The differential equations for these four variables are given by Equations 

(3.61), (3.62), (3.63) and (3.64) 

                  (3.61) 

       (3.62) 

       (3.63) 

          (3.64) 

(Edelstein-Keshet, 1988). It can be seen from Equations (3.62) and (3.63) that the total 

concentration of receptor cells is constant and can be represented as Equation (3.65)  
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                (3.65) 

Let  where r  is the sum of the unbounded and bounded receptors and if one 

replaces  in the differential equations for  and  by  it follows that only 

differential equations for  and  need to be considered. The differential equation for 

the product concentration  can be solved after the solution for  is found. Simplifying 

the differential equations for  and  yields Equations (3.66) and (3.67) 

  1 1 1 1

dN
k rN k k N x

dt
             (3.66) 

  1
1 1 2 1 1

dx
k rN k k k N x

dt
            (3.67) 

The nutrient concentration is usually much higher than the receptor concentration. The 

receptors work at maximum capacity so that their occupancy rate is approximately constant. 

Therefore, it is reasonable to make the assumption that 1 0
dx

dt
 . This assumption is known 

as the quasi-equilibrium hypothesis. From this assumption the equation for Michaelis-

Menten kinetics is generated. Thus, let 1 0
dx

dt
 , then Equation (3.67) yields Equation (3.68) 

          (3.68) 

and Equation (3.66) reduces to Equation (3.69) 

            (3.69) 

          (3.70) 

           (3.71) 

           (3.72) 
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3.5 Finite Difference Method 

The finite difference method offers a more direct approach to the numerical solution of 

partial differential equations compared to most of the methods based on other formulations 

(Sauer, 2011). It consists of replacing each derivative by a difference quotient in its 

formulation. The method consists of different schemes (Forward, Backward and Central 

Schemes). 

3.5.1 The Finite Difference Formula  

Given the function  , ,u x y t , the first partial derivative of  , ,u x y t  with respect to x  can 

be defined in one of the following ways as shown in equation (3.73) 
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  

     (3.73) 

Applying the Taylor series expansion for  , ,u x x y t  about  , ,u x y t , yields Equation 

(3.74),  
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 
 (3.74) 

which can be simplified to Equation (3.75)  
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     
  

  
     (3.75) 

For linear approximation of  , ,u x x y t , the terms of order  
2

x  and higher orders are 

dropped to obtain Equation (3.76)  

 
     , , , , , ,u x y t u x x y t u x y t

x x

   


 
       (3.76) 

The equation (3.76) is referred to as the forward difference formula and approximates the 

derivative 
u

x




 with error of the first order in x . Similarly, from the second equation in 

Equation (3.73), one obtains Equation (3.77)  
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     , , , , , ,u x y t u x y t u x x y t

x x

  


 
      (3.77) 

The equation (3.77) is called the backward difference formula.  

Next, applying the Taylor series expansion with remainders involving a third partial 

derivative of the function 𝑢 gives equations (3.78) and (3.79)  
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Subtracting Equation (3.79) from Equation (3.78) yields Equation (3.80) 
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But for first difference approximation, higher derivative goes to zero. Hence, the Equation 

(3.80) reduces to Equation (3.81)  
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The equation (3.81) is referred to as the central difference formula.  

For the second difference approximation indicated by Equations (3.82) and (3.83)  
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subtracting equation (3.83) from equation (3.82), and letting higher derivative other than 

second order derivative goes to zero, one obtains equation as (3.84) below 
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 
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    (3.84) 

The equation (3.84) is referred to as the centred second difference formula. In subscript or 

grid notation, Equations (3.76), (3.77), (3.81) and (3.84) become  
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respectively. Suppose a mesh on the spatial domain (𝑥, 𝑦) and a uniform time step Δ𝑡 are 

defined as in equation (3.85) 

 

0 1 2 3 1

0 1 2 3 1

0 1 2 3 1

2 3
0, , , , , ,

1 1 1

2 3
0, , , , , , and

1 1 1

2 3
0, , , , ,

1 1 1

m

n

K

L L L
x x x x x L

M M M

L L L
y y y y y L

N N N

T T T
t t t t t T

K K K








       




     
   


        

   (3.85) 
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1

1
t

k
 


.  

then, for one step forward in time 𝑛 solving for 
iju  for 1, 2, ,i m  an𝑑 1, 2, 3, ,j n  

two different schemes: Explicit and Implicit schemes can be established.  

An explicit scheme is one that estimates the state of the system at a future time from the 

current time. Suppose nf  denote the state of 𝑓 at time 𝑛 in a given grid, then for a linear 

system, there must be some defined matrix operator 𝐴 which gives the explicit change from 

time 𝑛 to 𝑛 + 1 as shown in Equation (3.86)  

  1n nf A f b            (3.86) 
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for some initial state 𝑏. If the system is nonlinear, then there exist some operator G such 

that one has the form indicated as Equation (3.87) 

  1n nf G f            (3.87) 

An implicit scheme on the other hand helps to determine a solution for the future time step 

by solving a system of equations involving future and current time steps. Thus, for a linear 

system, there must be some defined matrix operator 𝐵 which gives an implicit change from 

time 𝑛 + 1 to 𝑛 as indicated as Equation (3.88) 

 𝑓𝑛 = 𝐵(𝑓𝑛+1) + 𝑑,          (3.88) 

for some initial state 𝑑. If the system is nonlinear, then an operator H can be defined as in 

Equation (3.89) 

 𝑓𝑛 =  𝐻(𝑓𝑛+1).          (3.89) 

The explicit scheme is thus said to be a Forward Time Centred Space (FTCS), whilst the 

implicit scheme is said to be a Backward Time Centred Space (BTCS). The combinations 

of these two schemes produce a hybrid scheme called the Crank-Nicolson method (Saucer, 

2011). The Crank-Nicolson approximation is a powerful hybrid scheme used extensively 

for nonlinear PDE’s especially in the case where the Explicit and the Implicit schemes fail 

to give approximate solutions (Le Veque, 2007).  

3.5.2 Finite Difference Schemes for PDE 

Consider the one-dimensional non-steady state diffusion equation with a diffusivity 

constant k . To demonstrate an explicit and implicit scheme, then the Initial Boundary Value 

Problem (IBVP) in Equation (3.90) can be used  
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   (3.90) 

Applying first the explicit scheme to discretise the time dependent PDE using the subscript 

form of Equation (3.85) yields Equation (3.91) 
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or further, Equation (3.92)   
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x
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



, and 1 ≤ 𝑖 ≤ 𝑛. 

 Equation (3.92) in matrix form is shown as in Equation (3.93) 
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 (3.93) 

with initial conditions given by Equation (3.94) 
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In similar vain, if an implicit scheme is used to discretise equation (3.90), one obtains 

Equation (3.95) 
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3.5.3 Stability of the Scheme 

A finite difference scheme is stable if the effect of an error made in any stage of the 

computation is not propagated into large errors in later stages of the computations. A 

difference scheme can be examined for stability by substituting into it perturbed values, the 
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solution of the scheme (Chen, 2007). The stability of the scheme can be studied using the 

one-dimensional non-steady state diffusion equation with a constant parameter 𝛼 as shown 

in Equation (3.96) 
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2

u u

t x


 
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 
          (3.96) 

Let 𝑢𝑖
𝑛 be a solution of the equation (3.92), and let its perturbation satisfy the same scheme, 

such that Equation (3.96) becomes Equation (3.97) using Equation (3.91) 

 ,  (3.97) 

where h x  . From Equation (3.97), one can deduce Equation (3.98) 

  .       (3.98) 

If the error factor  is expanded using Fourier series of the form as shown in Equation 

(3.99) 

 , where  𝑖 = √−1      (3.99)  

then, the analysis can be simplified if one assumes that a solution to the error equation 

(3.98) has one term, by dropping the subscript k  in Equation (3.99) to obtain Equation 

(3.100)  

  expn n
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Substituting equation (3.100) into Equation (3.98), and solving for the amplification factor 

becomes Equation (3.101) 

          (3.101) 

Applying the von Newmann Criterion for stability, that stipulates that the modulus of the 

amplification factor must not be greater than one (Thomas, 1995), using Equations (3.100) 

and (3.98) yields Equation (3.102) 

     (3.102) 

         1 1

1 1 1 1

2

2n n n n n n n n n n

i i i i i i i i i iu u u u u

t h

    


 

   
        

  
   

1

1 1

2

2n n n n n

i i i i i

t h

    




 
     

   
   

n

i

exp( )n n

i k i

k

ikx 

1n n  

1

2

exp( ) 2 exp( )n n n n nikh ikh

t h

    


     
  

  



 

47 

Since , this leads from Equation 

(3.102) into Equation (3.103)  

        (3.103) 

Dividing through equation (3.103) by , one obtains equation (3.104) 

        (3.104) 

Thus, the von Newmann criterion for stability is satisfied for Equation (3.105) as 

        (3.105) 

The inequality (3.105) is satisfied if the stability condition in equation (3.106) is satisfied   

          (3.106) 

Therefore, the forward difference scheme for equation (3.97) is stable under condition 

(3.106). For the backward difference scheme, a similar von Newmann stability analysis can 

be done.  The error equation in (3.103) for the backward difference scheme takes the form 

in Equation (3.107) 

 .      (3.107) 

Substituting equation (3.100) into equation (3.107), and simplifying the algebraic 

expression yields the equation for the amplification factor as shown in Equation (3.108) 

       (3.108)  

From the von Newmann criterion, the equation (3.108) is always less than or equal to one 

for any choice of 𝛼, 𝑘 ∆𝑡 and ℎ. Hence the backward heat equation is unconditionally 

stable. A similar analysis can be done for the central difference scheme.  

3.6 Sensitivity Analysis 

Sensitivity Analysis is a method for quantifying uncertainty and its objective is to identify 
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critical inputs such as parameters and initial conditions of a model and quantifying how the 

input uncertainly impacts models outcome (Marino et al., 2008). The behaviour of physical 

and chemical systems is affected by many parameters that characterise the system. The 

analysis of how a system responds to changes in the parameters is called parametric 

sensitivity (Varma et al., 1999). In most cases, when some parameters are varied slightly, 

while keeping the remaining parameters fixed, the response of a system also changes 

slightly. However, other set of parameter combinations can cause the system to respond 

enormously, even if one or more parameters are varied only slightly. In this case, it is said 

that the system behaves in a parametrically sensitive manner (Varma et al., 1999). In this 

section, the use of sensitivity analysis to evaluate an influence of parametric variations on 

the model predictions by local and global sensitivity methods is discussed. 

3.6.1 Local Sensitivity Analysis 

A local sensitivity analysis investigates the impact on the model output based on changes 

in the parameters only very close to the nominal values (Marino et al., 2008). When the 

input factors such as parameters or initial conditions are known with a little uncertainty, 

one can examine the partial derivative of the output function with respect to the input 

factors. In the following, brief overviews about the local sensitivity analysis and for more 

details can be seen in the works of (Varma et al., 1999; Salfelli et al., 2000). In most of 

these studies, a system described by an ordinary differential equation in Equation (3.109) 

is considered 

  , ,
dy

f y t
dt

         (3.109) 

with the initial condition   00y y
 
where y  is the dependent variable, t  is the time, and 

   represents the vector containing the -systemm  input parameters. The function 
/

f C

is a continuously differentiable function. That is, all partial derivatives of f with respect 

to ,j i jx f x   with , 1, 2, 3, ,i j n  exist and are continuous. This guarantees that the 

above equation has a unique solution  ,y y t  , which is continuous in t  and  . Let 

j j    denote the change from j  in the jth  parameter in the parameter vector  . Then 

the corresponding solution becomes Equation (3.110) 
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  , j jy y t            (3.110)  

This solution is continuous in j  and can be expanded into a Taylor series as indicated in 

Equation (3.111) 

    
   2 2

2

, ,
, ,

2

j j j j

j j j j

j j

y t y t
y t y t

    
   

 

    
    

 
  (3.111) 

where 0 1   is sufficiently small, i.e. j j   . Truncating the second and higher order 

terms on the right-hand side leads to Equation (3.112)  
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where y represents the variation of y  due to the change of the input parameter j  given 

by j . When both sides of equation (3.112) is divided by j  and an infinitesimal 

variation  0j   is considered, one obtains Equation (3.113) 
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The Equation (3.113) defines a local sensitivity of the variable, y , with respect to parameter, 

j  (Varma et al., 1999). Higher order local sensitivity can be defined using similar 

procedure. In order to compare the computed sensitivities among the different input 

parameters, a normalised sensitivity is commonly used. The normalised sensitivity of y 

with respect to j  is defined as indicated in Equation (3.114) 
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In y
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y In y
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
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
      (3.114)  

The magnitudes of the input parameter j  and the variable y in Equation (3.114) are 

normalised. Thus, if the local sensitivity  ; js y   is known, the computation of  ; js y 

is much easier. When the system is described by dependent variables of size n , this leads 

to Equation (3.115) 
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    , , , 0 ii
i i

dy
f y t y y

dt
        (3.115) 

where 1, 2, ,i n , the sensitivity measure can be generated by the column sensitivity 

vector given by Equation (3.116). 
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 (3.116) 

By combining all the row and column sensitivity vectors, an n m  sensitivity matrix which 

comprises sensitivity indices as elements is obtained as Equation (3.117)  
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     (3.117) 

3.6.2 Global Sensitivity Analysis 

The local sensitivity methods estimate the effects of infinitesimal variations of each factor 

having on the model output, in the region of a fixed nominal point. The local methods are 

widely used on steady-state models and on studies dealing with the stability of a nominal 

point. The local methods can only account for small variations from the nominal values and 

fail to capture the large variations in a parameter set. Global sensitivity methods are 

advantageous when performing a full search of the parameter space, hence providing 

information independent of nominal points. Furthermore, the global methods can account 

for the total uncertainty in the model output, while all parameters are varied at the same 

time. In addition, the global sensitivity analysis methods evaluate the effect of a parameter 

while all other parameters are varied simultaneously, accounting for interactions between 

parameters without depending on the stipulation of the nominal point. The most widely 

used methods in global sensitivity analysis are Fourier Amplitude Sensitivity Testing 

(FAST) method (Cukier et al., 1978; Morris, 1991; Sabal, 2001) and Derivative based 

Global sensitivity methods (Kucherenko et al., 2009).  
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4 CHAPTER 4 

MATHEMATICAL MODEL FORMULATION 

4.1 Preamble 

This chapter looks at the theoretical aspect of the mathematical models for the growth, 

spread and vegetation pattern formation under variable environmental conditions. In the 

theoretical aspect, a modified mathematical model was constructed for plant growth, spread 

and vegetation patterns formation using the model by Li et al., (2003). Li et al. (2003), 

modelled crop growth process under the multi-environment external force action. This was 

used to modify Klausmeier (1999), model of regular and irregular patterns in semiarid 

vegetation. Their study include the prominent components for the growth, spread and 

pattern formation of the vegetation. 

4.2 Model Development  

In modelling plant growth, spread and vegetation pattern formation, the Klausmeier (1999) 

model of regular and irregular patterns in semiarid vegetation was adopted and modified to 

form the basis of this research. Klausmeier’s (1999) model consists of biomass dynamics 

equation and water dynamics equation thought to be responsible for pattern formation. In 

his model, the water dynamics equation is controlled by a uniform supply of water at rate 

,A  and loss of water due to evaporation at rate LW . Water uptake by plant was represented 

by an expression     2RG W F P P RWP  where ( ) WG W   represents the functional 

response of plants to water, ( )F P P  represents an increasing function that describes how 

plants increase water infiltration. The biomass dynamics equation, is governed by biomass 

accumulation 2JRWP  where J  is the yield of plant biomass per unit water consumed, loss 

of plant biomass through density-independent mortality and maintenance at a constant rate 

MP  and biomass movement due to spatial components. Klausmeier (1999) model therefore 

consists of two state variables: a water variable (W) and plant Biomass variable  P  

defined on an infinite two-dimensional domain indexed by X and Y. The model is therefore 

a system of two partial differential equations given by the Equation (4.1)  



 

52 

2

Water source Water loss due to Water uptake by plants
evaporationRate of change of surface water Water movement at uniform speed

2

Biomass accumulat

Rate of change of Biomass

W W
A LW RWP V

T X

P
JRWP

T

 
   

 






2 2

2 2
Biomass lossion

Biomass movement

PMP D P
X Y







      
  


     (4.1) 

where T  is the time coordinate, and  ,X Y  represents the spatial domain.  

The limitation with regard to Klausmeier (1999) model is the absence of soil water 

dynamics which in this thesis was presumed to be different from surface water dynamics 

and cannot be merged together. This is due to the fact that, these two operate at different 

time scales and must be considered as two separate entities. The proposed model in this 

study therefore seeks to address this deficiency. The Klausmeier’s (1999) model is further 

refined by use of Li et al. (2003) model for comprehensive analysis. 

4.2.1 Refining the Model 

This study considered modifying the water dynamics equation of Klausmeier (1999) model 

by separating this equation into two: the surface water dynamics (component) and soil 

water dynamics (component) and merge them with the third equation which is the 

population (biomass) density component.  

Surface Water Dynamics 

During and after an intense rainfall, a major proportion of the rainfall first collects above 

ground. This is as a result of relatively slow process of water infiltration into the soil. This 

water will either infiltrate into the soil or flow towards other areas and subsequently 

infiltrate in those regions (surface water motion). The amount of water on the soil surface 

at a particular position and time is denoted by ( , , )W t x y . The rate of change of the amount 

of water on the surface given by W T  W t   is controlled by a uniform supply of water 

at rate A , loss of water due to evaporation at rate LW , surface water infiltration into the 

soil and the expression V W X   that represents downhill water flow and measures slope 

gradient or  2 2 2 2

WD W X W Y     that represents the net displacement of surface water 

on a perfectly horizontal terrain during rainfall. This is due to the fact that water infiltration 

in vegetated ground is much faster than in unvegetated ground. Thus, the water on the bare 
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surface will then flow to places with vegetation where all water has already infiltrated. 

Induced by pressure differences measured by the slope of the thickness of the water layer, 

the surface water motion incorporates the flow due to pressure differences into a single 

parameter, WD , so that the surface water movement can be described by this term. 

According to Walker et al. (1981), infiltration rate  , ,fN t x y  depends on the amount of 

water on the surface, plant density, and soil characteristics. The surface water infiltration 

into the soil is therefore a saturation function represented as in Equation (4.2). 

 
2 0

2

( ,  , )
Surface Water Infiltration Rate = ( ,  , )

( ,  , )

P x y t s N
JW x y t

P x y t s





      (4.2) 

where ( ,  , )P x y t  represents the plant population (biomass) density, ( ,  , )JW x y t  describes 

maximum infiltration rate of surface water,   0, ,JW x y t N  is the minimum water 

infiltration in the absence of plants and 2s  is a half-saturation constant. Parameter 2s  

corresponds to the rate at which water infiltration increases with plant density. When the 

expression on the right-hand side of Equation (4.2) is substituted for surface water 

infiltration into the soil, the surface water dynamics of the proposed model in this research 

is represented by Equation (4.3)  
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    

(4.3) 

 Soil Water Dynamics 

Soil water at a particular position and time would involve infiltration into the soil from 

surface water, what may be taken up by plants growing at that particular position and time, 

the reduction that may be experienced due to evaporation and drainage, or flow to other 

parts. The soil water dynamics is therefore controlled by infiltration into the soil from 

surface water, loss due to evaporation and drainage, loss due to water uptake by plants, and 

movement due to spatial components. The infiltration rate at a particular position and time 

is given earlier by the expression on the right-hand side of Equation (4.2). According to 
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Rietkerk et al. (1997), soil water loss as a result of plant uptake is assumed to be a saturation 

function of soil water. Soil water loss by plant uptake is therefore given by Equation (4.4). 

 
1

( ,  , )
Soil Water Loss by plant uptake = ( ,  , )

( ,  , )

N x y t
J P x y t

N x y t s
 


      (4.4) 

where J  is as defined earlier and 1s  is a half-saturation constant. When the expression on 

the right hand side of Equation (4.4) is substituted for soil water loss by plant uptake, the 

soil water dynamics of the proposed model in this research is represented as in Equation 

(4.5) 
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  (4.5) 

Plant Biomass Dynamics 

The plant biomass dynamics of the proposed model of this study compares with Biomass 

equation in Klausmeier’s model but with slight modification. The modification to the 

Klausmeier (1999) model in relation to plant biomass dynamics is the plant growth function 

  which was introduced as an improvement factor. The plant biomass dynamics of this 

study is therefore controlled by soil water uptake by plants leading to plant growth, plant 

loss as a result of density-independent mortality and maintenance, and plant dispersal. This 

is represented by Equation (4.6). 

      Plant Growth Plant Loss Plant Dispersal
P

T


  


    (4.6) 

It is assumed that plant growth increases linearly with soil water uptake. This is at its 

maximum when the availability of soil water permits maximum specific soil water uptake 

(De Wit, 1958). The Li et al. (2003), growth model was introduced into the growth 

component of the plant biomass dynamics as  . This is to determine the dynamics of the 

model at different levels of  . The plant growth at a particular position and time is 

therefore represented by Equation (4.7) 

  
1

Plant Growth at a Particular Point and Time 
N

J P
N s


 

   
 

  (4.7) 
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where J  is the specific plant growth with   modelled as in Li et al. (2003) growth model 

for comprehensive analysis. Plant population (biomass) density may be lost (decrease) 

through natural mortality ( )U  and be defined as in Equation (4.8) 

Plant Loss at a Particular Point and Time =  U P      (4.8) 

Plant movement, either through seed dispersal or any other form is given by the diffusion 

term indicated by Equation (4.9) 

2 2

2 2
Plant Dispersal  P

P P
D

X Y

  
  

  
       (4.9) 

When the Equations (4.7), (4.8) and (4.9) are substituted into Equation (4.6) for plant 

growth, plant loss and plant dispersal respectively in the plant population dynamics relation 

given by Equation (4.6), one obtains Equation (4.10). 
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 (4.10) 

Further, the plant growth function,   which was introduced into the model as a constant 

improvement factor is modelled by using Li et al. (2003) model for crop growth process 

under the multi-environment external force action through continuous-time Markov 

process. This involves synthesising the combined effects of the multiple resources (light, 

water, temperature and nutrients) and defined as in Equation (4.11)  

1

2 3

1 F N

F F N






         (4.11) 

where 1 2,F F  and 3F  are three aggregate parameters, and are defined respectively by the 

Equations (4.12), (4.13) and (4.14)  
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or in other simplified form as Equation (4.13). 
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where ij  are state transition rates and are considered as parameters of interest. However, 

these parameters are restricted by the input of resources such as light, temperature, water 

and soil nutrients. Each of these transition rates are considered to be proportional to each 

resource. Thus, the transition rates are related to the resources as indicated in Equation 

(4.15)  

 12 1 23 2 34 3, ,I T H         and 45 4N       (4.15) 

where I , T , H  and N  represent the measure indices of light, temperature, water and soil 

nutrients, respectively. The 1 , 2 , 3  and 4  are the utilization coefficients of the 

corresponding resource. Substituting Equation (4.15) into (4.12), (4.13) and (4.14) for 

1 2,F F  and 3F , respectively, as defined by Li et al. (2003), one obtains Equations (4.16), 

(4.17) and (4.18). 
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or further, 
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4.2.2 Assumptions of the Model 

The proposed model factored into it four assumptions as follows: 

(i) The descriptive variable of vegetation increase during vegetation growth is 
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proportional to the surface water infiltration into the soil together with the 

contribution from multi environment external force action;  

(ii) During rain showers of at least some considerable length, a steady state 

develops between rainfall, surface water motion, and water infiltration. This 

steady state is calculated from  , , 0W x y t T     . Though, rain showers 

are discrete events, for the sake of model analysis, it is assumed that water 

infiltration rate is at steady state. This is to say that, water infiltration is a 

continuous water supply to the system at a position in space.  

(iii) The per capita rate of water uptake is proportional to increase in plant 

population (biomass) density, reflecting the positive correlation between 

infiltration rate and plant population (biomass) density on the basis that 

water is the limiting resource.  

(iv) Stationary assumption: Changes in surface water terms occur so rapidly in 

comparison to the plant population (biomass) density and soil water 

dynamics. This allows the surface water dynamics to be approximated as 

stationary during plant population (biomass) growth. 

4.2.3 The Models 

Two different but very similar models were formulated in this study. The first model relates 

to the situation where the surface water dynamics represents downhill water flow and 

measures slope gradient. This together with the assumptions in section 4.2.2 leads to a 

system of three partial differential equations as modelled in Equation (4.19). 
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 (4.19) 
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The second model formulated uses the same assumptions, together with the situation where 

the surface water dynamics represents the net displacement of surface water on an overly 

evenly horizontal terrain during rainfall. Thus, the water on the bare surface then flows by 

pressure differences measured by the slope of the thickness of the water layer. The surface 

water motion incorporates the flow due to pressure differences into a single parameter, WD  

such that the surface water movement can be described by the term 

 2 2 2 2

WD W X W Y    . The second model for this study is also a coupled, three partial 

differential equations linking surface water dynamics, soil water dynamics and plant 

population (biomass) density. The system of equations is labeled as Equation (4.20) 
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  (4.20) 

where T  is the time,  ,X Y  represent the spatial domain. The parameters associated with 

the two models are merged together and defined in Table 4.1. 
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Table 4.1  Parameters of the Models and their meanings and units 

Parameter Meaning Units 

A  Mean water supply or mean rainfall m year-1 

L  Rate of evaporation of surface water year-1  

R  Rate of infiltration into the soil Kg H2O m-2 year-1 

M  Rate of evaporation and drainage of soil water Kg H2O m-2 year-1 

ND  Diffusion coefficient of soil water Kg H2O m-2 year-1 

PD  Dispersal coefficient of plant density Kg H2O m-2 year-1 

WD  Diffusion coefficient of surface water Kg H2O m-2 year-1 

U  Plant mortality rate Kg m-2 year-1 

V  Speed of flow of water downhill Kg H2O m year-1 

J  
Yield of plant density per unit of soil water 

consumed 
Kg H2O m-2 year-1 

  
Plant growth function representing  a multi-

environment external force action  
Kg H2O m-2 year-1 

1s  
Half-saturation constant of specific plant 

growth and water uptake 
M 

2s  
Rate at which infiltration increases with specific 

plant density 
Kg m-1 

0N  
Minimum water infiltration in the absence of 

plant 
--- 

4.3 Non-Dimensionalisation of the Models 

Generally, computations of null clines, steady states and the stability of systems of 

equations could be done by the normal procedure. However, at most times, when the 

number of variables involved are huge, it becomes cumbersome and very tedious to solve 
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such sysytems. It is therefore beneficial in the analysis of complex phenomena to transform 

the system of species balance equations into dimensionless form. The first benefit is related 

to the generalization of the results of theoretical and experimental investigations by 

presenting the numerical calculation measurements in the form of dependences between 

dimensionless parameters. The second reason is related to the problem of modelling the 

species balance equations to determine the actual conditions of the problem and finally to 

make computations easier. Thus, one proceeds with the non-dimensionalisation of the 

models as follow: the variables of the equations in Equations (4.19) and (4.20) were 

separated into a part without unit and a unit carrying part. The time, space and concentration 

scales to balance the surface water (W), soil water (N) and plant (biomass) density variables 

(P) were chosen as indicated in Equation (4.21). 

 w, , p, t, X= xW W N N n P P T T X          and yY Y    (4.21) 

with  1T J   ,   
1

2
NX D J   ,   

1
2

NY D J   , 1N s ,   1W J s R   

and 2P s  with   as defined earlier by Equation (4.11) and 1F , 2F  and 3F  are three 

aggregate parameters defined respectively in Equations (4.12), (4.13) and (4.14). The 'i s  

are the rate coefficients and 'ij s  as the mean transition rates from one state i  to another 

state j . The dimensionless form of the first proposed model is given by Equation (4.22)  
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     (4.22) 

The following representations labelled as Equation (4.23) are the dimensionless parameters 

and the variables that resulted into the system of dimensionless equations are indicated in 

Equation (4.21). 
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In similar manner, the dimensionless form of the second proposed model is given by 

Equation (4.24) 
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     (4.24) 

The second dimensionless model labelled as Equation (4.24) has similar but slightly 

different dimensionless parameters and variables from the first model parameters and 

variables and indicated by Equation (4.25). 
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The full text of the dimensionless form of both models are indicated in appendices A1 and 

A2 of the thesis. 

4.4 Components of the Analysis 

The analysis of the models formulated dwells on two main aspects. The first aspect dwells 

on conditions or properties for pattern formation. This involves some basic conditions or 

features and theorems associated with both reaction systems and reaction-diffusion systems 

for pattern formation. In order to illustrate the validity of the theoretical results, some 
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numerical simulations were considered. The second aspect therefore involves comparison 

of the patterns formed from simulations run under different water fertility conditions. The 

patterns formed from different fertility levels within a particular water condition display 

the multi-dimension effect of the resource utilisation.  
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5 CHAPTER 5  

ANALYSIS OF THE MODELS 

5.1 The Proposed Models 

The proposed models are systems for which each consists of three nonlinear partial 

differential equations for surface water balance (W), Soil water balance (N) and Plant 

biomass density variable (P). The models are Reaction-Diffusion types and they are 

expressed in dimensionless form. The first system is the dimensionless model for which its 

dimensional form relates to a situation where the surface water dynamics involves an 

expression that represents downhill water flow which measures the topography of the land. 

This is referenced from Equation (4.21) and now indicated as Equations (5.1)  
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    (5.1) 

Similarly, the other system is a dimensionless model for which its dimensional form relates 

to a situation where the surface water dynamics incorporates the flow due to pressure 

differences into a single parameter WD , so that the surface water dynamics can be 

described by the term  2 2 2 2

WD W X W Y    . This is also referenced from Equation 

(4.23) and indicated as Equation (5.2).  
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     (5.2) 

Table 5.1 gives the meaning of the dimensional and dimensionless model parameters and 

their values used in the analysis.  
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Table 5.1 Dimensional and Dimensionless Parameters used in the Model Simulations 

Dimensional Parameters with 

meanings Value 
Dimensionless 

Parameter Value 

A :    Mean water supply or mean 

rainfall 
Varied 

 
2

1

AR
a

J s



 Varied 

L :      Rate of evaporation of surface 

water 
0.15 

 

L
l

J 


  Varied 

R :    Rate of infiltration 0.05 

 
2

1

Js
g

J s


  Varied 

M :    Rate of evaporation and drainage 

of soil water 

0.02 

 

M
m

J 


  Varied 

ND : Diffusion coefficient of soil water 0.1 R
r

J 


  
Varied 

PD :   Dispersal coefficient of plant 

density 

20 U
u

J 


  Varied 

WD :   Diffusion coefficient of surface 

water 

0.4 

 

1
2

1

N

v V
J D

 
    

 
Varied 

U :    Plant mortality rate 0.10 
  

V :   Speed of flow of water downhill 4 
  

J :     Yield of plant density per unit of 

soil water consumed 
0.35 N

NW

W

D
D

D


 0.25 

 :   Plant growth function representing  

a multi-environment force action  

Varied P
PN

N

D
D

D


 200 

1s :     Half-saturation constant of specific 

plant growth and water uptake  

3 
P

PW

W

D
D

D


 50 

2s :   Rate at which infiltration increases 

with specific plant density  

5   

0N :    Minimum water infiltration in the 

absence of plant 

0.03   
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The plant growth function representing a multi-environment force action is categorised into 

water condition and soil fertility level. A range of values of   are therefore obtained based 

on the water condition and soil fertility level. As a result of this, all dimensionless relations 

with parameter   will constitute a range of values.      

5.2 Conditions for Pattern Formation 

The first step in the investigation of the pattern-forming potential of the systems of 

Equations (5.1) and (5.2) is to determine the spatially homogeneous steady states of the 

system Equation (5.3) as indicated in section 5.3. If the steady state is stable, then it implies 

that, the 's  of the Jacobian matrix associated with the system must have negative real 

part and hence pattern formation of Equations (5.1) and (5.2) are possible. The next step is 

to linearise the system of the nonlinear models at the steady states as indicated in Section 

5.4. 

5.3 Equilibrium Solutions (Steady States) 

The initial stage of analysing the proposed model of Equations (5.1) and (5.2) is to 

determine the equilibrium solutions (critical points) of the non-spatial form of the models. 

The relevant homogeneous steady states of Equations (5.1) and (5.2) are obtained by setting 

the space derivatives of the dimensionless models to zero. Thus, the equilibrium solutions 

of the model equations in Equation (5.1) and Equation (5.2) are obtained by reducing 

Equation (5.1) and Equation (5.2) to Equation (5.3). 
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          (5.3) 

The equilibrium solutions to equation (5.3) are qualitatively analysed to investigate the 

stability of the associated equilibriums. To obtain the system of equations in Equation (5.3), 

it is assumed that all the parameters in Equations (5.1) and (5.2) are non-negative by setting 

0, 0w t n t       and 0p t   . The derivative functions  2 2 2 2 ,d n x n y     

,dv w x  and  2 2 2 2p x p y     representing the diffusive terms are also discarded. 
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Estimating the steady state conditions, the following two steady states  1 , , 0E w n    and 

 2 , ,E w n p    were obtained. 1E
 which is the trivial equilibrium point, biologically 

represents a trivial situation and was obtained as shown in Equation (5.4)  

 0
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rN l m rN l
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     (5.4)

 

In similar manner, 2E
 which is the non-trivial equilibrium situation and ecologically 

plausible admits the equilibrium point provided for as in Equation (5.5) 
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   (5.5)  

5.4 Linearisation of the Proposed Nonlinear Models   

 The nonlinear system was linearised in order to understand the behaviour of the system at 

the equilibrium points. This was represented as a linear system in a much-localised region 

specifically near where these equilibrium points lie. Thus, if  , ,w n p    is an equilibrium 

point of equation (5.3) then the solution of the linearised system corresponding to 

 , ,w n p    is obtained from the relation given by Equation (5.6) 
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where  
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 
   

and  0 , , , tv w n p t e  is the 

solution of the linearised system provided from Equation (5.2) with state functions 

 , ,f w n p ,  , ,g w n p  and  , ,h w n p . 
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5.4.1 The Dynamics of the Model 

Let 0x   be the equilibrium point of the nonlinear system of partial differential equations

 ,x f t x . The right hand side of  ,x f t x
 
satisfies the conditions of existence and 

uniqueness theorem and is of the form      , ,f t x A t x F t x   where  A t  is a 

parameter dependent matrix and that   
0

lim , 0
x

it F t x x


 . The linear homogeneous 

system of equations  x A t x  is called the first approximation or linearisation of 

 ,x f t x .  

In this section, the linearisation of the proposed model described by nonlinear partial 

differential equations in Equation (5.1) was considered. The procedure is based on the 

Taylor series expansion and on knowledge of nominal system trajectories and nominal 

system inputs. Suppose, one assumes slight perturbation given by Equation (5.7) 
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            (5.7) 

then, the Taylor series expansion is applied to the dimensionless model Equation (5.1) as 

follows: 
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When the partial derivatives of   0, ,
1

p N
f w n p a lw r w

p

 
    

 
 is evaluated with 

respect to surface water, w , one obtains Equation (5.11) 
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When Equation (5.11) is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.12) 
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The partial derivative of   0, ,
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 is again determined with 

respect to soil water, n  to obtain Equation (5.13) 
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When Equation (5.13) is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.14)  
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 is finally determined with 

respect to plant population (biomass) density, p , to obtain Equation (5.15) 
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  (5.15) 

and when evaluated at  1 , , 0s sE w n  , gives Equation (5.16)  
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The point  1 , , 0s sE w n   is the equilibrium solution of the linearised system of equations 

in Equation (5.2). This implies that, it must satisfy the system in Equation (5.2). Therefore 

if  , ,f w n p  is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.17) 
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, , 0
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         (5.17) 

The linearised form of the surface water dynamics of the dimensionless system in Equation 

(5.1) is therefore obtained as in Equation (5.18) 
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where  
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Similarly, the partial derivatives of   0, ,
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 was 

evaluated with respect to surface water, w  to obtain Equation (5.19) 

 
0

1

p Ng

w p




 
          (5.19) 

When Equation (5.19) was evaluated at  1 , , 0s sE w n  , one obtains Equation (5.20) 
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The partial derivative of   0, ,
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 was again determined 

with respect to soil water, n  to obtain Equation (5.21) 
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When Equation (5.21) is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.22)  
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       (5.22) 

The partial derivative of   0, ,
1 1

p N n
g w n p w mn g p

p n

   
     

   
 is finally determined 

with respect to plant population density, p  to obtain Equation (5.23) 
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        (5.23) 

When Equation (5.23) was evaluated at  1 , , 0s sE w n   gives Equation (5.24)  
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Since the point  1 , , 0s sE w n   is the equilibrium solution of the linearised system of 

equations in Equation (5.2), it implies that it must satisfy the system. Therefore if 

 , ,g w n p  is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.25) 

  
 1 , , 0

, , 0
s sE w n

g w n p


         (5.25) 

The linearised form of the soil water dynamics of the dimensionless system Equation (5.2) 

is therefore obtained as Equation (5.26) 
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where  
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Finally, the partial derivatives of  , ,
1

n
h w n p p up

n

 
  

 
 is evaluated with respect to 

surface water, w  to obtain Equation (5.27) 
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When Equation (5.27) is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.28) 
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The partial derivative of  , ,
1

n
h w n p p up

n

 
  

 
 is again determined with respect to 

soil water, n  to obtain Equation (5.29) 
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When this is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.30) 
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The partial derivative of  , ,
1

n
h w n p p up

n

 
  

 
 is finally determined with respect to 

plant population (biomass) density, p  to obtain Equation (5.31) 
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When Equation (5.31) is evaluated at  1 , , 0s sE w n  , gives Equation (5.32)  
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Since the point  1 , , 0s sE w n   is the equilibrium solution of the linearised system of 

equations in Equation (5.2), it implies that it must satisfy the system equation. Therefore if 

 , ,h w n p  is evaluated at  1 , , 0s sE w n  , one obtains Equation (5.33) 
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The linearised form of the plant population dynamics of the dimensionless system in 

Equation (5.2) is therefore obtained as Equation (5.34) 
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where  
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Hence, the overall linearised form of the system Equation (5.2) is given by Equations (5.35) 
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where ijA  is given by  
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5.5 Linear Stability Analysis of 
1 , , 0E w n      in the Absence of Spatial 

Variation 

For any diffusion-driven instability in a reaction diffusion system, the first condition that 

must be satisfied is that, the homogeneous steady state must be linearly stable to small 

perturbations in the absence of diffusion (Bentil and Murray, 1992). Thus, with no spatial 

variation, the linearised system of equations as obtained earlier in Equations (5.35) is 

represented as a system of Equation (5.36) 
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where 'ijA s  are given by   
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From the first equation of the system in Equation (5.36), one obtains Equation (5.37) since 

12 0A 
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Therefore, with no spatial variation, the homogeneous form given by Equation (5.36) 

reduces to the system of equations as shown in Equation (5.38)  
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Since 31 0A   and 32 0A  , Equation (5.38) further reduces to Equation (5.39) 
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The relation in Equation (5.39) was then represented as Equation (5.40) below 
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The representation indicated by Equation (5.40) can also be represented generally by 

Equation (5.41) 
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and H  is the stability matrix. A solution is sought for k  in the form given as Equation 

(5.42)  

 
tk e           (5.42) 

where   is the eigenvalue. The steady state 0k   is linearly stable if Re 0   since in this 

case the perturbation 0 as k t  . Substituting Equation (5.42) into H  in Equation 

(5.41) determines the eigenvalues   as the solution of Equation (5.43) below 
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Evaluating the determinant represented by Equation (5.43) leads to the quadratic Equation 

(5.44) 
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Thus, linear stability, that is Re 0   is guaranteed if Equations (5.45) and (5.46) are 

satisfied: 
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 and Equations (5.45) and (5.46) are reduced to 

Equations (5.47) and (5.48). 

   0tr H m u m u              (5.47) 

and  

   0Det H m u mu            (5.48) 

5.6 Local Stability and Hopf Bifurcation 

In this section, the local stability of the equilibria and the existence of the Hopf bifurcation 

of constant periodic solutions surrounding the positive equilibria of system Equation (5.2) 

was studied. There are two equilibrium solutions for the system Equation (5.2). These are 

indicated in (i) and (ii) respectively: 
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In (i), the biomass dynamics goes into extinction. The (ii) is the non-trivial steady state 

representing the coexistence of the surface water dynamics, soil water dynamics and the 

biomass density. Now, by analysing the characteristic equation, in Equation (5.44), the 
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discussion of the geometrical properties of the equilibria of the system Equation (5.2) can 

be discussed by theorem 5. 1. 

Theorem 5.1: If 
 

0

0 0

aN
m u

aN m rN l
 

 
 and 

 
0

0 0

aN
u

aN m rN l


 
 for the system in 

Equation (5.2), then the trivial equilibrium point 1E
 of the system of partial differential 
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then the trivial equilibrium point 1E
 of the system of partial differential Equation (5.2) is 

said to be unstable if at least one of the eigenvalues of the jacobian matrix  is positive, or 

has positive real part. 

Proof:  For equilibrium point    1 0 0 0, , 0E w a rN l n aN m rN l p           , 

the characteristic equation of system Equation (5.2) was obtained as Equation (5.57a). 
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The roots of the characteristic Equation (5.57a) are  
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. Substituting h  and 0h  into the 

expression for the roots of the characteristic equation reduces the expression to Equaton (5.58a) 

2

1,2 0

1 1
4

2 2
h h h            (5.58a) 



 

77 

For locally asymptotic stability, all the eigenvalues of the Jacobian matrix evaluated at 1E
 

must have negative real part. From Equation (5.58a), one obtains Equations (5.59a) and 

(5.60a) respectively. 
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When Equations (5.59a) and (5.60a) are put together, one obtains Equation (5.61a) 
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From Equation (5.60a), 0 0h  . Since  0 0 0 0h u aN aN m rN l       implies that 

 0 0 0 0u aN aN m rN l      . If 0 0h  , then one of the eigenvalues becomes zero and 

therefore nullifies the condition for stability. Hence 0h  should be strictly positive and hence 

the condition that  0 0 0u aN aN m rN l      is satisfied. Again, 

 
0

0

0 0

aN
h m h m u

aN m rN l
    

 
 and therefore if  0 0 0u aN aN m rN l      then 

it follows that, 
 

0

0 0

aN
m u

aN m rN l
 

 
. Hence, the trivial equilibrium point 1E

 of the 

system of partial differential Equation (5.2) is locally asymptotically stable 

5.7 Linear Instability Analysis of 
1 , , 0E w n       in the Presence of Spatial 

Variation 

Diffusion-driven instability is concerned with instability in the presence of spatial variation. 

The interest is on linear instability of the steady states that is solely spatially dependent. 

Thus, the full reaction diffusion system given by Equation (5.35) is considered. One thus 

considers the substitution of perturbations of the following forms given by Equations 

(5.49), (5.50) and (5.51):  

        1 2, ; cos cosw x y t w t q x q y         (5.49) 
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        1 2, ; cos cosn x y t n t q x q y        (5.50) 

        1 2, ; cos cosp x y t p t q x q y        (5.51) 

Now differentiating Equation (5.49) partially into the second order forms with respect to 

spatial components  ,x y , one obtains Equations (5.52) and (5.53) respectively. 

 

 
     

2

2

1 1 22

, ,
cos cos

w x y t
q w t q x q y

x


 


      (5.52) 

 
 

     
2

2

2 1 22

, ,
cos cos

w x y t
q w t q x q y

y


 


      (5.53) 

Adding Equations (5.52) and (5.53) leads to Equation (5.54)  

   
           

2 2

2 2

1 1 2 2 1 22 2

, , , ,
cos cos cos cos

w x y t w x y t
q w t q x q y q w t q x q y

x y

 
   

 
 

       2 2

1 2 1 2cos cosq q w t q x q y         (5.54) 

Similarly, Equation (5.50) is differentiated partially into the second order forms with 

respect to spatial components  ,x y , to obtain Equations (5.55) and (5.56) respectively 

 
     

2

2

1 1 22

, ,
cos cos

n x y t
q n t q x q y

x


 


       (5.55) 

 
 

     
2

2

2 1 22

, ,
cos cos

n x y t
q n t q x q y

y


 


       (5.56) 

Adding Equations (5.55) and (5.56) also leads to Equation (5.57)  

   
           

2 2

2 2

1 1 2 2 1 22 2

, , , ,
cos cos cos cos

n x y t n x y t
q n t q x q y q n t q x q y

x y

 
   

 
 

              2 2

1 2 1 2cos cosq q n t q x q y         (5.57) 

Finally, Equation (5.51) is differentiated partially into the second order forms with respect 

to spatial components  ,x y , to obtain Equations (5.58) and (5.59) respectively 
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 
     

2

2

1 1 22

, ,
cos cos

p x y t
q p t q x q y

x


 


       (5.58) 

 
 

     
2

2

2 1 22

, ,
cos cos

p x y t
q p t q x q y

y


 


      (5.59) 

Adding Equations (5.58) and (5.59) leads to Equation (5.60)  

   
           

2 2

2 2

1 1 2 2 1 22 2

, , , ,
cos cos cos cos

p x y t p x y t
q p t q x q y q p t q x q y

x y

 
   

 
  

       2 2

1 2 1 2cos cosq q p t q x q y          (5.60) 

The Equations (5.54), (5.57) and (5.60) were substituted into the linearised system of 

equations in Equation (5.35) to obtain the system of Equation (5.61) 

 

         

 
         

 
         

2 2

11 12 13 1 2

2 2

21 22 23 1 2

2 2

31 32 33 1 2

0

NW

PW

A w t A n t A p t q q w t

n t
A w t A n t A p t D q q n t

t

p t
A w t A n t A p t D q q p t

t


     


 

     
 


     

 

  (5.61) 

Let 
2 2 2

1 2Q q q  , then the system of Equation (5.61) becomes Equation (5.62) 

 

       

 
       

 
       

2

11 12 13

2

21 22 23

2

31 32 33

0

NW

PW

A w t A n t A p t w t Q

n t
A w t A n t A p t D n t Q

t

p t
A w t A n t A p t D p t Q

t


    


 

    
 


    

 

   (5.62) 

A quasi-steady state approach was adopted. It was therefore assumed that the rate of change 

of surface water is zero, and hence the rate of change of surface water around its equilibrium 

is also equal to zero. Thus, from surface water balance equation of Equation (5.62) one 

obtains Equation (5.63)  

  
   12 13

2

11

A n t A p t
w t

Q A





        (5.63) 
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But since 12 0A  , Equation (5.63) reduces to Equation (5.64) 

  
 13

2

11

A p t
w t

Q A



         (5.64) 

Equation (5.64) was substituted back into the system of equations in Equation (5.62) 

together with 12 310, 0A A   and 32 0A   to obtain the system of equations in Equation 

(5.65) 

   
     

 
 

 
       

13 2

21 22 232

11

13 2

332

11

0 0

NW

PW

n t A p t
A A n t A p t D n t Q

t Q A

p t A p t
n t A p t D p t Q

t Q A

 
       

   


  
          

   (5.65) 

Equation (5.65) finally reduces to a system of two partial differential equations as Equation 

(5.66) 

 

 
     

 
   

2 13
22 23 21 232

11

2

33

NW

PW

n t A
A D Q n t A A A p t

t Q A

p t
A D Q p t

t

  
      

   


 
  

 

  (5.66) 

The relation represented as Equation (5.66) was then re-written as Equation (5.67) 

  
 

 

2 13
22 21 232

11

2

330

NW

PW

n A
A D Q A A nt Q A

p p
A D Q

t

    
               

     
    

    (5.67) 

The representation indicated by Equation (5.67) can also be represented generally by 

Equation (5.68) 

 

2 13
22 21 232

11

2

33

, where J  and 

0

NW

PW

A
A D Q A A n

J Q A
pt

A D Q


 

  
       

          

   (5.68) 

where J  is the stability matrix. The stability or Jacobian matrix from the system of 

Equations (5.68) is indicated as Equation (5.69) 
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 11 12

21 22

B B
J

B B

 
  
 

          (5.69) 

where the elements of the Jacobian matrix are as follows:  

 2

11 22 NWB A D Q  , 
13

12 21 232

11

A
B A A

Q A
  


, 21 0B   and  2

22 33 PWB A D Q  . 

The eigenvalues i  for 1,  2i   for the Jacobian matrix was obtained from an equation 

given by Equation (5.70) 

 
20 ( ) det 0J I trJ J              (5.70)  

For the stability condition, Re 0   and a necessary and sufficient conditions for linear 

stability is that 0trJ   as indicated in Equation (5.71)  

 11 22 0trJ B B             (5.71) 

Also, the  2det 0J f Q   as indicated in Equation (5.72) 

  2

11 22 21 12det 0J f Q B B B B           (5.72) 

However, if 21 0B  , the condition given by Equation (5.72) reduces to Equation (5.73)  

  2

11 22 0f Q B B            (5.73) 

However, for pattern formation to occur, instability is required. This is only possible if one 

of Equations (5.71) and (5.73) is not satisfied or both of Equations are not satisfied. Thus, 

for pattern formation, the following situations labelled Equations (5.71) and (5.73) must be 

violated. If Equation (5.71) is violated, the system will be unstable. Thus, substituting 11B  

and 22B  in Equation (5.71) for the trace of the Jacobian (first stability condition), one 

obtains the following: 

(i) the parameter set equations in Equation (5.71) which is unstable was obtained as 

Equation (5.74)  

 2 2

11 22 22 33 0NW PWB B A D Q A D Q             
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 

2 2 0

0 0

0NW PW

aN
m D Q D Q u

aN m rN l

 
             

 

     
 

2 2 0

0 0

NW PW

aN
m u D Q D Q

aN m rN l
    

 
    (5.74) 

(ii) Similarly, for instability, it is required that  2

11 22 0f Q B B   leading to Equation 

(5.75) 

 

 

 
 

2 2 0

0 0

0NW PW

aN
m D Q D Q u

aN m rN l

 
             

 

    2 2 2 0

0 0

0
( )

NW PW NW

aN
m D Q u D Q m D Q

aN m rN l

 
      

  

 (5.75) 

Thus, pattern formation is possible provided that Equations (5.76) or (5.77), or both hold 

as indicated. 

   2 2 0

0 0( )
NW PW

aN
m D Q u D Q

aN m rN l

 
     

  

      (5.76) 

  2 0

0 0( )
PW

aN
u D Q

aN m rN l

 
   

  

        (5.77) 

5.8 Linear Stability Analysis of  2 , ,s s sE w n p   in the Absence of Spatial 

Variation 

The non-trivial steady state solutions indicated in Equation (5.5) is restated as Equation 

(5.78). 

 
 

   
2

0

1
, ,

1 1

s

s s s

s s

a p u a lw rmu
E w n p

l p r p N u gru


   

    
    

  (5.78) 

From Equation (5.11), f w   was given as Equation (5.79)  

 
0

1

p Nf
l r

w p

 
    

  
         (5.79) 

2 2

11 22 22 33 0NW PWB B A D Q A D Q          
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When Equation (5.79) is evaluated at  2 , ,s s sE w n p  , one obtains Equation (5.80) 

 
 

 0

, ,s s sw n p

r a lw rmu gruNf
l

w a lw rmu gru

  
  

   
        (5.80) 

From Equation (5.13), the partial derivative of   0, ,
1

p N
f w n p a lw r w

p

 
    

 
 

determined with respect to soil water, n , is as indicated in Equation (5.81)  

 0
f

n





           (5.81) 

Similarly, when Equation (5.81) is evaluated at  , ,s s sw n p , one obtains Equation (5.82)  

 
 , ,

0

s s sw n p

f

n





         (5.82) 

Finally, from Equation (5.15), the partial derivative of   0, ,
1

p N
f w n p a lw r w

p

 
    

 
 

determined with respect to plant population (biomass) density  p , is as shown in Equation 

(5.83) 

 
   

 

 

 
0 0

2 2

1 1
.

1 1

p p N rw Nf
rw

p p p

    
    

    

      (5.83) 

When Equation (5.83) is evaluated at  , ,s s sw n p , leads to Equation (5.84)  

 

 

  

     
0

2

0, ,

1 1 1
.

1 1
s s s

S

S Sw n p S

a p Nf
r

p l p r p N p

   
     

          

  

 

     
0

0

1

1 1S S S

ar N

l p r p N p


 

     

      (5.84) 

The point  , ,s s sw n p  is the non-trivial equilibrium solution of the linearised system of 

equations in Equation (5.2). This implies that it must satisfy the system equation. Therefore 

if  , ,f w n p  is evaluated at  , ,s s sw n p , one obtains Equation (5.85) 

  
 , ,

, , 0
s s sw n p

f w n p           (5.85) 
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The linearised form of the surface water dynamics of the dimensionless system in Equation 

(5.2) is therefore obtained as Equation (5.86) 

 

2 2

11 12 13 2 2
0

w w w
A w A n A p

t x y

   
      

   
   (5.86) 

where  

 0

11

r a lw rmu gruN
A l

a lw rmu gru

  
  

  
, 12 0A  , and 

 

     
0
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0

1

1 1S S S

ar N
A

l p r p N p


 

     

  

Similarly, the partial derivative of   0, ,
1 1

p N n
g w n p w mn g p

p n

   
     

   
 evaluated 

with respect to surface water, w  as obtained from Equation (5.19) is restated as Equation 

(5.87) 

0

1

p Ng

w p




 
          (5.87) 

When Equation (5.87) is evaluated at  , ,s s sw n p , one obtains Equation (5.88) 

 

0

, ,s s sw n p

a lw rmu gruNg

w a lw rmu gru

  


   
       (5.88) 

When the partial derivative of   0, ,
1 1

p N n
g w n p w mn g p

p n

   
     

   
 was determined 

with respect to soil water, n  as shown earlier in Equation (5.21), one obtains Equation 

(5.89) 

 
 

2
1

g gp
m

n n

 
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   

        (5.89) 

When Equation (5.89) is evaluated at  , ,s s sw n p , one obtains Equation (5.90)  

 

 
2

, ,

1

s s sw n p

g a lw rmu
m u

n ur

   
       

      (5.90) 
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The partial derivative of   0, ,
1 1

p N n
g w n p w mn g p

p n

   
     

   
 was finally 

determined with respect to plant population (biomass) density,  p  at earlier stages by 

Equation (5.23) to obtain Equation (5.91) 

 
0

2

1

11

Ng n
w g

p np

   
        

         (5.91) 

Also, when Equation (5.91) is evaluated at  , ,s s sw n p , one gets Equation (5.92)  
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    (5.92) 

Since the point  , ,s s sw n p  is the equilibrium solution of the system in Equation (5.2), it 

implies that it satisfies the system in Equation (5.2). Thus,  , ,g w n p  evaluated at 

 , ,s s sw n p  gives Equation (5.93) 

  
 , ,

, , 0
s s sw n p

g w n p          (5.93) 

The linearised form of the soil water dynamics of the dimensionless system in Equation 

(5.2) is given by Equation (5.94) 
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where  
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Finally, the partial derivatives of  , ,
1

n
h w n p p up

n

 
  

 
 was evaluated with respect 

to surface water, w  in Equation (5.27) to obtain Equation (5.95). 
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           (5.95) 

When Equation (5.95) is evaluated at  , ,s s sw n p , one obtains Equation (5.96) 
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The partial derivative of  , ,
1

n
h w n p p up

n

 
  

 
 was again determined with respect to 

soil water, n  in Equation (5.29) to obtain Equation (5.97). 
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When Equation (5.97) is evaluated at  , ,s s sw n p , one obtains Equation (5.98)  
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The partial derivative of  , ,
1

n
h w n p p up

n

 
  

 
 was finally determined with respect 

to plant population density, p , given in Equation (5.31) to obtain Equation (5.99) 
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and when Equation (5.99) is evaluated at  , ,s s sw n p , gives Equation (5.100)  
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Since the point  , ,s s sw n p  is the equilibrium solution of the system equation in Equation 

(5.2), it implies that it satisfies the system in Equation (5.2). Thus,  , ,h w n p  evaluated 

at  , ,s s sw n p  gives Equation (5.101) 

  
 , ,

, , 0
s s sw n p

h w n p         (5.101) 

The linearised form of the plant population dynamics of the dimensionless system in 

Equation (5.2) is therefore obtained as Equation (5.102) 
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Hence, the overall linearised form about the point  2 , ,s s sE w n p   of the system in 

Equations (5.2) is given by Equation (5.103). 
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where 'ijA s  are given by 
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Thus, with no spatial variation, the system of Equations (5.2) is linearised about the non-

trivial steady state and represented as a system of Equation (5.104) 
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where 'ijA s  are given by 
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 , and 33 0A   

From the first equation of the system in Equation (5.104), one obtains Equation (5.105) 

given that 12 0A 
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Therefore, with no spatial variation, the homogeneous form given by Equation (5.105) 

reduces to the system of equation indicated in Equation (5.106) 
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Since 31 0A   and 33 0A  , Equation (5.106) reduces further to Equation (5.107) 
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The relation in Equation (5.107) is then represented by Equation (5.108) 
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The representation indicated by Equation (5.108) can further be represented by Equation 

(5.109) 
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where H  is the stability matrix. A solution is sought for in the form given by Equation 

(5.110) 

 
tk e          (5.110) 

where   is the eigenvalue. The steady state 0k   is linearly stable if Re 0  . Thus, if 

Re 0  the perturbation 0 as k t  . When Equation (5.110) is substituted into H  

in Equation (5.109) yields the eigenvalues   as the solution of Equation (5.111) 
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When the determinant represented by Equation (5.111) is evaluated leads to the quadratic 

Equation (5.112) 
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Thus, for linear stability, the condition Re 0   is guaranteed if the following in Equations 

(5.113) and (5.114) are satisfied: 
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and  
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Now, Equation (5.113) is satisfied if 0Sa lw rmu    implying that Sa lw mru  . 

Similarly, Equation (5.114) is satisfied if 
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5.9 Linear Instability Analysis of  2 , ,s s sE w n p   in the Presence of Spatial 

Variation   

The purpose of this section is to further determine the linear instability of the steady state 

2E
 that is solely spatially dependent. The substitution of perturbations of the following 

forms given by Equations (5.49), (5.50) and (5.51) and redefined as Equations (5.115), 

(1.116) and (5.117) were adopted:  

        1 2, ; cos cosw x y t w t q x q y        (5.115) 

        1 2, ; cos cosn x y t n t q x q y        (5.116) 

        1 2, ; cos cosp x y t p t q x q y       (5.117) 

The Equations (5.115) to (5.117) were differentiated partially into the second order forms 

with respect to spatial components  ,x y . The corresponding variables were added to 

obtain Equations (5.118), (5.119) and (5.120) respectively, which represents the first, 

second and third perturbations. 
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Now, substituting Equations (5.118), (5.119) and (5.120) into the linearised system of 

equations in Equations (5.103), one obtains the system of equations in Equation (5.121) 
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Similarly, if we let 
2 2 2

1 2Q q q  , then the system of equations in Equation (5.121) becomes 

Equation (5.122) 
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Suppose, one assumed a quasi-steady state approach with the rate of change of the surface 

water as zero, then the rate of change of surface water around its equilibrium position will 

also be equal to zero. Thus, from surface water balance equation of system Equation (5.122) 

one obtains Equation (5.123)  

  
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But 12 0A   and hence equation (5.123) reduces to equation (5.124)  
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When Equation (5.124) is substituted back into the system of Equation (5.122) together 

with 12 310, 0A A   and 33 0A  , one obtains a system of equations in Equation (5.125)  
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Equation (5.125) finally reduces to a system of two partial differential equations given by 

Equation (5.126): 
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The relation in Equation (5.126) is then represented as Equation (5.127) 
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The representation indicated by Equation (5.127) can be represented by Equation (5.128) 
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          

   (5.128) 

where J  is the stability matrix. The stability matrix or Jacobian matrix from the system of 

Equations (5.128) is indicated by equation (5.129) 

 11 12

21 22

B B
J

B B

 
  
 

        (5.129) 

where the elements of the Jacobian matrix are defined as follows:  
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2

11 22 NWB A D Q  , 
21 13

12 23 2

11

A A
B A

Q A
 


, 21 32B A , and 

2

22 PWB D Q 
 

The Jacobian matrix has eigenvalues   given by Equation (5.130) 

 
20 ( ) det 0J I trJ J             (5.130)  

For stability one requires that, Re 0  . A necessary and sufficient conditions for linear 

stability are that 0trJ   and 0Det J   as indicated in Equations (5.131) and (5.132) 

 11 22 0trJ B B           (5.131) 

  2

11 22 21 12det 0J f Q B B B B          (5.132) 

As stated earlier, for pattern formation to occur, instability is required. Thus, for pattern 

formation, one ascribes the following to the situations labelled as Equations (5.131) and 

(5.132). If Equations (5.131) and/or (5.132) are violated, the system will be unstable. Thus, 

substituting 11 12 21, ,B B B  and 22B  in Equations (5.131) and (5.132) for the trace and the 

determinant of the Jacobian, one obtains the parameter set inequalities for unsable and 

instability in Equations (5.133) and (5.134) under (i) and (ii) respectively. 

(i) the parameter set such that Equation (5.131) is unstable and hence instability 

situation was obtained as Equation (5.133)  

 2 2

11 22 22 0NW PWB B A D Q D Q             

   
 

2 2

2
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1

s
NW pW

s

gp
m D Q D Q

n
     


 

But  

  
 

2 2

2
0

1

s
NW PW

s

gp
m D Q D Q

n

 
     

  

    (5.133) 

Hence, the trace condition cannot be violated. Thus, the instability of the system when 

diffusion is added is purely dependent on the determinant. 

(ii) Similarly for instability, it is required that  2

11 22 21 12 0f Q B B B B    leading 

to Equation (5.134) 
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  (5.134) 

From Equations (5.133) and (5.134), it can be concluded that pattern formation is possible 

provided that Equations (5.135) or (5.136) or both hold as:  

  2 2 0

0 0( )
NW PW

aN
m D Q u D Q

aN m rN l

 
     

  

    (5.135) 

or  

  2 0

0 0( )
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aN
u D Q

aN m rN l

 
   

  

      (5.136) 
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6 CHAPTER 6 

SIMULATIONS AND DISCUSSION OF RESULTS 

6.1 Preamble  

In this chapter, the various simulations run on the proposed models represented by systems 

of Equations (5.1) and (5.2) for pattern formation and discussion of the results are 

presented. The parameter values used were obtained from literature and other parameters 

that were not available in literature were estimated. The chapter presents and discusses the 

following: the process analysis of the vegetation pattern formation; nature of pattern 

distribution of the vegetation at different values of the growth parameter   introduced in 

the model; and the validation of the numerical algorithm used for the simulations.  

6.2 Process Analysis of the Vegetation Pattern Formation 

The growth parameter   defined in Equation (4.11) was redefined by Equation (6.1) 

1

2 3

1 F N

F F N






         (6.1) 

where 1F , 2F  and 3F  are three aggregate parameters, and are redefined by Equations (6.2), 

(6.3) and (6.4) respectively. 
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  
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 The values of state transition parameters ij , the utilisation coefficients i  of each 

resource and the measure indices of light, temperature, water and soil nutrients were culled 

from Li et al. (2003) and are presented on Table 6.1 where CK, L, M and H represent 

control fertility, lower fertility, middle fertility and higher fertility respectively . Different 

values of   representing different levels of fertility under different water types were 

determined through multi environment external force action on the vegetation. 

Table 6.1 Values of State Transition Parameters, Utilisation Coefficients and   

Measure Indices for Different Levels of Fertility under Different Water 

Conditions 

 

Parameters 

Rich water Average water Aridity 

CK L M H CK L M H CK L M H 

I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

T 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 

H 0.875 0.875 0.875 0.875 0.75 0.75 0.75 0.75 0.588 0.588 0.588 0.588 

N 0.690 0.793 0.896 1.000 0.690 0.793 0.089 1.000 0.690 0.793 0.896 1.000 

1  0.589 0.733 0.786 0.900 0.426 0.692 0.917 0.876 0.292 0.367 0.444 0.419 

2  0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 0.662 

3  0.91 0.91 0.91 0.91 0.91 0.91 0.91 0910 0.90 0.90 0.90 0.90 

4  0.87 0.82 0.91 0.95 0.86 0.89 0.86 1.00 0.77 0.65 0.62 0.45 

6  0.076 0.084 0.071 0.071 0.127 0.118 0.092 0.092 0.122 0.131 0.100 0.096 

21  0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

51  4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 

61  0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

Source: Li et al. (2003) 
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From the aggregate parameter formulas given by Equations (6.2), (6.3) and (6.4), and the 

data in Table 6.1, the aggregate parameter values under each water-condition and fertility 

level are represented as shown in Table 6.2. 

Table 6.2 Aggregate Parameters under each Water-Fertility Condition 

 

Water Fertility 

Aggregate Parameter 

1F  2F  3F  

 

Rich  

Control Fertility 

Lower Fertility 

Middle Fertility 

Higher Fertility 

0.1451 

0.1277 

0.1006 

0.0799 

7.0147 

6.2045 

5.7342 

5.1725 

1.2088 

1.0642 

0.8383 

0.6655 

 

Average 

 

Control Fertility 

Lower Fertility 

Middle Fertility 

Higher Fertility 

0.3321 

0.1907 

0.1121 

0.1176 

7.9698 

6.3604 

5.7614 

5.4301 

2.7674 

1.5891 

0.9340 

0.9798 

 

Aridity 

Control Fertility 

Lower Fertility 

Middle Fertility 

Higher Fertility 

0.4653 

0.3980 

0.2519 

0.2573 

9.4369 

8.4110 

7.6452 

8.3001 

3.8777 

3.3164 

2.0990 

2’1441 

6.3 The Forward System Simulations Formula 

The numerical simulation of the system Equations (5.1) and (5.2) are such that, they contain 

partial derivatives in both time and space. The partial derivatives of    , , , , ,w x y t n x y t  

and  , ,p x y t  in Equations. (5.1) and (5.2) were therefore approximated by Equations 

(6.5), (6.6) and (6.7) respectively as: 

 
     2

2 2

, , 2 , , , ,w x x y t w x y t w x x y tw

x x

    


 
    (6.5) 

 
     2

2 2

, , 2 , , , ,w x y y t w x y t w x y y tw

y y

   


 
    (6.6) 
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   , , , ,w x y t t w x y tw

t t

  


 
       (6.7) 

At each iteration, one approximates the values of    , , , , ,w x y t n x y t  and  , ,p x y t  by 

considering the change in space centered on a point in space  ,x y  using values at x x

and y y   and the change in time as in the forward Euler method. 

Let n  be the index for the time steps, and m  and q  be the indices for position. Similarly, 

if k t  , h x   and l y   and write  , ,w x y t  as in Equation (6.8) 

     ,, , , , n

m qw x y t w m q n w         (6.8) 

then, from Equation (6.8), the Equations (6.5), (6.6) and (6.7) can be expressed numerically 

by Equations (6.9), (6.10), and (6.11) respectively as 
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  
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 
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Similar expressions for  , ,n x y t  and  , ,p x y t  with respect to ,x y  and t  are indicated 

by Equations (6.12) to (6.17) 

     2

2 2

, , 2 , , , ,n x x y t n x y t n x x y tn

x x
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The system of equations needed to simulate the model problem in Equation (5.2) is given 

by Equation (6.18) 
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6.4 Distribution of the Vegetation Patterns at Different - values 

The spatial patterns associated with the different fertility levels for the different water 

conditions for the proposed models with the parameter set of values in Table 5.1 were 

numerically simulated. In order to corroborate the theoretical analysis in chapter 5, a direct 

numerical simulation of system Equation (5.2) was carried out with different fertility levels 

under different water conditions. The computations were performed on a two-dimensional 

grid. From the simulation equation given by Equation (6.18) and the data set of values in 

Tables 6.1 and 6.2, the vegetation patterns under each water condition and fertility level 

were obtained as follows. 

6.4.1 Distribution of Vegetation Patterns for Different - values under Rich Water 

Condition 

The state transition parameters, utilisation coefficients and measure indices for Control 

fertility, Lower fertility, Middle fertility and Higher fertility under Rich water condition are 

given in Table 6.3 
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Table 6.3 State Transition Parameters, Utilisation Coefficients and Measure Indices 

for Control Fertility, Lower Fertility, Middle Fertility and Higher fertility 

under Rich Water Condition 

Parameter Control Lower Fertility Middle Fertility Higher Fertility 

I  1.000 1.000 1.000 1.000 

T  0.766 0.766 0.766 0.766 

H  0.875 0.875 0.875 0.875 

N  0.793 0.793 0.896 1.000 

1  0.733 0.733 0.786 0.990 

2  0.662 0.662 0.662 0.662 

3  0.910 0.910 0.910 0.910 

4  0.820 0.82 0.91 0.950 

6  0.0837 0.0837 0.0707 0.0707 

21  0.06 0.06 0.06 0.06 

51  4.5 4.5 4.5 4.5 

61  0.12 0.12 0.12 0.12 

From Table 6.3, the aggregate parameters for the evaluation of different - values 

representing fertility levels under rich-water condition is summerised in Table 6.4. 

Table 6.4 The Aggregate Parameters for Evaluation of Different  -Values 

Representing Fertility Levels under Rich-Water Condition 

 

Water fertility 

Aggregate Parameter 

1F  2F  3F  

 

 

Rich water 

Control fertility 

Lower fertility 

Middle fertility 

Higher fertility 

0.1451 

0.1277 

0.1006 

0.0799 

7.0147 

6.2045 

5.7342 

5.1725 

1.2088 

1.0642 

0.8383 

0.6655 
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Vegetation Pattern of Control Fertility under Rich Water Condition 

The stages of degradation into the final stage of simulated patterns of the vegetation with a 

- value of 0.1146524577   for Control fertility under rich water condition is shown in 

Figure 6.1 and Figure 6.2. 

s

 

Figure 6.1 The Stages of Degradation into the Final Stage of Simulated Vegetation 

Pattern of Control Fertility under Rich Water Condition 

 

Figure 6.2 Final Vegetation Pattern of Control Fertility under Rich Water Condition 

with a - value of  = 0.1146524577 
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Vegetation Pattern of Lower Fertility under Rich Water Condition  

The stages of degradation into the final stage of simulated patterns of the vegetation with a 

- value of 0.1275087323   for lower fertility under rich water condition is shown in 

Figures 6.3 and 6.4. 

 

Figure 6.3 The Stages of Degradation into the Final Stage of Simulated Vegetation 

Patterns of Lower Fertility under Rich Water Condition 

 

Figure 6.4 Final Vegetation Pattern of Lower Fertility under Rich Water Condition 

with a - value of  = 0.1275087323 
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Vegetation Pattern of Middle Fertility under Rich Water Condition  

The stages of degradation into the final stage of simulated patterns of the vegetation with a 

- value of 0.1402957524   for middle fertility under rich water condition is also shown 

in the Figures 6.5 and 6.6.  

 

 Figure 6.5 The Stages of Degradation into the Final Stage of Simulated Vegetation 

Patterns of Middle Fertility under Rich Water Condition 

 

Figure 6.6 Final Vegetation Pattern of Middle Fertility under Rich Water Condition 

with a - value of  = 0.1402957524  
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Vegetation Pattern of Higher Fertility under Rich Water Condition  

The stages of degradation into the final stage of simulated patterns of the vegetation with a 

- value of 0.1576053443   for higher fertility under rich water condition is indicated 

in Figures 6.7 and 6.8. 

 

Figure 6.7 The Stages of Degradation into the Final Stage of Simulated Vegetation 

Patterns of Higher Fertility under Rich Water Condition 

 

Figure 6.8 Final Vegetation Pattern of Higher Fertility under Rich Water Condition 

with a - value of   = 0.1576053443 
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The final stages for various - values representing control fertility, lower fertility, middle 

fertility and higher fertility under rich water condition were compared as shown in Figure 

6.9. 

  

(a) Control Fertility   (b) Lower Fertility 

  

(c) Middle Fertility   (d) Higher Fertility 

Figure 6.9 Spatial Patterns for Control Fertility, Lower Fertility, Middle Fertility and 

Higher Fertility Levels of the Soil under Rich Water Condition 

The spatial patterns on overly evenly flat ground that are generated by the proposed model 

are revealed in a two-dimensional domain of a numerical simulations. Different levels of 

soil fertility namely control fertility, lower fertility, middle fertility and higher fertility 

based on their state transition parameters, utilisation coefficients and measure indices 

determined under Rich water condition were then compared.  

The effects of changes in the fertility levels on the patterns formed by the vegetation under 

Rich water condition were examined. The  -value representing these fertility levels were 
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computed analytically based on the state transition parameters, utilisation coefficients and 

measure indices. Thus, the effects of   on the vegetation as predicted by the model 

Equation (5.2) were shown.  

For a - value of 0.1146524577  representing the Control fertility under rich water 

condition, the vegetation shows a pattern with quite a number of patches of bare or almost 

bare land as shown in Figure 6.9a. The number of patches of bare or almost bare land 

formed by the vegetation reduced and the area covered by these patches somehow dwindled 

for a - value of 0.1275087323  representing lower fertility. This is as shown in figure 

6.9b. Though the number of patches of bare or almost bare land seems numerous in the 

case of 0.1402957524   for middle fertility, the intensity of the vegetation is high as 

compared to that of lower fertility and the corresponding patches of bare land are narrower. 

This can best be looked at based on the colour bar associated with the vegetation pattern. 

This is equally represented by figure 6.9c. When the - value is at 0.1576053443   

representing higher fertility, patches of bare or almost bare land were barely absent 

compared to other fertility levels represented by figures 6.9a, 6.9b and 6.9c. However, the 

patches of bare or almost bare land is not wholly absent. Again, the colour bar shows that 

the intensity of the vegetation is very high compared to all the others. This is shown by 

Figure 6.9d. 

6.4.2 Distribution of Vegetation Patterns for Different - Values under Average Water 

Condition 

Similar to Section 6.4.1, the state transition parameters, utilisation coefficients and measure 

indices for Control fertility, lower fertility, middle fertility and higher fertility under 

Average water condition are indicated in Table 6.5. 
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Table 6.5 State Transition Parameters, Utilisation Coefficients and Measure Indices 

for Control Fertility, Lower Fertility, Middle Fertility and Higher Fertility 

under Average Water Condition 

Parameter Control Lower Fertility Middle Fertility Higher Fertility 

I  1.000 1.000 1.000 1.000 

T  0.766 0.766 0.766 0.766 

H  0.750 0.750 0.750 0.750 

N  0.690 0.793 0.896 1.000 

1  0.426 0.692 0.917 0.876 

2  0.662 0.662 0.662 0.662 

3  0.910 0.910 0.910 0.910 

4  0.860 0.890 0.86 1.000 

6  0.1265 0.1180 0.0919 0.0921 

21  0.06 0.06 0.06 0.06 

51  4.5 4.5 4.5 4.5 

61  0.12 0.12 0.12 0.12 

Extract from Table 6.1 

From Table 6.5, the aggregate parameters for the evaluation of different - values under 

Average-water condition for Control fertility, Lower fertility, Middle fertility and Higher 

fertility are summarised in Table 6.6. 
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Table 6.6 Aggregate Parameters for the Evaluation of Different Values under 

Average Water Condition 

Water fertility 

Aggregate Parameter 

1F  2F  3F  

Average water 

Control fertility 

Lower fertility 

Middle fertility 

Higher fertility 

0.3321 

0.1907 

0.1121 

0.1176 

7.9698 

6.3604 

5.7614 

5.4301 

2.7674 

1.5891 

0.9340 

0.9798 

Vegetation Pattern of Control Fertility under Average Water Condition  

The process of degradation into the final stage of simulated patterns of the vegetation with 

a - value of 0.0780268371   for Control fertility under average water condition is 

shown in Figures 6.10 and 6.11. 

 

Figure 6.10 Stages of Degradation into the Final Stage of Simulated Vegetation 

Patterns of Control Fertility under Average Water Condition 
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Figure 6.11 Final Vegetation Pattern of Control Fertility under Average Water with 

a - Value of   = 0.0780268371 

Vegetation Pattern for Lower Fertility under Average Water Condition 

The process of degradation into the final stage of simulated patterns of the vegetation with 

a - value of 0.1113796509   for lower fertility under average water condition is 

indicated in Figures 6.12 and 6.13. 

 

Figure 6.12 Stages of Degradation into the Final Stage of Simulated Patterns of Lower 

Fertility under Average Water Condition 
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Figure 6.13 Final Vegetation Pattern of Lower Fertility under Average Water with a 

- Value of   = 0.1113796509 

Vegetation Pattern of Middle Fertility under Average Water  

The process of degradation into the final stage of simulated growth patterns of the 

vegetation with a - value of 0.1363325869   for middle fertility under average water 

condition is also shown in the Figures 6.14 and 6.15. 

 

Figure 6.14 The Stages of Degradation into the Final Stage of Simulated Patterns of    

Middle Fertility under Average Water Condition 
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Figure 6.15 Final Vegetation Pattern of Middle Fertility under Average Water with 

a - Value of   = 0.1363325869 

Vegetation Pattern of Higher Fertility under Average Water Condition 

The process of degradation into the final stage of simulated growth patterns of the 

vegetation with a - value of 0.137662054   for higher fertility under average water is 

indicated in Figures 6.16 and 6.17. 

 

Figure 6.16 The Stages of Degradation into the Final Stage of Simulated Patterns of 

Higher Fertility under Average Water Condition 
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Figure 6.17 Final Vegetation Pattern of Higher Fertility under Average Water with a 

- Value of   = 0.137662054 

The final stages for various - values representing Control fertility, lower fertility, middle 

fertility and higher fertility under Average Water Condition were compared as shown in 

Figure 6.18 

  

(a) Control Fertility   (b) Lower Fertility 

  

(c) Middle Fertility   (d) Higher Fertility 

Figure 6.18 Spatial Patterns for Control Fertility, Lower Fertility, Middle Fertility 

and Higher Fertility of the Soil under Average Water Condition 
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The spatial patterns on evenly flat ground that are generated by the proposed model are 

again revealed in a two-dimensional domain of a numerical simulations. The different 

levels of soil fertility namely control fertility, lower fertility, middle fertility and higher 

fertility based on the state transition parameters, utilisation coefficients and measure indices 

were determined for Average water condition and then compared 

The effects of different fertility levels on the patterns formed by the vegetation under 

Average water condition were examined. Thus, just as the various fertility levels were 

determined analytically under rich water condition, the same was done for the average 

water condition and the effects of   on the vegetation as predicted by the model Equation 

(5.2) was examined. 

For  -value of 0.0780268371 representing the Control fertility under Average water 

condition, the vegetation shows a pattern with quite a number of patches of bare or almost 

bare land of which some are labyrinth in nature. These patches of bare land comparatively 

cover wider areas. This is shown in Figure 6.18a. Though the number of patches of bare or 

almost bare land formed by the vegetation under lower fertility appear to be more compared 

with the case of control fertility, the areas covered by these patches are somehow dwindled 

for 0.1113796509  representing the lower fertility. This is shown in Figure 6.18b. There 

was a further drastic decrease in the number of patches of bare or almost bare land and a 

corresponding dwindling of these patches of bare land at 0.1363325869   for middle 

fertility. This is equally represented by figure 6.18c. When the - value is at 

0.137662054   representing higher fertility, patches of bare or almost bare land reduced 

considerably. The intensity of the patches of vegetation is quite high as compared to all the 

others. This is shown by Figure 6.18d.  

6.4.3 Distribution of Vegetation Patterns for Different - Values under Arid Condition 

In similar manner, the state transition parameters, utilisation coefficients and measure 

indices for Control fertility, lower fertility, middle fertility and higher fertility under Arid 

condition are given in Table 6.7. 
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Table 6.7 State Transition Parameters, Utilisation Coefficients and Measure Indices 

for Control Fertility, Lower Fertility, Middle Fertility and Higher fertility 

under Arid Environment 

Parameter Control Lower Fertility Middle Fertility Higher Fertility 

I  1.000 1.000 1.000 1.000 

T  0.766 0.766 0.766 0.766 

H  0.588 0.588 0.588 0.588 

N  0.690 0.793 0.896 1.000 

1  0.292 0.367 0.444 0.419 

2  0.662 0.662 0.662 0.662 

3  0.900 0.900 0.900 0.900 

4  0.770 0.650 0.620 0.450 

6  0.1215 0.1306 0.100 0.0964 

21  0.06 0.06 0.06 0.06 

51  4.5 4.5 4.5 4.5 

61  0.12 0.12 0.12 0.12 

Extract from Table 6.1 

From Table 6.7, the aggregate parameters for the evaluation of different - values for 

Control fertility, lower fertility, middle fertility and higher fertility under Arid condition 

are indicated in Table 6.8. 
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Table 6.8 The Aggregate Parameters for the Evaluation of Different Values 

under Arid Condition 

Water fertility 

Aggregate Parameter 

1F  2F  3F  

Aridity 

Control fertility 

Lower fertility 

Middle fertility 

Higher fertility 

0.4653 

0.3980 

0.2519 

0.2573 

9.4369 

8.4110 

7.6452 

8.3001 

3.8777 

3.3164 

2.990 

2.1441 

Vegetation Pattern of Control Fertility under Arid Condition 

The process of degradation into the final stage of simulated growth patterns of the 

vegetation with a - value of 0.0560530255   for Control fertility under arid condition 

is indicated in Figures 6.19 and 6.20. 

 

Figure 6.19  Stages of Degradation into the Final Stage of Simulated Patterns of 

Control Fertility under Arid Water Condition 
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Figure 6.20 Final Vegetation Pattern of Control Fertility under Arid Water with a 

- Value of   = 0.0560530255 

Vegetation Pattern of Lower Fertility under Arid Condition  

The process of degradation into the final stage of simulated growth patterns of the 

vegetation with a - value of 0.0619864031   for lower fertility under average water is 

indicated in Figures 6.21 and 6.22.  

 

Figure 6.21 Stages of Degradation into the Final Stage of Simulated Patterns of 

Lower Fertility under Arid Water Condition 
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Figure 6.22 Final Vegetation Pattern of Lower Fertility under Arid Water with a 

- Value of   = 0.0619864031 

Vegetation Pattern of Middle Fertility under Arid Condition  

The process of degradation into the final stage of simulated patterns of the vegetation with 

a - value of 0.0812833722   for middle fertility under arid condition is indicated in 

Figures 6.23 and 6.24. 

 

Figure 6.23 Stages of Degradation into the Final Stage of Simulated Patterns of 

Middle Fertility under Arid Water Condition 



 

119 

 

Figure 6.24 Final Vegetation Pattern of Middle Fertility under Arid Water with a 

- Value of  = 0.0812833722 

Vegetation Pattern of Higher Fertility under Aridity  

The process of degradation into the final stage of simulated patterns of the vegetation with 

a - value of 0.711112388   for higher fertility under arid condition is also shown in 

Figures 6.25 and 6.26 

 

Figure 6.25 Stages of Degradation into the Final Stage of Simulated Patterns of 

Higher Fertility under Arid Condition 
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Figure 6.26 Final Vegetation Pattern of Higher Fertility under Arid Water with a 

- Value of   = 0.711112388 

The level of degradation for various - values for control fertility, lower fertility, middle 

fertility and higher fertility under Arid condition were compared. This is shown in Figure 

6.27. 

  

(b) Control Fertility   (b) Lower Fertility 

  

(c) Middle Fertility   (d) Higher Fertility 

Figure 6.27 Spatial Patterns for Control Fertility, Lower Fertility, Middle Fertility 

and Higher Fertility of the Soil under Arid Condition 
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The spatial patterns on evenly flat ground that are generated by the proposed model are 

again revealed in a two-dimensional domain of a numerical simulations. Different levels of 

soil fertility namely control fertility, lower fertility, middle fertility and higher fertility 

based on the state transition parameters, utilisation coefficients and measure indices 

determined for Arid condition were then compared.  

Again, the effects of different fertility levels on the patterns formed by the vegetation under 

Arid condition were examined. Thus, just as the various fertility levels were determined 

analytically under rich water and average conditions, the same was done for the arid 

condition and the effects of   on the vegetation as predicted by the model Equation (5.2). 

For a - value of 0.0560530255 representing the Control fertility under Arid condition, the 

vegetation shows a pattern with numerous and wider patches of bare or almost bare land 

compared to patterns exhibited by the other fertility levels. This is shown by Figure 6.27a. 

For a - value of 0.0619864031  representing lower fertility, the number of patches of 

bare or almost bare land formed by the ecosystem reduces. Some of the areas covered by 

these patches are equally wide and labyrinth in nature, however some few show spottily 

nature. This is shown in Figure 6.27b. The simulations show a drastic decrease in the 

number of patches of bare or almost bare land in the case of 0.0812833722   for middle 

fertility. Nonetheless, these few patches are wider and labyrinth in nature. This is equally 

represented by Figure 6.27c. When the - value is at 0.0711112388   representing 

higher fertility, more patches of bare or almost bare land were generated than in the case of 

middle fertility though fewer patches of bare land was expected in the higher fertility than 

the middle fertility. However, the sizes of the patches of bare land or almost bare land were 

considerably dwindled compared with situations in the control, lower and middle fertilities. 

This is shown in Figure 6.27d. 

6.5 Discussions of the Results 

The discussions of results of this research are focused on model formulation which involves 

two main aspects namely: the theoretical and empirical aspects of growth, spread and 

vegetation pattern formation; the analysis of the results obtained from the dynamics of the 

models and the simulation run on the results. 
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The theoretical aspect of model formulation consists of the mathematical model 

development techniques of forest growth, spread and vegetation pattern formation as 

discussed in Chapter 4 of this thesis. The mathematical model development deals with 

surface water, soil water and biomass dynamics constructed by mimicking the biomass and 

water dynamics of Klausmeier (1999) model of regular and irregular patterns in semiarid 

vegetation. Although in the Klausmeier model the water dynamics was considered as a 

single entity, in the proposed models it was considered as two different entities: the surface 

water and soil water dynamics. However, in the development of the models, the surface 

water dynamics was linked to soil water dynamics by the surface water infiltration into the 

soil. The models further show how the soil water uptake by plants was considered as being 

proportional to plant growth and spread.  

According to Li et al. (2003), crop growth process is a multi-environment external force 

action. Thus, the dynamic models were built by adopting the continuous-time Markov 

process used by Li et al. (2003). This was considered as the empirical aspect of the model 

formulation. A plant growth function   representing a multi-environment external force 

action was introduced into the model to assess different levels of soil fertility under 

different water conditions available to the vegetation growth. The different water 

conditions considered were Rich-water condition, the Average water condition and Arid 

condition. The soil fertility levels were the control fertility, lower fertility, middle fertility 

and the higher fertility. The models formed are coupled reaction-diffusion partial 

differential equation systems. 

Linear stability analysis was done to determine whether patterns formation is possible from 

a homogeneous vegetation. The principle behind this linear stability analysis is to 

investigate the parameter space that may induce patterns formation. In the trivial case, the 

linear stability analysis of the study shows that, stability conditions needed for pattern 

formation is possible provided that  0 0 0 0,  as 0aN aN m rN l a      . This implies 

that the homogeneous plant equilibrium decreases with decreasing rainfall until plants 

become extinct. Based on this condition, the trace and determinant criteria the trace and 

determinant criteria for stability were obtained as  m u   and mu  respectively. This 

allows for homogeneous equilibrium of surface water, soil water and plant density. Again, 

as 0N  increases or decreases,  0 0 0aN aN m rN l     also increases or decreases 
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irrespective of the values of the other parameters. Thus, the results suggest that 0N  which 

is a surrogate for a dimensionless infiltration capacity prohibits pattern formation at high 

levels. Hence, one may not expect vegetation patterns to exist when the soil fertility level 

is high and under rich water condition. Thus, the observation of vegetation patterns on 

higher fertility level in a given area of rich water condition suggests that, in that area, other 

environment factors other than increased infiltration with increasing vegetation biomass, 

high fertility and rich-water condition are operating and responsible for pattern formation. 

This is consistent with the findings of D’Odorico et al. (2007).  

In the non-trivial case, the linear stability analysis of the study shows that the conditions 

needed for pattern formation to be satisfied is that Srmu a lw   and Sw gu . Thus, based 

on these conditions, the trace and determinant criteria are satisfied. Hence, ecologically 

feasible region of the parameter space that gives rise to Turing regimes in which vegetation 

patterns continuously evolve in space is such that ( )Sgu w a rmu l   . Regardless of the 

parameter space, as precipitation rate decreases the vegetation cover shifts from uniform to 

gaps, labyrinths, spots, and finally, bare soil. This behavior is consistent with the simulation 

results reported in the findings of Gilad et al. (2007a); Kéfi et al. (2010); Meron et al. 

(2004); Meron (2011); and Rietkerk et al. (2002).  

 The linear instability situations are influenced by two main inequalities given by the 

following    2

0 0 0PWu D Q aN aN m rN l       and 

   2 2

0 0 0NW PWm D Q u D Q aN aN m rN l        . This gives an indication of the 

principle of pattern formation outlined by Turing. The models show positive relationship 

between plant density and water infiltration.  

In order to corroborate the theoretical analysis in Chapter 5, a numerical simulation of 

system Equation (5.2) was carried out based on different soil fertility levels, under different 

water conditions as indicated in the first part of chapter 6. The computations were 

performed on a two-dimensional grid of size 200 200  with 0.01,  0.02x y     and time 

step 2t   and zero flux boundary conditions. Simulations run on these models resulted 

into the emergence of vegetation patterns as a result of nonlinear dynamical interactions 

between biomass, available soil water, and surface water. These patterns that emerged for 
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control fertility, lower fertility, middle fertility and higher fertility under rich water, average 

water and arid conditions were compared.  

It was observed that under rich water condition, the fertility level gradually increased, as 

the number of patches of bare or almost bare land formed by the vegetation decreased 

together with the sizes of area covered by these patches of bare land. These observations 

were clearly seen for control and lower fertilities with - value of 0.114652458 and 

0.1275087323 respectively. Unexpectedly, there was a slight variation in the case of middle 

fertility. Though, the number of patches of bare or almost bare land were expected to be 

fewer in the case of middle fertility with  -value of 0.1402957524, they turned out to be 

more. However, the intensity of the patches of vegetation was high as compared to that of 

lower fertility and the corresponding patches of bare land were narrower. At higher fertility 

under the same rich water condition with - value of 0.1576053443, though patches of bare 

land were not wholly absent they were barely insignificant compared to other fertility levels 

shown in Figures 6.5a, 6.5b and 6.5c. Again, the intensity of the vegetation is very high as 

compared to all the others.   

In the case of Average water condition, the vegetation shows a pattern with quite a number 

of patches of bare or almost bare land of which some are labyrinth in nature and 

comparatively covers wider areas. This represents the Control fertility with a  -value of 

0.0780268371. For lower fertility represented by a  -value of 0.1113796509, the number 

of patches of bare or almost bare land formed by the vegetation are more compared with 

the case of control fertility. However, the areas covered by these patches are comparatively 

dwindled. The number of patches of bare or almost bare land decreased with a 

corresponding dwindling of these patches of bare land at a  -value of 0.1363325869 for 

middle fertility. When the - value is at 0.137662054 representing higher fertility, there 

was a considerable reduction in the number of patches of bare or almost bare land and the 

intensity of the patches of the vegetation was quite high compared to all the others. The 

nature of vegetation patterns developed from these models is an indication that formation 

of patterns does not only depend on the level of fertility but could be as a result of other 

factors that can equally compensate for the fertility level and water condition.  

Finally, the effects of different fertility levels on the patterns formed by the vegetation 

under Arid condition depict the following: for a - value of 0.0560530255 representing the 
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Control fertility, the vegetation shows a pattern which is labyrinth in nature. In the case of 

lower fertility with a - value of 0.0619864031, the number of patches of bare or almost 

bare land formed by the ecosystem reduces. However, some of the areas covered by these 

patches are equally wide and labyrinth in nature, yet some few show spottily nature. The 

simulations show a drastic decrease in the number of patches of bare or almost bare land in 

the case of 0.0812833722   for middle fertility. Nonetheless, these very few patches are 

wider and labyrinth in nature. Its homogeneous vegetation cover is higher comparatively 

to that of higher fertility with a - value of 0.0711112388. There are more patches of bare 

or almost bare land generated in the higher fertility than in the case of middle fertility 

though fewer patches of bare land were expected than in the middle fertility. The few 

patches of bare land and high intensity of uniform vegetation exhibited in the simulation 

results is an indication that factors other than fertility level and water condition account for 

the growth of a vegetation. The results of the simulations also suggest that when these spots, 

labyrinths and gaps arise from a high intensity and homogeneous vegetation cover, this 

could be an indication that the ecosystem is approaching desertification. This finding is 

consistent with other pattern-forming models (von Hardenberg et al., 2001; Gilad et al., 

2004; and Rietkerk et al., 2004). Hence, the existence of these vegetation patterns 

associated with these fertility levels in the simulations of these models indicates imminent 

catastrophic shifts. The results of the simulations suggest that high 0N  which is a surrogate 

for a dimensionless infiltration capacity prohibits pattern formation. Hence, one may not 

expect vegetation patterns to exist on high fertility level and rich water condition. The 

observation of vegetation patterns on higher fertility in a given area may suggest that, 

mechanisms other than increased infiltration with increasing vegetation biomass, fertility 

and water condition are operating and therefore responsible for pattern formation. This is 

consistent with the report in the findings of D’Odorico et al. (2007).  
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7 CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions  

The study was conducted purposely to develop two mathematical models that take into 

account surface water, soil water and biomass dynamics to investigate the dynamics of 

forest growth and vegetation pattern formation. From the findings of the research, the 

following conclusions were made in relation to the objectives of the study.  

a. A system of nonlinear partial differential equations models that takes into account 

the interactions among external force action of multi environment factors such as 

light, water, temperature and nutrients on the growth, spread and vegetation pattern 

formation using Continuous-time Markov (CTM) approach has been established. 

 

b. The dynamics of the forest reserves using the system of partial differential equations 

models for growth rate and pattern formation have been explored. These nonlinear 

models were linearised using Taylor Series expansion method. Applying stability 

analysis and suitable numerical simulations, the turing parameter space, the 

associated pattern type and the conditions for pattern formation were identified. The 

results provided clear evidence indicated below: 

(i) The linear stability analysis of homogeneous steady-state solutions provided a 

reliable predictor of the beginning and nature of pattern formation in the 

reaction–diffusion systems.  The stability conditions needed for pattern 

formation to be satisfied were that  0 0 0 0,as 0aN aN m rN l a      . 

Thus, the homogeneous plant equilibrium decreases with decreasing rainfall 

until plant become extinct and as 0N  increases or decreases 

 0 0 0aN aN m rN l     also increases or decreases respectively. The results 

further suggest that high 0N  which is a surrogate for a dimensionless infiltration 

capacity prohibits pattern formation. Hence, one may not expect vegetation 

patterns to exist on high fertility level and rich water condition. However, this 

was not the case. In the non-trivial case, the linear stability analysis of the study 
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shows that the conditions needed for pattern formation to be satisfied was that 

Srmu a lw   and Sw gu . Hence, ecologically feasible region of the 

parameter space that gives rise to turing regimes in which vegetation patterns 

continuously evolve in space was such that ( )Sgu w a rmu l   . 

(ii) The linear instability situations are influenced by two main inequalities given 

by the following 

   2

0 0 0PWu D Q aN aN m rN l       and 

 2 2

NW PWm D Q u D Q     0 0 0aN aN m rN l    . 

This gives an indication of the principle of pattern formation outlined by Turing.  

c. Finally, in order to validate the proposed models, numerical simulations of the 

models were carried out based on different soil fertility levels under different water 

conditions. Thus, regardless of the parameter space, it was realized that, no matter 

the level of precipitation, the shift of vegetation cover from uniform pattern to either 

gaps, labyrinths, spots, and bare soil or almost bare soil is possible.  

7.2 Contributions to Knowledge 

The contributions of this research to knowledge have been presented in Chapters 4, 5 and 

6. The contributions to knowledge are summarised as follows: 

(i) Two systems of nonlinear partial differential equations models that take into 

account the influence of the interactions among multiple resources such as 

light, water, temperature and nutrients on the growth, spread and vegetation 

pattern formation has been formulated and analysed. The plant growth 

function  representing a multi-environment external force action 

introduced into the model provides a reference base for conditions to the 

vegetation growth and pattern formation. 

(ii) A heterogeneous analysis of three dimensional model has been established 

as against most previous  modelling analysis which only considered  

homogeneous aspect and are mostly two-dimensional.  
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7.3 Recommendations for Future Research work 

The following recommendations based on the challenges of the work are made for future 

research: 

a. The proposed model derived in the study could be applied to any vegetation 

type. The model could be used to further analyse the conditions for the 

development of dynamic patterns and their occurrence in different biological 

systems. 

 

b. The topography of a land is not completely perfectly horizontal terrain but 

includes portions with slope lengths (the horizontal distance from the point of 

origin of overland flow to the point where either the slope gradient decreases 

enough to allow deposition to begin or the flow is concentrated in a defined 

channel). The surface water dynamics component of the proposed model could 

be modified to include the topographic factor (LS) which represents the ratio of 

soil loss on a given slope length (L) and steepness (S) to soil loss from a slope 

that has a length of 72.6 feet and steepness of 9 percent. 

 

c. The dynamics of a vegetation should be investigated into based on the 

topography of the land with the procedure for converting the slope length (L) 

and slope steepness (S) into the topographic factor (LS). This should be done 

by use of the modified proposed model varied depending on whether the slope 

is uniform, irregular or segmented. 
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APPENDICES 

APPENDIX A1 THE DIMENSIONLESS FORM OF THE FIRST PROPOSED    

MODEL 
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
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
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      
         

       
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Let the possible values of P  and N  be represented as: 2 ,P s  and 1N s . 
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       
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

        
              

         

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

        
              
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                      

 

The possible values of T  are:  1 , 1 , 1T J T M T L     and 1T U . Taking 

 1 :T J    

     

 

   

 
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J x yX Y
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p
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  

  



 

  
      

       


                     


   
       

     
        

        





 

The possible values of X  and Y  are:      
1 1

2 2,W WX D J Y D J      and 

 1X J   . When   
1

2
WX D J    and   

1
2

WY D J   : 

     

 

   

 

 
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1
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N
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w
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p
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  






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     
       

        

   
       

        

    
    

    

      
       

       
2y






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     
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w
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        
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
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Let the possible value of W  be represented as:   1 :W J s R   

       
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           


         
             

            


                     

     

 

   

 

       

   

0

2 1
2

1

2 2
0 2

2 2

1

2 2

2 2

1

1 1

1

W

P

N

p Nw AR Lw R V w
w

t J J p xJ s D J

p N Jsn Mn n n n
w p

t p J J s n x y

Dp n Up p p
p

t n J D x y

  

 



  
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
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
         


     

       
     
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    

 

Substituting into the above equation reduces to the form  
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APPENDIX A2 THE DIMENSIONLESS FORM OF THE SECOND PROPOSED 

MODEL 

2 2

2 0

2 2
Rainfall water loss due to 2

   evaporationRate of change of surface water
Surface water movementswater infiltration into

         the soil

W

P s NW W W
A LW RW D

T P s X Y

     
       

     

 2
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2
evaporation and 2 1
    drainageRate of change of soil water

infiltration into the soil Soil water loss by plants uptake
    from surface water
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    
        

      

 

2

2

Soil water movement

2 2
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Plant loss as a result 1
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soil water uptake by
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P

N

Y

P N P P
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

 
 

 

    
      

    
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












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 



         

The variables are: , , , ,W N P T X  and Y  

The parameters are: 1 2 0, , , , , , , , , , ,N P WA L R J M s s D D D N U  and   

From the variables, let w, n, p, t,W W N N P P T T X X x           and 

Y Y y    
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 

   
 

 

 
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     
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   
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                  
 

    
     

    

  
  
 
  
 

  
   
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 

 
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2 0

2 22 2

2

2 2

2 0

2 22 2

2 1

2

2 22

1

W

N

P

P p s NW w W w W w
A LWw RW w D

t x yT P p s X Y

P p s NN n N n N n N n
RW w M Nn J P p D

t x yT P p s N n s X Y

P p N n P p P
J P p U Pp D

t xT N n s X Y


     
         
     

       
           
       

  
       
  

2

2

p

y










   
  

 

 

2 2

2 0

2 22 2

2

2 2

2 0

2 22 2

2 1

2

2 2

1

1 1

1 1

1 1

W

N

P

P p s Nw AT w w
LTw RT w D T

t x yW P p s X Y

P p s Nn RTW J PT N n n n
w MTn p D T

t x yN P p s N N n s X Y

p N n p
J T p UT p D T

t xN n s X


     
         

     

        
             

        

  
      

  

2

2 2

p

yY










      

 

Let the possible values of P  and N  be represented as: 2 ,P s  and 1N s . 

 

2 2

2 2 0

2 22 2

2 2

2 2

2 2 0 2 1

2 22 2

1 2 2 1 1 1

2

1

2

1 1

1 1

1 1

1

W

N

P

s p s Nw AT w w
LTw RT w D T

t s p s x yW X Y

s p s N JTs s nn RTW n n
w MTn p D T

t s s p s s s n s x yX Y

s np p
J T p UT p D T

t s n s xX


     
        

     

       
            

        

  
     

   

2

22 2

1 p

yY










    
  

 

 

 

 

   

 
 

2 2
2 0

2 22 2

2

2 2
2 0 2 1

2 22 2

1 2 1 1

2 2

1

2 22

1

1 1

1

1 1

1 1

1 1

1

W

N

P

s p Nw AT w w
LTw RT w D T

t s p x yW X Y

s p N JTs s nn RTW n n
w MTn p D T

t s s p s s n x yX Y

s np p
J T p UT p D T

t s n xX Y


     
         

     

       
             

        

   
       

   
2

p

y










  
    
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 

 

 

   

 
 

2 2
0

2 22 2

2 2
0 2

2 22 2

1 1

2 2

2 22 2

1 1

1

1 1

1 1

1 1

1

W

N

P

p Nw AT w w
LTw RT w D T

t p x yW X Y

p N JTsn RTW n n n
w MTn p D T

t s p s n x yX Y

p n p p
J T p UT p D T

t n x yX Y


     
          

      


        
              

        

     
         

     







 

The possible values of T  are:  1 , 1 , 1T J T M T L     and 1T U . When 

 1 :T J    

     

 

 

 

 

       

 

     

2 2
0

2 22 2

0 2

1 1

2 2

2 22 2

2 2

2 22

1 1

1

1 1

1 1

1 1

1

W

N

P

p Nw A Lw R w w
w D T

t J J p x yJ W X Y

p N Jsn RW Mn n
w p

t J s p J J s n

D n n

J x yX Y

Dp n Up p p
p

t n J J xX Y

 

  



 

     
         

        

   
       

        

  
    

   

   
      

      
2y












 
 
  

 

The possible values of X  and Y  are:    
1 1

2 2,W WX D J Y D J           . When 

 
1

2
WX D J      and  

1
2

WY D J     : 

     

 

   

 

 

       

 

     

2 2
0

2 2

0 2

1 1

2 2

2 2

1

1 1

1

W

W

N

W

P

W

p N Dw A Lw R J w w
w

t J J p J D x yJ W

p N Jsn RW Mn n
w p

t J s p J J s n

D J n n

J D x y

Dp n Up J
p

t n J J D



  

  







 

       
         

          

   
       

        

    
    

    

   
     

     

2 2

2 2

p p

x y












  
 

    
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     

 

 

 

 

       

   

2 2
0

2 2

2 2
0 2

2 2

1 1

2 2

2 2

1

1 1

1

W

W

N

W

P

W

p N Dw A Lw R w w
w

t J J p D x yJ W

p N DJsn RW Mn n n n
w p

t J s p J J s n D x y

Dp n Up p p
p

t n J D x y

 

  



     
         

         


        
             

            


                     

 

Let the possible value of W  be represented as:   1 :W J s R   

       

 

 

 

   

       

   

2 2
0

2 2

1

2 2
1 0 2

2 2

1 1

2 2

2 2

1

1 1

1

N

W

N

W

P

W

p N Dw A R Lw R n n
w

t J J s J J p D x y

J s p N DJsn R Mn n n n
w p

t J s R p J J s n D x y

Dp n Up p p
p

t n J D x y

   



  



     
         

         

        
              

           

     
       

      












     

 

 

 

       

   

2 2
0

2 2 2

1

2 2
0 2

2 2

1

2 2

2 2

1

1 1

1

W

W

N

W

P

W

p N Dw AR Lw R w w
w

t J J p D x yJ s

p N DJsn Mn n n n
w p

t p J J s n D x y

Dp n Up p p
p

t n J D x y

 

 



     
         

         


        
            

           


                     

 

         

 

   

 
 

2

2

11

1 1
2 2

1 1 2

, , , , ,

, , , ,

, , , ,

P
PW

W W W

N
NW

W

JsAR L R M
a l r m g

J J J J sJ s

J J DU
u y Y x X D

J D D D

DWR N P
w D t J T n p

J s D s s

   

 







         


     

       
     


      

 


 

Substituting into the above equation reduces to the form  
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2 2

0

2 2

2 2

0

2 2

2 2

2 2

1

1 1

1

NW

PW

p Nw w w
a lw r w

t p x y

p Nn n n n
w mn g p D

t p n x y

p n p p
p up D

t n x y

    
       

       
      

           
        

           
        

 


