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ABSTRACT

This research presents two compartmental models on the transmission dynamics of

Bacterial Meningitis, which best describes the scenario in real life. The first model

is made up of seven (7) mutually exclusive epidemiological compartments. The

quantitative analysis of the model is conducted and the criteria for local and global

stabilities of the disease-free equilibrium is established. The simulation results show

that getting people vaccinated is crucial to the control of the disease. This leads to

the novel two-strain vaccination control model denoted by nine (9) mutually exclusive

epidemiological compartments. The model is used to analyze the impact of vaccination

and early treatment on the population, especially on the recovered populations. It is

ascertained that Bacterial Meningitis will not spread in the population if 25% of the

population is immune to the disease. Numerical simulations of the model are carried

out by implementing the MATLAB ODE45 algorithm to visualize the effects of the

various model parameters on each compartment of the developed model. The two-

strain model is then extended to include control by the introduction of five control

mechanisms; effective human personal protection (such as wearing face or surgical

masks), vaccination for strains 1 and 2, timely and delayed diagnosis treatments of the

infection. An optimal control problem is formulated and the existence of its solution is

established. The characterization of the controls is performed using the Pontryagin’s

Maximum Principle. The Forward Backward Sweep (FBS) method is implemented and

used to solve the optimal control problem and its corresponding adjoint equations. In

order to determine the impact of combination of the control strategies on the different

model compartments, numerical simulations of the model are performed using real

life data from Ghana Center for Disease Control. It was established that the most

efficient and cost-effective control strategy is the strategy involving all the five control

variables. This is followed by Strategy C which is only the effective human personal

protection (such as face or surgical masks) control, uP (t). Based on the findings of

this research, necessary recommendations are made for the applications of the model

to an endemic area.
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CHAPTER 1

INTRODUCTION

1.1 Optimization and Optimal Control Problems

Optimization and optimal control pervade mathematics and science as they are

the main tools in decision making. Research in these areas is accelerating at a

rapid pace due to their numerous applications in various disciplines (Kafash and

Alavizadeh, 2020). Optimal control and its applications are found in diverse fields,

including aerospace, robotics, engineering, biomedical sciences, economics, finance

and management science, and it continues to be an active area of interest in control

theory (Chinchuluun et al., 2010).

Optimization is the process in which the best feasible solution for a problem is found.

This involves finding an extremum of some functions. In simple mathematical terms,

given an analytical function f ≡ f(x), it is required to find the value of x at which the

function reaches its maximum or minimum value. A procedure taught towards this

solution is to:

1. Differentiate the function with respect to x since the derivative is the

instantaneous rate of change of some variable quantity;

2. Set the resulting expression to zero because when a quantity reaches its maximum

or minimum value, its instantaneous rate of change at that point is zero; and

3. Solve for x and call the result xmax or xmin (although such x could also be a

point of inflexion).

In solving optimization problems, researchers can also use algorithms that end in

a finite number of steps, or iterative methods that converge to a solution (in some

specific class of problems), or heuristics that can provide approximate solutions to

some problems, although their iterations do not necessarily converge (Snyman, 2005).
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Optimization is a very desirable feature in our daily lives. People work and like to

use their time in an optimal manner, use resources optimally and so on. In firms and

businesses, management takes many technological and managerial decisions at several

stages. The ultimate goal of all such decisions is to either minimize the effort required

or to maximize the desired benefit. This effort required or benefit desired in any

practical situation can be expressed as a function of certain decision variables. The

subject of optimization is quite general in the sense that it can be viewed in different

ways depending on the approach (algebraic or geometric), the interest (single or

multiple), the nature of the signals (deterministic or stochastic) and the stage (single

or multiple) used in optimization (Naidu, 2003).

Before one can optimize an objective, a quantitative measure of the performance

of the system must be identified. This objective could be profit, time, potential

energy, quantity or a combination of quantities that can be represented by a

single number. The objective depends on certain characteristics of the system

termed as variables. The goal is to find the values of the variables that optimize the

objective. These variables are often restricted or constrained in a way (Leitman, 1981).

Optimization problems are categorized as constrained and unconstrained. Constrained

optimization problems arise from models in which constraints play an essential role, for

example, imposing shape constraints in a design problem. Unconstrained optimization

problems on the other hand, arise directly in many practical applications, where an

objective function is optimized with no restrictions on these variables (Banga et al.,

2003). The presence of constraints creates more challenges while finding the optimum

than the unconstrained problems since one needs to find points that satisfy all the

constraints. One approach in solving such problem is to reformulate the constrained

problem as an unconstrained problem by replacing the constraints with penalization

terms and adding to the objective function depending on the number of constraints

violated (Olotu, Lawal and Afolabi, 2018). The penalty function to be determined

vary from one problem to another, however these penalties should satisfy all the

constraints at the end (Nocedal and Wright, 2006).
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Some challenges are tackled based on the effect of the constraints on the objective

function. For instance, constrained problems with natural constraints on the

variables are considered as unconstrained by ignoring the constraints since they do

not have influence on the solution or interfere with algorithms. In such cases, the

constrained extremum of the problem is the same as the unconstrained extremum,

since the constraints do not have any influence on the objective function. For simple

optimization problems, it may be possible to determine, before hand, whether or

not the constraints have any influence on the minimum point. However, in most of

the practical problems, it is extremely difficult to identify such. As such, one has to

proceed with the general assumption that the constraints will have some influence on

the optimum point. The minimum of a nonlinear programming problem (NLP) will

not, in general, be an extreme point of the feasible region and may not even be on

the boundary. The problem may even have a local minimum while its corresponding

unconstrained problem is not having a local minimum. Also, none of the local

minima may correspond to the global minimum of the unconstrained problem. All

these characteristics are direct consequences of imposing constraints, hence general

algorithms are needed to overcome these kinds of minimization problems (Nocedal

and Wright, 2006).

There are many great application problems that can be formulated as continuous

optimization problems such as; designing an investment portfolio to maximize

expected returns while maintaining an acceptable level of risk, finding the optimal

trajectory for an aircraft or a robot arm, controlling a chemical process or a mechanical

device to optimize performance or meet standards of robustness and computing the

optimal shape of an automobile or aircraft component. Nature optimizes while

physical systems tend to a state of minimum energy; the molecules in an isolated

chemical system react with one other until the total potential energy of their electrons

is minimized. Rays of light follow paths that minimize their travel time (La Torre et

al., 2015).

Mathematical control theory is the area of application-oriented mathematics that

deals with the basic principles underlying the analysis and design of control systems.

3



To control an object means to influence its behavior so as to achieve a desired goal.

In order to implement this influence, control engineers build devices that incorporate

various mathematical techniques (Claudiu, 2006).

Optimal control deals with finding the control and state variables to a dynamical

system over a period of time to optimize (i.e., minimize or maximize) a specified

performance index while satisfying any constraints on the motion. As such, an

Optimal Control Problem (OCP) requires a performance index or a cost functional

which is a function of the state and control variables. Its main goal is to find a

piecewise continuous control and the associated state variable that optimize a given

objective functional (La Torre et al., 2015).

Generally, an optimal control problem is considered as an optimization problem, even

though there is a difference in the optimizer. The optimizer in optimal control theory

is not just a single value, but a function called the optimal control (Sontag, 1998).

In the theory of mathematical optimization, one tries to find maximum or minimum

points of functions of real variables and of other functions, whereas with Optimal

Control Theory, one tries to find a control law for a given system such that a certain

optimality criterion is achieved (Leitman, 1981). Optimal control theory is not only

be appreciated for its mathematical formulation of real life problems but also for the

long-term research opportunities it has created in many areas of human study. Its

application in various disciplines has made it gained the interest of many researchers

in recent years. Many real life problems around us can be formulated as optimal

control problems.

In general, a constrained dynamic continuous optimal control problem is defined as

Minimize I(x(t), u(t)) =

∫ tf

t0

f(t, x(t), u(t))dt (1.1)

Subject to ẋ(t) = h(t, x(t), u(t)) (1.2)

x(t0) = x0, t0 ≤ t ≤ tf (1.3)

where t ∈ < represents the independent time variable, t0 and tf are the initial and
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terminal times respectively, x(t) ∈ <n is a vector of state variables and u(t) ∈ <m is a

vector of control variables which are going to be optimized, f : < × <n × <m → < is

the functional and h : <× <n ×<m → <p is a smooth vector field. Both f and h are

continuously differentiable functions, that is, f ∈ C2[t0, tf ] and h ∈ C1[t0, tf ]. x0 is

the known initial state and the final state x(tf ) could be free (unrestricted) or fixed

(x(tf ) = xf ).

Optimal control problems can be difficult to solve, especially those that are not

inclined towards programming and numerical methods. Before the arrival of digital

computers in the 1950s, only fairly simple or the trivial optimal control problems could

be solved. The arrival of the digital computers has enabled the application of optimal

control theory and methods to be applied to many complex problems (Becerra, 2004).

Despite the advances in software programs, it remains a non-trivial task to utilize a

standard package such as MATLAB to solve optimal control problems. One must

have sufficient programming skill, as well as a good understanding of the general

structure of the solution algorithm and the various solvers required to implement it

(Rodrigues, Monteiro and Torres, 2014).

Analytical solutions are generally considered to be "stronger" than numerical ones.

The thinking goes that if we can get an analytic solution, it is exact, and then

if we need a number at the end of the day, we can just shove numbers into the

analytical solution. Therefore, there is always a great interest in discovering methods

for analytical solutions. However, even if analytical solutions can be found, one

may not be able to compute quickly. As a result, numerical approximations are

indispensable, and both approaches contribute holistically to the fields of mathematics

and quantitative sciences.

There are two major classes of numerical methods for solving optimal control

problems, namely the direct and indirect methods. In a direct method, the state

and/or control variables is discretized on a time grid using some form of collocation

method. This transforms the problem to a nonlinear optimization problem or

nonlinear programming problem (NLP). The resulting nonlinear programming
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problem is then solved using various established NLP packages (Bazaraa, Sherali

and Shetty, 2006). The complete discretization of the state and control functions

eliminates the need to iteratively solve the initial value problem (IVP) although this

may lead to a large number of decision variables for the NLP solver (Hull, 2003).

Partial parametrization of the control functions is also used in other direct approaches

by considering a piecewise constant or higher order polynomial approximations

(Banga et al., 2003). In this approach, the inner IVP is solved repeatedly by the

outer NLP algorithm while searching for the optimal parameter vector. For the most

trivial optimal control problems, a level of programming fluency, in addition to a

good understanding of the general structure of the solution strategy and the various

solvers are required to implement it (Rodrigues, Monteiro and Torres, 2014).

The indirect method, also known as variational approach, employs the Pontryagin’s

Minimum Principle to transform the problem into an augmented Hamiltonian system.

This leads to a two-point Boundary Value Problem (BVP) which is solved to find

the candidate optimal trajectories called extrema. Each of the computed extrema

is tested to determine if it is a local minimum, local maximum, or saddle point.

Depending on the desired goal, a particular extremum with the least cost functional

value is chosen if the goal is to minimize the performance index, or the greatest cost

functional value is chosen if the goal is to maximize (Athans and Falb, 2013).

The existence of optimal control for a given problem is of great significance since it does

not seem right for one to seek for a solution that does not exist. It is therefore necessary

to find out the existence of an optimal control by examining whether a feasible solution

can be found or not. For instance, considering the problem of steering a system from a

given initial state to a fixed final state in the shortest possible time, one may examine

the existence of an optimal control by finding a control that satisfies the physical

constraints, which is equivalent to the ability to transfer the system from any initial

state to any desired final state in finite time.
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1.2 Meningitis

Meningitis, a disease of the Central Nervous System is an acute inflammation of the

three protective membranes covering the brain and spinal cord called the meninges

(Saez and McCracken, 2003). This inflammation occurs when fluid surrounding the

meninges becomes infected. This infection can be caused by different pathogens such

as bacteria, virus, fungi and parasites. Injuries, cancer, drugs and other infections can

also cause meningitis. Most meningitis infections are attributed to virus, which is the

least serious type with the next common causes being bacteria, fungi and parasites

(Ginsberg, 2004).

Meningitis affects both men and women equally. The leading organisms causing

meningitis vary by age of the patient, time and geographical location (Polkowska et

al., 2017). The average age for meningitis is 25 years, but for unclear reasons, Africans

seem to develop meningitis more frequently than people of other races (Anon, 2019).

The factors that place people at higher risk of contracting meningitis include the

following:

1. Age - Adults older than 60 years of age and children younger than 5 years of age.

Most cases of viral meningitis occur in children younger than age 5 and Bacterial

meningitis is common in those under age 20.

2. Skipping vaccination - Anyone who hasn’t completed the recommended

childhood or adult vaccination schedule.

3. Compromised immune system - AIDS, alcoholism, use of immunosuppressant

drugs and other factors that affect the immune system also makes one susceptible

to meningitis. There is an increased risk of one contracting the disease when

one’s spleen is removed, as such anyone without a spleen should get vaccinated

to minimize that risk.

4. Living in an enclosed community setting - People living in close quarters like

military barracks, dormitories are at a greater risk of meningococcal meningitis.

This is probably because the bacterium spreads by the respiratory route, and

this spreads quickly through large groups.
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5. Pregnancy - This increases the risk of listeriosis, that is, an infection caused by

listeria bacteria, which may also cause meningitis. Listeriosis increases the risk

of miscarriage, stillbirth and premature delivery (Anon, 2019).

Figure 1.1 shows the geographic distribution of Meningitis in West African affected

Countries.

Figure 1.1 Areas of Africa with frequent Epidemics of Meningitis (Anon,
2020b)

Meningitis has been classified into five main types namely; viral meningitis, fungal

meningitis, parasitic meningitis, bacterial meningitis and non-infectious meningitis.

1.2.1 Viral Meningitis

Viral meningitis is the most common cause of meningitis and often goes unreported

since most individuals get well without treatment. It is alleged that viral meningitis is

largely a benign illness. This is typically the case with the most common virus-causing

meningitis, enteroviruses. However, viral meningitis is also associated with severe

neurological problems and serious mortality for many of the other virus-causing

meningitis especially in children (Chadwick, 2005). Some of these viruses are herpes

virus, mumps and measles, flaviviruses, Human immunodeficiency virus (HIV),

arboviruses and the influenza virus. Most people are exposed to some of the virus
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without developing meningitis (Logan and MacMahon, 2008).

Bacterial and viral meningitis cannot be reliably differentiated in the absence of a

lumbar puncture, as such, all suspected cases should be referred to the hospital.

Lumbar puncture and analysis of cerebrospinal fluid may be done primarily to exclude

bacterial meningitis, but identification of the specific viral cause is itself beneficial.

Viral diagnosis informs prognosis, enhances the care of the patient, reduces the use

of antibiotics, decreases the length of stay in the hospital, and can help to prevent

further spread of infection (Logan and MacMahon, 2008).

1.2.2 Fungal Meningitis

Fungal meningitis is a meningitis that occurs from somewhere in the body to the

brain or spinal cord after a fungus has spread. Fungi offer many benefits to humans,

however some have the potential of becoming human pathogens. Meningitis can be

caused by all the major fungal pathogens since both primary and secondary fungal

pathogens can cause central nervous system infections that are life-threatening.

People can also get sick if they breathe in fungal spores. To maximize positive

results, these infections require immediate and precise diagnosis and carefully chosen

management strategies (Raman-Sharma, 2010).

Meningitis from fungi does not spread among individuals but there are numerous risk

factors of fungal meningitis, including the use of immunosuppressants (such as after

organ transplantation), HIV/AIDS and the loss of immunity associated with aging.

However, this is rare in humans with a normal immune system (Honda and Warren,

2009). The symptoms begin gradually with headaches and fever being present for at

least a couple of weeks before diagnosis (Sirven and Malamut, 2008).

Cryptococcal meningitis due to cryptococcus neoformans is the most frequent fungal

meningitis (Kauffman, Pappas and Patterson, 2013). Multiple studies in Africa suggest

cryptococcal meningitis as the most common cause of fungal meningitis, accounting for

20-25 percent of AIDS-related deaths in Africa (Durski et al., 2013). Other common

fungal pathogens which can cause fungal meningitis include Coccidioides immitis,
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Histoplasma capsulatum, Blastomyces dermatitidis and Candida species. These fungi

are minute to see without a microscope (Park et al., 2009).

1.2.3 Parasitic Meningitis

Parasitic meningitis is less common than viral or bacterial meningitis, and is caused

by parasites that are found in dirt, faeces, and on some animals and food, like snails,

raw fish, poultry, or produce. Parasitic meningitis is not passed from person to

person, instead, these parasites infect an animal or hide out on food to contaminate it.

If the parasite or parasite eggs are infectious when they are ingested, an infection may

occur. Thus, people get infected primarily by eating infected animals or contaminated

foods (Graeff-Teixeira, da Silva and Yoshimura, 2009).

Some parasites can cause a rare form of meningitis called eosinophilic meningitis or EM.

The three main parasites that cause EM in some infected people are Angiostrongylus

cantonensis (neurologic angiostrongyliasis), Baylisascaris procyonis (baylisascariasis;

neural larva migrans) and Gnathostoma spinigerum (neurognathostomiasis). As

with other meningitis infections, people who develop symptomatic EM from these

parasites can have headache, stiff neck, nausea, vomiting, photophobia (eyes being

more sensitive to light) and altered mental status (confusion). People with EM caused

by Angiostrongylus cantonensis often have tingling or painful feelings in their skin

and may have a low-grade fever. All these three parasites sometimes infect the eye(s)

and cause severe complications, especially Baylisascaris infection can lead to loss of

coordination and muscle control, weakness/paralysis, coma, permanent disability and

even death (Anon, 2019).

One very rare type of parasitic meningitis, amebic meningitis, is a life-threatening

type of infection. This type is caused when one of several types of ameba enters the

body through the nose while one swims in contaminated lakes, rivers, or ponds. The

parasite can destroy brain tissue and may eventually cause hallucinations, seizures, and

other serious symptoms. The most commonly recognized species is Naegleria fowleri

(Gleissner and Chamberlain, 2006).
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1.2.4 Non-Infectious Meningitis

Non-infectious meningitis is not an infection, instead, it is a type of meningitis

caused by other medical conditions or treatments, such as spread of cancer to the

meninges (malignant or neoplastic meningitis) and certain drugs (mainly non-steroidal

anti-inflammatory drugs, antibiotics and intravenous immunoglobulins). It may also

be caused by several inflammatory conditions such as sarcoidosis, connective tissue

disorders and certain forms of vasculitis (inflammatory conditions of the blood vessel

wall) (Ginsberg, 2004). Epidermoid cysts and dermoid cysts may cause meningitis by

releasing irritant matter into the subarachnoid space. Rarely, migraine may cause

meningitis, but this diagnosis is usually only made when other causes have been

eliminated (Tebruegge and Curtis, 2008).

1.2.5 Bacterial Meningitis

It is an epidemic prone disease affecting a substantial proportion of the world’s

population. The bacteria are present worldwide with variable geographic occurrence

and incidence. Regional outbreaks can occur at any time, though the Meningitis belt

stands at a higher risk. The Meningits belt spans from the Atlantic Ocean to the

Red Sea - a semi-arid area of sub-Saharan Africa. There has also been large recorded

outbreaks in other sub-Saharan African countries (Anon, 2020a).

The first occurrence of bacterial meningitis in Ghana (then, Gold Coast) was at

Cape Coast in 1900. This was found among some East African labourers who were

brought to the Gold Coast to support the British campaign against the Ashanti.

This outbreak died out rapidly without causing an epidemic in the local population.

The next epidemic of bacterial meningitis in the Gold Coast started in 1906 from the

north west and spread through the northern territory during the following dry season

claiming 8000 lives by 1908. Since then, there has been epidemics every 8-12 years

(Kaburi et al., 2017). Ghana experienced the biggest epidemic which recorded 18703

cases and 1356 deaths in 1996/1997 (Woods et al., 2000). The recurrent meningitis

outbreaks in the northern part of Ghana namely Northern, North East, Savannah,

Upper East and Upper West Regions occur from November to May/June during the

dry weather seasons; a season characterized by low humidity, high temperatures and
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abundance of dust. The Brong Ahafo, Bono East and upper parts of the Volta region

have also recorded sporadic cases (Letsa et al., 2018).

The proximity and inflammation of the protective membranes to the brain and spinal

cord can make bacterial meningitis very fatal. It can lead to permanent disability,

coma, swelling of the brain and even death if not treated immediately. Therefore, the

condition is considered as a medical emergency (Martinez et al., 2013). Case fatality

rates which is often between 1 to 2 days after the onset of symptoms may be as high

as 50-80% when not treated and about 8-15% when treated. Also, about 10-20% of

survivors have serious permanent health problems like epilepsy, hearing impairment or

mental retardation. For instance, about sixteen million cases of bacterial meningitis

were reported in 2013, leading to 1.6 million lives with disability. In totality, about

10% of all bacterial meningitis results in death (Van de Beek et al., 2016).

Figure 1.2 Normal brain, Meninges, and Spinal cord (left); Infected
and Inflamed brain, Meninges, and Spinal cord due to Bacterial
Meningitis(right)

Bacterial meningitis is caused by some strains of bacteria such as Streptococcus

pneumoniae (pneumococcus), Neisseria meningitidis (meningococcus), Haemophilus
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influenzae (haemophilus), Listeria monocytogenes (listeria). Neisseria meningitidis

(Nm), Streptococcus pneumoniae and Haemophilus influenzae type B are the most

common bacteria causing over 80% of all cases of bacterial meningitis. Meningitis

caused by Haemophilus influenzae type B (Hib) is much less common, now that the

Hib vaccine is given to all children as part of routine immunization Anon (2020a).

Streptococcus pneumoniae (Pneumococcus)

Streptococcus pneumoniae is the most common cause of bacterial meningitis in several

parts of the world. It often leads to pneumonia. Case Fatality Rates (CFR) for

Streptococcus pneumoniae causing Meningitis could be as high as 44%. About 10% of

people infected with Streptococcus pneumoniae still die even after receiving effective

antibiotics and intensive care (Soeters et al., 2019). There are currently new strains

of Streptococcus species emerging. Younger children and older adults are at a higher

risk of getting infected with the bacteria.

Neisseria meningitidis (Meningococcus)

This bacteria strain normally spreads through throat droplets and other respiratory

fluids such as saliva and phlegm. This causes meningococcal meningitis, also known as

Cerebrospinal Meningitis (CSM) which is a highly contagious infection affecting mostly

adolescents and young adults. It easily spreads through crowdy settlements such as

universities or college dormitories and halls, markets, hospitals and barracks (Van de

Beek et al., 2006). Meningococcal meningitis is said to have a high fatality of 50%

when not treated and a high frequency of 10−20% of severe long-term sequelae. Early

diagnosis and antibiotic treatment is the most important measure to save lives and

reduce complications. Neisseria Meningitidis is the main cause of meningitis epidemics

in the African meningitis belt and accounts for 80− 95% cases of bacterial meningitis

admitted in hospitals (Domo et al., 2017).

Haemophilus Influenzae (Haemophilus)

The Hib bacteria is the common cause of meningitis in children. The most striking

feature of this bacteria is its age-dependent susceptibility. Hib disease is not common

beyond 5 years of age. Generally, Haemophilus Influenzae spreads from one person
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to another through human contact or saliva droplets such as sneezing and coughing.

The bacteria normally remain in the nose and throat but can sometimes enter the

bloodstream and spread, causing serious infection in the individual. In some cases,

H. influenzae bacteria can be transmitted by carriers who are not ill themselves

(asymptomatic). Persons remain communicable as long as the bacteria is present,

which may be for a long time. However, persons become non-communicable after

starting appropriate antibiotics medication. People with underlying health conditions

are at a higher risk of getting Haemophilus Influenzae infections. The bacteria (Hib)

can spread contagiously to cause otitis media and sinusitis. It can also cause invasive

disease, predominantly meningitis and pneumonia but also epiglottitis, septic arthritis.

Listeria Monocytogenes (Listeria)

It is food-borne bacteria. Bacterial Meningitis can spread by taking foods containing

Listeria bacteria such as sandwich meats, soft cheeses ready to eat foods, unpasteurized

dairy products and hot dogs. The bacteria normally affect neonates, pregnant women,

the elderly, immunocompromised patients, immunodeficiency syndrome and those

receiving immunosuppressive therapy or corticosteroid drugs. It can lead to diseases

including sepsis, central nervous system (CNS) infection and endocarditis.

Group B Streptococcus (Group B Strep)

Group B Strep (GBS), also known as Streptococcus Agalactiae, is a Gram-positive

encapsulated bacterium possessing an array of virulence factors that render it capable

of producing serious disease in susceptible hosts, mostly in new-born babies. The

pathogenesis of neonatal GBS infection starts with the asymptomatic colonization of

the female genital tract. About 20– 30% of healthy women are infected with GBS

on their vaginal or rectal mucosa, and 50– 70% of infants born to these women will

become infected with the bacterium. GBS Infections can be classified as Early-onset

Disease (EoD) and Late-onset Disease (LoD). Early-onset infections occur within the

first seven days of life, but has a median onset of only 6–8 hrs of life, presenting

acutely with pneumonia and respiratory failure complicated by bloodstream infection

and septicaemia. EoD cases result from ascending infection of the bacterium through

the placental membranes to develop infection in utero, or by aspiration of infected
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vaginal fluids during the birth process. High risk patients of Early-onset infections

are premature and low-birth-weight infants. GBS placental infection is the critical

factor triggering premature labour. On the other hand, GBS LoD occurs in infants

up to seven (7) months of age, with more indolent symptom progression related to

bacteraemia, absence of lung involvement and a high incidence of meningitis (Nizet

and Doran, 2013).

Table 1.1 Bacterial Meningitis Associated with Age Group
New Born Babies/Children Teens/Young Adults Older Adults
Group B Strep S. pneumoniae N. meningitidis S. pneumoniae
S. pneumoniae N. meningitidis S. pneumoniae N. meningitidis
Listeria Group B Strep Listeria
E. coli Haemophilus, Hib Group B Strep

(Anon, 2019)

The average incubation period for bacterial meningitis is four (4) days, but symptoms

may develop over several hours after exposure to the bacteria, usually between 2 to

10 days. Early meningitis symptoms may mimic the flu (influenza) but the most

common symptoms are fever, headaches and pain of the neck. Other symptoms

include confusion or difficulty concentrating, seizures, sleepiness or difficulty walking,

vomiting and an inability to tolerate light or loud noises. Young children often exhibit

only nonspecific symptoms, such as irritability, drowsiness, or poor feeding. Infants

with meningitis may be difficult to comfort, and may even cry harder when held.

If a rash is present, it may indicate a particular strain of infection; for instance,

meningitis caused by meningococcal bacteria may be accompanied by a characteristic

rash (Hodgson et al., 2001).

Most people have a good recovery from bacterial meningitis; however many recover

from the acute phase of the disease only to experience some difficulties while trying

to get back to their everyday routine (Kaburi et al., 2017). Bacterial meningitis can

result in severe health complications such as headaches, decreased appetite, paralysis,

irritability, memory problems, stroke, hearing loss, brain damage, kidney failure,

seizures and septicemia (body-wide infection and shock). These complications are

often permanent. The longer one has the infection without treatment, the greater
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the risk of these complications. With prompt treatment, even patients with severe

meningitis can have good recovery (Nuoh et al., 2016).

1.2.6 Transmission of Bacterial Meningitis

Bacterial Meningitis was initially transmitted from an animal to a human being but

has since become a person to person transmission through infected air droplets, saliva,

respiratory secretions and direct contact with contaminated surface. The infection

spreads easily when an infected person comes into close proximity or has long term

contact with others. Staying in overcrowded housing, attending sports or cultural

events, sharing utensils, coughing, sneezing or kissing can contribute to outbreaks

(Fordjour and Abdul-Razak, 2020). The bacteria can be carried in the throat and

sometimes overwhelms the body’s defences allowing the bacteria to spread through

the bloodstream to the brain. It is believed that 1− 10% of the population carries N.

meningitidis in their throat at any given time. However, the carriage rate may increase

to 10− 25% in epidemic situations.

1.2.7 Vaccination and Treatment

Bacterial meningitis is preventable due to the availability of effective vaccines against

most of the disease causing agents - S. pneumonia, H. influenza type b and N.

meningitidis serogroups: A, B, C, W135 and Y. These vaccines are used for prevention,

that is routine immunization and in prompt reactive vaccination during outbreaks

(McCarthy, Sharyan and Sheikhi Moghaddam, 2018). There is also treatment

with antibiotics such as Benzyl penicillin, Ampicillin, Ceftriaxone, Ciprofloxacin,

Rifampicin, Gentamicin and Chloramphenicol, but the best way to combat it is to

prevent it through vaccination and sound health practices (Trestioreanu et al., 2011).

The three types of vaccines available are:

1. Polysaccharide vaccines used during a response to outbreaks, mainly in Africa.

They are either bivalent (serogroups A and C), trivalent (A, C and W), or

tetravalent (A, C, Y and W) and are not effective before 2 years of age. They

offer a 3-year protection but do not induce herd immunity.

2. Conjugate vaccines are used in prevention (routine immunization schedules
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and preventive campaigns) and outbreak response. They confer longer-lasting

immunity (5 years and more), prevent carriage and induce herd immunity. They

can be used at one year of age. Some of the available vaccines are Monovalent

C, Monovalent A and Tetravalent (serogroups A, C, Y, W).

3. Protein based vaccine, against N. meningitidis B. It has been introduced into the

routine immunization schedule for and used in outbreak response (Anon, 2020a).

Hence, it’s imperative for one to get routine vaccinations, know the signs of meningitis,

and get medical care right away if one experiences symptoms of this disease. It is also

important to see a doctor if you get exposed to an infected person, like a family member

or a work colleague. You may need to take medications to prevent the infection.

Experts call this prophylaxis. Other preventive measures include respiratory isolation

of cases for 24 hours following commencement of treatment and tracing of contacts

(Tunkel et al., 2004). It is pertinent to know the particular cause of meningitis to aid

in effective treatment.

1.3 Statement of the Problem

Bacterial meningitis is one of the most dangerous infections due to repeated occurence

of the infection and the sequelae of delibitating effects among survivors even after

treatment. Ghana, which falls within the African meningitis belt, has had recurrent

epidemics, particularly in the northern regions. This led to the conduct of a mass

preventive immunization campaign in the country in 2012 to address the burden of

Group A meningococcus which accounted for an estimated 80-85% of all cases in the

country, with epidemics occurring at intervals of 7–14 years. The successful conduct

of the mass preventive campaign in the then three northern regions has reduced the

meningococcus serogroup A infections. The occurrence of meningitis outbreaks due

to Nm serogroups and other bacteria are now of a great concern. The outbreaks due

to Streptococcus pneumoniae have also become more noticeable and a public health

threat which demands effective preparedness and response strategies (Bekoe, 2017).

From the review of literature, most of the mathematical models developed represent

the different types of Bacterial Meningitis such as the Cerebrospinal and Pneumococcal
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Meningitis. Other studies have also been carried out on the application of some

measures against the spread of the disease. The dynamics of bacterial meningitis in a

given population was presented using time-dependent controls, nonlinear deterministic

model by Asamoah et al. (2018). Their results indicate that effective contact rate

and infectious carriers have a great effect in transmitting the disease. The model was

extended as an optimal control problem in order to determine the best strategies

for the control of the disease. The solution of the optimal control problem showed

that the best strategies for controlling bacterial meningitis is the combination of

vaccination of susceptible population with other interventions.

The awareness of Bacterial Meningitis as a vaccine preventable disease is commendable,

but a number of people may not know that these vaccines are strain-specific. Several

previous researchers have used mathematical models to analyze the transmission

and control dynamics of bacterial meningitis (Irving et al., 2012; Martcheva and

Crispino-O’Connell, 2003; Wiah and Adetunde, 2010; Yusuf and Olayinka, 2019). For

the models that consider vaccination, there is a common assumption that the vaccine

does not confer immunity to all its recipients and is used as a means of treatment to

infected people. However, this assumption has to be lifted as it is nowhere close to

the real life situation where the available vaccines confer varying degrees of duration

of immunity against the specified strain. Furthermore, these specific vaccines are used

for prevention (routine immunization) and in response to outbreaks (prompt reactive

vaccination), and not for treatment (Anon, 2018).

Ghana and other countries in the Meningitis belt still record periodic outbreaks

despite attempts by researchers to combat the spread of Meningitis. This has

necessitated WHO to come up with a roadmap to defeat meningitis by the year 2030

(Anon, 2018). A ten-year evaluation study on meningitis in Ghana, spanning the

period 2010–2020 reported about 8328 suspected cases with 845 deaths in the country.

For instance, 1164 suspected cases were reported in 2010 with 128 deaths while 2012

has 956 suspected cases with 90 deaths. The Ghana Weekly Epidemiological Reports

recorded 1099 suspected cases with 104 deaths in 2017, 988 suspected cases with 71

deaths in 2018 and 891 suspected cases with 23 deaths in 2019 (Anon, 2019).
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Even with the availability of drugs and vaccines in the management of meningitis

outbreaks, case fatality rates in Ghana remains high ranging between 36-50% (Apanga

and Awoonor-Williams, 2016). In 2020, about 506 cases were confirmed with over

50 deaths in the country. This outbreak in the northern part of Ghana was caused

mainly by a new strain of bacteria; Neisseria Meningitis Serotype X, which has no

vaccine and Steptococcus pneumonia, which has an average case fatality of 40%

(Adjorlolo and Egbenya, 2020).

Since the after-effects of meningitis aren’t always pleasant, Elmojtaba and Adam

(2017) presented a Susceptible-Vaccinated-Carrier-Infected-Recovered-Susceptible

(SVCIRS) model to study the dynamics of the meningitis disease. They distinguished

between the recovered with disabilities and the recovered without disabilities. Their

model suggested that the disease can be controlled if the vaccine uptake rate is high.

As an extension of the available models with a broader focus on Bacterial meningitis,

a Treatment compartment is introduced with new model parameters to have

a Susceptible-Vaccinated-Carrier-Infected-Treated-Recovered (SVCITR) model.

Furthermore, a new two strain mathematical model based on the Susceptible-

Vaccinated-Carrier-Infected-Recovered (SVCIR) is also developed with new model

parameters and control strategies in order to have a more realistic model which is

closer to what is obtainable in the real life situation.

The two-strain model is then formulated as an Optimal Control Problem (OCP) with

some time-dependent controls. The OCP formulation and numerical simulation, is

very pertinent to comparing the effects of various combination of control strategies

on the spread of the disease. Similarly, the characterization of this OCP will aid in

the identification of the most effective control strategy against the spread of Bacterial

Meningitis. In addition to this, the optimal control solution will also help to indicate

the rate at which several controls against the spread of this disease must be applied

to an endemic area over a period of time in order to achieve the most efficient result.
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1.4 Research Objectives

The objectives of the research are to:

1. develop a mathematical model on the transmission dynamics of Bacterial

Meningitis disease with the incorporation of the Treated population.

2. develop a two-strain mathematical model which best describes the transmission

dynamics of Bacterial Meningitis disease.

3. estimate models’ parameter values from demographic and disease surveillance

data.

4. perform sensitivity analysis to assess the contribution of each model parameter

on the effective control of the disease.

5. formulate the alarming prevalence of Bacterial Meningitis in Ghana as an

optimal control problem and numerically solve the resulting optimality system

to determine best strategies to curtail the spread of the disease.

6. conduct a cost effective analysis of the optimal control strategies.

1.5 Methods Used for the Study

The methods employed for the study include:

1. Ordinary Differential Equations

2. Next Generation Matrix Method

3. Pontryagin Maximum Principle

4. Forward Backward Sweep Method

5. Cost-Effective Analysis

a. Infection Averted Ratio

b. Average Cost-Effectiveness Ratio

c. Incremental Cost-Effectiveness Ratio
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1.6 Facilities and Resources Used for the Research

The facilities and resources used for the study are:

1. The library.

2. The internet.

3. Personal laptop

4. MATLAB.

5. Maple.

1.7 Organization of the Thesis

The thesis is organized into six chapters:

Chapter 1 is the introductory chapter. It contains the background to the study,

statement of problem, objectives of the study, methods used to achieve the objectives,

and the facilities that were available for developing and writing the thesis. This

chapter also gives the outline of the thesis.

Chapter 2 reviews some important literature on methods for solving optimal control

problems and also discusses the results of other researchers relevant to the study.

Some earlier important theoretical work and its associated theorems, lemma and

proofs are also examined, as well as certain fundamental definitions that are relevant

to the study.

Chapter 3 focuses on the formulation of the SVCITR model to study the transmission

dynamics of Bacterial meningitis with its stability and sensitivity analysis.

Chapter 4 proposes the two strain model that best describes the transmission of

Bacterial meningitis with the local and global stabilities and sensitivity analysis.

Chapter 5 presents the incorporation of control into the model, the formulated

optimal control problem and the cost effective analysis.

Chapter 6 gives the summary, findings, conclusions, contributions to

science/knowledge, recommendations and suggestions for future research/work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Preamble

This chapter introduces detailed mathematical concepts and methods relevant to this

study. The definitions and theories are related to dynamical systems associated with

the study of mathematical modeling, epidemiology and optimal control theory. Most

fundamental laws in science are formulated as differential equations. Complex models

involving equations with non-linearity terms often arise in modeling complex problems.

Historical development as well as optimal control applied to epidemiology are also

considered in this chapter.

2.2 Differential Equation

Definition 2.2.1 A differential equation (DE) is an equation involving the derivatives

of one or more functions (called dependent variables), with respect to one or more

independent variables.

There are basically two types of differential equations, namely; Ordinary Differential

Equation (ODE) and Partial Differential Equation (PDE). However, this study is

concerned with ODEs.

Definition 2.2.2 An ordinay differential equation (ODE) is the differential equation

that contains only ordinary derivatives of one or more dependent variable(s) with

respect to exactly one independent variable.

Definition 2.2.3 Let x be a state of a dynamical system. A model which involves x

can be written in the form:
dx

dt
= f(t, x, λ) (2.1)

where x ∈ Rn, t ∈ R denotes time, and λ ∈ Rm denotes the parameters upon which

changes in the system depend.
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Definition 2.2.4 A non-autonomous ordinary differential equation is an ODE in

which the independent variable (usually the time variable) is explicitly stated.

Otherwise, if the independent (time) variable is not explicitly stated or defined, the

ODE is called an autonomous ordinary differential equation.

An autonomous system of ODEs can be expressed in the form:

ẋ = f(t, x) (2.2)

where x = (x1, x2, · · ·xn) and ẋ = dx
dt

is the point-wise time-derivative of the state

variable x. In instances where an initial condition to the ODE is given, the ODE is

referred to as an Initial Value Problem (IVP) and can be expressed in the form: An

autonomous system of ODEs can be expressed in the form:

ẋ = f(t, x) x(t0) = x0 ∈ Rn (2.3)

We note that the developed model is a deterministic (compartmental) epidemiological

model.

Given a system of n compartments. A general dynamical system describing

the dynamics of such system can be written in the form

dx1
dt

= f1(x1, x2, x3, · · · , xn)

dx2
dt

= f2(x1, x2, x3, · · · , xn)

dx3
dt

= f3(x1, x2, x3, · · · , xn)
...

dxn
dt

= fn(x1, x2, x3, · · · , xn)

(2.4)

This can be expressed in a more simplified form as

dx

dt
= f(t, x) (2.5)

where x = (x1, x2, x3, · · · , xn) and f = (f1, f2, f3, · · · , fn)
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2.2.1 Nonlinear Systems

Given an initial value problem of linear systems of ordinary differential equations

ẋ = A(x), x(0) = x0 (2.6)

where x ∈ Rn, A ∈ Rn×n has a solution through each point x0 ∈ Rn, which is

x(t) = eAtx0. Then, this solution is unique and defined for all t ∈ R.

A unique solution to a non-linear equation on the other hand exists only under certain

conditions. Let’s consider a non-linear system of ordinary differential equations given

by

ẋ = f(x) (2.7)

and for simplicity, assume that they are autonomous. In general, this equation has a

solution if the function f is continuous for all x ∈ Rn. However, in contrast to the

linear problem, a continuity of f is not sufficient to guarantee the uniqueness of the

solution of (2.6).

Definition 2.2.5 Let f ∈ C(E) where E is an open subset of Rn. Then x(t) is a

solution of the differential equation (2.6) on an interval [a, b] if x(t) is differentiable

on (a, b) and for all t ∈ [a, b], x(t) ∈ E and

ẋ(t) = f(x(t))

Given x0 ∈ E, then x(t) is a solution of the initial value problem

ẋ = f(x), x(t0) = x0

on an interval [a, b] if t0 ∈ [a, b], x(t0) = x0 and x(t) is a solution of (2.6) on the

interval [a, b].

For the existence and uniqueness of the solution, it suffices to show that C1 functions

are locally Lipschitz.

Definition 2.2.6 Let E be an open subset of Rn. A function f : E −→ Rn is said to

satisfy a Lipschitz condition on E if there exists a positive constant K such that for
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all x, y ∈ E

|f(x)− f(y)| ≤ K|x− y|

The function f is said to be locally Lipschitz on E if for each point x0 ∈ E, there

is an ε - neighborhood of x0, Nε(x0) ⊂ E and a constant K0 > 0 such that for all

x, y ∈ Nε(x0)

|f(x)− f(y)| ≤ K0|x− y|

ε - neighhborhood of x0 means an open ball of radius ε given by

Nε(x0) = {x ∈ Rn, |x− x0| < ε}.

The following lemma points out the conditions in which the function f is said to be

locally Lipschitz.

Lemma 2.2.1 Let E be an open subset of Rn and let f : E −→ Rn. If f ∈ C1(E),

then f is locally Lipschitz on E.

Proof: Since E is an open subset of Rn, given x0 ∈ E, there exists an ε > 0 such that

Nε(x0) ⊂ E. Let

K = max
|x|≤ ε

2

‖Df(x)‖,

be the maximum of the continuous function Df(x) on the compact set |x| ≤ ε
2
. Let

N0 denote the ε
2
-neighborhood of x0, N ε

2
(x0). Then for x, y ∈ N0, set u = y − x. It

follows that x+ su ∈ N0 for 0 ≤ δ ≤ 1 since N0 is a convex set.

Let’s define the function F : [0, 1]→ Rn by

F (s) = f(x+ su).

Differentiating by Chain rule,

F
′
(s) = Df(x+ su)u

As such,

f(y)− f(x) = F (1)− F (0)

=

∫ 1

0

F
′
(s)ds =

∫ 1

0

Df(x+ su)uds
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It follows that

|f(y)− f(x)| ≤
∫ 1

0

|Df(x+ su)u|ds

≤
∫ 1

0

‖Df(x+ su)‖|u|ds

≤ K|u| = K|y − x|.

Hence proved.

The following theorem guarantees the existence and uniqueness of the solution of

nonlinear ordinary differential equation.

Theorem 2.2.1 (The Fundamental Existence - Uniqueness Theorem). Let E be an

open subset of Rn containing x0 and assume that f ∈ C1(E). Then, there exists a

positive a > 0 such that the initial value problem

ẋ(t) = f(x(t)), x(t0) = x0 (2.8)

has a unique solution x(t) on the time interval [−a, a].

Proof: Since f ∈ C1(E), it follows from the lemma that there is an ε- neighborhood

Nε(x0) ⊂ E and a constant K > 0 such that for all x, y ⊂ Nε(x0),

|f(x)− f(y)| ≤ K |x− y| .

Let b = ε
2
. Then, the continuous function f(x) is bounded on the compact set

N0 = {x ∈ Rn||x− x0| ≤ b} .

Let

M = max
x∈N0

|f(x)|

The Picard’s successive approximation uk(t) is defined by the sequence of function

uk+1(t) = x0 +
∫ t
0
f(uk(s))ds. Assuming there exists an a > 0 such that uk(t) is

defined and continuous on [−a, a] and satisfies

max
[−a,a]

|uk(t)− x0| ≤ b, (2.9)
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then, it follows that f(uk(t)) is defined and continuous on [−a, a] and hence

uk+1(t) = x0 +

∫ t

0

f(uk(s))ds

is defined and continuous on [−a, a] and satisfies

|uk+1(t)− x0| ≤
∫ t

0

|f(uk(s))|ds ≤Ma

for all t ∈ [−a, a]. Thus, choosing 0 < a ≤ b
M
, it follows by induction that uk(t) is

defined and continuous and satisfies (2.9) for all t ∈ [−a, a] and k = 1, 2, 3, ....

Since for all t ∈ [−a, a] and k = 0, 1, 2, 3, · · · , uk(t) ∈ N0, it follows from the Lipschitz

condition satisfied by f that for all t ∈ [−a, a]

|u2(t)− u1(t)| ≤
∫ t

0

|f(u1(s))− f(u0(s))|ds

≤ K

∫ t

0

|u1(s)− u0(s)|ds

≤ Kamax
[−a,a]

|u1(t)− u0(t)|

≤ Kab

Assuming

max
[−a,a]

|uj(t)− uj−1(t)| < (Ka)j−1b (2.10)

for some integer j ≥ 2, it follows that for all t ∈ [−a, a]

|uj+1(t)− uj(t)| ≤
∫ t

0

|f(uj(s))− f(uj−1(s))|ds

≤ K

∫ t

0

|uj(s)− uj−1(s)|ds

≤ Kamax
[−a,a]

|uj(t)− uj−1(t)|

≤ (Ka)j b

By induction, it follows that (2.10) holds for j = 2, 3, · · · . Setting α = Ka and
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choosing 0 < a < 1
K
, we see that for m > k ≥ N and t ∈ [−a, a]

|um(t)− uk(t)| ≤
m−1∑
j=k

|(uj+1(t))− (uj(t))|

≤
∞∑
j=N

|uj+1(t)− uj(t)|

≤
∞∑
j=N

αjb =
αN

1− α
b

This last quantity approaches zero as N → ∞. Therefore, for all ε > 0, there exists

an N such that m, k ≥ N implies that

‖um − uk‖ = max
[−a,a]

|um(t)− uk(t)| < ε

i.e., uk is a Cauchy sequence of continuous functions in C([−a, a]). Taking the limit

of both sides of equation defining the successive approximations, we see that the

continuous function

u(t) = lim
k→∞

uk(t) (2.11)

satisfies the integral equation

u(t) = x0 +

∫ t

0

f(u(s))ds (2.12)

for all t ∈ [−a, a]. We have used the fact that the integral and the limit can be

interchanged since the limit in (2.11) is uniform for all t ∈ [−a, a]. Since u(t) is

continuous, f(u(t)) is continuous and by the fundamental theorem of calculus, the

right-hand side of the integral equation (2.12) is differentiable and

u
′
(t) = f(u(t))

for all t ∈ [−a, a]. Furthermore, u(0) = x0 and from (2.9) it follows that u(t) ∈

Nε(x0) ⊂ E for all t ∈ [−a, a]. Thus u(t) is a solution of the initial value problem (2.8)

on [−a, a].

Let u(t) and v(t) be two solutions of the initial value (2.8) on [−a, a]. Then, the

continuous function |u(t) − v(t)| achieves its maximum at some point t1 ∈ [−a, a].
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This follows that

‖u− v‖ = max
[−a,a]

|u(t)− v(t)|

=

∣∣∣∣∫ t1

0

f(u(s))− f(v(s))ds

∣∣∣∣
≤
∫ t1

0

|f(u(s))− f(v(s))|ds

≤ K

∫ t1

0

|(u(s))− (v(s))|ds

≤ Kamax
[−a,a]

|u(t)− v(t)|

≤ Ka‖u− v‖.

But Ka < 1 and this last inequality can only be satisfied if ‖u − v‖ = 0. Hence,

u(t) = v(t) on [−a, a]. We have shown that the successive approximation converges

uniformly to a unique solution of the initial value problem (2.8) on the interval [−a, a]

where a is any number satisfying 0 < a < min
(
b
M
, 1
K

)
.

Theorem 2.2.2 Let E be an open subset of Rn and suppose f ∈ C1(E). Then, for

each point x0 ∈ E, there is a maximal open interval (α, β) on which the intial value

problem (2.8) exists, α < t0 < β with β <∞, then for each compact set K ⊂ E, there

is some t ∈ (α, β) such that φ(t) /∈ K

Proof: Suppose that the solution φ has maximal interval of existence (α, β) with

β <∞ and K is a compact subset of E such that φ ∈ K for all t ∈ (α, β).

Then, the set [t0, β]×K is compact. Thus, there is someM > 0 such that |f(t, x)| < M

for each (t, x) ∈ [t0, β]×K. Moreover, the function φ : [t0, β)→ K is continuous.

If s1, s2 ∈ [t0, β) and s1 < s2 then,

|φ(s1)− φ(s2)| =
∣∣∣∣∫ s2

s1

f(t, φ(t))dt

∣∣∣∣ ≤M |s2 − s1|

2.2.2 Dynamical Systems

Dynamical systems are systems which change in time (in some well defined way).

What changes is known as the state of the system. For such systems, the basic

problem is to predict the future behaviour. Differential equations are used to

represent the (physical or otherwise) law governing the evolution of the system; this
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plus the initial conditions should determine uniquely the future evolution of the system.

A dynamical system can be either deterministic or stochastic; discrete or continuous;

linear or nonlinear; autonomous or non-autonomous. Dynamical systems are

deterministic if there is a unique consequence to every state, or stochastic or random

if there is a probability distribution of possible consequences. In this study, a

deterministic, continuous, non-linear and autonomous dynamical system is considered.

Assuming the temporal behaviour of a system is given as a function Φ(x(0), t) of the

initial state x(0) and time t, and that x(t) satisfies an initial value problem of the form

ẋ(t) = f(x(t)), x ∈ E, x(0) = x0 (2.13)

where, E is an open subset of Rn and the function f ∈ C1(E −→ Rn) is a continuously

differentiable function. That is, all partial derivatives of fi with respect to xj, ∂fi/∂xj,

with i, j = 1, · · · , n, exist and are continuous. This guarantees the existence of a unique

solution x(t) in a time interval [−a, a]. (see The Fundamental Existence - Uniqueness

Theorem)

Definition 2.2.7 (Dynamical System) A dynamical system on E is a C1 - map

Φ : R× E −→ E (2.14)

where E is an open subset of Rn, and if Φt(t) := Φ(t, x) then Φt satisfies

1. Φ0 = x for all x ∈ E and

2. Φt ◦ Φs(x) = Φt+s(x) for all s, t ∈ R and x ∈ E.

Φ(t, x0), for fixed x0 ∈ E corresponds to the solution of the initial value problem in

(2.13).

The first property in Definition 2.2.7 assures that the initial condition x(0) = x0 is

fulfilled. The second property states that the evolution of the system is uniquely

determined for every t ∈ R if the state, x of the system at any time, t is known. This

means that the solution curves in the state space cannot intersect, otherwise the time
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evolution of the system would not be unique at the intersection point.

Let’s state the following relation between the dynamical system and the initial value

problem: If Φ(t, x) is a dynamical system defined on E ⊆ Rn, then

f(x) =
d

dt
Φ(t, x)|t=0 (2.15)

defines a C1 - vector field on E, and for each x0 ∈ E, Φ(t, x0) solves the initial value

problem (2.13). Moreover, a solution of the initial value problem (2.13) exists for

every t ∈ R, meaning for each x0 ∈ E, the maximal interval of existence of Φ(t, x0)

is the time interval I(x0) = (−∞,∞). Therefore, each dynamical system is related

to a C1 - vector field f , and the dynamical system describes the solution set of the

differential equation defined by this vector field.

Conversely, given a differential equation ẋ = f(x), x ∈ E with f ∈ C1(E) and E an

open subset of Rn, the solution Φ(t, x0) of the initial value problem (2.13) with x0 ∈ E

will be a dynamical system on E if and only if for all x0 ∈ E, the maximal interval

of existence I(x0) of Φ(t, x0) is (−∞,∞). In this case, we say that Φ(t, x0) is the

dynamical system on E defined by the differential equation ẋ = f(x).

2.3 Equilibria and Linearization

An equilibrium point is considered to be a constant solution to a differential equation.

It’s also referred to as critical point or steady state solution. It is generally computed

by equating all the equations of the system to zero and solving for the value(s) of

x ∈ Rn which satisfies such condition.

We give the standard definitions and theorems required to analyze the stability of an

equilibrium point of an autonomous system (Perko, 2001).

Definition 2.3.1 A point x∗ ∈ Rn is called an equilibrium point of (2.7), if f(x∗) = 0.

Furthermore, an equilibrium point x∗ is called a hyperbolic equilibrium point of (2.7)

if none of the eigenvalues of the matrix Df(x∗) have zero real part.
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Consider the linear system

ẋ = A(x) (2.16)

with the matrix A = Df(x∗). The linear function Ax = Df(x∗)x is the linear part of

x∗.

Definition 2.3.2 The linear system (2.16) with the matrix Ax = Df(x∗)x is called

the linearization of (2.7) at x∗

Definition 2.3.3 An equilibrium point of (2.16) is called a sink if all the eigenvalues

of the matrix Df(x∗) have negative real part. If all the eigenvalues of Df(x∗) have

positive real part, then it is called a source. Also, it is called a saddle if it is a

hyperbolic equilibrium point and Df(x∗) has at least one eigenvalue with a positive real

part and at least one with negative real part.

Mathematical modeling and analysis are central to infectious disease epidemiology.

Grassly and Fraser (2008) and Martcheva (2015) gave an introduction to the process

of disease transmission and its mathematical representation to analyse the emergent

dynamics of observed epidemics. The following equilibrium points are pertinent to the

study of epidemiological models.

2.3.1 Disease Free Equilibrium

This is the point at which there is no infection in the population. This is obtained

by setting all other compartments to zero except the non-disease states. Let x∗ ∈ Rn

be an equilibrium point of equation (2.5), then the Disease Free Equilibrium (DFE)

is the point where x∗ = (x1, 0, 0, · · · , xm, 0, · · · , 0) for which all disease states xi = 0

except the disease free states.

2.3.2 Endemic Equilibrium

This is the point at which the disease is considered to persist in the population. Let

x∗ ∈ Rn be an equilibrium point of equation (2.5), then the Endemic Equilibrium (EE)

is the point where x∗ = (x1, x2, x3, · · · , xn, ) for which all disease states xi > 0 .
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2.4 Stability of Equilibria

An equilibrium point x∗ is said to be stable if all solutions sufficiently close to x∗ stay

nearby for all t ≥ 0. It is asymptotically stable if nearby solutions actually converge

to x∗ as t −→∞. Stability of equilibrium points are basically in two forms namely:

1. Local Stability

2. Global Stability

2.4.1 Local Stability

An equilibrium point of a dynamical system is said to be locally asymptotically

stable given that all the trajectories of its solutions at that point converge to such

equilibrium point as t → ∞. Thus, every solution that stands close enough to such

equilibrium point will eventually converge to it. The local asymptotic stability of

the DFE is established by applying the Routh-Hurwitz stability criterion which states

that a system of ODEs is locally asymptotically stable at a particular point if all the

eigenvalues of its Jacobian matrix are strictly negative or complex with negative real

parts at that point. In control system theory, the Routh–Hurwitz stability criterion is

a mathematical test which is a necessary and sufficient condition for the stability of a

Linear Time Invariant (LTI) control system.

Definition 2.4.1 Let x∗ be an equilibrium point. x∗ is said to be locally stable if for

all ε > 0, there exist a δ > 0, such that |x(t)− x∗| < ε whenever |x0 − x∗| < δ for all

t ≥ 0. Furthermore, x∗ is locally asymptotically stable if for all ε > 0, there exist a

δ > 0, such that lim
t−→∞

x(t) = x∗ whenever |x0 − x∗| < δ.

Definition 2.4.2 Let x∗ be an equilibrium point of a dynamical system. x∗ is said to

be locally stable if each eigenvalue of the Jacobian matrix is negative.

Consider the system of equation (2.4). The Jacobian matrix for such system is given

33



by

J = Df(x) =



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn

...
...

... . . . ...
∂fn
∂x1

∂fn
∂x2

∂fn
∂x3

· · · ∂fn
∂xn


(2.17)

Moreover, x∗ is said to be hyperbolic, if none of the eigenvalues in (2.17) at x∗ is zero

or it is pure imaginary but non-hyperbolic, otherwise.

2.4.2 Global Stability

The global stability, unlike the local stability, is concerned with the entire system’s

behaviour in its domain. This is necessary in epidemiological model to ensure

predictability of the model as it guarantees the model’s independence on the initial

size of the population.

Definition 2.4.3 Let x∗ be an equilibrium point of a dynamical system. x∗ is said to

be globally stable if it is asymptotically stable for any initial condition, x0 ∈ Rn.

The Comparison Theorem and direct Lyapunov function method are often used to

establish the global stability of the equilibrium points of a system.

Comparison Theorem

The comparison theorem for the global stability of the DFE can be determined using

an approach presented by (Castillo-Chavez, Feng and Huang, 2002). First, the model

system is written in the form:
dX
dt

= F (X, Y )

dY
dt

= G(X, Y ), G(X, 0) = 0

(2.18)

where X ∈ Rn denotes the uninfected compartments (non disease states) and Y ∈ Rm

denotes the infected compartments (disease states) which includes the latent, carrier,

infectious, etc.
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Theorem 2.4.1 (Comparison Theorem) The Disease-Free Equilibrium denoted by

E0 = (X∗, 0) is said to be globally asymptotically stable (GAS) if the basic reproduction

number R0 < 1 and the following two conditions (C1) and (C2) hold:

C1: For dX
dt

= F (X, 0), E0 is globally asymptotically stable.

C2: G(X, Y ) = AY − Ĝ(X, Y ), Ĝ(X, Y ) ≥ 0, ∀ (X, Y ) ∈ Ω

where A = J [G(X∗, 0)] is an M-matrix (the off diagonal elements of A are non-

negative), Ω is the region where the model is biologically well posed.

Direct Lyapunov Function

This method established the global stability by analyzing the behaviour of some real-

valued functions of the model as the model system changes with time (Martcheva,

2015).

Definition 2.4.4 Let U be a neighbourhood of x∗ and x ∈ U . A function V : U −→ R

is said to be a positive definite function if

1. V (x) > 0 for all x 6= 0,

2. V (x) = 0 if and only if x = 0,

3. V (x) −→∞ as x −→∞.

Theorem 2.4.2 (Lyapunov’s Direct Method) Let E be an open subset of Rn

containing x0. Suppose f ∈ C1(E) and that f(x0) = 0. Again, suppose that there

exist a real valued function V ∈ C1(E) satisfying V (x0) = 0 and V (x) > 0 if x 6= x0.

Then

1. if V̇ (x) ≤ 0 for all x ∈ E, x0 is stable;

2. if V̇ (x) < 0 for all x ∈ E\x0, x0 is asymptotically stable;

3. if V̇ (x) > 0 for all x ∈ E\x0, x0 is unstable

Due to the complexity of the models considered, the Comparison theorem is employed

in this thesis to establish the global stability.
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2.5 Invariance Principle

Epidemiological models generally assess populations, as such, it is necessary to assume

that related population sizes can never be negative. Hence, epidemiological models

should be considered in (feasible) regions where such property (non-negative) is

preserved. Wiggins (2003), for example, gives the following definitions.

Definition 2.5.1 A point x0 ∈ Rn is called an ω-limit point of x ∈ Rn, denoted by

ω(x), if there exists a sequence {ti}, ti −→∞, such that

φ(ti, x) −→ x0.

Definition 2.5.2 A point x0 ∈ Rn is called an α-limit point of x ∈ Rn, denoted by

α(x), if there exists a sequence {ti}, ti −→ −∞, such that

φ(ti, x) −→ x0.

Definition 2.5.3 The set of all ω-limit points of a flow is called the ω-limit set.

Similarly, the set of all α-limit points of a flow is called the α-limit set.

Definition 2.5.4 A set M is invariant if and only if for all x ∈ M , φ(x, t) ∈ M for

all t. A set is positively (negatively) invariant if for all x ∈ M , φ(x, t) ∈ M for all

t > 0 (t < 0).

Theorem 2.5.1 (LaSalle Invariance Principle). Let K be a compact subset of the

phase space X. Suppose that E is a real-valued smooth function defined on K, whose

Lie derivative satisfies Ė(x) ≤ 0 for all x ∈ K. Let M be the largest invariant set

contained in N :=
{
x ∈ K | Ė(x) = 0

}
. Then the ω − limit of every orbit which

remains within K for t > 0 is a non-empty subset of M, which implies that such an

orbit is asymptotic to M .

Proof: Let γ := {ϕ (t, x0) | t > 0} be a forward orbit, contained in the compact set

K, and let ω − limit of γ be non-empty. If tn → +∞, then by the compactness of K,

there exists a subsequence tnk such that x(tnk) converges to some x0 ∈ K.

Now, let y ∈ ω − limit of γ then ϕ (t, y) ∈ ω − limit of γ, for all t ∈ R.
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Since y ∈ ω − limit of γ, there exists a sequence tn → +∞ such that ϕ (tn, x0) → y.

But we have

ϕ(t, y) = ϕ(t, lim
n→+∞

ϕ(tn, x0)) = lim
n→+∞

ϕ(t+ tn, x0)

Setting sn := t+ tn and observing that sn → +∞, we have that ϕ(t, y) ∈ ω− limit of

γ. Let y0 be a point of the ω − limit of γ. Then, there exists a sequence tn → +∞

such that ϕ(tn, x0)→ y0. Now, let

c := E(y0) = lim
n→+∞

E [ϕ(tn, x0)] .

Since E [ϕ(tn, x0)] is a time-nonincreasing function, lim
n→+∞

E [ϕ(tn, x0)] = c implies

lim
t→+∞

E [ϕ(tn, x0)] = c. Therefore, for all y in the ω − limit of γ, E(y) = c holds.

Hence, the ω − limit is an invariant set contained in a level set of the function E.

Thus, the Lie derivative of E must vanish at every point of the ω − limit.

We know that M ⊂ K, which implies that the orbit is asymptotic to the set M .

Suppose by contradiction that there exist δ > 0 and a sequence tn → +∞ such

that dist(x(tn),M) ≥ δ. The sequence x(tn) is contained in the compact set K,

therefore the set Ω of accumulation points of x(tn) is a nonempty subset of K. Since

dist(x(tn),M) ≥ δ, we have Ω ∩M = φ. Hence proved.

2.6 Basic Reproductive Number (R0)

R0 is defined as the average number of secondary infections caused by the emergence

of an infectious individual into a complete susceptible population. It is obtained by

finding the Jacobian at the disease free equilibrium. It’s main purpose is to determine

the persistence of the disease in the studied population (Yang, 2014). When R0 < 1,

then the infectious individual infects less than one susceptible person over the course

of its infectious period and hence, the disease will eventually die out. On the other

hand, if R0 > 1, then the infectious individual infects more than one susceptible

person over the course of its infectious period and hence the disease is expected to

persist in the population.

The basic reproduction numberR0 has been reviewed extensively with various methods
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in its derivation and an overview of the use of R0 in assessing emerging and re-

emerging infectious diseases (Heffernan, Smith and Wahl, 2005). There are mainly

two methods used for the analytical derivation of R0 in compartmental models of

disease transmission namely, survival function (Heesterbeek and Dietz, 1996) and

next generation matrix method (Van den Driessche and Watmough (2002); Van den

Driessche (2017)). The next generation matrix method is used in this thesis since it’s

the convenient method.

2.6.1 Next Generation Martrix Approach

This operates on the principle that the number of secondary infections produced by a

single infected individual can be expressed as the product of the expected duration of

the infectious period and the rate secondary infections occur.

Thus, assume that there are n compartments of which m are infected. We define the

vector xi = (x1, x2, x3, · · · , xn) as the number or proportion of individuals in the ith

compartment. Let Fi(x) be the rate of appearance of new infections in compartment

i and let Vi(x) = V−i (x) − V+
i (x), where V+

i is the rate of transfer of individuals into

compartment i by all other means and V−i is the rate of transfer of individuals out of

the ith compartment.

ẋ = fi(x) = Fi(x)− Vi(x) (2.19)

Note that Fi(x) should include only infections that are newly arising, but does not

include terms which describe the transfer of infectious individuals from one infected

compartment to another. Assuming that Fi and Vi satisfy the following axioms

outlined by (Van den Driessche and Watmough, 2002). Let Xs = {x ≥ 0|xi = 0, i =

1, ...,m} be the disease free states (non-infected state variables) of the model, where

x = (x1, ..., xm), x ≥ 0.

(A1) if x ≥ 0, then Fi,V+
i ,V−i ≥ 0 for i = 1, ...,m.

(A2) if x = 0, then V−i = 0. In particular, if x ∈ Xs then V−i for i = 1, ...,m.

(A3) Fi = 0 if i > m

(A4) if x ∈ Xs, then Fi(x) = 0 and V+
i = 0 for i = 1, ...,m.

38



(A5) if F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts,

where Df(x0) is the Jacobian matrix evaluated at the Disease-free equilibrium

(DFE) x0.

Definition 2.6.1 (M-Matrix) An n× n matrix A is an M-matrix if and only if every

off-diagonal entry of A is non-positive and the diagonal entries are all positive.

Lemma 2.6.1 If x0 is a Disease-free equilibrium (DFE) of (2.9) and fi(x) satisfies

(A1)-(A5), then the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

F 0

0 0

 , DV(x0) =

V 0

J3 J4


where F and V are the m×m matrices defined by

F =

[
∂Fi
∂xj

(x0)

]
, V =

[
∂Vi
∂xj

(x0)

]
, with 1 ≤ i, j ≤ m.

We note that F is non-negative, V is a non-singular M-matrix and all eigenvalues of

J4 have positive real part.

G = FV −1 is called the next generation matrix for the model (2.13) and set

R0 = ρ(FV −1) (2.20)

where ρ is the spectral radius (dominant eigenvalue) of the matrix G = FV −1.

Theorem 2.6.1 Consider the disease transmission model given by (2.13) with f(x)

satisfying conditions (A1)-(A5). If x0 is a DFE of the model, then x0 is locally

asymptotically stable if R0 < 1, but unstable if R0 > 1.

2.7 Sensitivity Analysis

The behaviour of physical and chemical systems is influenced by many parameters

that describe the system. The analysis on how a system responds to changes in its

parameters is known as parametric sensitivity (Varma, Morbidelli and Wu, 2005).

When some parameters are slightly varied, while keeping the remaining parameters

constant, the response of the system also changes slightly. However, other set of
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parameter combinations can cause the system to respond enormously, even if one or

more parameters are slightly varied . In this case, it is said that the system behaves

in a parametrically sensitive manner (Varma, Morbidelli and Wu, 2005).

Sensitivity Analysis is a method used to determine how different input values affect

a particular output value under a set of given assumptions. In other words, it looks

into how various sources of uncertainty in a mathematical model contribute to the

model’s overall uncertainty. It allows for forecasting using both true and historical

data. It is a method that helps to predict the outcome of a decision given a number

of variables. Sensitivity analysis determines how target variables are influenced based

on changes in other variables called the inputs. Hence, it determines how changes in

one variable can affect or influence the outcome or the results of a model.

Since the basic reproductive number R0 is one of the most important variables

in mathematical epidemiology, the sensitivity analysis focuses on the influence or

contributions of the main model parameters on R0. It centers on how changes in

the value of a particular model parameter can affect R0 and the extent to which it is

being affected. Therefore, sensitivity analysis provides information on the effectiveness

of each parameter value to the spread of the disease. It also permits us to gauge the

relative change in a variable when a parameter changes. The normalized forward

sensitivity index of a variable in relation to a parameter is the proportion of the

relative change in the variable to the relative change in the parameter. Suppose, the

variable is differentiable with respect to the parameter, then the sensitivity index can

be defined using partial derivatives.

Definition 2.7.1 The normalized forward sensitivity index of R0, that depends

differentiably on a parameter ψ, is defined by

SR0
ψ =

∂R0

∂ψ
× ψ

R0

(2.21)

In particular, the sensitivity index is a local estimate to establishing an efficient way

of reducing R0.
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2.8 Historical Development of Optimal Control

Optimal control is closely related in its origins to the theory of Calculus of Variations

(CoV), which deals with finding the maximum or minimum of a functional, since

it evolved from variational problems. The first formal results of the calculus of

variations can be found in the seventeenth century. Optimal control problems

generalize variational problems by separating control and state variables and

admitting control constraints. The generalization of the calculus of variations to

optimal control theory was strongly motivated by military applications and has since

developed rapidly (Rodrigues, Monteiro and Torres, 2014).

Johann Bernoulli posed the Brachistochrone problem in 1696 to other famous

contemporary mathematicians like Sir Isaac Newton, Gottfried Wilhelm Leibniz,

Jacob Bernoulli, Guillaume Francois Antoine Marquis de L’Hospital and Ehrenfried

Walter von Tschirnhaus. Each of these distinguished mathematicians were able to

solve the problem with an interesting description of the Brachistochrone problem

(Gerdts, 2011).

Some important milestones in the development of optimal control in the 20th century

include the formulation of dynamic programming by Richard Bellman in the 1950s,

the development of the minimum principle by Lev Pontryagin and co-workers also in

the 1950s, and the formulation of the linear quadratic regulator and the Kalman filter

by Rudolf Kalman in the 1960s. The Pontryagin Maximum Principle has provided

research with suitable conditions for optimization problems with differential equations

as constraints (Wilamowski and Irwin, 2011).

The method of optimization for constrained problems with the addition of unknown

multipliers became known by the name of its inventor, Lagrange. The Lagrange

multiplier rule was introduced for the minimization of a function with equality

constraints. Penalty methods were developed based on the Lagrange multiplier rule

to eliminate some or all the constraints and add to the objective function with a

penalty term which prescribes a high cost to infeasible points (Dong, 2006).
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Cauchy made the first application of the steepest descent method to solve

unconstrained optimization problems. By middle of the twentieth century, the

high-speed digital computers made implementation of the complex optimization

procedures possible and stimulated further research on newer methods. There has

been remarkable advances which has produced a massive literature on optimization

techniques. This advancement has also led to several well defined new areas in

optimization theory (Polak, 1973).

In the first few years of optimal control, the indirect method was the preferred

method for solving optimal control problems. The calculus of variations is employed

in this method to obtain the first-order optimality conditions (Naidu, 2003). The

earlier algorithms for optimal control were aimed at unconstrained problems and

were derived by using the first and second variation methods of calculus of variations.

These methods have been subsequently recognized as gradient, Newton-Raphson, or

Gauss-Newton methods in function space (Olotu, 2007).

The modern theory of optimal control had its main developments during the 1950s

with the formulation of two main optimization techniques: Dynamic Programming

which was introduced by Bellman in 1952 and the Pontryagin’s Minimum Principle.

The approaches are significantly different but both of them still have applications

up to today. The Dynamic Programming makes use of the principle of optimality

and it is suitable for solving discrete problems, allowing a significant reduction in

the computation of the optimal controls. It is also possible to obtain a continuous

approach to the principle of optimality that leads to the solution of a partial

differential equation called the Hamilton-Jacobi-Bellman equation.

The major developments in the area of numerical methods of unconstrained

optimization was made in the United Kingdom in the 1960s. The development

of the simplex method by Dantzig in 1947 for linear programming problems and

the annunciation of the principle of optimality in 1957 by Bellman for dynamic

programming problems paved the way for development of the methods of constrained
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optimization (Horst and Tuy, 2013). The work by Kuhn, Tucker and Neyman

(1951) on the necessary and sufficient conditions for the optimal solution of quadratic

programming problems laid the foundations for a great deal of research in nonlinear

programming. Also, the contributions of Zoutendijk (1960) to nonlinear programming

during the early 1960s have been very significant. Although no single technique has

been found to be universally applicable for nonlinear programming problems, the work

of Fiacco and McCormick (1990) allowed many difficult problems to be solved by using

the well-known techniques of unconstrained optimization.

2.9 Optimal Control Problem Formulations

2.9.1 State and Control Variables

The state variable (or function) is a set of variables (or functions) x1, x2, · · · , xn
used to describe the condition or mathematical state of the system. The control

variable (or function) u1, u2, · · · , um is an operation that controls the recording,

processing, or transmission of data. These two functions drive how the system

works to get the desired control. The state variable provides the information which

(together with the knowledge of the equations describing the system) enables us to

calculate the future behavior from the knowledge of the control variables (or inputs).

The relationship between the state x and the control u is the map u(t) → x = x(u).

Indeed, though this relationship exist, x is just a function of the independent time

variable, but in writing x(u), the dependence of x on u is shown.

It is often not possible to determine the values of the state variables directly; instead,

only a set of controlled variables which depend in some way on the state variables,

is measured. In general, the aim is to make a system perform in some required way

by suitably manipulating the inputs, this is being done by some controlling device or

a “controller”. If the controller operates according to some pre-set pattern without

taking account of the output or state, the system is called an open loop. However,

if there is feedback of information concerning the outputs to the controller, which

appropriately modifies its course of action, the system is called closed loop.
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An open loop control can be basically an “arbitrary” function u : [t0,+∞) → U for

which the Initial Value Problem (IVP)

ẋ(t) = h(t, x(t), u(t)), x(t0) = x0

has a well defined solution.

A closed loop control can be identified with a mapping k : M → U (which may depend

on t ≥ t0) such that the Initial Value Problem (IVP)

ẋ(t) = h(t, x(t), k(x(·))), x(t0) = x0

has a well defined solution. The mapping k(·) is called feedback.

We assume that our system models have the property that, given an initial state and

any input, the resulting state and output at some specified later time are uniquely

determined.

Constraints are being imposed on the state and control variables which restrict

their range of values. For state constrained optimal control problems, the path-

wise constraints are imposed on the state trajectories in question. In most cases,

the constraints are imposed at the initial and/or terminal point of a fixed interval

[a, b]. This is known as the endpoint constraints and generally written as

(x(a), x(b)) ∈ E

If x(a) = xa and x(b) ∈ Rn, then E = xa × Rn.

Control constraints are the limitations imposed on the control variables u(t) of an

optimal control problem. u(t) takes values from a permissible set of controls U . If

t ∈ [a, b], then the value of the function is u(t).

2.9.2 General Formulations of Optimal Control Problems

The formulation of an optimal control problem requires the following:

1. A mathematical model of the system to be controlled.

2. A specification of the performance index.
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3. A specification of all boundary conditions on states and constraints to be satisfied

by states and controls.

4. A statement of what variables are free.

The three well known equivalent general formulations of optimal control problems are

the Lagrange, Mayer and Bolza formulations.

Optimal Control Problems in Lagrange Form

The objective functional in the problem of Lagrange is in (pure) integral form. The

general Lagrange form of an optimal control problem is defined as

Minimize J(x(t), u(t)) =

∫ tf

t0

f(t, x(t), u(t))dt (2.22)

Subject to ẋ(t) = h(t, x(t), u(t)) (2.23)

x(t0) = x0, t0 ≤ t ≤ tf (2.24)

where f and h are continuously differentiable functions. The control set U is assumed

to be a Lebesgue measurable function. Thus, as the control(s) will always be piecewise

continuous, the associated states will also be piecewise differentiable (Kirk, 2004).

Definition 2.9.1 Let I ⊆ R be an interval (finite or infinite). We say a finite-valued

function u : I → R is piecewise continuous if it is continuous at each t ∈ I, with the

possible exception of at most a finite number of t, and if u is equal to either its left or

right limit at every t ∈ I.

In other words, a piecewise continuous function can have finitely many “jump

discontinuities” from one continuous segment to another.

Definition 2.9.2 Let x : I → R be continuous on I and differentiable at all but

finitely points of I. Further, suppose that ẋ is continuous wherever it is defined. Then,

we say x is piecewise differentiable.

45



Optimal Control Problems in Mayer Form

In the Mayer form, the functional is not an integral but a function φ that depends

in general on the dependent variable t and the final point of the t-domain. For time-

optimal OCPs, such as in this thesis, the problem of Mayer is often referred to as a

problem of optimizing the final time. The objective function is called pay off function

and is constrained by a set of differential equations, in general ODE, but differential

algebraic equations (DAE) are also encountered. The general Mayer formulation of an

optimal control problem is defined as

Minimize J(x(t), u(t)) = φ(tf , x(tf )) (2.25)

Subject to ẋ(t) = h(t, x(t), u(t)) (2.26)

x(t0) = x0, t0 ≤ t ≤ tf (2.27)

where φ and h are continuously differentiable functions (Kirk, 2004).

Optimal Control Problems in Bolza Form

The Bolza form of an optimal control problem is a linear combination of the problems

of Mayer and Lagrange. This considers a final (terminal) performance index in addition

to the integral performance index. The general Bolza formulation is defined as

Minimize J(x(t), u(t)) = φ(tf , x(tf )) +

∫ tf

t0

f(t, x(t), u(t))dt (2.28)

Subject to ẋ(t) = h(t, x(t), u(t)) (2.29)

x(t0) = x0, t0 ≤ t ≤ tf (2.30)

where f , φ and h are continuously differentiable functions (Kirk, 2004).

2.9.3 Equivalence of the Three Formulations

It is clear that the Lagrange and Mayer forms are particular cases of the Bolza form,

however the three formulations are said to be equivalent even though the Bolza form

looks more general than the other two. This is shown below.
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From Bolza to Lagrange

To do this conversion, a new component is added to the vector x ∈ Rn such that

xn+1(t) = φ(t, x(t)). Substituting it into the Bolza formulation in equations (2.28) to

(2.30) gives

Minimize J(x(t), u(t)) =

∫ tf

t0

f(t, x(t), u(t)) + ẋn+1(t)dt, t ∈ [t0, tf ] (2.31) ẋ(t)

ẋn+1(t)

 =

 h(t, x, u)

d
dt
φ(t, x(t))

 (2.32)

 x(t0)

xn+1(t0)

 =

 x0

φ(t0, x0)

 (2.33)

which yields a problem of the Lagrange form.

From Lagrange to Mayer

A Lagrange formulation is transformed into a Mayer form by considering a new variable

xn+1 defined as ẋn+1(t) = f(t, x(t), u(t)) with initial condition xn+1(t0) = 0. Putting

it into the problem of Lagrange in equations (2.22) to (2.24) gives

Minimize J(x(t), u(t)) = xn+1(tf ) t ∈ [t0, tf ] (2.34)

(ẋ(t), ẋn+1(t)) = (h(t, x(t), u(t)), f(t, x(t), u(t))) (2.35)

(x(t0), xn+1(t0)) = (x0, 0) (2.36)

which yields a problem of the Mayer form.

From Mayer to Lagrange

A Mayer form is converted to a Lagrange form by considering a new variable xn+1(t)

defined as ẋn+1(t) = 0 with the condition that xn+1 =
φ(t,x(tf ))

tf−t0
. The Mayer problem
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in equations (2.25) to (2.27) becomes

Minimize J(x(t), u(t)) =

∫ tf

t0

xn+1(t)dt t ∈ [t0, tf ] (2.37)

(ẋ(t), ẋn+1(t)) = (h(t, x(t), u(t)), 0) (2.38)

(x(t0), xn+1(t0)) =
(
x0,

φ(t, x(tf ))

tf − t0

)
(2.39)

which yields a problem of the Lagrange form (Kirk, 2004).

2.9.4 Existence of an Optimal Control - Pontryagin’s Maximum Principle

The principal technique for an optimal control problem formulation is to solve a

set of necessary condition that an optimal control and it’s corresponding state(s)

must satisfy. This necessary condition was formulated in 1956 by the Russian

mathematician Lev Pontryagin and his students. This principle is used in optimal

control theory to find the best possible control in taking a dynamical system from

one state to another, especially in the presence of constraints on the state or input

controls. Pontryagin’s maximum (or minimum) principle, also known as the necessary

or optimality condition, is a condition that must be satisfied for a statement to be

true. It should be noted, however, that the condition does not validate the statement.

Pontryagin introduced the idea of adjoint functions to add the differential equation

constraint to the objective functional. Adjoint functions have a similar drive as

Lagrange multipliers in multivariate calculus, which adds constraints to the function

of several variables to be maximized or minimized.

Consider an optimal control problem of the form

Maximize J(x(t), u(t)) =

∫ tf

t0

f(t, x(t), u(t))dt

Subject to ẋ(t) = h(t, x(t), u(t)) (2.40)

x(t0) = x0, t0 ≤ t ≤ tf

x(tf ) could be free or restricted

Theorem 2.9.1 (Pontryagin’s Maximum Principle) If u∗(t) and x∗(t) are optimal for

problem (2.40), then there exists a piecewise differentiable adjoint variable λ(t) such
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that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)) (2.41)

for all controls u at each time t, where H is the Hamiltonian and

λ̇(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x
(2.42)

λ(tf ) = 0 (2.43)

Remark 2.9.1 The last condition λ(tf ) = 0, called the transversality condition, is

only used when the OCP does not have terminal value in the state variable, that is

x(tf ) is free.

This principle was first known as the Pontryagin’s maximum principle and proved

historically based on maximizing the Hamiltonian. However, it was mostly used for

minimization of a performance index, so considered as the minimum principle in this

context. The principle converts the problem of finding a control which maximizes the

objective functional subject to the state ODE and initial condition to a problem of

optimizing the Hamiltonian pointwise. Consequently, with this adjoint equation and

Hamiltonian, we have
∂H

∂u
= 0 (2.44)

at u∗ for each t which is termed as a critical point of the Hamiltonian. This condition

is usually called the optimality condition. Therefore, to find the necessary conditions,

we do not need to calculate the integral in the objective functional, but only use the

Hamiltonian.

Hence, in finding the solution to any optimal control problem, one must:

1. construct the Hamiltonian of the problem;

2. write the adjoint differential equation, transversality boundary condition and the

optimality condition in terms of the three unknowns, x∗(t), u∗(t) and λ(t);

3. use the optimality equation ∂H
∂u

= 0 to solve for u∗(t) in terms of x∗(t) and λ(t);

4. solve the two differential equations for x∗(t) and λ(t) with the two boundary

conditions and
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5. use the values or expressions for the optimal state and adjoint from step (3)

above to solve for the optimal control.

Remark 2.9.2 If the Hamiltonian is linear in the control variable u, it can be difficult

to calculate u∗ from the optimality equation, since ∂H
∂u

would not contain u. Specific

ways of solving this kind of problem can be found in Lenhart and Workman (2007).

2.10 Optimal Control Applied to Epidemiology

Control theory is one of the most interdisciplinary areas of research and has received

great practical applications in different areas of study. It has been a discipline where

many mathematical ideas and methods are used. Optimal control problems have been

reviewed by many researchers and various methods of solution proposed by various

authors.

Sargent (2000) presented a review on the different numerical approaches to the

solutions of optimal control problems and a brief historical survey of the development

of optimal control and calculus of variations. The work of Olotu and Adekunle (2010)

examined the Analytic and Numeric Solutions of Discretized Constrained Optimal

Control Problem. The associated general Riccati differential equation was solved by

numerical-analytical approach using variational iteration method. The results showed

that both the analytical and numerical solutions agreed favourably. A geometric

convergence ratio profile of a discretized scheme for constrained quadratic control

problem was also examined by Olotu and Olorunsola (2008). To pave way for the

numerical applications of the developed scheme, the time interval was discretized

and the Euler’s scheme was used for the differential constraint to obtain a finite

approximation. An associated operator was constructed with bilinear form expression.

Their scheme was applied to sampled problem which exhibited geometric convergence

ratio in the open interval (0, 1).

Ding and Lenhart (2010) presented a work that serves as an introduction to the

theory of optimal control applied to systems of discrete time models with an emphasis

on disease models. They outlined the steps in solving such optimal control problems
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and discussed the necessary conditions. A simple disease example provides detailed

methodology in charactering the optimal control through the use of Pontryagin’s

Maximum Principle. Numerical results were given to illustrate several cases. Similar

to this work, is an Introduction to Optimal Control with an Application in Disease

Modelling presented by Neilan and Lenhart (2010). In this research, the theory of

optimal control applied to systems of ordinary differential equations with emphasis on

disease models was considered. A SEIR (Susceptible, Exposed, Infected, Recovered)

model with control acting as a rate of vaccination was presented and an optimal

control problem was formulated to include an isoperimetric constraint on the vaccine

supply. Their numerical results demonstrated how such a constraint alters the optimal

vaccination schedule and its possible effect on the population.

Sofia (2014) applied the study of Optimal Control to epidemiological models, giving

particular relevance to Dengue which is considered by the World Health Organization

as a major concern for public health. Ordinary differential equations were used

to develop the models to describe the dynamics underlying the disease, including

the interaction between humans and mosquitoes. An analytical study relating to

the equilibrium points, stability and basic reproduction number was made. Since

the development of a potential vaccine has been a global bet, models based on the

simulation of a hypothetical vaccination process in a population were proposed.

Optimal Control theory was used to analyze the optimal strategies for using these

controls and respective impact on the reduction or eradication of the disease during

an outbreak in a population considering a bioeconomic approach. There was a

compromise between the realism of epidemiological models and their mathematical

tractability in their study.

Gaff and Schaefer (2009) considered variations of standard SIR, SIRS, and SEIR

epidemiological models to determine the sensitivity of these models to various

parameter values that may not be fully known when the models are used to

investigate emerging diseases. Optimal control theory was applied to determine the

most effective mitigation strategy to minimize the number of individuals who become

infected in the course of an infection while efficiently balancing vaccination and
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treatment applied to the models with various cost scenarios. The results from the

optimal control simulations suggested that regardless of the particular epidemiological

structure and of the comparative cost of mitigation strategies, vaccination, if available,

would be a crucial piece of any intervention plan.

An SIR model with variable size population and optimal control problem was

formulated with vaccination and treatment as controls by Yusuf and Benyah (2012).

Pontryagin’s maximum principle was used to characterize the controls and derive the

optimality system. Numerical simulations of the resulting optimality system were

performed and the results suggested that the optimal combination of vaccination and

treatment strategy required to achieve the set objective will depend on the relative

cost of each of the control measures. In the case where it is more expensive to

vaccinate than to treat, it was proposed that resources should be invested in treating

the disease until the disease prevalence begins to fall.

Neilan (2009) considered the use of optimal control theory in population models for

the purpose of characterizing strategies of control which minimize an invasive or

infected population with the least cost. Three different models and optimal control

problems were presented. Each model describes population dynamics via a system of

differential equations and includes the effects of one or more control methods. A novel

existence result of an optimal control was proven in the case of ordinary differential

state equations containing quadratic expressions of the control variable. Their results

showed that reduced quantities of vaccine may not be effective in containing disease

spread or eliminating the infected population.

A mathematical model of drug therapy for chronic myelogenous leukemia for an

individual patient over a fixed time horizon was presented by Nanda, Moore and

Lenhart (2007) using ordinary differential equations. Their model describes the

interaction between naive T cells, effector T cells and leukemic cancer cells in a

hypothetical patient. Two drug therapies, which are a targeted therapy and a broad

cytotoxic therapy were incorporated into the model to help find treatment regimens

that minimize the cancer cell count and the deleterious effects of the drugs for a given
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patient. Analytical and numerical solutions of the model were presented to illustrate

the optimal regimens under various assumptions.

An SCIR model for meningococcal meningitis was developed and used to analyze

the impact of a vaccination program on the health of the population in epidemic

prone countries. The model was solved numerically using Euler’s method, and the

results showed that to stop the spread of the disease in a highly populated area, the

vaccination rate needed to be on the increase (Vereen, 2008). Udofia and Inyama

(2012) presented a mathematical model on the transmission dynamics of fowl pox

infection in poultry. The interaction between the susceptible and infected birds

was considered resulting in a system of ordinary differential equations. The control

which represents the effort in applying Chemoprophylaxis control and treatment

control in birds with fowl pox was introduced, giving rise to a system of ordinary

differential equations with control. The optimal control problem involving the number

of birds with latent and active fowl pox infections and the cost of treatment controls

were minimized subject to the differential equations. Optimal effort necessary

to reduce the transmission rate of fowl pox in the poultry was also determined by

analyzing the model using Pontryagin’s Maximum Principle and optimality conditions.

Martcheva and Crispino-O’Connell (2003) used an age-structured mathematical

model to study the transmission dynamics of meningococcal infection. The conditions

that give rise to the stability of the disease-free steady state and the existence

of an endemic state were examined. The contribution of the carrier class to the

transmission of the disease was established from the numerical simulation. Wiah

and Adetunde (2010) investigated the dynamics of cerebrospinal meningitis (CSM)

in Jirapa district in the Upper West region of Ghana. Their paper presented the

dynamics of cerebrospinal meningitis and suggested ways on how to control the

disease. The existence of the solution of the model was established and the stability

of equilibria was examined. The numerical simulation showed that early treatment,

implementation of cerebrospinal meningitis protocols and cooperation with medical

personnel and traditional healers could help control the disease.
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Subsequently, Maseno (2011) presented a mathematical model for malaria and

meningitis co-infection among children under five years of age. Their analysis showed

that the disease-free equilibrium of the model may not be globally asymptotically

stable whenever the basic reproduction number is less than unity. The model also had

a unique endemic equilibrium which is locally asymptotically stable when the basic

reproduction number is less than 1 and unstable when the basic reproduction number

is greater than 1. They further deduced that a reduction in malaria infection cases

either through protection or prompt effective treatment would reduce the number of

new co-infection cases.

The pattern of the transmission dynamics of meningococcal meningitis was

investigated using deterministic compartmental models. The results from the

numerical simulation of the model showed that seasonal vibration and temporary

immunity were due to the irregular epidemics which often occur in the meningitis

belt (Irving et al., 2012). The mathematical SIRC epidemic model was considered

by Iacoviello and Stasio (2013) with optimal controls over both the susceptible and

the infected classes, taking into account the limitations of resources. A suitable cost

index was introduced and the optimal control strategy, together with the existence

of optimal solution was determined using the Pontryagin’s Minimum Principle.

Numerical results were presented to analyze the effects of different control strategies.

An age-structured mathematical model of MenA transmission, colonization, and

disease in the African meningitis belt was developed and used to explore the impact of

various vaccination strategies. The validity of the model was assessed by a comparison

of the simulated incidence of invasive MenA and the prevalence of MenA carriage to

observed incidence and carriage data. The model was able to reproduce the observed

dynamics of MenA epidemics in the African meningitis belt, including seasonal

increases in incidence, with large epidemics occurring every eight to twelve years. It

was established that the most effective modeled vaccination strategy is to conduct

mass vaccination campaigns every 5 years for children aged 1–5 years (Tartof et al.,

2013); (Tartof et al., 2017).
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Dukić et al. (2012) carried out a generalized additive model analysis of meningitis

outbreaks in Navrongo, Ghana, which estimated the effects of weather variables such

as rain, relative humidity, temperature, and air quality variables including dust and

CO emissions, on meningitis incidence in an unbiased way. The models pointed to

the relevance of weather and pollution variables, in particular the effects of current

month’s average maximum temperature, previous month’s relative humidity, and

previous month’s CO emissions due to fires were persistent.

Martinez et al. (2013) presented a novel Susceptible, Asymptomatic Infected,

Infected with symptoms, Carriers, Recovered and Died mathematical model for the

transmission of meningococcal meningitis using cellular automata. Their results

established that both the individual and global behaviours of the disease could be

determined. This result agreed favourably with the empirical predictions. Blyuss

(2016) also used mathematical models to identify crucial factors that determine the

meningitis dynamics. Their results suggested temporaral population immunity as a

key role and should be considered during disease monitoring and assessment of the

efficiency of vaccines deployed.

Mathematical and economic models was used by Christensen et al. (2014) to predict

the epidemiological and economic impact of vaccination with Bexsero which is

designed to protect against Group B meningococcal disease and to help inform

vaccine policy in the United Kingdom. Their results suggested that routine infant

vaccination could be cost-effective in England under favourable assumptions if the

vaccine could be procured at less than 20% of the list price. This was seen to be the

most favourable option since it targets majority of the people at risk of disease.

A mathematical model of MenA transmission and disease was created by Karachaliou

et al. (2015) to investigate the potential impact of a range of immunization strategies.

Their age-structured SCIR model incorporated seasonal transmission and a stochastic

forcing term that models between year variation in rates of transmission. Their model

was used to describe the typical annual incidence of meningitis in the prevaccine

era, with irregular epidemics of varying size. Parameter and structural uncertainty
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were explored in sensitivity analyses, and their model predicted excellent short-term

disease control.

Asamoah et al. (2018) presented a mathematical framework of vaccination and

treatment on an SCIRS bacterial meningitis model. Their model exhibited a local

and global asymptotic stability at the disease-free equilibrium, and a global stability

at the endemic equilibrium. Their numerical simulation showed that the optimal

(best) way of controlling the transmission of meningitis in Sub-Saharan Africa and the

world at large is to encourage the susceptible population to get vaccinated and report

any suspected symptoms of meningitis to health practitioners for early detection and

immediate care.

A deterministic model for Meningococcal meningitis transmission dynamics with

variable total population size was presented by Yusuf (2018). It was shown analytically

and numerically that with effective control measures in place, the disease can be

eradicated. Their simulation suggested control measures that can reduce the disease

transmission rate and immunity waning rate as well as boost the vaccination and

treatment rates. This model was used as the constraint equations for the optimal

control problem (OCP) formulation to depict the Meningitis epidemic situation in

the Meningitis belt in a work presented by Yusuf and Olayinka (2019). The aim

of the optimal control problem was to determine the optimal levels of each of the

control measures that should be deployed to minimize the incidence and prevalence of

the disease together with the cost of control measures within a specified time frame.

Pontryagin’s Maximum Principle (PMP) was used to derive the optimality system and

the resulting optimality system was solved numerically. The simulation results were

related to their earlier results.
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CHAPTER 3

FORMULATION AND ANALYSIS OF A DETERMINISTIC

BACTERIAL MENINGITIS MODEL WITH VACCINATION

AND TREATMENT INTERVENTIONS

3.1 Model Description and Formulation

Mathematical modeling is one of the most important tools used in understanding the

dynamics of disease transmission. In formulating the model, the total population at

time t, denoted by N(t), is divided into seven (7) mutually exclusive epidemiological

classes, namely, the Susceptible Class, S(t) Vaccinated Class, V (t) Carrier Class, C(t)

Infected Class, I(t) Treated Class, T (t) and two Recovered Classes, R1(t) and R2(t).

This is given as

N(t) = S(t) + V (t) + C(t) + I(t) + T (t) +R1(t) +R2(t) (3.1)

The Susceptible Class is made up of the individuals who are not yet infected and have

also not been vaccinated against the disease. This is generated by the recruitment

of individuals at a rate α and by loss of immunity from previous vaccination. The

Susceptible class is reduced by natural death, vaccination or by infection through

effective contact with infected individuals at the rate

λ (t) =
β [η1C (t) + I (t)]

N (t)
(3.2)

The parameter β is the effective transmission probability per contact and the

parameter η1 ≤ 1 is a modification parameter indicating the infectiousness of the

carrier class Agusto and Leite (2019). Thus, the rate of change of the susceptible class

is given as
dS

dt
= α + ωV − (λ+ θ + µ)S (3.3)

The Vaccinated Class are the individuals who have taken the vaccine as a form of
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protection from the disease. This population is increased by vaccination of susceptible

individuals. Often, individuals develop immunity within two (2) weeks after taking the

Meningitis vaccines and are protected for three (3) to five (5) years. Since the vaccines

confer varying degrees of immunity to its recipients, the vaccinated individuals may

become infected, but at a lower rate than the unvaccinated. The vaccinated class

is therefore decreased by been exposed to the disease or by vaccine waning and by

natural death. Therefore, the rate of change of the vaccinated class is represented by

dV

dt
= θS − (1− τ)λV − (ω + µ)V (3.4)

The Carrier Class is made up of individuals who have the infection but do not show

any signs/symptoms even though they are infectious. This class is generated through

the effective contact rate λ and decreased as a result of the population becoming

symptomatic by the rate σ. This population is also decreased by the treatment rate,

κ, natural recovery rate r and by natural death rate µ. As such, the rate of change of

the carrier class is expressed as

dC

dt
= λS + (1− τ)λV − (σ + κ+ r + δ + µ)C (3.5)

The Infected Class are individuals with the fully blown infection and showing

signs/symptoms. This population is said to have survived the average incubation

period of four (4) days. This is also generated through the progression rate of the

carrier σ and decreased by the natural recovery rate r, treatment rate κ, diseased

induced death rate δ and natural death rate µ. Hence, the differential equation

governing the dynamic of the infected class is given by

dI

dt
= σC − (r + κ+ δ + µ)I (3.6)

The Treated Class are the individuals undergoing treatment as a result of an infection.

This is generated through the treatment rate κ and decreased by the diseased induced

death rate δ, recovery rate γ and natural death rate µ. Thus, the rate of change of
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the treated class is described by the diffrential equation

dT

dt
= κC + κI − (1− η2)δT − (1− ∧)T − (γ + γr + µ)T (3.7)

Since the after-effects of bacterial meningitis are not always pleasant, the recovered

class is divided into two. The first Recovered class R1(t) are the individuals who

have either undergone treatment and have fully recovered from the infection or have

recovered by their own natural immunity. This is generated through the recovery rates

and decreased by the complication rate ε and natural death rate µ. Therefore, the rate

of change of the fully recovered class is expressed as

dR1

dt
= rC + rI + γrT − (ε+ µ)R1 (3.8)

The second Recovered class R2(t) is made up of the individuals who have undergone

treatment and have recovered with complications. This population is increased by the

recovery rate γ and complication rate ∧, and decreased due to natural death rate µ.

Hence, the rate of change of the recovered with complications class is given as

dR2

dt
= γT + (1− ∧)T + εR1 − µR2 (3.9)

Table 3.1 Description of the Model State Variables
Variables Description
S(t) Susceptible Population
V (t) Vaccinated Population
C(t) Carrier Population
I(t) Infected Population
T (t) Treated Population
R1(t) Fully Recovered Population
R2(t) Recovered with Complications
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Table 3.2 Description of Model Parameters
Parameters Description
α Recruitment rate into Susceptible population
β Transmission probability
δ Disease-induced death
µ Natural death rate
σ Progression rate from Carrier to Infected population
γ Recovery rate
r Natural recovery rate
θ Vaccine uptake rate
τ Vaccine efficacy
ω Vaccine waning
κ Treatment rate
∧ Treatment efficacy
η1 Modification parameter of infectiousness of the carrier

population
η2 Modification parameter of disease death rate of

treated population
ε Complication rate after a period of time

We note that all the model parameters are assumed to be non-negative.

Model Assumptions

1. Every individual in the studied population who has not been infected is

susceptible to the disease.

2. A vaccinated individual who loses immunity becomes susceptible with no vaccine

protection.

3. The vaccine is only administered to the susceptible population.

4. There is a natural death rate from each compartment.

5. Recovered individuals cannot be re-infected.
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Figure 3.1 Schematic Flow Diagram of the Transmission of Bacterial
Meningitis

Model Equations

From the descriptions given in Equations (3.3) to (3.9) and the flow diagram presented

in Figure (3.1), the model governing the system of seven mutually exclusive ODEs for

bacterial meningitis population dynamics is expressed as

dS
dt

= α + ωV − (λ+ θ + µ)S

dV
dt

= θS − (1− τ)λV − (ω + µ)V

dC
dt

= λS + (1− τ)λV − (σ + κ+ r + δ + µ)C

dI
dt

= σC − (r + κ+ δ + µ)I

dT
dt

= κC + κI − (1− η2)δT − (1− ∧)T − (γ + γr + µ)T

dR1

dt
= rC + rI + γrT − (ε+ µ)R1

dR2

dt
= γT + (1− ∧)T + εR1 − µR2

(3.10)
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subject to the initial conditions (ICs):

S(0) = S0, V (0) = V0, C(0) = C0, I(0) = I0,

T (0) = T0, R1(0) = R01, R2(0) = R02

(3.11)

3.2 The Model Analyses

3.2.1 The Invariant Region

Definition 3.2.1 A region within which the solutions to the model are uniformly

bounded is defined as Ω ∈ <7
+.

The total population is given as

N(t) = S(t) + V (t) + C(t) + I(t) + T (t) +R1(t) +R2(t) (3.12)

Therefore

dN(t)

dt
=
dS(t)

dt
+
dV (t)

dt
+
dC(t)

dt
+
dI(t)

dt
+
dT (t)

dt
+
dR1(t)

dt
+
dR2(t)

dt
(3.13)

Substituting (3.10) into (3.13) yields

dN(t)

dt
= α− µN − δC − δI − (1− η2)δT (3.14)

dN(t)

dt
≤ α− µN(t)

Integrating both sides, we have

1

µ

∫
µ

α− µN
dN ≤

∫
dt

which gives

− 1

µ
In(α− µN) ≤ t+ c

where c is the constant of integration.

In(α− µN) ≥ −(µt+ c)
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(α− µN) ≥ e−(µt+c)

(α− µN) ≥ ke−µt (3.15)

where k is ec.

Let N(0) = N0. This implies

(α− µN0) ≥ k (3.16)

From Equations (3.15) and (3.16), we get

(α− µN) ≥ (α− µN0)e
−µt

µN ≤ α− (α− µN0)e
−µt

N(t) ≤ α

µ
− (α− µN0)

µ
e−µt

⇒ N(t)→ α

µ
as t→∞ (3.17)

This implies N(t) ∈
[
0, α

µ

]
.

Therefore, the feasible set of solution of the model equations enter and remain in the

region:

Ω = {(S, V, C, I, T, R1, R2) ∈ <7
+ : N(t) ≤ α

µ
} (3.18)

We note that α
µ
is the upper bound of N(t). However, if N > α

µ
then N(t) will decrease

to α
µ
and the solutions (S, V, C, I, T, R1, R2) will enter Ω or approach it asymptotically,

as such, the region will attract all solutions in <7
+. Hence, the model is well posed

mathematically and epidemiologically since the region Ω is positively invariant and

attracting.

3.2.2 Positivity of the Solution

Theorem 3.2.1 (The Positivity Theorem) Let Ω = {(S, V, C, I, T, R1, R2) ∈ <7
+ :

S0 > 0, V0 > 0, C0 > 0, I0 > 0, T0 > 0, R10 > 0, R20 > 0}, then the solution of

(S, V, C, I, T, R1, R2) are positive for t ≥ 0.

Proof. Considering the first equation of the model

dS

dt
= α + ωV − (λ+ θ + µ)S
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dS

dt
≥ −(λ+ θ + µ)S∫

dS

S
≥ −

∫
(λ+ θ + µ)dt

lnS(t) ≥ −p(t) + c

where p(t) =
∫

(λ+ θ + µ)dt and c is the constant of integration.

S(t) ≥ e(−p(t)+c)

S(t) ≥ e−p(t) · ec

S(t) ≥ A1e
−p(t) (3.19)

where A1 = ec. From the theorem, at t = 0, S0 > 0 which implies A1 = ec ≥ 0 since

S(0) ≥ A1. Consequently, S(t) ≥ S0e
−p(t) ≥ 0 ∀t ≥ 0.

Similarly, considering the second equation of the model

dV

dt
= θS − (1− τ)λV − (ω + µ)V

dV

dt
≥ −[(1− τ)λ+ ω + µ]V∫

dV

V
≥ −

∫
[(1− τ)λ+ ω + µ]dt

lnV (t) ≥ −q(t) + c

where q(t) =
∫

[(1− τ)λ+ ω + µ]dt and c is the constant of integration.

V (t) ≥ A2e
−q(t) (3.20)

where A2 = ec. At t = 0, V0 > 0 which implies A2 = ec ≥ 0.

Consequently, V (t) ≥ V0e
−q(t) ≥ 0 ∀t ≥ 0.

Applying the same technique to the remaining equations of the system, the third

equation yields

C(t) ≥ C0e
−h1t ≥ 0 ∀t ≥ 0 (3.21)
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where h1 = (σ + κ+ r + δ + µ) ≥ 0.

The fourth equation yields

I(t) ≥ I0e
−h2t ≥ 0 ∀t ≥ 0 (3.22)

where h2 = (r + κ+ δ + µ) ≥ 0.

The fifth equation yields

T (t) ≥ T0e
−h3t ≥ 0 ∀t ≥ 0 (3.23)

where h3 = [(1− η2)δ + (1− ∧) + γ + γr + µ] ≥ 0.

The sixth equation yields

R1(t) ≥ R10e
−h4t ≥ 0 ∀t ≥ 0 (3.24)

where h4 = (ε+ µ) ≥ 0.

Lastly, the seventh equation yields

R2(t) ≥ R20e
−µt ≥ 0 ∀t ≥ 0 (3.25)

This completes the proof of the theorem.

3.2.3 Existence of Equilibria

For the developed model, the disease free and endemic equilibrium points are obtained.

A Disease Free Equilibrium (DFE) is a state solution to the model in which the

studied population remains in the absence of the disease. An Endemic Equilibrium

(EE) point of a disease is defined as a positive steady state solution when the disease

persists in the studied population.
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The Disease Free Equilibrium Point

The DFE of the model is defined as (S∗ (t) , V ∗ (t) , 0, 0, 0, 0, 0) satisfying
dS(t)
dt

= dV (t)
dt

= dC(t)
dt

= dI(t)
dt

= dT (t)
dt

= dR1(t)
dt

= dR2(t)
dt

= 0.

Equating the system of equation in (3.10) to 0 and substituting C = I = T = R1 =

R2 = 0, we obtain the system ωV − (θ + µ)S = −α

θS − (ω + µ)V = 0
(3.26)

Solving the system simultaneously, the DFE is obtained as:

(
αm1

µ (m1 + θ)
,

αθ

µ (m1 + θ)
, 0, 0, 0, 0, 0

)
(3.27)

where, m1 = ω + µ.

Endemic Equilibrium Point

The EEP of the model is defined as

(S∗ (t) , V ∗ (t) , C∗ (t) , I∗ (t) , T ∗ (t) , R∗1 (t) , R∗2 (t)) satisfying dS(t)
dt

= dV (t)
dt

= dC(t)
dt

=

dI(t)
dt

= dT (t)
dt

= dR1(t)
dt

= dR2(t)
dt

= 0.

This yields the system of equations

α + ωV − (λ+ θ + µ)S = 0

θS − (1− τ)λV − (ω + µ)V = 0

λS + (1− τ)λV − (σ + κ+ r + δ + µ)C = 0

σC − (κ+ r + δ + µ) I = 0

κC + κI − (1− η2) δT − (1− ∧)T − (γ + γr + µ)T = 0

rC + rI + γrT − (ε+ µ)R1 = 0

γT + (1− ∧)T + εR1 − µR2 = 0

(3.28)

which results in,

S∗ =
α [(1− τ)λ+m1]

(1− τ)λ2 + g1λ+ g2
(3.29)
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V ∗ =
α θ

(1− τ)λ2 + g1λ+ g2
(3.30)

C∗ =
α λ [(1− τ) (λ+ θ) +m1]

(σ +m2) [(1− τ)λ2 + g1λ+ g2]
(3.31)

I∗ =
αλσ [(1− τ) (λ+ θ) +m1]

m2 (σ +m2) [(1− τ)λ2 + g1λ+ g2]
(3.32)

T ∗ =
κ (C∗ + I∗)

m3

(3.33)

R∗1 =
r (C∗ + I∗ + γT ∗)

ε+ µ
(3.34)

R∗2 =
(ε+ µ) (r + 1− Λ)T ∗ + rε (C∗ + I∗ + γT ∗)

µ (ε+ µ)
(3.35)

where,

m2 = κ+ r + δ + µ, m3 = µ+ γ (r + 1) + δ (1− η2) + 1− Λ

g1 = (1− τ) (µ+ θ) +m1, g2 = µ (m1 + θ)

From the force of infection in Equation (3.2),

λ∗ =
β (η1C

∗ + I∗)

N∗

which can be written as

λ∗N∗ − β (η1C
∗ + I∗) = 0 (3.36)

Substituting all the state solutions into Equation (3.36) and simplifying leads to the

equation

k1(λ
∗)2 + k2λ

∗ + k3 = 0 (3.37)

where,

k1 = (σ +m2) (1− τ) [m3 (µ+ r + k)− kδ (1− η2)]
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k2 =µ (1− τ)m3m
2
2 + [(m2 − δ) ((1− τ) θ +m1)− µ (1− τ) (βη1 − σ)]m2m3+

[(m2 − δ) ((1− τ) θ +m1)− µβ (1− τ)]σm3 − δ (σ +m2) (1− η2) ((1− τ) θ +m1)κ

k3 =µm3

[
(θ +m1)m

2
2 + (θ +m1)σm2 + β (θτ − θ −m1) (η1m2 + σ)

]
=µm3 [m2 (θ +m1) (m2 + σ)− β ((1− τ) θ +m1) (η1m2 + σ)]

=µm3m2 (θ +m1) (m2 + σ)

[
1− β ((1− τ) θ +m1) (η1m2 + σ)

m2 (θ +m1) (m2 + σ)

]
=µm2m3 (θ +m1) (σ +m2) (1−R0)

3.2.4 The Basic Reproduction Number (R0)

The basic reproduction number is a fundamental threshold in mathematical study of

epidemiology. It helps to forecast the transmission potential of a disease. According to

the principle of next generation matrix, the basic reproduction number is the spectral

radius of the next generation matrix FV−1 of the model (3.10). The basic reproduction

number associated with (3.10) is given as:

 dC
dt

dI
dt

 = fi − vi

where,

fi =

 β(η1C+I)S
N

+ (1−τ)β(η1C+I)V
N

0


and

vi =

 (σ +m2)C

−σC +m2I


fi is the rate at which new infections appear in compartment i and vi represents the

movement of individuals into compartment i, with i ∈ [1, 2].

The matrices F and V are obtained as follows:

F =

 ∂f1
∂C

∂f1
∂I

∂f2
∂C

∂f2
∂I

 =

 βη1(θ(1−τ)+m1)
m1+θ

β(θ(1−τ)+m1)
m1+θ

0 0

 (3.38)
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and

V =

 ∂v1
∂C

∂v1
∂I

∂v2
∂C

∂v2
∂I

 =

 σ +m2 0

−σ m2

 (3.39)

V−1 =

 1
σ+m2

0

σ
m2(σ+m2)

1
m2

 (3.40)

Thus, the next generation matrix:

G = FV−1 =

 (η1m2+σ)((1−τ)θ+m1)β
m2(m1+θ)(σ+m2)

β(θ(1−τ)+m1)
m2(m1+θ)

0 0

 (3.41)

The eigenvalues of the matrix, G are 0

β(η1m2+σ)(θ(1−τ)+m1)
m2(m1+θ)(σ+m2)


Consequently, the Basic Reproduction Number, which is the spectral radius of G is

given as

R0 =
β (η1m2 + σ) [(1− τ) θ +m1]

m2 (m1 + θ) (σ +m2)
(3.42)

R0 provides the expected number of newly infected individuals that would arise from

introduction of a single case of bacterial meningitis into a completely susceptible

population.

3.3 Model Parameter Estimation and Initial Conditions

3.3.1 Initial Conditions

Ghana’s demographic data for the year 2017 is adopted for our simulation. Since

the disease is endemic in the northern part of Ghana, the total population of the

northern part as at 2017 was 4953293 Anon (2020), as such the initial total population,

N(0) = 4953293. It is known that 10−20% of every population is carrier of Meningitis

Anon (2020a), so the average which is 15% is adopted as the case in Ghana. This

gives a carrier population of about 742993.95. 10% of the population is assumed to

be vaccinated against the disease. In addition, it is assumed that the population

in each of the infected and treated class is about one-third of those in carrier class,
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which is 247664.65. The two recovered classes is assumed to be zero. Thus, the model

variables’ initial conditions are: S(0) = 3219640, V (0) = 495329.3, C(0) = 742993.95,

I(0) = T (0) = 247664.65, R1(0) = 0 and R2(0) = 0.

3.3.2 Model Parameter Values

1. Natural death rate (µ): The average life span in Ghana is 64.17 years, therefore

µ = 1
64.17×365 = 4.269× 10−5 per day.

2. Birth or recruitment rate (α): In the absence of the disease, the limiting total

human population is assumed to be α
µ

= 4953293, so α = 211 per day.

3. Disease-induced death rate (δ): The mortality rate due to bacterial meningitis

disease in Ghana is 36− 50%. Taking the average to be 43% gives δ = 0.43.

4. Progression rate (σ): The average incubation period is 4 days. Thus, σ = 1
4

=

0.25

5. Vaccine waning rate (ω): It takes an average of 4 years for the available vaccines

to wane. Therefore, ω = 1
4×365 = 6.8× 10−4 per day

6. Recovery rate (γ): The period of infection of the disease is 1-2 weeks with

hospitalization and right treatment, so taking the average, we have 8 days.

Therefore, γI1 = 1
8

= 0.125.

7. Complication rate (ε): Even with appropriate treatment, 10− 20% of survivors

have serious complications or long-term sequelae. Therefore, ε = 15
100

= 0.15
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Table 3.3 Model Parameter Values
Parameter Value Source
α 211 Estimated
µ 0.000043 Estimated
ω 0.00068 Estimated
β 0.88 Asamoah et al. (2018)
γ 0.125 Estimated
r 0.13 Asamoah et al. (2018)
η1 0.75 Assumed
η2 0.75 Assumed
δ 0.43 Estimated
ε 0.15 Estimated
σ 0.25 Estimated
τ 0.85 Elmojtaba and Adam (2017)
κ 0.6 [0,1] Assumed
θ 0.6 [0,1] Assumed
∧ 0.6 [0.1-0.9] Elmojtaba and Adam (2017)

We note that the set of parameter values in Table (3.3) yields a basic reproduction

number less than unity (R0 = 0.091) which implies that with effective vaccination and

treatment, this disease which is considered to be endemic could be eradicated.

3.4 Stability Analyses

The equilibrium points of a system can be classified as stable, unstable or

asymptotically stable according to the nature of the eigenvalues of the coefficient

matrix of the system or the Jacobian matrix of the system (for nonlinear systems)

about such equilibrium point.

3.4.1 Local Stability of the Disease-free Equilibrium

Theorem 3.4.1 The DFE is Locally Asymptotically Stable (LAS) if R0 < 1 and

unstable if R0 > 1.

Using Theorem 3.4.1, the result in Lemma 3.4.1 follows immediately based on the

expressions of R0.

Lemma 3.4.1 The DFE of the bacterial meningitis model in (3.10) is Locally

Asymptotically Stable (LAS) if R0 < 1 and unstable if R0 > 1.
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Following Definition 2.4.2, the Jacobian matrix, J evaluated at E0 is given as

J =



−(θ + µ) ω −β η1m1

m1+θ
− βm1

m1+θ
0 0 0

θ −m1 −β η1 (1−τ)θ
m1+θ

−β (1−τ)θ
m1+θ

0 0 0

0 0 β η1m1(1−τ)θ
m1+θ

− (σ +m2)
βm1(1−τ)θ
m1+θ

0 0 0

0 0 σ −m2 0 0 0

0 0 κ κ −m3 0 0

0 0 r r γr −(ε+ µ) 0

0 0 0 0 γ + (1− ∧) ε −µ


(3.43)

The eigenvalues of the Jacobian matrix, J are

λ1,2 = −µ λ3 = −(m1 + θ) λ4 = −(ε+ µ) λ5 = −m3

and

λ6,7 = −
β τ θ η1 + (−β η1 + σ + 2m2) (m1 + θ)−

√
(β τ θ η1 − (β η1 − σ) (m1 + θ))2 + 4 (θ (1− τ) +m1) (m1 + θ)σ β

2m1 + 2 θ

Clearly, all the eigenvalues of the Jacobian matrix are strictly negative provided

−
β τ θ η1 + (−β η1 + σ + 2m2) (m1 + θ)−

√
(β τ θ η1 − (β η1 − σ) (m1 + θ))2 + 4 (θ (1− τ) +m1) (m1 + θ)σ β

2m1 + 2 θ
< 0

Thus for stability, the negativity condition imposed yields

β τ θ η1 + (−β η1 + σ + 2m2) (m1 + θ)−
√

(β τ θ η1 − (β η1 − σ) (m1 + θ))2 + 4 (θ (1− τ) +m1) (m1 + θ)σ β > 0

[β τ θ η1 + (−β η1 + σ + 2m2) (m1 + θ)]2 >

[√
(β τ θ η1 − (β η1 − σ) (m1 + θ))2 + 4 (θ (1− τ) +m1) (b1 + θ)σ β

]2

[β τ θ η1 + (−β η1 + σ + 2m2) (m1 + θ)]2 > (β τ θ η1 − (β η1 − σ) (m1 + θ))2 + 4 (θ (1− τ) +m1) (b1 + θ)σ β

(β τ θ η1 + (−β η1 + σ + 2m2) (m1 + θ))2 − (β τ θ η1 − (β η1 − σ) (m1 + θ))2 − 4 (θ (1− τ) +m1) (b1 + θ)σ β > 0(
(m1 + θ)m2

2 + ((β (−1 + τ) η1 + σ) θ − (β η1 − σ)m1) b2 + σ (θ (−1 + τ)−m1)β
)
(m1 + θ) > 0

β θ (m2η1 + σ) (θ τ − θ −m1) + βm1 (m2η1 + σ) (θ τ − θ −m1) + b2 (m1 + θ)2 (σ +m2) > 0

(θ (−1 + τ)−m1) θ (m2η1 + σ)β +m1 (θ (−1 + τ)−m1) (m2η1 + σ)β +m2 (m1 + θ)2 (σ +m2) > 0
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β (m2η1 + σ) (θ τ − θ −m1) (m1 + θ) +m2 (m1 + θ)2 (σ +m2) > 0

m2 (m1 + θ) (σ +m2)− β (m2η1 + σ) (θ (1− τ) +m1) > 0

(m1 + θ)m2(σ +m2)

(
1− β (m2η1 + σ) (θ (1− τ) +m1)

m2 (m1 + θ) (σ +m2)

)
> 0

(m1 + θ)m2(σ +m2) (1−R0) > 0 (3.44)

Therefore, for Equation (3.44) to be valid, R0 must be less than 1. Hence the DFE is

LAS.

3.4.2 Global Stability of the Disease-free Equilibrium

The global asymptotic stability of the model in (3.10) is investigated by following

Castillo-Chavez, Feng and Huang (2002). The model is denoted by: dX
dt

= F (X, Y )

dY
dt

= G(X, Y )
(3.45)

where X = (S, V,R1, R2) denotes the uninfected population and Y = (C, I, T ) denotes

the infected population.

Theorem 3.4.2 The Disease-Free Equilibrium is said to be globally asymptotically

stable in Ω if R0 < 1 and the following two conditions hold:

C1: For dX
dt

= F (X, 0), E0 is globally asymptotically stable.

C2: G(X, Y ) = J [G(X∗, 0)]Y − Ĝ(X, Y ), Ĝ(X, Y ) ≥ 0, ∀ (X, Y ) ∈ Ω

where (X∗, 0) = E0 =
(

αm1

µ(m1+θ)
, αθ
µ(m1+θ)

, 0, 0, 0, 0, 0
)
, J [G(X∗, 0)] is the Jacobian of

G(X, Y ) obtained with respect to (C, I, T ) and evaluated at (X∗, 0).
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Proof.

C1: From the model, it follows that:

F (X, 0) =


α + ωV − (θ + µ)S

θS −m1V

−(ε+ µ)R1

εR1 − µR2

 (3.46)

From Equation (3.46), it is clear that

E0 = (S, V, C, I, T, R1, R2) =

(
αm1

µ (m1 + θ)
,

αθ

µ (m1 + θ)
, 0, 0, 0, 0, 0

)

This can be verified using the method of integrating factors. From Equation (3.46),

we have:

dV

dt
= θS −m1V (3.47)

which can be written in standard from as

dV

dt
+m1V = θS (3.48)

The integrating factor is given as I.F. = e
∫
m1dt = em1t.

Multiplying Equation (3.48) through by the integrating factor yields

em1t

(
dV

dt
+m1V

)
=θSem1t (3.49)∫

d

dt

(
V em1t

)
dt =θ

∫
Sem1tdt (3.50)

Let I =
∫
Sem1tdt. Integrating by parts, we have

u = S =⇒ du = S ′dt, and dv = em1t =⇒ v =
em1t

m1

So,

I =
Sem1t

m1

− 1

m1

∫
S ′em1tdt (3.51)
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=⇒ V em1t = θ

[
Sem1t

m1

− 1

m1

∫
S ′em1tdt

]
(3.52)

=
θS

m1

em1t − θ

m1

∫
S ′em1tdt (3.53)

Therefore,

V =
θS

m1

− θ

m1em1t

∫
S ′em1tdt (3.54)

From Equation (3.54), V → θS
m1

as t→∞.

Furthermore, from Equation (3.46), we have,

dS

dt
= α + ωV − (θ + µ)S (3.55)

Since V → θS
m1

, Equation (3.55) is rewritten as

dS

dt
=α +

ωθS

m1

− (θ + µ)S (3.56)

=α− µ (m1 + θ)

m1

S (3.57)

Therefore, Equation (3.57) can be put in standard form as

dS

dt
+
µ (m1 + θ)

m1

S = α (3.58)

The integrating factor is given as I.F. = e
∫ µ(m1+θ)

m1
dt

= e
µ(m1+θ)
m1

t.

Multiplying Equation (3.58) through by the integrating factor gives

e
µ(m1+θ)
m1

t

(
dS

dt
+
µ (m1 + θ)

m1

S

)
= αe

µ(m1+θ)
m1

t (3.59)∫
d

dt

(
Se

µ(m1+θ)
m1

t

)
dt =

∫
αe

µ(m1+θ)
m1

t
dt (3.60)

Se
µ(m1+θ)
m1

t
=

αm1

µ(m1 + θ)
e
µ(m1+θ)
m1

t
+ c (3.61)

where c is the constant of integration. Therefore,

S =
αm1

µ(m1 + θ)
+ Ce

−µ(m1+θ)
m1

t (3.62)
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From Equation (3.62), S → αm1

µ(m1+θ)
as t→∞; and this implies the global convergence

of Equation (3.46) in Ω.

C2: G(X, Y ) is given as

G(X, Y ) =


λS + (1− τ)λV − (σ +m2)C

σC −m2I

κC + κI −m3T

 (3.63)

where λ is the force of infection defined in Equation (3.2).

The Jacobian matrix of G(X, Y ), J [G(X∗, 0)] is given as


β η1 [S∗+(1−τ)V ∗]

N∗
− σ −m2

β [S∗+(1−τ)V ∗]
N∗

0

σ −m2 0

κ κ −m3

 (3.64)

By the condition in C2 with Equations (3.63) and (3.64), Ĝ(X, Y ) is given by


β(η1C+I)[(1−τ)V ∗+S∗]

N∗

(
1− V (1−τ)+S

N
N∗

(1−τ)V ∗+S∗

)
0

0

 (3.65)

Since

S∗ =
αm1

µ(m1 + θ)
, V ∗ =

αθ

µ(m1 + θ)
and N∗ =

α

µ

we have that S ≤ S∗, and V ≤ V ∗. Thus, it follows that S ≤ N, and V ≤

N in Ω. Therefore, if the total population is at equilibrium level, we have(
1− V (1−τ)+S

N
N∗

(1−τ)V ∗+S∗

)
> 0; thus, Ĝ(X, Y ) ≥ 0. Hence it follows from Theorem

(3.4.2) that the DFE, E0 = (X∗, 0) is globally asymptotically stable.

3.5 Sensitivity Analysis

In mathematical modeling of infectious diseases, it is pertinent to ascertain the major

parameters of a model that influence the transmission of the disease. Sensitivity
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analysis is therefore performed to determine the model’s robustness predictions to

parameter values.

Definition 3.5.1 The normalized forward sensitivity index of R0, that depends

differentiably on a parameter ψ, is defined by

SR0
ψ =

∂R0

∂ψ
× ψ

R0

(3.66)

In particular, the sensitivity index is a local estimate to establishing an efficient way

of reducing R0.

Therefore, all the partially differentiable model parameters with respect to R0, their

values and sensitivity indices are given in Table 3.4.

Table 3.4 Sensitivity Index of Each Model Parameter on R0

Parameter Parameter Value Sensitivity Index
ω 0.00068 +6.36× 10−3

β 0.88 +1
η1 0.75 +0.7768
σ 0.25 +0.0459
δ 0.43 −0.3877
µ 0.000043 −3.64× 10−4

κ 0.6 −0.5410
τ 0.85 −5.6215
r 0.13 −0.1172
θ 0.6 −6.77× 10−3

A positive sensitivity index suggests that the parameter is directly proportional to the

value ofR0. Thus, an increase in any of the values of ω, β, η1 and σ by some percentage

will increase the value of R0, thereby increasing the spread of the disease, and vice

versa. However, the parameters with a negative sensitivity index means that these

parameters are inversely proportional to the value of R0. Therefore, when the value of

any of these parameters, δ, µ, κ, τ , r, θ is increased while holding all other parameters

constant, it will reduce the value of R0 and, hence, contribute to the eradication of

the disease and vice versa. For instance, increasing the modification parameter of the

infectiousness of the carrier, η1 by 10% will lead to a 7.768% increase on R0 while

increasing the treatment rate, κ by 10% will result in a reduction of 5.410% on R0.
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3.6 Numerical Simulation of the Model

The numerical solutions of the model (3.10) is obtained by using MATLAB ODE45

Algorithm with the initial conditions and parameter values staed in Table (3.3).

Figure 3.2 Evolution of each subpopulation with Time

Figure 3.3 Disease Prevalence
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Figure (3.2) gives the numerical simulation of the model compartments in a time span

of 30 days. The susceptible population decreases rapidly within the first few days due

to getting people vaccinated and the force of infection. However, after these few days,

stationarity is achieved due to progression to the other compartments. The vaccinated

population on the other hand increases rapidly within the first few days, and this

can be attributed to the awareness and sensitivity of the government to get people

vaccinated as soon as an infection strikes. The carrier population reduces drastically

in size due to the intervention of early treatment given to people who have come into

contact with an infected person and the progression of the carriers to the infected class

since the period of incubation is very short. The infected population also decreases

with time and this can be ascribed to the immediate treatment given to them since

the disease is termed as a ’medical emergency’. There is a short increase in the treated

class as a result of progression of the carrier and infected but later decreases with time.

This decrease is due to the treated population moving to the recovered populations.

The two recovered populations increase and remain stable after a period of time. The

disease prevalence can be viewed from Figure (3.3) which gives us the number of cases

present in the population.
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(a) Effects of Varying θ on V (t) (b) Effects of Varying θ on C(t)

(c) Effects of Varying θ on I(t)

Figure 3.4 Effects of Varying θ on V (t), C(t) and I(t) Compartments

From Figure (3.4), as the vaccine uptake rate increases, the vaccinated population in

Figure (3.4(a)) increases and remains stable. There is also a sharp decrease in both

the carrier population in Figure (3.4(b)) and infected population in Figure (3.4(c))

even with a small vaccine uptake rate. This shows that infection will be controlled if

people continue to receive vaccination.
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(a) Effects of Varying κ on C(t) (b) Effects of Varying κ on I(t)

(c) Effects of Varying κ on R1(t) (d) Effects of Varying κ on R2(t)

Figure 3.5 Effects of Varying κ on C(t), I(t), R1(t) and R2(t) Compartments

Figure (3.5) shows that as the treatment rate increases, there is a rapid decrease

in both the carrier population in Figure (3.5(a)) and infected population in figure

(3.5(b)). Also, the higher the treatment rate, the more people get fully recovered

in Figure (3.5(c)) and the less people recover with complications as seen in Figure

(3.5(d)).
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CHAPTER 4

FORMULATION AND ANALYSIS OF A TWO-STRAIN

DETERMINISTIC BACTERIAL MENINGITIS MODEL

4.1 Two-Strain Model Description and Formulation

In formulating the model, a wide range of parameters were used to incorporate the

coexistence of two bacteria meningitis strains, namely the Streptococcus pneumonaie

and Neisseria meningitidis. It is evident that the available vaccines are strain-specific,

making the risk of contracting an infection from a strain, one has not been vaccinated

against, a great concern.

In the proposed model, the total population at time t, denoted by N(t), is divided

into nine(9) mutually exclusive epidemiological classes, namely, the Susceptible Class

S(t) who can contract both strains 1 and 2, Vaccinated Classes V1(t), V2(t), Carrier

Classes C1(t), C2(t), Infected Classes I1(t), I2(t) and two Recovered Classes R1(t) and

R2(t). This is given as

N(t) = S(t) + V1(t) + V2(t) + C1(t) + C2(t) + I1(t) + I2(t) +R1(t) +R2(t) (4.1)

The Susceptible Class is the population who are not yet infected and have also not

taken any of the vaccines against the disease. This is generated by the recruitment of

individuals at a rate α and by loss of immunity acquired through previous vaccination

ω1, ω2. The susceptible population is reduced by infection through effective contact

with infected individuals at the rates λ1 and λ2, defined by

λ1 =
β[ηC1(t) + I1(t)]

N(t)
(4.2)

λ2 =
β[ηC2(t) + I2(t)]

N(t)
(4.3)

where β is the effective transmission probability per contact and η ≤ 1 is a modification
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parameter indicating the infectiousness of individuals in the carrier classes. The

population is also reduced by natural death rate µ and vaccination θ1, θ2. Hence, the

rate of change of the susceptible population is described by the differential equation

given as
dS

dt
= α + ω1V1 + ω2V2 − (λ1 + λ2 + θ1 + θ2 + µ)S (4.4)

The Vaccinated Class is divided into two based on the available vaccines for these

two strains considered. The Vaccinated population with immunity for strain 1 is

the population who have taken the pneumococcal conjugate vaccines as a form of

protection from the disease. This population is increased by vaccination of susceptible

individuals θ1. On the average, the pneumococcal conjugate vaccines take two(2)

weeks to fully kick in, and are protected for five(5) years. Since this vaccine does

not confer immunity to all the strains of bacteria causing meningitis, the vaccinated

individuals of strain 1 may become infected by another strain, but at a lower rate than

the unvaccinated. This population is decreased by been exposed to the disease or by

vaccine waning and natural death. Therefore, the rate of change of the Vaccinated

population with immunity for strain 1 is represented as

dV1
dt

= θ1S − (1− ε1)λ1V1 − (λ2 + ω1 + µ)V1 (4.5)

The Vaccinated population with immunity for strain 2 is the population who have

taken the meningococcal conjugate vaccines as a form of protection from the disease.

This population is increased by vaccination of susceptible individuals to this specific

strain θ2. On the average, the meningococcal conjugate vaccines also take two(2)

weeks to fully kick in, and should protect one for three (3) to five(5) years. Since

this vaccine does not confer immunity to all the strains of bacteria causing meningitis,

the vaccinated individuals of strain 2 may become infected by strain 1 λ1, but at a

lower rate than the unvaccinated. This population is decreased by been exposed to

the infection (1− ε1)λ1 or by vaccine waning ω2 and natural death µ. Thus, the rate

of change of the Vaccinated population with immunity for strain 2 is given as

dV2
dt

= θ2S − (1− ε2)λ2V2 − (λ1 + ω2 + µ)V2 (4.6)
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The Carrier Population of strain 1 is made up of the population who have infection from

Streptococcus pneumonaie but do not show any signs/symptoms even though they are

infectious. This is generated through the effective contact rate λ1 and decreased as

a result of the population becoming symptomatic by the rate σ1. This population is

decreased by the recovery rate γC1 and by natural death rate µ. Consequently, the

rate of change of the Carrier Population of strain 1 is expressed as

dC1

dt
= λ1(1− τ1)S + (1− ε1)λ1V1 − (σ1 + γC1 + µ)C1 (4.7)

The Carrier Population of strain 2 is made up of the population who have infection

from Neisseria meningitidis but do not show any signs/symptoms even though they

are infectious. This is generated through the effective contact rate λ2 and decreased

as a result of progression to the infected population of strain 2 by the rate σ2.

This population is decreased by the recovery rate γC2 and by natural death rate µ.

Therefore, the rate of change of the Carrier Population of strain 2 is described by the

differential equation

dC2

dt
= λ2(1− τ2)S + (1− ε2)λ2V2 − (σ2 + γC2 + µ)C2 (4.8)

The Infected Population of strain 1 is the population with fully blown infection from

Streptococcus pneumonaie and show signs/symptoms. This population is said to

have survived the average incubation period of one(1) to three(3) days. This is also

generated through the effective contact rate λ1 and progression of the carrier at the

rate σ1. The population is decreased by the recovery rate γI1, diseased induced death

rate δ and natural death rate µ. Hence, the ODE governing the dynamic of the Infected

Population of strain 1 is given by

dI1
dt

= σ1C1 + λ1τ1S + λ1V2 − (γI1 + δ + µ)I1 (4.9)

The Infected Population of strain 2 is the population with fully blown infection from

Neisseria meningitidis and exhibit signs/symptoms of the infection. This population

is said to have survived the average incubation period of four(4) days. This is also

generated through the force of infection λ2 and progression of the carrier at the rate
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σ2. The population is decreased by the recovery rate γI2, diseased induced death rate δ

and natural death rate µ. It follows that the rate of change of the Infected Population

of strain 2 is described by the differential equation given as

dI2
dt

= σ2C2 + λ2τ2S + λ2V1 − (γI2 + δ + µ)I2 (4.10)

The first Recovered class R1(t) is the population who have recovered fully from

infection of either strains. This population increases as a result of recovery of the

carriers at the rates γC1, γC2 and the infected at the rates γI1, γI2. They are decreased

by the complication rate after a period of time ∧ and natural death rate µ. Thus, the

rate of change of the Fully Recovered population is expressed as

dR1

dt
= γC1C1 + γC2C2 + γI1ρ1I1 + γI2ρ2I2 − (∧+ µ)R1 (4.11)

The second Recovered class R2(t) is the population who have recovered from infection

of either strains with complications due to the sequelae of delibitating effects among

survivors even after recovery. This population is also increased by the recovery rates

of the infected populations γI1, γI2 and the complication rate ∧, and decreased due to

natural death rate µ. Hence, the rate of change of the Recovered with Complications

population is described by the differential equation given as

dR2

dt
= γI1(1− ρ1)I1 + γI2(1− ρ2)I2 + ∧R1 − µR2 (4.12)

Table 4.1 Description of the Model State Variables
Variables Description
S(t) Susceptible Population who can contract both strains 1 and 2
V1(t) Vaccinated Population with Immunity for strain 1
V2(t) Vaccinated Population with Immunity for strain 2
C1(t) Carrier Population of strain 1
C2(t) Carrier Population of strain 2
I1(t) Infected Population of strain 1
I2(t) Infected Population of strain 2
R1(t) Fully Recovered Population from both strains 1 and 2
R2(t) Recovered with Complications from both strains 1 and 2
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Table 4.2 Description of Model Parameters
Parameters Description
α Birth or Recruitment rate into Susceptible population
β Transmission probability
δ Disease-induced death rate
µ Natural death rate
σ1 Rate of Progression from Carrier of strain 1 to Infected population

of strain 1
σ2 Rate of Progression from Carrier of strain 2 to Infected population

of strain 2
γC1 Recovery rate of Carriers of strain 1
γC2 Recovery rate of Carriers of strain 2
γI1 Recovery rate of Infected with strain 1
γI2 Recovery rate of Infected with strain 2
θ1 Strain 1 Vaccine uptake rate
θ2 Strain 2 Vaccine uptake rate
ε1 Strain 1 Vaccine efficacy
ε2 Strain 2 Vaccine efficacy
ω1 Vaccine waning of strain 1
ω2 Vaccine waning of strain 2
τ1 Proportion moving to I1 without first passing through C1

τ2 Proportion moving to I2 without first passing through C2

∧ Complication rate after a period of time
ρ1 Proportion moving to R1(t) from strain 1 without first passing

through R2(t)
ρ2 Proportion moving to R1(t) from strain 2 without first passing

through R2(t)

We note that all the parameters are assumed to be non-negative.

Model Assumptions

1. Only two strains of Bacterial meningitis are considered in this model.

2. Every individual in the studied population is susceptible to the two strains.

3. Individuals cannot be infected by more than one bacteria strain at the same

time.

4. The vaccines are only administered to the susceptible population.

5. A vaccinated individual who loses immunity will return to the susceptible class

with no vaccine protection.
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6. There is permanent immunity after full recovery.

Figure 4.1 Schematic Flow Diagram of the Transmission of Two-Strain
Bacterial Meningitis

Model Equations

Following the descriptions given in Equations (4.4) to (4.12) and the flow diagram

of the two-strain bacterial meningitis model presented in Figure (4.1), the model

governing the system of nine mutually exclusive ODEs for bacterial meningitis

population dynamics is expressed as
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dS
dt

= α + ω1V1 + ω2V2 − (λ1 + λ2 + θ1 + θ2 + µ)S

dV1
dt

= θ1S − (1− ε1)λ1V1 − (λ2 + ω1 + µ)V1

dV2
dt

= θ2S − (1− ε2)λ2V2 − (λ1 + ω2 + µ)V2

dC1

dt
= λ1(1− τ1)S + (1− ε1)λ1V1 − (σ1 + γC1 + µ)C1

dC2

dt
= λ2(1− τ2)S + (1− ε2)λ2V2 − (σ2 + γC2 + µ)C2

dI1
dt

= σ1C1 + λ1τ1S + λ1V2 − (γI1 + δ + µ)I1

dI2
dt

= σ2C2 + λ2τ2S + λ2V1 − (γI2 + δ + µ)I2

dR1

dt
= γC1C1 + γC2C2 + γI1ρ1I1 + γI2ρ2I2 − (∧+ µ)R1

dR2

dt
= γI1(1− ρ1)I1 + γI2(1− ρ2)I2 + ∧R1 − µR2



(4.13)

subject to the initial conditions (ICs):

S(0) = S0, V1(0) = V01, V2(0) = V02, C1(0) = C01, C2(0) = C02,

I1(0) = I01, I2(0) = I02, R1(0) = R01, R2(0) = R02

(4.14)

4.2 The Model Analyses

4.2.1 The Model’s Invariant Region

Definition 4.2.1 A region within which the solutions to the model are uniformly

bounded is defined as Ω ∈ <9
+

From the total population in Equation (4.1), we have

dN(t)

dt
=
dS(t)

dt
+
dV1(t)

dt
+
dV2(t)

dt
+
dC1(t)

dt
+
dC2(t)

dt
+
dI1(t)

dt
+
dI2(t)

dt
+
dR1(t)

dt
+
dR2(t)

dt
(4.15)

Substituting (4.13) into (4.15) yields

dN(t)

dt
= α− µN − δI1 − δI2 (4.16)

dN(t)

dt
≤ α− µN(t) (4.17)

Integrating both sides, we have

− 1

µ

∫
−µ

α− µN
dN ≤

∫
dt (4.18)
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which gives

− 1

µ
In(α− µN) ≤ t+ c (4.19)

where c is the constant of integration.

In(α− µN) ≥ −(µt+ c) (4.20)

(α− µN) ≥ e−(µt+c) (4.21)

(α− µN) ≥ ke−µt (4.22)

where k is ec.

Let

N(0) = N0

This implies

(α− µN0) ≥ k (4.23)

From (4.22) and (4.23), we get

(α− µN) ≥ (α− µN0)e
−µt (4.24)

µN ≤ α− (α− µN0)e
−µt (4.25)

N(t) ≤ α

µ
− (α− µN0)

µ
e−µt (4.26)

⇒ N(t) → α

µ
as t→∞ (4.27)

This implies N(t) ∈ [0, α
µ
].

Therefore, the feasible set of solution of the model equations enter and remain in the

invariant region:

Ω = {(S, V1, V2, C1, C2, I1, I2, R1, R2) ∈ <9
+ : N(t) ≤ α

µ
} (4.28)

We note that α
µ

is the upper bound of N(t). However, if N > α
µ
, then N(t) will

decrease to α
µ
and the solutions (S, V1, V2, C1, C2, I1, I2, R1, R2) will enter Ω or approach

it asymptotically, as such, the region will attract all solutions in <9
+. Therefore,

the model is well posed mathematically and epidemiologically since the region Ω is

positively invariant and attracting. Hence, it is sufficient to study the dynamics of the
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model in Ω.

4.2.2 Positivity of the Model’s Solution

Theorem 4.2.1 The Positivity Theorem: Let Ω = {(S, V1, V2, C1, C2, I1, I2, R1, R2) ∈

<9
+ : S0 > 0, V01 > 0, V02 > 0, C01 > 0, C02 > 0, I01 > 0, I02 > 0, R01 > 0, R02 >

0}, then the solution of (S, V1, V2, C1, C2, I1, I2, R1, R2) are positive for t ≥ 0.

Proof: Considering the first equation of the model

dS

dt
= α + ω1V1 + ω2V2 − (λ1 + λ2 + θ1 + θ2 + µ)S (4.29)

dS

dt
≥ −(λ1 + λ2 + θ1 + θ2 + µ)S (4.30)∫

dS

S
≥ −

∫
(λ1 + λ2 + θ1 + θ2 + µ)dt (4.31)

lnS(t) ≥ −f(t) + c (4.32)

where f(t) =
∫

(λ1 + λ2 + θ1 + θ2 + µ)dt and c is the constant of integration

S(t) ≥ e(−f(t)+c) (4.33)

S(t) ≥ e−f(t) · ec (4.34)

S(t) ≥ A1e
−f(t) (4.35)

where A1 = ec

From the theorem, at t = 0, S0 > 0 which implies A1 = ec ≥ 0 since S(0) ≥ A1.

Consequently, S(t) ≥ S0e
−f(t) ≥ 0 ∀t ≥ 0

Similarly, considering the second equation of the model

dV1
dt

= θ1S − (1− ε1)λ1V1 − (λ2 + ω1 + µ)V1 (4.36)

dV1
dt

≥ −[(1− ε1)λ1 + λ2 + ω1 + µ]V1 (4.37)∫
dV1
V1

≥ −
∫

[(1− ε1)λ1 + λ2 + ω1 + µ]dt (4.38)

lnV1(t) ≥ −g(t) + c (4.39)
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where g(t) =
∫

[(1− ε1)λ1 + λ2 + ω1 + µ]dt and and c is the constant of integration

V1(t) ≥ e(−g(t)+c) (4.40)

V1(t) ≥ e−g(t) · ec (4.41)

V1(t) ≥ A2e
−g(t) (4.42)

where A2 = ec

At t = 0, V01 > 0 which implies A2 = ec ≥ 0.

Consequently, V1(t) ≥ V01e
−g(t) ≥ 0 ∀t ≥ 0

Considering the third equation of the model

dV2
dt

= θ2S − (1− ε2)λ2V2 − (λ1 + ω2 + µ)V2 (4.43)

dV2
dt

≥ −[(1− ε2)λ2 + λ1 + ω2 + µ]V2 (4.44)∫
dV2
V2

≥ −
∫

[(1− ε2)λ2 + λ1 + ω2 + µ]dt (4.45)

lnV2(t) ≥ −h(t) + c (4.46)

where h(t) =
∫

[(1− ε2)λ2 + λ1 + ω2 + µ]dt and and c is the constant of integration

V2(t) ≥ e(−h(t)+c) (4.47)

V2(t) ≥ e−h(t) · ec (4.48)

V2(t) ≥ A3e
−h(t) (4.49)

where A3 = ec

At t = 0, V02 > 0 which implies A3 = ec ≥ 0.

Consequently, V2(t) ≥ V02e
−h(t) ≥ 0 ∀t ≥ 0.
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Considering the fourth equation of the model

dC1

dt
= λ1(1− τ1)S + (1− ε1)λ1V1 − (σ1 + γC1 + µ)C1 (4.50)

dC1

dt
≥ −(σ1 + γC1 + µ)C1 (4.51)∫

dC1

C1

≥ −
∫

(σ1 + γC1 + µ)dt (4.52)

lnC1(t) ≥ −(σ1 + γC1 + µ)t+ c (4.53)

C1(t) ≥ A4e
−z1t (4.54)

where A4 = ec and z1 = (σ1 + γC1 + µ) ≥ 0

At t = 0, C01 > 0 which implies A4 = ec ≥ 0.

Consequently, C1(t) ≥ C01e
−z1t ≥ 0 ∀t ≥ 0

In the same way, considering the fifth equation of the model, we have

C2(t) ≥ C02e
−z2t ≥ 0 ∀t ≥ 0

where z2 = (σ2 + +γC2 + µ) ≥ 0

and considering the sixth equation of the model, we have

I1(t) ≥ I01e
−z3t ≥ 0 ∀t ≥ 0

where z3 = (γI1 + δ + µ) ≥ 0

Considering the seventh equation of the model, we have

I2(t) ≥ I02e
−z4t ≥ 0 ∀t ≥ 0

where z4 = (γI2 + δ + µ) ≥ 0

and considering the eighth equation of the model, we have

R1(t) ≥ R01e
−z5t ≥ 0 ∀t ≥ 0
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where z5 = (∧+ µ) ≥ 0

Lastly, the ninth equation of the model gives us

R2(t) ≥ R02e
−µt ≥ 0 ∀t ≥ 0

where µ ≥ 0 This completes the proof of the theorem.

4.2.3 Existence of Equilibria

For the developed model, four equilibrium points are identified when each of the

compartment is at steady state. These are the disease free equilibrium, endemic

equilibrium and the boundary equilibrium points. A disease free equilibrium is a

state solution to the model in which the studied population remains in the absence of

the disease. The disease free equilibrium point is obtained by equating all equations

of the model to zero and substituting the values of the state variables C1(t), C2(t),

I1(t), I2(t), R1(t) and R2(t) as zero into the model equations. The term "endemic" is

used to refer to a disease affecting a number of people simultaneously, so as to show

distinct connection with certain localities and is prevalent in that particular area(s)

thereof. An endemic equilibrium point of a disease is defined as a positive steady

state solution when the disease persists in the studied population. For a two-strain

model, the boundary equilibrium points are established which gives the solution when

a particular strain persists in the population.

The Disease Free Equilibrium Point

The DFE of the model is defined as (S∗(t), V ∗1 (t), V ∗2 (t), 0, 0, 0, 0, 0, 0) satisfying dS(t)
dt

=

dV1(t)
dt

= dV2(t)
dt

= dC1(t)
dt

= dC2(t)
dt

= dI1(t)
dt

= dI2(t)
dt

= dR1(t)
dt

= dR2(t)
dt

= 0

Equating the system of equations in (4.13) to 0 and substituting C1 = C2 = I1 = I2 =

R1 = R2 = 0, we obtain the system of equations

ω1V1 + ω2V2 − (θ1 + θ2 + µ)S = −α

θ1S − (ω1 + µ)V1 = 0

θ2S − (ω2 + µ)V2 = 0

 (4.55)
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Solving simultaneously, the DFE is obtained as:

E0 =

(
(ω1 + µ)(ω2 + µ)α

χµ
,
(ω2 + µ)θ1α

χµ
,
(ω1 + µ)θ2α

χµ
, 0, 0, 0, 0, 0, 0

)
(4.56)

where

χ =
(
µ2 + µω1 + µω2 + µ θ1 + µ θ2 + ω1ω2 + ω1θ2 + ω2θ1

)
(4.57)

Endemic Equilibrium Point

The Endemic Equilibrium Point (EEP) of the model is defined as

(S∗(t), V ∗1 (t), V ∗2 (t), C∗1(t), C∗2(t), I∗1 (t), I∗2 (t), R∗1(t), R
∗
2(t)) satisfying dS(t)

dt
= dV1(t)

dt
=

dV2(t)
dt

= dC1(t)
dt

= dC2(t)
dt

= dI1(t)
dt

= dI2(t)
dt

= dR1(t)
dt

= dR2(t)
dt

= 0.

Boundary Equilibrium Points

Two Boundary Equilibrium Points (BEP) denoted by E1 and E2 is defined by

E1 = (S∗(t), V ∗1 (t), V ∗2 (t), C∗1(t), 0, I∗1 (t), 0, R∗1(t), R
∗
2(t)) (4.58)

where only strain 1 survives, and

E2 = (S∗(t), V ∗1 (t), V ∗2 (t), 0, C∗2(t), 0, I∗2 (t), R∗1(t), R
∗
2(t)) (4.59)

where only strain 2 survives.

The following system of equations is solved for E1

α + ω1V1 + ω2V2 − (λ1 + θ1 + θ2 + µ)S = 0

θ1S − (1− ε1)λ1V1 − (ω1 + µ)V1 = 0

θ2S − (λ1 + ω2 + µ)V2 = 0

λ1(1− τ1)S + (1− ε1)λ1V1 − (σ1 + γC1 + µ)C1 = 0

σ1C1 + λ1τ1S + λ1V2 − (γI1 + δ + µ)I1 = 0

γC1C1 + γI1ρ1I1 − (∧+ µ)R1 = 0

γI1(1− ρ1)I1 + ∧R1 − µR2 = 0



(4.60)
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which results in

S∗ =
(λ1 + b7) [(1− ε1)λ1 + b4]α

(1− ε1)λ13 +G2λ1
2 +G1λ1 + µχ

(4.61)

V ∗1 =
θ1S

∗

(1− ε1)λ1 + b4
(4.62)

V ∗2 =
θ2S

∗

λ1 + b7
(4.63)

C∗1 =
λ1S

∗ [θ1 (1− ε1) + (1− τ1) ((1− ε1)λ1 + b4)]

a2 ((1− ε1)λ1 + b4)
(4.64)

I∗1 =
λ1τ1S

∗ + σ1C
∗
1 + λ1V

∗
2

a1
(4.65)

R∗1 =
γI1ρ1I

∗
1 + γc1C

∗
1

∧+ µ
(4.66)

R∗2 =
γI1 [(1− ρ1)µ+ ∧] I∗1 + γC1 ∧ C∗1

µ (∧+ µ)
(4.67)

where

a1 = γI1 + δ + µ a2 = σ1 + γC1 + µ b4 = ω1 + µ b7 = ω2 + µ

G1 = [χ− ω1 (b7 + θ2)] (1− ε1)+µ b4−ω2θ1+χ G2 = (1− ε1) (b7 + θ1 + θ2 + µ)+b4

The force of infection in Equation (4.2) becomes

λ∗1 =
β(ηC∗1 + I∗1 )

N∗
(4.68)

This gives

λ∗1N
∗ − β(ηC∗1 + I∗1 ) = 0 (4.69)

Substituting the state solutions from Equations (4.61) to (4.67) into Equation (4.69)
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yields the following cubic polynomial after some computations

K1λ
∗3
1 +K2λ

∗2
1 +K3λ

∗
1 +K4 = 0 (4.70)

where,

K1 = (1− ε1) [(1− τ1) ((µ+ γI1 )σ1 + (µ+ γc1 ) a1) + a2 (µ+ γI1 ) τ1]

K2 = (1− τ1) [(1− ε1) b7 + b4][σ1 (µ+ γI1 ) + a1 (µ+ γc1 )] + a1θ1 (1− ε1) (µ+ γc1 )

+ (1− ε1) (µ+ γI1 ) [a2 (τ1b7 + θ2) + σ1θ1]− β µ (1− ε1) (1− τ1) (η a1 + σ1)

− µ a2 (1− ε1) (β τ1 − a1) + a2b4τ1 (µ+ γI1 )

K3 = b7σ1 (µ+ γI1 ) [(1− τ1) b4 + (1− ε1) θ1] + a1b7 [(1− τ1) b4 + (1− ε1) θ1] (µ+ γc1 )

+ a2 (b7τ1 + θ2) [b4 (µ+ γI1 )− µβ (1− ε1)] + µ a1a2 (1− ε1) (θ2 + b7) + µ a1a2 (θ1 + b4)

− β µ a2b4τ1 − µβ (η a1 + σ1) ((1− τ1) (1− ε1) b7 + (1− τ1) b4 + (1− ε1) θ1)

K4 =− β µ (−b4b7 (−1 + τ1) (η a1 + σ1) + b7θ1 (1− ε1) (η a1 + σ1) + b4 (b7τ1 + θ2) a2) + µ a1a2χ

=− β µ (−b7 (η a1 + σ1) (b4τ1 + ε1θ1 − b4 − θ1) + b4 (b7τ1 + θ2) a2) + µ a1a2χ

=− β µ (b7 (η a1 + σ1) ((1− τ1) b4 + (1− ε1) θ1) + b4 (b7τ1 + θ2) a2) + µ a1a2χ

=µ a1a2χ

(
1− β (b7 (η a1 + σ1) ((1− τ1) b4 + (1− ε1) θ1) + b4 (b7τ1 + θ2) a2)

a1a2χ

)
=µa1a2χ (1−R01)

and R01 is the basic reproduction number relating to strain 1 as defined in Equation

(4.89).
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For E2, the following system of equations is solved

α + ω1V1 + ω2V2 − (λ2 + θ1 + θ2 + µ)S = 0

θ1S − (λ2 + ω1 + µ)V1 = 0

θ2S − (1− ε2)λ2V2 − (ω2 + µ)V2 = 0

λ2(1− τ2)S + (1− ε2)λ2V2 − (σ2 + γC2 + µ)C2 = 0

σ2C2 + λ2τ2S + λ2V1 − (γI2 + δ + µ)I2 = 0

γC2C2 + γI2ρ2I2 − (∧+ µ)R1 = 0

γI2(1− ρ2)I2 + ∧R1 − µR2 = 0



(4.71)

which results in

S∗ =
(λ2 + b4) [(1− ε2)λ2 + b7]α

(1− ε2)λ23 +G4λ2
2 +G3λ2 + µχ

(4.72)

V ∗1 =
θ1S

∗

λ2 + b4
(4.73)

V ∗2 =
θ2S

∗

(1− ε2)λ2 + b7
(4.74)

C∗2 =
λ2S

∗ [θ2 (1− ε2) + (1− τ2) ((1− ε2)λ2 + b7)]

a4 ((1− ε2)λ2 + b7)
(4.75)

I∗2 =
λ2τ2S

∗ + σ2C
∗
2 + λ2V

∗
1

a3
(4.76)

R∗1 =
γI2ρ2I

∗
2 + γc2C

∗
2

∧+ µ
(4.77)

R∗2 =
γI2 [(1− ρ2)µ+ ∧] I∗2 + γC2 ∧ C∗2

µ (∧+ µ)
(4.78)

where,

a3 = γI2 + δ + µ a4 = σ2 + γC2 + µ

G3 = [χ− ω2 (b4 + θ1)] (1− ε2)+µ b7−ω1θ2+χ G4 = (1− ε2) (b4 + θ1 + θ2 + µ)+b7
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The force of infection in Equation (4.3) becomes

λ∗2 =
β(ηC∗2 + I∗2 )

N∗
(4.79)

This yields

λ∗2N
∗ − β(ηC∗2 + I∗2 ) = 0 (4.80)

Substituting the state solutions from Equations (4.72) to (4.78) into Equation (4.80)

yields the following cubic polynomial after some computations

K5λ
∗3
2 +K6λ

∗2
2 +K7λ

∗
2 +K8 = 0 (4.81)

where,

K5 = (1− ε2) [(1− τ2) ((µ+ γI2 )σ2 + (µ+ γc2 ) a3) + a4 (µ+ γI2 ) τ2]

K6 = (1− τ2) [(1− ε2) b4 + b7][σ2 (µ+ γI2 ) + a3 (µ+ γc2 )] + a3θ2 (1− ε2) (µ+ γc2 )

+ (1− ε2) (µ+ γI2 ) [a4 (τ2b4 + θ1) + σ2θ2]− β µ (1− ε2) (1− τ2) (η a3 + σ1)

− µ a4 (1− ε2) (β τ2 − a3) + a4b7τ2 (µ+ γI2 )

K7 =b4σ2 (µ+ γI2 ) [(1− τ2) b7 + (1− ε2) θ2] + a3b4 [(1− τ2) b7 + (1− ε2) θ2] (µ+ γc2 )

+ a4 (b4τ2 + θ1) [b7 (µ+ γI2 )− µβ (1− ε2)] + µ a3a4 (1− ε2) (θ1 + b4) + µ a3a4 (θ2 + b7)

− β µ a4b7τ2 − µβ (η a3 + σ2) ((1− τ2) (1− ε2) b4 + (1− τ2) b7 + (1− ε2) θ2)
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K8 =− β µ (−b4b7 (−1 + τ2) (η a3 + σ2) + b7θ2 (1− ε2) (η a3 + σ2) + b7 (b4τ2 + θ1) a4) + µ a3a4χ

=− β µ (−b4 (η a3 + σ2) (b7τ2 + ε2θ2 − b7 − θ2) + b7 (b4τ2 + θ1) a4) + µ a3a4χ

=− β µ (b4 (η a3 + σ2) ((1− τ2) b7 + (1− ε2) θ2) + b7 (b4τ2 + θ1) a4) + µ a3a4χ

=µ a3a4χ

(
1− β (b4 (η a3 + σ2) ((1− τ2) b7 + (1− ε2) θ2) + b7 (b4τ2 + θ1) a4)

a3a4χ

)
=µa3a4χ (1−R02)

and R02 is the basic reproduction number relating to strain 2 as defined in Equation

(4.90).

4.2.4 The Basic Reproduction Number (R0)

The basic reproduction number is defined as the average number of secondary

infections produced by a single case of an infectious individual in a completely

susceptible population. The basic reproduction number associated with model (4.13)

is derived as follows: 
dC1

dt

dI1
dt

dC2

dt

dI2
dt

 = fi − vi

where

fi =


λ1(1− τ1)S + (1− ε1)λ1V1

λ1τ1S + λ1V2

λ2(1− τ2)S + (1− ε2)λ2V2
λ2τ2S + λ2V1

 (4.82)

and

vi =


(σ1 + γC1 + µ)C1

(γI1 + δ + µ)I1 − σ1C1

(σ2 + γC2 + µ)C2

(γI2 + δ + µ)I2 − σ2C2

 (4.83)

where fi is the rate of appearance of new infection(s) in compartment i, vi represents

the rate of transfer of individuals into compartment i, with i ∈ [1, 4].
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The matrix F and V are obtained as follows:

F =


∂f1
∂C1

∂f1
∂I1

∂f1
∂C2

∂f1
∂I2

∂f2
∂C1

∂f2
∂I1

∂f2
∂C2

∂f2
∂I2

∂f3
∂C1

∂f3
∂I1

∂f3
∂C2

∂f3
∂I2

∂f4
∂C1

∂f4
∂I1

∂f4
∂C2

∂f4
∂I2



=



η β b7[θ1(1−ε1)+(1−τ1)b4]
χ

β b7[θ1(1−ε1)+(1−τ1)b4]
χ

0 0

η β b4(b7τ1+θ2)
χ

β b4(b7τ1+θ2)
χ

0 0

0 0 η β b4[θ2(1−ε2)+(1−τ2)b7]
χ

β b4[θ2(1−ε2)+(1−τ2)b7]
χ

0 0 η β b7(b4τ2+θ1)
χ

β b7(b4τ2+θ1)
χ


(4.84)

and

V =


∂v1
∂C1

∂v1
∂I1

∂v1
∂C2

∂v1
∂I2

∂v2
∂C1

∂v2
∂I1

∂v2
∂C2

∂v2
∂I2

∂v3
∂C1

∂v3
∂I1

∂v3
∂C2

∂v3
∂I2

∂v4
∂C1

∂v4
∂I1

∂v4
∂C2

∂v4
∂I2



=


σ1 + γC1 + µ 0 0 0

−σ1 γI1 + δ + µ 0 0

0 0 σ2 + γC2 + µ 0

0 0 −σ2 γI2 + δ + µ

 (4.85)

Lastly,

V−1 =


1

σ1+γC1+µ
0 0 0

σ1
(σ1+γC1+µ)(γI1+δ+µ)

1
γI1+δ+µ

0 0

0 0 1
σ2+γC2+µ

0

0 0 σ2
(σ2+γC2+µ)(γI2+δ+µ)

1
γI2+δ+µ

 (4.86)
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Thus, the next generation matrix:

G = FV−1

=



η β b7b1(η a1+σ1)
χa1a2

β b7b1
χa1

0 0

η β b4(b7τ1+θ2)(η a1+σ1)
χa1a2

β b4(b7τ1+θ2)
χa1

0 0

0 0 β b4b2(η a3+σ2)
χa3a4

β b4b2
χa3

0 0 β b7(b4τ2+θ1)(η a3+σ2)
χa3a4

β b7(b4τ2+θ1)
χa3


(4.87)

where,

b1 = θ1(1− ε1) + (1− τ1)b4 b2 = θ2(1− ε2) + (1− τ2)b7

The eigenvalues of the matrix, G are

=


0

0

β [b7(η a1+σ1)(b4(1−τ1)+θ1(1−ε1))+a2b4(b7τ1+θ2)]
a1a2χ

β [b4(η a3+σ2)(b7(1−τ2)+θ2(1−ε2))+a4b7(b4τ2+θ1)]
a3a4χ

 (4.88)

Consequently, the Basic Reproduction Number, which is the spectral radius of G is

given as

R0 = max{R01,R02}

with

R01 =
β [b7 (η a1 + σ1) (b4 (1− τ1) + θ1 (1− ε1)) + a2b4 (b7τ1 + θ2)]

a1a2χ
(4.89)

and

R02 =
β [b4 (η a3 + σ2) (b7 (1− τ2) + θ2 (1− ε2)) + a4b7 (b4τ2 + θ1)]

a3a4χ
(4.90)

representing the basic reproduction numbers relating to strain 1 and 2 respectively.

R01 provides the expected number of newly infected individuals that would arise as a

result of introducing a single case of strain 1 into a completely susceptible population.

Similarly, R02 yields the expected number of newly infected individuals that would
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arise if a single case of strain 2 is introduced into a completely susceptible population.

4.3 Model Parameter Estimation and Initial Conditions

In this study, two strategies are employed in obtaining the parameter values. We first

gathered the parameter values from literature and for those parameters not found in

the literature, we estimated their values. The bacterial meningitis reported cases from

2017 to 2019 is used (Anon, 2019). Some of the demographic parameters are also

estimated from literature. The time unit is assumed to be days.

4.3.1 Initial Conditions

The base year used in our simulations is 2017. Since the disease is endemic in the

northern part of Ghana, the total population of the northern part as at 2017 was

4953293 (Anon, 2020), as such the initial total population, N(0) = 4953293. Since,

the outbreak in that year was due to Neisseria meningitidis strain, the initially infected

individuals of strain 2, I2(0) = 69, which is the same as the initial number of infected

people reported in data. We assumed I1(0) = 153. From the review of literature,

Streptococcus pneumoniae is found in the nose and throat of 20 − 40% of people

while Neisseria meningitidis is found in 1 − 10% without causing any symptoms of

illness in these people. So taking 140% and 110% of I1(0) and I2(0) respectively gives

C1(0) = 214 and C2(0) = 76. We assumed V1(0) = V2(0) = R1(0) = R2(0) = 0, so

the initial susceptible, S(0) = N(0)− V1(0)− V2(0)−C1(0)−C2(0)− I1(0)− I2(0)−

R1(0)−R2(0) = 4952781.

4.3.2 Parameter Values

(i) Natural death rate (µ): The average life span in Ghana is 64.17 years, therefore

µ = 1
64.17×365 = 4.269× 10−5 per day.

(ii) Birth or recruitment rate (α): The limiting total human population in the absence

of the disease is assumed to be α
µ

= 4953293, so α = 211 per day.

(iii) Disease-induced death rate (δ): The mortality rate due to bacterial meningitis

disease in Ghana is 36− 50%. Taking the average to be 43% gives δ = 0.43.
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(iv) Progression rates (σ1, σ2): The average incubation period for Streptococcus

pneumonaie is 1-3 days while Neisseria meningitidis is 4 days. Thus, σ1 = 1
2

= 0.5

and σ2 = 1
4

= 0.25

(v) Vaccine waning rates (ω1, ω2): It takes 5 years for the pneumococcal conjugate

vaccines to wane while that of the meningococcal conjugate vaccines is 3 to 5

years. Therefore, ω1 = 1
5×365 = 5.47× 10−4 per day and ω2 = 1

4×365 = 6.8× 10−4

per day

(vi) Recovery rates (γC1, γI1): The period of infection of the disease is 1-2 weeks

with hospitalization and right treatment, so taking the average, we have 8 days.

Therefore, γI1 = 1
8

= 0.125. For the people exposed to the disease, prophylaxis

are administered which have shown to be effective for one to two weeks follow up

(Trestioreanu et al., 2011). Therefore, γC1 = 1
7

= 0.143.

(vii) Complication rate (∧): Even with appropriate treatment, 10− 20% of survivors

have serious complications or long-term sequelae. Therefore, ∧ = 15
100

= 0.15

Table 4.3 Model Parameter Values
Parameters Values Source
α 211 Estimated
µ 0.000043 Estimated
ω1 0.000547 Estimated
ω2 0.00068 Estimated
β 0.88 Asamoah et al. (2018)
γC1 0.143 Estimated
γC2 0.3 Wiah and Adetunde (2010)
γI1 0.125 Estimated
γI2 0.1 Wiah and Adetunde (2010)
η 0.75 Assumed
δ 0.43 Estimated
ε1 0.85 Anon (2020b)
ε2 0.90 Anon (2020b)
σ1 0.5 Estimated
σ2 0.25 Estimated
τ1 0.3 Elmojtaba and Adam (2017)
τ2 0.5 Assumed
θ1 0.2 [0,1] Assumed
θ2 0.5 Wiah and Adetunde (2010)
ρ1 0.85 Elmojtaba and Adam (2017)
ρ2 0.9 Assumed
∧ 0.15 Estimated
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4.4 Estimated R0 Value and Herd Immunity

Using the model parameter values given in Table 4.3, the estimated value of R01 is

approximately 1.3409 while that of R02 is 0.4853. Therefore,

R0 = max{R01,R02} = max{1.3409, 0.4853} = 1.3409

From the biological point of view, this threshold value indicates that Bacterial

Meningitis has a higher potential of invading the population if no control effort is

implemented to curtail the transmission and spread of the disease. Therefore, it is

important to determine the fraction of the population that needs to be immunized

in order to cease large outbreaks of Bacterial Meningitis in Ghana. When a large

scale of population is immunized against a contagious infectious disease (either by

vaccination or recovery from the disease infection), an indirect protection is provided

to the remaining scale that is not immune to the disease. This kind of protection

is referred to as Herd Immunity (Kwok et al., 2020; Abidemi, Zainuddin and Aziz,

2021). Herd immunity plays a major role in epidemic control including giving a

better understanding on how effective a vaccination administration would be without

reaching 100% population coverage.

Therefore, the critical level of population immunity, denoted as p̂, is calculated with

respect to the estimated R0 value for Ghana Bacterial Meningitis outbreaks as

p̂ = 1− 1

R0

= 0.25 (4.91)

which implies that Bacterial Meningitis will not spread in the population if 25% of the

population is immune to the disease. Hence, successful vaccination of about 25% of

the entire population to both strains may lead to eradication of the disease in Ghana.

4.5 Stability Analyses of the Disease-Free Equilibrium

The stability analysis of the Disease-Free Equilibrium (DFE) is carried out in this

section. The dimensionless threshold, R0i, i = 1, 2 is used to discuss the local and

104



global asymptotic stability of the DFE.

4.5.1 Local Asymptotic Stability of the Disease-Free Equilibrium

Theorem 4.5.1 The DFE is Locally Asymptotically Stable (LAS) if R0 < 1 and

unstable if R0 > 1.

Using Theorem 4.5.1, the result in Lemma 4.5.1 follows immediately based on the

expressions of R01,R02.

Lemma 4.5.1 The DFE of the two-strain bacterial meningitis model in (4.13) is

Locally Asymptotically Stable (LAS) if both R01,R02 < 1 and unstable if R01,R02 > 1.

Following Definition 2.4.2, the Jacobian matrix, J evaluated at E0 is given as



−b3 ω1 ω2 −β η b4b7
χ

−β η b4b7
χ

−β b4b7
χ

−β b4b7
χ

0 0

θ1 −b4 0 −β η θ1(1−ε1)b7
χ

−β η b7θ1
χ

−β θ1(1−ε1)b7
χ

−β b7θ1
χ

0 0

θ2 0 −b7 −β η b4θ2
χ

−β η θ2(1−ε2)b4
χ

−β b4θ2
χ

−β θ2(1−ε2)b4
χ

0 0

0 0 0 β η b1b7
χ
− a2 0 β b1b7

χ
0 0 0

0 0 0 0 β η b2b4
χ
− a4 0 β b2b4

χ
0 0

0 0 0 β η b4b6
χ

+ σ1 0 β b4b6
χ
− a1 0 0 0

0 0 0 0 β η b7b5
χ

+ σ2 0 β b7b5
χ
− a3 0 0

0 0 0 γC1 γC2 γI1ρ1 γI2ρ2 −(∧+ µ) 0

0 0 0 0 0 γI1(1− ρ1) γI2(1− ρ2) ∧ −µ


(4.92)

where,

b3 = θ1 + θ2 + µ b5 = b4τ2 + θ1 b6 = b7τ1 + θ2

The eigenvalues of the Jacobian matrix, J are

λ1,2 = −(a1 + a2)χ− β η b1b7 − β b4b6 ±
√
W1

2χ

λ3,4 = −(a3 + a4)χ− β η b2b4 − β b5b7 ±
√
W2

2χ
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λ5 = −µ λ6 = −(∧+ µ)

where,

W1 = β2(η b1b7+b4b6)
2+2χβ η b1b7(a1−a2)−2χβ b4b6(a1−a2)+4χβ b1b7σ1+χ

2(a1−a2)2

and

W2 = β2(η b2b4+b5b7)
2+2χβ η b2b4(a3−a4)−2χβ b5b7(a3−a4)+4χβ b2b4σ2+χ

2(a3−a4)2

The remaining three eigenvalues of J are obtained as the roots of the following

polynomial:

c1λ
3 + c2λ

2 + c3λ+ c4 (4.93)

where,

c1 = 1

c2 = b3 + b4 + b7

c3 = b4b7 + b3(b4 + b7)− ω1θ1 − ω2θ2 = χ+ µ(b3 + b4 + ω2)

c4 = b3b4b7 − b4ω2θ2 − b7ω1θ1 = χµ

Applying the Routh-Hurwitz criteria to the cubic polynomial in Equation (4.93), since

all the parameters of the model in (4.13) are positive, it is clear that the condition of

stability is established with c1 > 0, c2 > 0, c3 > 0 and c4 > 0.

4.5.2 Global Asymptotic Stability of the Disease-Free Equilibrium

The global asymptotic stability of the model in (4.13) is investigated by following

Castillo-Chavez, Feng and Huang (2002). The model is denoted by:


dX
dt

= F (X, Y )

dY
dt

= G(X, Y )

(4.94)

where X = (S, V1, V2, R1, R2) denotes the right-hand side of the uninfected population

with C1 = C2 = I1 = I2 = 0 and Y = (C1, C2, I1, I2) denotes the right-hand side of
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the infected population.

Theorem 4.5.2 The Disease-Free Equilibrium is said to be globally asymptotically

stable in Ω if R01,R02 < 1 and the following two conditions hold:

C1: For dX
dt

= F (X, 0), E0 is globally asymptotically stable.

C2: G(X, Y ) = J [G(X∗, 0)]Y − Ĝ(X, Y ), Ĝ(X, Y ) ≥ 0, ∀ (X, Y ) ∈ Ω

where (X∗, 0) = E0 =
(
αb4b7
µχ

, αθ1b7
µχ

, αθ2b4
µχ

, 0, 0, 0, 0, 0, 0
)
, J [G(X∗, 0)] is the Jacobian of

G(X, Y ) obtained with respect to (C1, C2, I1, I2) and evaluated at (X∗, 0).

Proof:

C1: From the model, it follows that:

F (X, 0) =



α + ω1V1 + ω2V2 − (θ1 + θ2 + µ)S

θ1S − b4V1
θ2S − b7V2
−(∧+ µ)R1

∧R1 − µR2


(4.95)

From Equation (4.95), it is clear that

E0 = (S, V1, V2, C1, C2, I1, I2, R1, R2) =

(
αb4b7
µχ

,
αθ1b7
µχ

,
αθ2b4
µχ

, 0, 0, 0, 0, 0, 0

)

This can be verified using the method of integrating factors. From Equation (4.95),

we have:

dV1
dt

= θ1S − b4V1 (4.96)

which can be written in standard from as

dV1
dt

+ b4V1 = θ1S (4.97)

The integrating factor is given as I.F. = e
∫
b4dt = eb4t.
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Multiplying Equation (4.97) through by the integrating factor yields

eb4t
(
dV1
dt

+ b4V1

)
= (θ1S) eb4t (4.98)∫

d

dt

(
V1e

b4t
)
dt =θ1

∫
Seb4tdt (4.99)

Let I =
∫
Seb4tdt. Integrating by parts, we have

u = S =⇒ du = S ′dt, and dv = eb4t =⇒ v =
eb4t

b4

So,

I =
Seb4t

b4
− 1

b4

∫
S ′eb4tdt (4.100)

=⇒ V1e
b4t = θ1

[
Seb4t

b4
− 1

b4

∫
S ′eb4tdt

]
(4.101)

=
θ1S

b4
eb4t − θ1

b4

∫
S ′eb4tdt (4.102)

Therefore,

V1 =
θ1S

b4
− θ1
b4eb4t

∫
S ′eb4tdt (4.103)

From Equation (4.103), V1 → θ1S
b4

as t→∞.

Similarly, we can deduce from Equation (4.95) that, V2 → θ2S
b7

as t→∞.

Furthermore, from Equation (4.95), we have,

dS

dt
= α + ω1V1 + ω2V2 − (θ1 + θ2 + µ)S (4.104)
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Since V1 → θ1S
b4

and V2 → θ2S
b7

, Equation (4.104) is rewritten as

dS

dt
=α +

ω1θ1S

b4
+
ω2θ2S

b7
− (θ1 + θ2 + µ)S (4.105)

=α +

(
ω1θ1
b4

+
ω2θ2
b7
− (θ1 + θ2 + µ)

)
S

dS

dt
=α−

(
µχ

b4b7

)
S (4.106)

Therefore, Equation (4.106) can be put in standard form as

dS

dt
+

µχ

b4b7
S = α (4.107)

The integrating factor is given as I.F. = e
∫ µχ
b4b7

dt
= e

µχ
b4b7

t.

Multiplying Equation (4.107) through by the integrating factor gives

e
µχ
b4b7

t

(
dS

dt
+

µχ

b4b7
S

)
= αe

µχ
b4b7

t (4.108)∫
d

dt

(
Se

µχ
b4b7

t
)
dt =

∫
αe

µχ
b4b7

t
dt (4.109)

Se
µχ
b4b7

t
=
αb4b7
µχ

e
µχ
b4b7

t
+ c (4.110)

where c is the constant of integration. Therefore,

S =
αb4b7
µχ

+ Ce
− µχ
b4b7

t (4.111)

From Equation (4.111), S → αb4b7
µχ

as t→∞; and this implies the global convergence

of Equation (4.95) in Ω.

C2: G(X, Y ) is given as

G(X, Y ) =



λ1(1− τ1)S + (1− ε1)λ1V1 − a2C1

λ2(1− τ2)S + (1− ε2)λ2V2 − a4C2

σ1C1 + λ1τ1S + λ1V2 − a1I1

σ2C2 + λ2τ2S + λ2V1 − a3I2


(4.112)
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where λ1, λ2 are the forces of infection defined in Equations (4.2) and (4.3).

The Jacobian matrix of G(X, Y ), J [G(X∗, 0)] is given as



β η [(1−ε1)V ∗1 +(1−τ1)S∗]−a2N∗
N∗

0
β [(1−ε1)V ∗1 +(1−τ1)S∗]

N∗
0

0
β η [(1−ε2)V ∗2 +(1−τ2)S∗]−a4N∗

N∗
0

β [(1−ε2)V ∗2 +(1−τ2)S∗]
N∗

β η (τ1S∗+V ∗2 )+σ1N∗
N∗

0
β (τ1S∗+V ∗2 )−a1N∗

N∗
0

0
β η (τ2S∗+V ∗1 )+σ2N∗

N∗
0

β (τ2S∗+V ∗1 )−a3N∗
N∗


(4.113)

By the condition in C2 with Equations (4.112) and (4.113), Ĝ(X, Y ) is given by



β(ηC1+I1)[(1−ε1)V ∗1 +(1−τ1)S∗]
N∗

(
1− (1−ε1)V1+(1−τ1)S

N
N∗

(1−ε1)V ∗1 +(1−τ1)S∗

)
β(ηC2+I2)[(1−ε2)V ∗2 +(1−τ2)S∗]

N∗

(
1− (1−ε2)V2+(1−τ2)S

N
N∗

(1−ε2)V ∗2 +(1−τ2)S∗

)
β(ηC1+I1)(τ1S∗+V ∗2 )

N∗

(
1− (τ1S+V2)

N
N∗

(τ1S∗+V ∗2 )

)
β(ηC2+I2)(τ2S∗+V ∗1 )

N∗

(
1− (τ2S+V1)

N
N∗

(τ2S∗+V ∗1 )

)


(4.114)

Since

S∗ =
αb4b7
µχ

, V ∗1 =
αθ1b7
µχ

, V ∗2 =
αθ2b4
µχ

and N∗ =
α

µ

we have that S ≤ S∗, V1 ≤ V ∗1 and V2 ≤ V ∗2 . Thus, it follows that S ≤ N, V1 ≤

N and V2 ≤ N in Ω. Therefore, if the total population is at equilibrium level, we have(
1− (1−ε1)V1+(1−τ1)S

N
N∗

(1−ε1)V ∗1 +(1−τ1)S∗

)
> 0,

(
1− (1−ε2)V2+(1−τ2)S

N
N∗

(1−ε2)V ∗2 +(1−τ2)S∗

)
> 0,(

1− (τ1S+V2)
N

N∗

(τ1S∗+V ∗2 )

)
> 0 and

(
1− (τ2S+V1)

N
N∗

(τ2S∗+V ∗1 )

)
> 0; thus, Ĝ(X, Y ) ≥ 0.

Hence it follows from Theorem (4.5.2) that the DFE, E0 = (X∗, 0) is globally

asymptotically stable.

4.6 Sensitivity Analysis

Sensitivity analysis helps in discovering the parameters that have a high impact on

the basic reproduction number, thereby providing insight into the parameters to be

considered for control strategies. Following Abidemi, Aziz and Ahmad (2020), the

standardized forward sensitivity index is employed in carrying out the sensitivity
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analysis of model (4.13). The standardized forward sensitivity index of R0 with

respect to a parameter ψ is the proportion of the relative change in ψ. Therefore,

Table 4.4 provides all model parameters that are partially differentiable with respect

to R01 and R02, their values, and sensitivity indices with respect to each strain.

Table 4.4 Sensitivity Indices (SI) of Each Model Parameter on R01 and R02

Parameters Values SI for Strain 1 SI for Strain 2
µ 0.000043 +1.93× 10−3 −6.28× 10−3

ω1 0.000547 +0.1362 −0.4413
ω2 0.00068 −0.1376 +0.4507
β 0.88 +1 +1
γC1 0.143 −1.14× 10−2 0
γC2 0.3 0 −0.1775
γI1 0.125 −0.2200 0
γI2 0.1 0 −0.1510
η 0.75 +0.0232 +0.1998
δ 0.43 −0.7567 −0.6492
ε1 0.85 −0.2816 0
ε2 0.90 0 −2.9077
σ1 0.5 −1.18× 10−2 0
σ2 0.25 0 −2.23× 10−2

τ1 0.3 −1.75× 10−4 0
τ2 0.5 0 −3.52× 10−4

θ1 0.1 −0.1469 +0.4760
θ2 0.5 +0.1463 −0.4791

4.6.1 Description of the Sensitivity Indices on R01 and R02

The most sensitive parameter is the transmission probability, β for both strain 1 and

2. Generally, the sensitivity indices for the strain 1 show that, when the parameters

µ, ω1, β, η and θ2 are increased, keeping constant all other parameters, the value of

R01 is increased thereby increasing the endemicity of the disease as they have positive

indices. On the other hand, the parameters ω2, γC1, γI1, δ, ε1, σ1, τ1 and θ1 decrease

the value of R01 when increased, with all other parameters held constant, resulting in

a decrease in the endemicity of the disease as they have negative indices.

Similarly, for strain 2, when the parameters ω2, β, η and θ1 are increased, keeping

constant all other parameters, the value of R02 is increased resulting in an increase

in the endemicity of the disease as they have positive indices. The parameters µ,
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ω1, γC2, γI2, δ, ε2, σ2, τ2 and θ2, on the other hand, decrease the value of R02 when

increased, with all other parameters held constant, thereby decreasing the endemicity

of the disease as they have negative indices.

For example, increasing the vaccine waning rate of strain 1, ω1 by 10% will lead to a

1.362% increase on R01 while increasing the recovery rate of carriers of strain 2, γC2

by 10% will result in a reduction of 1.775% on R02.

4.7 Numerical Simulations of the Model

The numerical solutions of the model (4.13) is obtained by using MATLAB ODE45

Algorithm for solving non-stiff system of ordinary differential equations with initial

conditions and parameter values as stated in Section (4.3). The graphs of each model

compartment against time are presented with time ranging from 0 to 30 days.

4.7.1 Susceptible Population

Figure 4.2 Evolution of Susceptible Population varying θ1, θ2

Figure 4.2 indicates that the susceptible population decreases after some days due to

the forces of infection for strain 1 and 2. It can be observed from this compartment
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that, an increase in the vaccine uptake rates for both strains, θ1, θ2 leads to a rapid

decrease in the population. Hence, awareness of the affected population to get people

vaccinated will decrease the susceptible.

4.7.2 Vaccination Populations of Strain 1 and 2

(a) Evolution of V1(t) (b) Evolution of V2(t)
Figure 4.3 Vaccinated Populations of Strain 1 and 2 against Time

Figure 4.3 shows the Vaccinated Population of Strain 1 and 2 at vaccine uptake rates

of θ1, θ2 = 0. This presents a steady state solution in the two compartments.
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4.7.3 Carrier Population of Strain 1

Figure 4.4 Evolution of Carrier Population of Strain 1

In Figure 4.4, the population increased at a faster rate within a duration of 15 days

due to the inflow from the susceptible and vaccinated compartments. Thereafter,

an equilibrium point is reached and the population begin to decrease due to the

progression of the carriers to the infected population since the average incubation

period of the strain 1 infection is 2 days. The decrease can also be due to the recovery

of the carriers from the infection since an increase in the recovery rate of carriers of

strain 1, γC1 leads to a decrease in the population.
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4.7.4 Carrier Population of Strain 2

Figure 4.5 Evolution of Carrier Population of Strain 2

Figure 4.5 also shows a rise in the population as a result of movement from the

susceptible and vaccinated compartments. The population achieves stationarity

momentarily and begin to decrease as the carriers progress to the infected population

since the average incubation period of the strain 2 infection is 4 days. The population

also decrease due to recovery of the carriers. It can be seen that an increase in the

recovery rate of carriers of strain 2, γC2 reduces the population drastically.
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4.7.5 Infected Population of Strain 1

Figure 4.6 Evolution of Infected Population of Strain 1

Figure 4.6 indicates an increase in the population as a result of movement from the

susceptible, carrier and vaccinated population with immunity for strain 2. However,

the population decreases after this period. This decrease can be ascribed to the

availability of treatment for the infected compartment since they are symptomatic

and can easily be diagnosed. They also decease due to recovery from the infection

and disease-induced death. It can be observed that an increase in the recovery rate of

infected with strain 1, γI1 decreases the population.
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4.7.6 Infected Population of Strain 2

Figure 4.7 Evolution of Infected Population of Strain 2

The population in Figure 4.7 increases due to an inflow from the susceptible, carrier and

vaccinated population with immunity for strain 1. The population achieves stationarity

momentarily and begins to decrease due to recovery from the infection and disease-

induced death. This decrease can also be attributed to the population receiving urgent

treatment since the disease is considered as a medical emergency. Also, an increase in

the recovery rate of infected with strain 2, γI2 decrease the population rapidly.
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4.7.7 Fully Recovered Population from both Strains

Figure 4.8 Evolution of Fully Recovered Population from both Strains

In Figure 4.8, the fully recovered population maintained a stable state for the first

ten (10) days then began to increase afterwards. This is because at the onset of the

disease, there was no recovered individual so as they get infected and recover, the

population increases. Thereafter, we see a little decrease in the population which can

be due to those who recover from the acute phase of the disease only to find that they

are experiencing some difficulties/complications.
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4.7.8 Recovered with Complications from both Strains

Figure 4.9 Evolution of Recovered with Complications from both Strains

The recovered with complications population in Figure 4.9 also shows a stable state

for the first twelve (12) days and a sharp increase as time goes on. It can be observed

that an increase in the recovery rates of infected with strain 1 and 2, γI1, γI2 leads to

a decrease in the population.
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4.7.9 Effects of Varying the Vaccine Uptake Rates θ1 and θ2

(a) Effects of Varying θ1 on V1(t) (b) Effects of Varying θ1 on C1(t)

(c) Effects of Varying θ1 on I1(t) (d) Effects of Varying θ1 on R2(t)

Figure 4.10 Effects of Varying θ1 on V1(t), C1(t), I1(t) and R2(t) Compartments

Varying θ1 on the Vaccinated Population with immunity for Strain 1 shows a sharp

increase in the population within the first 3 days. Morever, a stable state is achieved

in the next days as the population becomes immune to the specific strain. On the

other hand, varying θ1 on the Carrier Population of Strain 1 displays a decrease which

indicates that getting more people vaccinated will reduce the carriers. Varying θ1 on

the Infected Population of Strain 1 shows a rapid decrease in the population which

reveals that the more people take the vaccine, the less the infection. The variation of

θ1 on the Recovered Population with Complications also shows a drastic decrease in
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the population. This can be attributed to the immune response of the human body to

recognize and fight the bacteria after taking the vaccine.

(a) Effects of Varying θ2 on V2(t) (b) Effects of Varying θ2 on C2(t)

(c) Effects of Varying θ2 on I2(t) (d) Effects of Varying θ2 on R2(t)

Figure 4.11 Effects of Varying θ2 on V2(t), C2(t), I2(t) and R2(t) Compartments

The variation of θ2 on the Vaccinated Population with immunity for Strain 2 displays

a surge in the population within the first three (3) days and achieves stability as

the population becomes immune to the specified strain. Varying θ2 on the Carrier

Population of Strain 2 decreases the population as the vaccine uptake rate increases.

As θ2 is varied on the Infected Population of Strain 2, a sharp decrease is also seen

which shows the impact of vaccination in curtailing the infection. Varying θ2 on the

Recovered Population with Complications shows a rapid decrease in the population
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which means the more we get people vaccinated, the lesser the complications after

acute infection.
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CHAPTER 5

OPTIMAL CONTROL FORMULATION AND ANALYSIS

5.1 Model Description and Formulation

This section discusses the formulation of the vaccination model (4.13) as optimal

control problem. First, the forces of infection, λi (for i = 1, 2) given in (4.2) and

(4.3), are modified as controlled forces of infection as:

λc1 =
(1− uP (t))β(ηC1 + I1)

N

λc2 =
(1− uP (t))β(ηC2 + I2)

N

(5.1)

where the control variable uP (t) accounts for the effective human personal protection

(such as wearing face masks). Also, the vaccination rates θ1 and θ2 are considered as

time-dependent functions uV 1(t) and uV 2(t) respectively. Furthermore, two control

variables uT1(t) and uT2(t) accounting for the treatment control of timely and delayed

diagnosed infected individuals are introduced. Hence, the non-autonomous version of

model (4.13) becomes
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dS

dt
= α + ω1V1 + ω2V2 − (λc1 + λc2 + uV 1(t) + uV 2(t) + µ)S

dV1
dt

= uV 1(t)S − (1− ε1)λc1V1 − (λc2 + ω1 + µ)V1

dV2
dt

= uV 2(t)S − (1− ε2)λc2V2 − (λc1 + ω2 + µ)V2

dC1

dt
= λc1 [(1− τ1)S + (1− ε1)V1]− (σ1 + γc1(1 + uT1(t)) + µ)C1

dC2

dt
= λc2 [(1− τ2)S + (1− ε2)V2]− (σ2 + γc2(1 + uT1(t)) + µ)C2

dI1
dt

= σ1C1 + λc1 (τ1S + V2)− (γI1(1 + uT2(t)) + δ + µ)I1

dI2
dt

= σ2C2 + λc2 (τ2S + V1)− (γI2(1 + uT2(t)) + δ + µ)I2

dR1

dt
= γc1(1 + uT1(t))C1 + γc2(1 + uT1(t))C2 + ρ1γI1(1 + uT2(t))I1 + ρ2γI2(1 + uT2(t))I2−

(∧+ µ)R1

dR2

dt
= (1− ρ1)γI1(1 + uT2(t))I1 + (1− ρ2)γI2(1 + uT2(t))I2 + ∧R1 − µR2

(5.2)

Extended Model Assumptions

1. Every individual in the studied population uses facial or surgical masks regardless

of their status.

2. The carriers are diagnosed and treatment commenced before onset of symptoms.

3. Vaccinated populations are no longer susceptible to the infection.

The goal is to minimize the objective functional given by

J [ · ] =

∫ T

0

(
A1(C1 + I1) + A2(C2 + I2) +

B1

2
u2P (t) +

B2

2
u2V 1(t) +

B3

2
u2V 2(t) +

B4

2
u2T1(t)+

B5

2
u2T2(t)

)
dt

(5.3)

constrained by the system (5.2), where T is the final time of control implementation.

A1 and A2 are the positive relative weights of the carrier and infected populations

for strain 1 and 2 respectively. Similarly, B1, B2, B3, B4 and B5 are the positive
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relative weights for the regularization of the controls uP , uV 1, uV 2, uT1 and uT2

respectively while Biu
2
j

2
represent the cost of controls uj, for i = 1, 2, 3, 4, 5 and

j = P, V 1, V 2, T1, T2.

The goal of formulating the objective function is to find an optimal control

(u∗P , u
∗
V 1, u

∗
V 2, u

∗
T1, u

∗
T2) such that:

F (u∗P , u
∗
V 1, u

∗
V 2, u

∗
T1, u

∗
T2) = min

U
F (uP , uV 1, uV 2, uT1, uT2)

where U = {ui is Lebesgue measurable on [0, T ] and uj ∈ [0, 1] for j =

P, V 1, V 2, T1, T2}, thereby minimizing the weight of the susceptible, carrier and

infected population together with the cost of implementing the controls.

5.1.1 Existence of an Optimal Control

In this section, the existence of an optimal control solution for the state system

is presented. This involves validating the sufficient conditions that guarantee the

existence of a solution to the optimal control problem as stated in the following theorem

obtained by Fleming and Rishel (2012). The theorem is stated and proven with respect

to the formulated OCP.

Theorem 5.1.1 Consider the optimal control problem (5.3) subject to the

state equations (5.2) and initial conditions (4.14). There exists an optimal

control set u∗ = (u∗P , u
∗
V 1, u

∗
V 2, u

∗
T1, u

∗
T2) with a corresponding solution

set (S∗, V ∗1 , V ∗2 , C∗1 , C∗2 , I∗1 , I∗2 , R∗1, R∗2) to the control model that minimizes

F (uP , uV 1, uV 2, uT1, uT2) over U if the following conditions are satisfied:

C1: The set of solutions to the model equations together with the initial conditions

and the corresponding control function in U is non-empty.

C2: The control set U is convex and closed.

C3: The state system can be written as a linear function of the control variables with

coefficient dependent on time and state variables.
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C4: The Lagrangian

L(S(t), V1(t), V2(t), C1(t), C2(t), I1(t), I2(t), R1(t), R2(t), uP (t), uV 1(t), uV 2(t),

uT1(t), uT2(t))

of equation (5.3) is convex on U .

C5: There exist constants ζ1, ζ2 > 0 and V > 1 such that;

L(S(t), V1(t), V2(t), C1(t), C2(t), I1(t), I2(t), R1(t), R2(t), uP (t), uV 1(t), uV 2(t), uT1(t), uT2(t))

is bounded below by ζ1|(uP , uV 1, uV 2, uT1, uT2)|V − ζ2

Proof: In order to verify C1, we use the result obtained by ?. The model is rewritten

in the form;

dZ

dt
= AZ + F (Z) (5.4)

where A=

−d6 ω1 ω2 0 0 0 0 0 0

uV 1 −b4 0 0 0 0 0 0 0

uV 2 0 −b7 0 0 0 0 0 0

0 0 0 −[d7 + γc1d1] 0 0 0 0 0

0 0 0 0 −[d8 + γc2d1] 0 0 0 0

0 0 0 σ1 0 −[γI1d2 + d5] 0 0 0

0 0 0 0 σ2 0 −[γI2d2 + d5] 0 0

0 0 0 γc1d1 γc2d1 ρ1γI1d2 ρ2γI2d2 −(∧+ µ) 0

0 0 0 0 0 γI1d2d3 γI2d2d4 ∧ −µ
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F (Z) =



α− (λc1 + λc2)S

−[(1− ε1)λc1 + λc2]V1

−[(1− ε2)λc2 + λc1]V2

λc1[(1− τ1)S + (1− ε1)V1]

λc2[(1− τ2)S + (1− ε2)V2]

λc1(τ1S + V2)

λc2(τ2S + V1)

0

0


and Z = (S V1 V2 C1 C2 I1 I2 R1 R2)

T . We note that

d1 = 1 + uT1, d2 = 1 + uT2, d3 = 1− ρ1 d4 = 1− ρ2

d5 = δ + µ, d6 = uV 1 + uV 2 + µ d7 = σ1 + µ d8 = σ2 + µ

It is observed that the system (5.4) is nonlinear with bounded coefficients. Thus

setting;

G(Z) = A(Z) + F (Z) (5.5)

then F(Z) in Equation (5.5) satisfies;

|F (Za)− F (Zb)| ≤(p1|Sa(t)− Sb(t)|+ p2|V1a(t)− V1b(t)|+ p3|V2a(t)− V2b(t)|+

p4|C1a(t)− C1b(t)|+ p5|C2a(t)− C2b(t)|+ p6|I1a(t)− I1b(t)|+

p7|I2a(t)− I2b(t)|+ p8|R1a(t)−R1b(t)|+ p9|R2a(t)−R2b(t)|

≤p(|Sa(t)− Sb(t)|+ |V1a(t)− V1b(t)|+ |V2a(t)− V2b(t)|+

|C1a(t)− C1b(t)|+ |C2a(t)− C2b(t)|+ |I1a(t)− I1b(t)|+

|I2a(t)− I2b(t)|+ |R1a(t)−R1b(t)|+ |R2a(t)−R2b(t)|)

(5.6)

This implies that,

|G(Za)−G(Zb)| ≤ p|Za − Zb| (5.7)
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where, p = max{p1, p2, p3, p4, p5, p6, p7, p8, p9} <∞ is a positive constant independent

of the state variables and Z = max{Za, Zb}.

Thus, it follows from (5.7) that the function G(Z) is uniformly Lipschitz continuous.

From the boundedness of the control variables, it follows that a solution to the model

exists. Hence, C1 holds.

The boundedness of the control set U follows directly from the definition of U

and since every bounded set is closed, then U is closed. Similarly, the set U is convex

since {U = uP , uV 1, uV 2, uT1, uT2 ∈ [0, 1]}, then any line joining any two points within

the set will lie entirely within the set (that is the set is connected). Hence C2 holds.

From the system of equations (5.2), it is observed that the state equations

depend on the controls uP , uV 1, uV 2, uT1 and uT2 linearly, thus C3 is verified.

Furthermore, since the Lagrangian is quadratic in the controls and every quadratic

function is convex, then it follows directly that the Lagrangian function of Equation

(5.3) is convex. Thus, C4 is verified.

Finally, C5 is verified as follows: The Lagrangian function is defined as;

L =A1(C1 + I1) + A2(C2 + I2) +
1

2

(
B1u

2
P +B2u

2
V 1 +B3u

2
V 2 +B4u

2
T1 +B5u

2
T2

)
≥1

2

(
B1u

2
P +B2u

2
V 1 +B3u

2
V 2 +B4u

2
T1 +B5u

2
T2

)
since A1 > 0, A2 > 0, Bi > 0, i = 1, 2, 3, 4, 5

>
1

2

(
B1u

2
P +B2u

2
V 1 +B3u

2
V 2 +B4u

2
T1 +B5u

2
T2

)
−B1

≥min
(

1

2
B1,

1

2
B2,

1

2
B3,

1

2
B4,

1

2
B5

)(
u2P + u2V 1 + u2V 2 + u2T1 + u2T2

)
−B1

≥B||uP , uV 1, uV 2, uT1, uT2||2 −B1,where B = min

(
1

2
B1,

1

2
B2,

1

2
B3,

1

2
B4,

1

2
B5

)
(5.8)

Hence, C5 is satisfied. We therefore conclude that there exists an optimal

control u∗ = (u∗P , u
∗
V 1, u

∗
V 2, u

∗
T1, u

∗
T2) that minimizes the objective functional

F(uP , uV 1, uV 2, uT1, uT2).
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5.1.2 Necessary Condition of the Control

The principal technique for the solution of an optimal control problem is to solve a

set of necessary conditions that an OCP and it’s corresponding state(s) must satisfy.

This necessary condition was developed by Pontryagin and his co-workers in Moscow

in the 1950’s. Pontryagin introduced the idea of "adjoint" functions to append the

state system to the objective functional. This necessary condition, otherwise referred

to as optimality condition, can be generated from the Hamiltonian function, H, which

is defined, as follows:

H = f(t;x(t);u(t)) +
n∑
j=1

λj(t)gj(t;x(t);u(t))

where gj(t;x(t);u(t)) are the state equations.

The Pontryagin’s Maximum Principle (PMP) converts the objective functional in

Equation (5.3) and the constraints in Equation (5.2) into a problem of point wise

minimization of a Hamiltonian, H with respect to uP , uV 1, uV 2, uT1, and uT2. The

Hamiltonian, H is defined as

H = L(S(t), V1(t), V2(t), C1(t), C2(t), I1(t), I2(t), R1(t), R2(t)) +
9∑
i=1

λTi (t)gi(t, x(t), u(t))

(5.9)

where gi are the right-hand side of the nine(9) state equations in

(5.2), λi are the co-state or adjoint variables and λi(T ) = 0, for i =

{S(t), V1(t), V2(t), C1(t), C2(t), I1(t), I2(t), R1(t), R2(t)}. Hence,
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H =A1(C1 + I1) + A2(C2 + I2) +
1

2
(B1u

2
P +B2u

2
V 1 +B3u

2
V 2 +B4u

2
T1 +B5u

2
T2) + λS

[
α + ω1V1

+ ω2V2 − (λc1 + λc2 + uV 1 + uV 2 + µ)S
]

+ λV 1

[
uV 1S − (1− ε1)λc1V1 − (λc2 + ω1 + µ)V1

]
+

λV 2

[
uV 2S − (1− ε2)λc2V2 − (λc1 + ω2 + µ)V2

]
+ λC1

[
λc1 [(1− τ1)S + (1− ε1)V1]−

(σ1 + γc1(1 + uT1) + µ)C1

]
+ λC2

[
λc2[(1− τ2)S + (1− ε2)V2]− (σ2 + γc2(1 + uT1) + µ)C2

]
+ λI1

[
σ1C1 + λc1 (τ1S + V2)− (γI1(1 + uT2) + δ + µ)I1

]
+ λI2

[
σ2C2 + λc2 (τ2S + V1)−

(γI2(1 + uT2) + δ + µ)I2

]
+ λR1

[
γc1(1 + uT1)C1 + γc2(1 + uT1)C2 + ρ1γI1(1 + uT2)I1+

ρ2γI2(1 + uT2)I2 − (∧+ µ)R1

]
+ λR2

[
(1− ρ1)γI1(1 + uT2)I1 + (1− ρ2)γI2(1 + uT2)I2+

∧R1 − µR2

]
(5.10)

Theorem 5.1.2 (Pontryagin’s Maximum Principle Theorem) If u∗(t) and x∗(t) are

optimal for problem (5.3), then there exists a piecewise differentiable adjoint variable

λ(t) such that

H(t;x∗(t);u(t);λ(t)) ≥ H(t;x∗(t);u∗(t);λ(t))

and for all control(s) u at each time t, where the Hamiltonian H is as defined in (5.10),

λ′i(t) = − ∂H
∂xi

(adjoint condition) with ∂H
∂u

= 0 at u = u∗ (optimality condition) and

λi(T ) = 0 (transversality condition).

Proof:

∂H

∂S
=λS[−(λc1 + λc2 + uV 1 + uV 2 + µ)] + λV 1(uV 1) + λV 2(uV 2) + λC1[λ

c
1(1− τ1)]+

λC2[λ
c
2(1− τ2)] + λI1(λ

c
1τ1) + λI2(λ

c
2τ2)

=− λS(λc1 + λc2 + uV 1 + uV 2 + µ) + λV 1(uV 1) + λV 2(uV 2) + λC1(λ
c
1)− λC1(λ

c
1τ1)+

λC2(λ
c
2)− λC2(λ

c
2τ2) + λI1(λ

c
1τ1) + λI2(λ

c
2τ2)

=(λV 1 − λS)uV 1 + (λV 2 − λS)uV 2 + (λC1 − λS)λc1 + (λC2 − λS)λc2 + (λI1 − λC1)λ
c
1τ1

+ (λI2 − λC2)λ
c
2τ2 − λSµ

(5.11)
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∂H

∂V1
=λSw1 + λV 1[−(1− ε1)λc1 − (λc2 + w1 + µ)] + λC1[λ

c
1(1− ε1)] + λI2(λ

c
2)

=λSw1 − λV 1[(1− ε1)λc1]− λV 1(λ
c
2)− λV 1(w1)− λV 1(µ) + λC1[λ

c
1(1− ε1)] + λI2(λ

c
2)

=(λS − λV 1)w1 + (λI2 − λV 1)λ
c
2 + (λC1 − λV 1)[λ

c
1(1− ε1)]− λV 1µ

(5.12)

∂H

∂V2
=λSw2 + λV 2[−(1− ε2)λc2 − (λc1 + w2 + µ)] + λC2[λ

c
2(1− ε2)] + λI1(λ

c
1)

=λSw2 − λV 2[(1− ε2)λc2]− λV 2(λ
c
1)− λV 2(w2)− λV 2(µ) + λC2[λ

c
2(1− ε2)] + λI1(λ

c
1)

=(λS − λV 2)w2 + (λI1 − λV 2)λ
c
1 + (λC2 − λV 2)[λ

c
2(1− ε2)]− λV 2µ

(5.13)
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∂H

∂C1

=A1 + λS

[
−
((1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

)
S
]

+ λV 1

[
− (1− ε1)V1

((1− uP )βη

N

− (1− uP )β(ηC1 + I1)

N2

)]
+ λV 2

[
− V2

((1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

)]
+

λC1

[((1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

)(
(1− τ1)S + (1− ε1)V1

)
− (σ1+

γC1(1 + uT1) + µ)
]

+ λI1

[
σ1 + (τ1S + V2)

((1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

)]
+

λR1[γC1(1 + uT1)]

=A1 − λS
[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
S − λV 1

[(1− uP )βη

N
−

(1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1 − λV 2

[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
V2+

λC1

[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
S − λC1

[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
·

τ1S + λC1

[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1 − λC1[σ1 + γC1(1 + uT1) + µ]

+ λI1(σ1) + λI1

[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
τ1S + λI1

[(1− uP )βη

N
−

(1− uP )β(ηC1 + I1)

N2

]
V2 + λR1[γC1(1 + uT1)]

=A1 + (λC1 − λS)
[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
S + (λI1 − λC1)

[(1− uP )βη

N
−

(1− uP )β(ηC1 + I1)

N2

]
τ1S + (λC1 − λV 1)

[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1

+ (λI1 − λV 2)
[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
V2 + (λR1 − λC1)γC1(1 + uT1)+

(λI1 − λC1)σ1 − λC1µ

(5.14)
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∂H

∂C2

=A2 + λS

[
−
((1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

)
S
]
− λV 1

[
V1

((1− uP )βη

N
−

(1− uP )β(ηC2 + I2)

N2

)]
+ λV 2

[
− (1− ε2)V2

((1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

)]
+ λC2

[((1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

)(
(1− τ2)S + (1− ε2)V2

)
− (σ2+

γC2(1 + uT1) + µ)
]

+ λI2

[
σ2 + (τ2S + V1)

((1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

)]
+

λR1[γC2(1 + uT1)]

=A2 − λS
[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
S − λV 1

[(1− uP )βη

N
−

(1− uP )β(ηC2 + I2)

N2

]
V1 − λV 2

[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
(1− ε2)V2+

λC2

[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
S − λC2

[(1− uP )βη

N
−

(1− uP )β(ηC2 + I2)

N2

]
τ2S + λC2

[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
(1− ε2)V2−

λC2[σ2 + γC2(1 + uT1) + µ] + λI2(σ2) + λI2

[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
τ2S

+ λI2

[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
V1 + λR1[γC2(1 + uT1)]

=A2 + (λC2 − λS)
[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
S + (λI2 − λC2)

[(1− uP )βη

N
−

(1− uP )β(ηC2 + I2)

N2

]
τ2S + (λC2 − λV 2)

[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
·

(1− ε2)V2 + (λI2 − λV 1)
[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
V1+

(λR1 − λC2)γC1(1 + uT1) + (λI2 − λC2)σ2 − λC2µ

(5.15)
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∂H

∂I1
=A1 + λS

[
−
((1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

)
S
]

+ λV 1

[
− (1− ε1)V1

((1− uP )β

N
−

(1− uP )β(ηC1 + I1)

N2

)]
+ λV 2

[
− V2

((1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

)]
+

λC1

[((1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

)(
(1− τ1)S + (1− ε1)V1

)]
+ λI1

[
(τ1S + V2)((1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

)
− (γI1(1 + uT2) + δ + µ)

]
+ λR1[ρ1γI1(1 + uT2)]

+ λR2[(1− ρ1)γI1(1 + uT2)]

=A1 − λS
[((1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

)
S
]
− λV 1

[(1− uP )β

N
−

(1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1 − λV 2

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
V2+

λC1

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
S − λC1

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
·

τ1S + λC1

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1 + λI1

[(1− uP )β

N
−

(1− uP )β(ηC1 + I1)

N2

]
τ1S + λI1

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
V2 − λI1[γI1·

(1 + uT2) + δ + µ] + λR1[ρ1γI1(1 + uT2)] + λR2[γI1(1 + uT2)]− λR2[ρ1γI1(1 + uT2)]

=A1 + (λC1 − λS)
[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
S + (λI1 − λC1)

[(1− uP )β

N
−

(1− uP )β(ηC1 + I1)

N2

]
τ1S + (λC1 − λV 1)

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1

+ (λI1 − λV 2)
[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
V2 + (λR2 − λI1)γI1(1 + uT2)+

(λR1 − λR2)ρ1γI1(1 + uT2)− λI1(δ + µ)

(5.16)
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∂H

∂I2
=A2 + λS

[
−
((1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

)
S
]

+ λV 1

[
− V1

((1− uP )β

N
−

(1− uP )β(ηC2 + I2)

N2

)]
+ λV 2

[
− (1− ε2)V2

((1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

)]
+

λC2

[((1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

)(
(1− τ2)S + (1− ε2)V2

)]
+ λI2

[
(τ2S + V1)((1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

)
− (γI2(1 + uT2) + δ + µ)

]
+ λR1[ρ2γI2(1 + uT2)]

+ λR2[(1− ρ2)γI2(1 + uT2)]

=A2 − λS
[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
S − λV 1

[(1− uP )β

N
−

(1− uP )β(ηC2 + I2)

N2

]
V1 − λV 2

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
(1− ε2)V2+

λC2

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
S − λC2

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
τ2S

+ λC2

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
(1− ε2)V2 + λI2

[(1− uP )β

N
−

(1− uP )β(ηC2 + I2)

N2

]
τ2S + λI2

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
V1−

λI2[γI2(1 + uT2)]− λI2(δ + µ) + λR1[ρ2γI2(1 + uT2)] + λR2[γI2(1 + uT2)]−

λR2[ρ2γI2(1 + uT2)]

=A2 + (λC2 − λS)
[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
S + (λI2 − λC2)

[(1− uP )β

N
−

(1− uP )β(ηC2 + I2)

N2

]
τ2S + (λC2 − λV 2)

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
(1− ε2)V2

+ (λI2 − λV 2)
[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
V1 + (λR2 − λI2)γI2(1 + uT2)+

(λR1 − λR2)ρ2γI2(1 + uT2)− λI2(δ + µ)

(5.17)

∂H

∂R1

= λR1[−(∧+ µ)] + λR2(∧) = (λR2 − λR1) ∧ −λR1µ (5.18)

∂H

∂R2

= −λR2µ (5.19)

The adjoint system/conditions evaluated at the corresponding optimal solutions of the
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state equations are derived below:

λ′S(t) = −∂H
∂S

=(λS − λV 1)uV 1 + (λS − λV 2)uV 2 + (λS − λC1)λ
c
1 + (λS − λC2)λ

c
2+

(λC1 − λI1)λc1τ1 + (λC2 − λI2)λc2τ2 + λSµ

(5.20)

λ′V 1(t) = −∂H
∂V1

=(λV 1 − λS)w1 + (λV 1 − λI2)λc2 + (λV 1 − λC1)[λ
c
1(1− ε1)] + λV 1µ

(5.21)

λ′V 2(t) = −∂H
∂V2

=(λV 2 − λS)w2 + (λV 2 − λI1)λc1 + (λV 2 − λC2)[λ
c
2(1− ε2)] + λV 2µ

(5.22)

λ′C1(t) = − ∂H
∂C1

=(λS − λC1)
[(1− uP )βη

N
− (1− uP )β(ηC1 + I1)

N2

]
S + (λC1 − λI1)

[(1− uP )βη

N

− (1− uP )β(ηC1 + I1)

N2

]
τ1S + (λV 1 − λC1)

[(1− uP )βη

N
−

(1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1 + (λV 2 − λI1)

[(1− uP )βη

N
−

(1− uP )β(ηC1 + I1)

N2

]
V2 + (λC1 − λR1)γC1(1 + uT1) + (λC1 − λI1)σ1+

λC1µ− A1

(5.23)

λ′C2(t) = − ∂H
∂C2

=(λS − λC2)
[(1− uP )βη

N
− (1− uP )β(ηC2 + I2)

N2

]
S + (λC2 − λI2)

[(1− uP )βη

N

− (1− uP )β(ηC2 + I2)

N2

]
τ2S + (λV 2 − λC2)

[(1− uP )βη

N
−

(1− uP )β(ηC2 + I2)

N2

]
(1− ε2)V2 + (λV 1 − λI2)

[(1− uP )βη

N
−

(1− uP )β(ηC2 + I2)

N2

]
V1 + (λC2 − λR1)γC1(1 + uT1) + (λC2 − λI2)σ2+

λC2µ− A2

(5.24)
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λ′I1(t) = −∂H
∂I1

=(λS − λC1)
[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
S + (λC1 − λI1)

[(1− uP )β

N
−

(1− uP )β(ηC1 + I1)

N2

]
τ1S + (λV 1 − λC1)

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
(1− ε1)V1 + (λV 2 − λI1)

[(1− uP )β

N
− (1− uP )β(ηC1 + I1)

N2

]
V2+

(λI1 − λR2)γI1(1 + uT2) + (λR2 − λR1)ρ1γI1(1 + uT2) + λI1(δ + µ)− A1

(5.25)

λ′I2(t) = −∂H
∂I2

=(λS − λC2)
[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
S + (λC2 − λI2)

[(1− uP )β

N
−

(1− uP )β(ηC2 + I2)

N2

]
τ2S + (λV 2 − λC2)

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
(1− ε2)V2 + (λV 2 − λI2)

[(1− uP )β

N
− (1− uP )β(ηC2 + I2)

N2

]
V1+

(λI2 − λR2)γI2(1 + uT2) + (λR2 − λR1)ρ2γI2(1 + uT2) + λI2(δ + µ)− A2

(5.26)

λ′R1(t) = − ∂H
∂R1

= (λR1 − λR2) ∧+λR1µ (5.27)

λ′R2(t) = − ∂H
∂R2

= λR2µ (5.28)

Equations (5.20) to (5.28) are the Adjoint (co-state) equations.

The transversality conditions are given as;

λi(T ) = 0, for i = {S, V1, V2, C1, C2, I1, I2, R1, R2} (5.29)

5.1.3 Characterization of Optimal Controls

Here, we characterize the optimal controls (u∗P , u
∗
V 1, u

∗
V 2, u

∗
T1, u

∗
T2) which give the

optimal levels for the various control measures and the corresponding states

(S∗, V ∗1 , V ∗2 , C∗1 , C∗2 , I∗1 , I∗2 , R∗1, R∗2). The optimal solution to the Hamiltonian function

is obtained by taking the partial derivatives of H with respect to the controls,
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uP , uV 1, uV 2, uT1 and uT2. Thus,

∂H

∂uP
=B1uP + λS

[
−
(−β(ηC1 + I1)

N
− β(ηC2 + I2)

N

)
S
]

+ λV 1

[
− (1− ε1)V1

(−β(ηC1 + I1)

N

)
− V1

(−β(ηC2 + I2)

N

)]
+ λV 2

[
− (1− ε2)V2

(−β(ηC2 + I2)

N

)
− V2

(−β(ηC1 + I1)

N

)]
+

λC1

[−β(ηC1 + I1)

N

(
(1− τ1)S + (1− ε1)V1

)]
+ λC2

[−β(ηC2 + I2)

N

(
(1− τ2)S+

(1− ε2)V2
)]

+ λI1

[−β(ηC1 + I1)

N
(τ1S + V2)

]
+ λI2

[−β(ηC2 + I2)

N
(τ2S + V1)

]
=B1uP + λS

[β(ηC1 + I1)

N
+
β(ηC2 + I2)

N

]
S + λV 1

[β(ηC1 + I1)

N

]
(1− ε1)V1+

λV 1

[β(ηC2 + I2)

N

]
V1 + λV 2

[β(ηC2 + I2)

N

]
(1− ε2)V2 + λV 2

[β(ηC1 + I1)

N

]
V2−

λC1

[β(ηC1 + I1)

N

]
S + λC1

[β(ηC1 + I1)

N

]
τ1S − λC1

[β(ηC1 + I1)

N

]
(1− ε1)V1−

λC2

[β(ηC2 + I2)

N

]
S + λC2

[β(ηC2 + I2)

N

]
τ2S − λC2

[β(ηC2 + I2)

N

]
(1− ε2)V2−

λI1

[β(ηC1 + I1)

N

]
τ1S − λI1

[β(ηC1 + I1)

N

]
V2 − λI2

[β(ηC2 + I2)

N

]
τ2S−

λI2

[β(ηC2 + I2)

N

]
V1

=B1uP + (λS − λC1)
[β(ηC1 + I1)

N

]
S + (λS − λC2)

[β(ηC2 + I2)

N

]
S + (λC1 − λI1)[β(ηC1 + I1)

N

]
τ1S + (λC2 − λI2)

[β(ηC2 + I2)

N

]
τ2S + (λV 1 − λC1)

[β(ηC1 + I1)

N

]
·

(1− ε1)V1 + (λV 1 − λI2)
[β(ηC2 + I2)

N

]
V1 + (λV 2 − λC2)

[β(ηC2 + I2)

N

]
(1− ε2)V2

+ (λV 2 − λI1)
[β(ηC1 + I1)

N

]
V2

(5.30)

∂H

∂uV 1

= B2uV 1 + λS(−S) + λV 1(S) = B2uV 1 + (λV 1 − λS)S (5.31)

∂H

∂uV 2

= B3uV 2 + λS(−S) + λV 2(S) = B3uV 2 + (λV 2 − λS)S (5.32)

∂H

∂uT1
=B4uT1 + λC1(−γc1C1) + λC2(−γc2C2) + λR1(γc1C1 + γc2C2)

=B4uT1 + (λR1 − λC1)γc1C1 + (λR1 − λC2)γc2C2

(5.33)
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∂H

∂uT2
=B5uT2 + λI1(−γI1I1) + λI2(−γI2I2) + λR1(ρ1γI1I1 + ρ2γI2I2) + λR2[(1− ρ1)γI1I1

+ (1− ρ2)γI2I2]

=B5uT2 + (λR2 − λI1)γI1I1 + (λR2 − λI2)γI2I2 + (λR1 − λR2)ρ1γI1I1+

(λR1 − λR2)ρ2γI2I2

(5.34)

The optimality condition ∂H
∂u

= 0 is now imposed on equations (5.30) to (5.34) at

u = u∗. Therefore, the expressions for the control variables, (u∗P , u
∗
V 1, u

∗
V 2, u

∗
T1, u

∗
T2),

of the optimal control problem are obtained as follows:

u∗P =
AP
B1

(5.35)

where

AP =(λC1 − λS)
[β(ηC∗1 + I∗1 )

N

]
S∗ + (λC2 − λS)

[β(ηC∗2 + I∗2 )

N

]
S∗ + (λI1 − λC1)·[β(ηC∗1 + I∗1 )

N

]
τ1S

∗ + (λI2 − λC2)
[β(ηC∗2 + I∗2 )

N

]
τ2S

∗ + (λC1 − λV 1)
[β(ηC∗1 + I∗1 )

N

]
·

(1− ε1)V ∗1 + (λI2 − λV 1)
[β(ηC∗2 + I∗2 )

N

]
V ∗1 + (λC2 − λV 2)

[β(ηC∗2 + I∗2 )

N

]
(1− ε2)V ∗2

+ (λI1 − λV 2)
[β(ηC∗1 + I∗1 )

N

]
V ∗2

u∗V 1 =
(λS − λV 1)S

∗

B2

(5.36)

u∗V 2 =
(λS − λV 2)S

∗

B3

(5.37)

u∗T1 =
(λC1 − λR1)γc1C

∗
1 + (λC2 − λR1)γc2C

∗
2

B4

(5.38)

u∗T2 =
(λI1 − λR2)γI1I

∗
1 + (λI2 − λR2)γI2I

∗
2 + (λR2 − λR1)ρ1γI1I

∗
1 + (λR2 − λR1)ρ2γI2I

∗
2

B5

(5.39)
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Imposing the bounds (0 ≤ ui ≤ 1, i = P, V 1, V 2, T1, T2) on the controls gives

u∗P = min

{
max

(
0,
AP
B1

)
, 1

}
u∗V 1 = min

{
max

(
0,

(λS − λV 1)S
∗

B2

)
, 1

}
u∗V 2 = min

{
max

(
0,

(λS − λV 2)S
∗

B3

)
, 1

}
u∗T1 = min

{
max

(
0,

(λC1 − λR1)γc1C
∗
1 + (λC2 − λR1)γc2C

∗
2

B4

)
, 1

}
u∗T2 = min

{
max

(
0,

(λI1 − λR2)γI1I
∗
1 + (λI2 − λR2)γI2I

∗
2 + Φρ1γI1I

∗
1 + Φρ2γI2I

∗
2

B5

)
, 1

}
(5.40)

where Φ = λR2 − λR1

5.2 Numerical Simulations of the Optimal Control

The numerical solutions of the resulting optimality system comprising of the system of

the model state equations in Equation (5.2) and the corresponding adjoint Equations

in (5.20) to (5.28), with the control variables characterization incorporated in (5.35)

to (5.39) are presented. This was implemented using the Forward-Backward Sweep

method. The parameter values used for this numerical simulation are given in Table

4.3. All the positive relative weights of the Carrier and Infected populations as well

as for the regularization of the controls are given a baseline value of 1.0. Thus, A1 =

A2 = B1 = B2 = B3 = B4 = B5 = 1.0. It is noted that the weights in the simulations

carried out here are only of theoretical sense to illustrate the control strategies. The

analysis is done over a period of 30 days and the graphs and discussions of the results

for the various combinations of the five (5) control measures with their corresponding

control profiles are also presented. This optimality system is solved with the following

initial conditions: S(0) = 5203562, V1(0) = 60, V2(0) = 100, C1(0) = 43, C2(0) = 22,

I1(0) = 31, I2(0) = 20, R1(0) = 0 and R2(0) = 0.

140



5.2.1 Optimal Control Effect on Susceptible Population

Figure 5.1 Optimal Control Effect on Susceptible Population

Figure 5.1 shows a rapid decrease in the susceptible population within the first few

days due to the awareness and intervention to get the affected population vaccinated.

Also, the control for the effective human personal protection uP (t) limit the forces of

infection for the susceptible.
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5.2.2 Optimal Control Effect on Vaccinated Population with Immunity for Strain 1

Figure 5.2 Optimal Control Effect on Vaccinated Population of Strain 1

Figure 5.2 displays a strong increase in the population by the intervention of the

vaccination control uV 1(t). This led to a lot of people in the susceptible population

getting vaccinated and moving to the vaccinated compartment. Thereafter, the

population is maintained at a stable state due to the balance in the inflow of the

susceptible and outflow of individuals within this population as the vaccine wanes.

Moreover, this scenario can be achieved by rapidly vaccinating sizeable proportion

of the susceptible individuals as soon as new cases of the epidemic to strain 1 are

discovered.
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5.2.3 Optimal Control Effect on Vaccinated Population with Immunity for Strain 2

Figure 5.3 Optimal Control Effect on Vaccinated Population of Strain 2

Figure 5.3 also indicates a huge increase in the population by the intervention of

the vaccination control uV 2(t) as we have more people in the susceptible population

taking the vaccine and moving to the vaccinated compartment. The population then

remains stable as a result of the balance in the inflow of the susceptible and outflow

of individuals within this population as the vaccine wanes. Furthermore, this scenario

can be achieved by rapidly vaccinating a good proportion of the susceptible individuals

as soon as new cases of the epidemic to strain 2 are discovered.
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5.2.4 Optimal Control Effect on Carrier Population of Strain 1

Figure 5.4 Optimal Control Effect on Carrier of Strain 1 Population

In Figure 5.4, the Carrier Population of Strain 1 reduced drastically in size due to

the intervention of the treatment control for the timely diagnosed individuals uT1(t).

The intervention of the control for effective human personal protection uP (t) to the

susceptible also decreases the infectiousness of individuals.
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5.2.5 Optimal Control Effect on Carrier Population of Strain 2

Figure 5.5 Optimal Control Effect on Carrier of Strain 2 Population

Figure 5.5 presents a drastic decrease in the size of the population due to the

intervention of the treatment control for the timely diagnosed individuals uT1(t). The

decrease can also be attributed to the intervention of the control for effective human

personal protection uP (t) to the susceptible population.

145



5.2.6 Optimal Control Effect on Infected Population of Strain 1

Figure 5.6 Optimal Control Effect on Infected Population of Strain 1

Figure 5.6 also indicates a rapid decrease in the size of the population due to the

intervention of the treatment control for the delayed diagnosed individuals uT2(t).

This brings a quick recovery to the population, hence their movement to the Recovered

population. The effective human personal protection control uP (t) also decreases the

movement of individuals from the susceptible into this population.
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5.2.7 Optimal Control Effect on Infected Population of Strain 2

Figure 5.7 Optimal Control Effect on Infected Population of Strain 2

In Figure 5.7, a drastic decrease in the size of the population is observed. This can

be attributed to the intervention of the treatment control for the delayed diagnosed

individuals uT2(t) which leads to a high recovery rate for this compartment. The

population also decrease by the intervention of the effective human personal protection

control uP (t) to the susceptible since it influences the infectiousness of the disease.
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5.2.8 Fully Recovered Population from both Strains

Figure 5.8 Optimal Control Effect on Fully Recovered Population

Figure 5.8 presents a significant decrease in the size of the population. Though we

would have expected a rise in this population, the decrease is ascribed to the fact

that the intervention of these controls keeps majority of the population in the two

vaccinated compartments thereby leading to fewer individuals at the risk of infection.

This eventually results in fewer individuals recovering from the infection.
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5.2.9 Recovered Population with Complications from both Strains

Figure 5.9 Optimal Control Effect on Recovered with Complications

Figure 5.9 indicates a strong decrease in the size of the population due to the

intervention of the controls. This shows clearly that with early diagnosis and right

treatment we can get a lot of people recovering from the infection with no or less

complications.
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5.2.10 Simulation Results of the Control Profiles

Figure 5.10 Control Profiles

The corresponding simulated time-dependent controls uP (t), uV 1(t), uV 2(t), uT1(t),

uT2(t) are presented in Figure 5.10. It can be observed that the time-dependent control

uP (t) started at 0.75 and increased to the upper bound, that is uP (t) = 1, for about

10 days before decreasing to the lower bound at the end of the simulation period. The

time-dependent control uV 1(t) is also seen at the upper bound, that is uV 1(t) = 1

for about 2 days and decreases to the lower bound till the end of the simulation.

Conversely, the remaining time-dependent controls uV 2(t), uT1(t), uT2(t) coincide as

they all start from the lower bound, that is uV 2(t) = uT1(t) = uT2(t) = 0 and

slowly increase to a maximum of about 0.75 on the third day and gradually decrease

to the lower bound with time. These results suggest that to prevent an outbreak,

individuals in the community should be vaccinated against strain 1 and continuously

wear these facial or surgical masks at the beginning of the season. However, individuals

should gradually get vaccinated against the strain 2 and administering of the treatment

controls. The results also suggest that an equal effort should be mounted on the three

coinciding controls. The results further indicate that to keep the population protected

from the disease, all the five controls need to be kept at a relatively high level.
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5.3 Optimal Control Intervention Strategies

5.3.1 Strategy A: Optimal Control with Effective Human Protection and Vaccination

for both Strains

The objective functional is optimized with the effective human protection control, uP (t)

and vaccination controls for both strains, uV 1(t) and uV 2(t) while setting the other

controls: timely and delayed treatment controls, uT1(t) and uT2(t) to zero respectively.

The results are presented in Figure (5.11). It can be observed that the Susceptible

Population S(t) in Figure 5.11(a) reduced drastically within the first few days while the

two Vaccinated Populations V1(t), V2(t) in Figures 5.11(b) and 5.11(c) show a strong

increase, as a lot of people get vaccinated. This control, even when applied exclusively,

leads to a rapid depopulation of the two Carrier Populations C1(t), C2(t) in Figures

5.11(d) and 5.11(e) and the two Infected Populations I1(t), I2(t) in Figures 5.11(f)

and 5.11(g). It is interesting to know that all the four infected classes maintained

this decrease throughout the 30 days and this result can also be viewed in Figure

5.11(j). This is realistic because the effective human protection and vaccination of the

two strains will reduce the number of infections drastically even without a treatment

control since the number of infections will be minimal to curb with available treatment

interventions. The two Recovered Populations R1(t), R2(t) in Figures 5.11(h) and

5.11(i) also show a drastic decrease since fewer infections will lead to fewer individuals

recovering from the infection. The control profiles in Figure 5.11(k), shows that the

time-dependent control uP (t) must be implemented and sustained at its peak for the

first 12 days. The time-dependent control uV 1(t) should also be at its peak for the

first few days while uV 2(t) on the other hand must be increased slowly in the first few

days and consistently decreasing rate overtime. This combination is seen to reduce

the number of infections favourably.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.11 Effects of Effective Human Protection and Vaccination for both
Strains
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5.3.2 Strategy B: Optimal Control with Effective Human Protection and Treatment

for Timely and Delayed Diagnosis

The objective functional is optimized with the effective human protection control,

uP (t), timely treatment control, uT1(t) and delayed treatment control, uT2(t) while

setting the other controls: vaccination controls, uV 1(t) and uV 2(t) to zero respectively.

From the results presented in Figure (5.12), it can be observed that majority of the

population stayed in the Susceptible Population S(t) in figure 5.12(a) due to the control

intervention of surgical or nose masks. The two Vaccinated Populations V1(t), V2(t) in

Figures 5.12(b) and 5.12(c) exhibit stabilities at their initial conditions but begin to

decrease close to the 30th day since there is no vaccination control intervention. This

control strategy also decreases the two Carrier Populations C1(t), C2(t) in Figures

5.12(d) and 5.12(e) and the two Infected Populations I1(t), I2(t) in Figures 5.12(f)

and 5.12(g). This shows that the combination of effective human protection and the

timely and delayed treatments is efficacious in reducing the number of infections as can

be viewed in Figure 5.12(j). The surgical or face masks intervention reduces the spread

of the disease while the treatment of the Carrier Population prevents the infection from

progressing to the symptomatic stage. The two Recovered Populations R1(t), R2(t) in

Figures 5.12(h) and 5.12(i) indicate a rapid decrease due to the fewer infections. The

control profiles in Figure 5.12(k) show that the two treatment controls, uT1(t), uT2(t)

coincide and should be sustained at their peaks together with the effective human

protection uP (t) in the implementation. This suggests that this combination strategy

is most effective when sustained maximally for a long period of time. However, this

control strategy keeps all the Vaccinated Populations to the lower bound.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.12 Effects of Effective Human Protection and Treatment for
Timely and Delayed Diagnosis
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5.3.3 Strategy C: Optimal Control with Effective Human Protection

The objective functional is optimized with only effective human protection, uP (t) while

setting the other controls: vaccination controls for both strains, uV 1(t) and uV 2(t),

delayed and timely diagnosis treatment uT1(t) and uT2(t) to zero respectively. As

indicated in Figure (5.13), the Susceptible Population S(t) in Figure 5.13(a) remains

stable for the whole 30 days due to the effective protection from the use of surgical

or nose masks. The Vaccinated Populations of strain 1 and 2, V1(t), V2(t) in Figures

5.13(b) and 5.13(c) respectively achieve stability for the whole period considered since

people don’t get vaccinated. However, there is a tremendous decrease in all the Carrier

Populations, C1(t), C2(t) and Infected Populations in Figures 5.13(d), 5.13(e), 5.13(f)

and 5.13(g) respectively. This could be due to few infections because of the control

introduced into the forces of infections. The two Recovered Populations R1(t), R2(t)

in Figures 5.13(h) and 5.13(i) show a good decrease since fewer infections will lead to

fewer people recovering from the disease. The control profiles in Figure 5.13(k), shows

that the time-dependent control uP (t) is implemented and sustained at its peak but

begins to decrease to the lower bound after the 25th day. This intervention strategy

is seen to reduce the number of infections favourably.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.13 Effects of only Effective Human Protection such as face or
surgical masks
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5.3.4 Strategy D: Optimal Control with Vaccination for both Strains and Treatment

for Delayed Diagnosis

The objective functional is optimized with vaccination controls for both strains, uV 1(t)

and uV 2(t) and delayed treatment control, uT2(t) while setting the other controls: the

effective human protection control, uP (t) and timely treatment control, uT1(t) to zero

respectively. From the results presented in Figure (5.14), it can be observed that the

Susceptible Population S(t) in Figure 5.14(a) reduced drastically within the first few

days while the two Vaccinated Populations V1(t), V2(t) in Figures 5.14(b) and 5.14(c)

increased and achieved stability due to the intervention of getting people vaccinated.

This control intervention leads to a rapid depopulation of the two Carrier Populations

C1(t), C2(t) in Figures 5.14(d) and 5.14(e) and the two Infected Populations I1(t),

I2(t) in Figures 5.14(f) and 5.14(g). This contributes to the reduction in the disease

prevalence as seen in Figure 5.14(j). This is realistic because the vaccination of the

two strains will prevent people from being infected. The treatment control will also

lead to a faster rate of recovery from the infection which will reduce the number

of secondary infections. The two Recovered Populations R1(t), R2(t) in Figures

5.14(h) and 5.14(i) also show a drastic decrease since fewer infections will lead to

fewer individuals recovering from the infection. The control profiles in Figure 5.14(k),

shows that the time-dependent control uV 1(t) must be implemented and sustained at

its peak for close to 10 days. The time-dependent controls uV 2(t) and uT2(t) coincide

and should be increased slowly in the first few days and consistently decreasing rate

overtime. This combination is seen to also reduce the number of infections.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.14 Effects of Vaccination for both Strains and Treatment for
Delayed Diagnosis
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5.3.5 Strategy E: Optimal Control with Vaccination for Strain 1 and Treatment for

Timely and Delayed Diagnosis

The objective functional is optimized with vaccination control for strain 1, uV 1(t) and

timely and delayed treatment controls, uT1(t), uT2(t) while setting the other controls:

the effective human protection control, uP (t) and vaccination control for strain 2,

uV 2(t) to zero respectively. From the results presented in Figure (5.15), it can be

observed that the Susceptible Population S(t) in Figure 5.15(a) reduced rapidly within

the first few days and achieves some stability afterwards. The Vaccinated Population

of strain 1, V1(t) in Figure 5.15(b) increased drastically and achieved stability due to

the intervention of getting people vaccinated but began to decrease close to day 20.

This decrease could be attributed to the population getting infected with strain 2. The

Vaccinated Population of strain 2, V2(t) in Figure 5.15(c) achieve stability for the whole

period considered due to lack of people getting vaccinated with immunity for strain 2.

This control intervention leads to a depopulation of the two Carrier Populations C1(t),

C2(t) in Figures 5.15(d) and 5.15(e) due to the intervention of the timely diagnosis

treatment. The Infected Population of strain 1, I1(t) in Figure 5.15(f) also reduced

drastically while the Infected Population of strain 2, I2(t) in Figure 5.15(g) indicates an

increase in the population. This shows that taking a vaccine against strain 1 infection

is not enough to keep you protected from the disease. The behaviour of all the four

infected populations can be viewed in Figure 5.15(j) which shows an indication of the

disease persisting even with this control intervention. The two Recovered Populations

R1(t), R2(t) in Figures 5.15(h) and 5.15(i) also show a decrease since the two treatment

controls will lead to a faster recovery rate. However, they begin to increase after some

time and this could be due to the recovery of more people from the strain 2 infection.

The control profiles in Figure 5.15(k), shows that the time-dependent controls uV 1(t),

uT1(t) and uT2(t) must be implemented and sustained at its peak for the duration

considered. However, uV 1(t) begins to decrease close to the 30th day. This combination

strategy is seen not to be the best as the number of infections begin to increase after

some time.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.15 Effects of Vaccination for Strain 1 and Treatment for Timely
and Delayed Diagnosis
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5.3.6 Strategy F: Optimal Control with Vaccination for Strain 2 and Treatment for

Timely and Delayed Diagnosis

The objective functional is optimized with vaccination control for strain 2, uV 2(t) and

timely and delayed treatment controls, uT1(t), uT2(t) while setting the other controls:

the effective human protection control, uP (t) and vaccination control for strain 1,

uV 1(t) to zero respectively. From the results presented in Figure (5.16), it can be

observed that the Susceptible Population S(t) in Figure 5.16(a) reduced drastically

within the first few days and remains stable. The Vaccinated Population of strain

1, V1(t) in Figure 5.16(b) achieve stability for the whole period considered due to

people not getting vaccinated with immunity for strain 1. The Vaccinated Population

of strain 2, V2(t) in Figure 5.16(c) increased rapidly and achieved stability due to

the intervention of people getting vaccinated but began to decrease close to day 20.

This decrease could be attributed to the population getting infected with strain 1.

The two Carrier Populations C1(t), C2(t) in Figures 5.16(d) and 5.16(e) depopulate

due to the intervention of the timely diagnosis treatment. The Infected Population of

strain 1, I1(t) in Figure 5.16(f) indicates a reduction for some period of time and an

increase afterwards. The Infected Population of strain 2, I2(t) in Figure 5.16(g) rather

shows a drastic decrease in the population. This shows that taking a vaccine against

strain 2 infection is not enough to keep you protected from strain 1. The behaviour

of all the four infected populations can be viewed in Figure 5.16(j) which shows an

indication of the disease prevalence with this control intervention. The two Recovered

Populations R1(t), R2(t) in Figures 5.16(h) and 5.16(i) show a decrease since the two

treatment controls leads to a faster rate of recovery. However, they begin to increase

after some time and this could be due to the recovery of more people from the strain 1

infection. The control profiles in Figure 5.16(k), show that the time-dependent controls

uV 2(t), uT1(t) and uT2(t) must be implemented and sustained at its peak and reduced

gradually close to day 30. This combination strategy is also not the best since the

number of infections increases after some time.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.16 Effects of Vaccination for Strain 2 and Treatment for Timely
and Delayed Diagnosis
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5.3.7 Strategy G: Optimal Control with Effective Human Protection, Vaccination for

Strain 1 and Treatment for Timely and Delayed Diagnosis

The objective functional is optimized with effective human protection control, uP (t),

vaccination control for strain 1, uV 1(t) and timely and delayed treatment controls,

uT1(t), uT2(t) while setting the vaccination control for strain 2, uV 2(t) to zero. From the

results presented in Figure (5.17), it can be observed that the Susceptible Population

S(t) in Figure 5.17(a) reduced drastically within the first few days and achieves some

stability afterwards. The Vaccinated Population of strain 1, V1(t) in Figure 5.17(b)

increased drastically and achieved stability due to the intervention of people getting

vaccinated. The Vaccinated Population of strain 2, V2(t) in Figure 5.17(c) remains

stable for the whole period considered in the absence of the vaccination control

for strain 2. This control intervention leads to a depopulation of the two Carrier

Populations C1(t), C2(t) in Figures 5.17(d) and 5.17(e) due to the introduction of

the effective human protection into the forces of infection and the intervention of

the timely diagnosis treatment. The Infected Populations of strain 1, I1(t) in Figure

5.17(f) and strain 2, I2(t) in Figure 5.17(g) show a tremenduous decrease in the two

populations. This shows that the effective human protection and vaccination against

strain 1 infection reduce the spread of infections. The disease prevalence in Figure

5.17(j) shows a reduction with this control intervention strategy. The two Recovered

Populations R1(t), R2(t) in Figures 5.17(h) and 5.17(i) show a decrease due to less

infections and intervention of the two treatment controls. The control profiles in Figure

5.17(k), show that the time-dependent controls uT1(t) and uT2(t) coincide and must

be implemented and sustained at its peak up to the 25th day. The time-dependent

control, uP (t) must be implemented from 0.75, increased after some few days and

sustained at the upper bound till the 25th day where its reduces gradually to its

initial point. uV 1(t) on the other hand, starts from the upper bound and reduces to

the lower bound close to the 15th day. This combination strategy reduces the number

of infections favourably.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.17 Effects of Effective Human Protection, Vaccination for Strain
1 and Treatment for Timely and Delayed Diagnosis
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5.3.8 Strategy H: Optimal Control with Effective Human Protection, Vaccination for

Strain 2 and Treatment for Timely and Delayed Diagnosis

The objective functional is optimized with effective human protection control, uP (t),

vaccination control for strain 2, uV 2(t) and timely and delayed treatment controls,

uT1(t), uT2(t) while setting the vaccination control for strain 1, uV 1(t) to zero.

From the results presented in Figure (5.18), it can be observed that the Susceptible

Population S(t) in Figure 5.18(a) reduced rapidly within the first few days and remains

stable afterwards. The Vaccinated Population of strain 1, V1(t) in Figure 5.18(b)

achieves stability for the whole period considered in the absence of the vaccination

control for strain 1. The Vaccinated Population of strain 2, V2(t) in Figure 5.18(c)

increased steadily and achieved stability due to the intervention of people getting

vaccinated. This control intervention strategy leads to a depopulation of the two

Carrier Populations C1(t), C2(t) in Figures 5.18(d) and 5.18(e) due to the introduction

of the effective human protection into the forces of infection and the intervention of the

timely diagnosis treatment. The Infected Populations of strain 1, I1(t) in Figure 5.18(f)

and strain 2, I2(t) in Figure 5.18(g) show a drastic decrease in the two populations.

This indicates that the effective human protection and vaccination against strain 2

infection reduce the spread of infections. The disease prevalence in Figure 5.18(j) shows

a reduction with this control intervention strategy. The two Recovered Populations

R1(t), R2(t) in Figures 5.18(h) and 5.18(i) show a decrease due to less infections and

intervention of the two treatment controls. The control profiles in Figure 5.18(k),

show that the time-dependent controls, uV 2(t), uT1(t) and uT2(t) coincide and must

be implemented and sustained at its peak up to the 5th day and reduced gradually to

the lower bound. The time-dependent control, uP (t) must also be implemented from

0.75, increased after some few days and sustained at the upper bound till the 22nd day

where its reduces gradually to the lower bound. This combination strategy reduces

the number of infections favourably.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.18 Effects of Effective Human Protection, Vaccination for Strain
2 and Treatment for Timely and Delayed Diagnosis
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5.3.9 Strategy I: Optimal Control with Vaccination for both Strains and Treatment

for Timely and Delayed Diagnosis

The objective functional is optimized with vaccination control for both strains, uV 1(t),

uV 2(t) and timely and delayed treatment controls, uT1(t), uT2(t) while setting the

effective human protection control, uP (t) to zero. From the results presented in

Figure (5.19), it can be observed that the Susceptible Population S(t) in Figure

5.19(a) reduced rapidly within the first few days and achieves stability afterwards.

The Vaccinated Populations of strain 1, V1(t) in Figure 5.19(b) and strain 2, V2(t) in

Figure 5.19(c) increase rapidly and achieve stability due to the intervention of people

getting vaccinated for both strains. The two Carrier Populations, C1(t) and C2(t)

in Figures 5.19(d) and 5.19(e) respectively depict a reduction in the populations due

to the intervention of the timely diagnosis treatment and the vaccines. The Infected

Populations of strain 1, I1(t) in Figure 5.19(f) and strain 2, I2(t) in Figure 5.19(g)

present a tremenduous decrease in the two populations. The disease prevalence can

be viewed in Figure 5.19(j) which shows that this combination strategy is capable of

curtailing the spread of the disease. The two Recovered Populations R1(t), R2(t) in

Figures 5.19(h) and 5.19(i) show a decrease since the vaccines for the two strains leads

to fewer infections, with the two treatment controls also influencing the faster rates of

recovery. The control profiles in Figure 5.19(k) show that the time-dependent controls

uV 2(t), uT1(t) and uT2(t) coincide and must be increased gradually from the lower

bound and sustained. uV 1(t) on the other hand must be implemented at its peak and

decreased slowly after the 4th day to the lower bound.
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(a) Evolution of S(t) (b) Evolution of V1(t)

(c) Evolution of V2(t) (d) Evolution of C1(t)

(e) Evolution of C2(t) (f) Evolution of I1(t)
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(g) Evolution of I2(t) (h) Evolution of R1(t)

(i) Evolution of R2(t) (j) Disease Prevalence

(k) Control Profiles
Figure 5.19 Effects of Vaccination for both Strains and Treatment for
Timely and Delayed Diagnosis
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5.4 Cost-Effectiveness Analysis

To control and eradicate diseases in a community can be both costly and labor

intensive, as such, it is essential to conduct a cost-effectiveness analysis to determine

the most cost-effective strategy to use. In this section, a cost-effectiveness analysis is

conducted to ascertain the costs associated with the health interventions or strategies

which includes the use of effective human personal protection (such as face or surgical

masks), vaccination for both strains and timely and delayed diagnosis treatments, and

the associated benefits gained from implementing these controls. Following the works

of Agusto and ELmojtaba (2017) and Agusto (2013), the cost weights associated with

all the five controls are being varied since changes in them give a distinct cost of

implementing the control strategies. This is achieved by varying one control at a time

keeping all the other controls at the baseline value of 1. The varied weights are 0.10, 1.0,

10.0 and 100 representing very cheap, cheap, expensive and very expensive respectively.

The cost-effective analysis is implemented using three different approaches; namely, the

Infection Averted Ratio (IAR), the Average Cost-Effectiveness Ratio (ACER) and the

Incremental Cost-Effectiveness Ratio (ICER). Ten (10) control strategies consisting of

the various combination of time-dependent controls and all the controls are considered

for this analysis.

5.4.1 Varying the Weight B1 associated with Control uP (t)

The variation of the weight of the effective personal human protection such as face

or surgical masks shows that as the weight B1 increases from low to high, that is

from very cheap to very expensive cost, uP (t) and uV 1(t) increase to the upper bound.

uV 2(t), uT1(t) and uT2(t) on the other hand increase when B1 is low and later decrease

when B1 is high, that is very expensive cost. The profile of the control solutions are

presented in Figure 5.20. This reciprocal relationship will help to keep the community

protected and the infection low and that can be seen in the following state variables

in Figure 5.21.
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(a) Cost Weight B1 = 0.10 (b) Cost Weight B1 = 1.0

(c) Cost Weight B1 = 10.0 (d) Cost Weight B1 = 100

Figure 5.20 Control Profiles using Cost Weights B1 = 0.10, B1 = 1.0, B1 = 10.0
and B1 = 100
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(a) Susceptible varying B1 (b) Carrier of Strain 1 varying B1

(c) Carrier of Strain 2 varying B1 (d) Infected of Strain 1 varying B1

(e) Infected of Strain 2 varying B1 (f) Disease Prevalence varying B1

Figure 5.21 Effects of Varying Cost Weights on the Compartments B1 = 0.10,
B1 = 1.0, B1 = 10.0 and B1 = 100
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5.4.2 Varying the Weight B2 associated with Control uV 1(t)

The variation of the weight of the vaccination of strain 1 control keeps uP (t) to the

lower bound as B2 increases from very cheap to very expensive vaccine. The other

controls uV 1(t), uV 2(t), uT1(t) and uT2(t) initially increase to 0.75 which is close to the

upper bound but uV 1(t) decrease to the lower bound in about 2 days while the others

remain stable at that point but later start to decrease close to day 30. There is a slight

increase of uV 1(t) on the 29th day but begin to decease again the next day. The control

profiles are given in Figure 5.22 and their corresponding state variables in Figure 5.23.

It is observed that there is no significant change in the state variables as B2 is varied.

Therefore, this relationship will also help to keep the community protected and the

infection low.
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(a) Cost Weight B2 = 0.10 (b) Cost Weight B2 = 1.0

(c) Cost Weight B2 = 10.0 (d) Cost Weight B2 = 100

Figure 5.22 Control Profiles using Cost Weights B2 = 0.10, B2 = 1.0, B2 = 10.0
and B2 = 100
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(a) Susceptible varying B2 (b) Carrier of Strain 1 varying B2

(c) Carrier of Strain 2 varying B2 (d) Infected of Strain 1 varying B2

(e) Infected of Strain 2 varying B2 (f) Disease Prevalence varying B2

Figure 5.23 Effects of Varying Cost Weights on the Compartments B2 = 0.10,
B2 = 1.0, B2 = 10.0 and B2 = 100
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5.4.3 Varying the Weight B3 associated with Control uV 2(t)

In varying the weight of the vaccination of strain 2 control, it is observed that uP (t)

remains at the lower bound as B3 increases from very cheap to very expensive vaccine.

The other controls uV 1(t), uV 2(t), uT1(t) and uT2(t) initially increase to 0.75 which

is close to the upper bound. uV 1(t) begins to decrease to the lower bound in about

2 days when the weight is low (very cheap to cheap). As the weight gets higher

(expensive to very expensive), uV 1(t) achieves some stability up to the 18th day and

begins to decrease again till the 29th day where there is a slight increase. On the other

hand, when the weight is low (very cheap to cheap), uV 2(t), uT1(t) and uT2(t) achieve

stability till close to the 30th day. Thereafter, as the weight gets higher (expensive to

very expensive), uV 2(t), uT1(t) and uT2(t) begin to increase again to 0.75 and achieve

some stability for a while till around the 9th day where they begin to decrease again.

The control profiles are given in Figure 5.24 with their corresponding state variables in

Figure 5.25. It is observed that the low weights coincide as well as the high weights in

Figure 5.25. Therefore, this relationship contributes better to keeping the community

protected and the infection low.
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(a) Cost Weight B3 = 0.10 (b) Cost Weight B3 = 1.0

(c) Cost Weight B3 = 10.0 (d) Cost Weight B3 = 100

Figure 5.24 Control Profiles using Cost Weights B3 = 0.10, B3 = 1.0, B3 = 10.0
and B3 = 100
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(a) Susceptible varying B3 (b) Carrier of Strain 1 varying B3

(c) Carrier of Strain 2 varying B3 (d) Infected of Strain 1 varying B3

(e) Infected of Strain 2 varying B3 (f) Disease Prevalence varying B3

Figure 5.25 Effects of Varying Cost Weights on the Compartments B3 = 0.10,
B3 = 1.0, B3 = 10.0 and B3 = 100
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5.4.4 Varying the Weights B4 and B5 associated with Controls uT1(t) and uT2(t)

It is observed that the variations of the weights of the treatment control for the timely

diagnosed individuals, uT1(t) and delayed diagnosed individuals, uT2(t) respectively,

depict similar control profiles in Figure 5.22 and state variables solution profiles in

Figure 5.23. Hence, the results are not shown here.

5.4.5 Infection Averted Ratio

The Infection Averted Ratio (IAR) is calculated as:

IAR =
Number of Infection Averted

Number of Recovered
(5.41)

The number of infection averted above is known as the difference between the

total infectious individuals over the simulation period without control and the total

infectious individuals with control. The strategy with the highest ratio is the most

effective.

The IAR for each intervention strategy is determined using the model parameter values

in Table (4.3). Table 5.1 gives the IAR for all the ten strategies implemented. Strategy

C which involves the effective human personal protection (such as use of face or surgical

masks) uP (t) is seen to have the highest ratio, hence the most effective. This is followed

by Strategy A which involves the combination of effective human personal protection

(such as face or surgical masks) and vaccination for strain 1 and 2 (uP (t), uV 1(t),

uV 2(t)). The next effective strategy is the combination of all the five control variables

(uP (t), uV 1(t), uV 2(t), uT1(t), uT2(t)). Strategy F which involves vaccination for strain

2 and timely and delayed diagnosis treatments (uV 2(t), uT1(t), uT2(t)) is the least

effective strategy. This is due to the relatively low number of infection averted and a

higher total cost.
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Table 5.1 Total Infection Averted, Total Cost and IAR for the Intervention
Strategies

Strategies Total Infection Averted Total Cost IAR
Strategy A 20746244 29.5708 1048.2136
Strategy B 20762153 118.2229 626.0071
Strategy C 20760071 26.7725 1205.3690
Strategy D 20705052 147.2869 138.5324
Strategy E 15793100 147.7395 3.5832
Strategy F 16883300 145.7215 3.2388
Strategy G 20753770 117.9066 681.5017
Strategy H 20754270 37.5736 686.6363
Strategy I 20716556 195.7430 175.1780
All Controls 20749089 24.4073 852.2937

5.4.6 Average Cost-Effectiveness Ratio

The Average Cost-Effectiveness Ratio (ACER) deals with evaluating a single

intervention against the no intervention scenarios. This is calculated as:

ACER =
Total Cost Produced by the Intervention

Total Number of Infection Averted
(5.42)

The total cost produced by the intervention is estimated using the cost of controls
Biu

2
j

2
from the objective functional in Equation (5.3). The strategy with the least ratio

is the most cost-effective.

The ACER for each intervention strategy is presented in Table 5.2. This was

determined using the model parameter values in Table 4.3. Based on this approach,

the combination of all the five control variables (uP (t), uV 1(t), uV 2(t), uT1(t), uT2(t))

is the most cost-effective, followed by Strategy C which is the effective human personal

protection (such as face or surgical masks) uP (t). The next cost-effective strategy is

Strategy A which involves the combination of effective human personal protection and

vaccination for both strains (uP (t), uV 1(t), uV 2(t)).
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Table 5.2 Total Infection Averted, Total Cost and ACER for the
Intervention Strategies

Strategies Total Infection Averted Total Cost ACER
Strategy A 20746244 29.5708 1.42× 10−6

Strategy B 20762153 118.2229 5.69× 10−6

Strategy C 20760071 26.7725 1.29× 10−6

Strategy D 20705052 147.2869 7.11× 10−6

Strategy E 15793100 147.7395 9.35× 10−6

Strategy F 16883300 145.7215 8.63× 10−6

Strategy G 20753770 117.9066 5.68× 10−6

Strategy H 20754270 37.5736 1.81× 10−6

Strategy I 20716556 195.7430 9.45× 10−6

All Controls 20749089 24.4073 1.18× 10−6

5.4.7 Incremental Cost-Effectiveness Ratio

The Incremental Cost-Effectiveness Ratio (ICER) is the additional cost per additional

health outcome computed as:

ICER =
Change in Infection Averted Costs in Strategies i and j

Change in Total Number of Infection Averted in Strategies i and j
(5.43)

This establishes the differences between the various costs and health outcomes of

implementing the different intervention strategies of control. The ICER numerator

includes (where applicable) the differences in the costs of infection averted or cases

prevented, the costs of intervention(s) and the costs of averting productivity losses

among others. The denominator on the other hand, is the differences in health

outcomes which may include the total number of infections averted or the number of

Susceptible cases prevented from entering into the Carrier or Infected populations.

The costs of the various control interventions are assumed to be directly proportional

to the number of controls deployed. This assumption is based on the concept that

the primary aim of using isolation of infective individuals is to reduce infection. To

compare two or more competing intervention strategies incrementally, one intervention

is compared with the next-less-effective intervention.

To implement the ICER, the model is simulated for each of the ten intervention
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strategies. The results from the simulations are used to rank the control strategies in

increasing order of effectiveness based on infection averted. This ranking procedure

shows that Strategy E averted the least number of infections, followed by Strategy F,

and Strategy B averts the most number of infections as given in Table 5.3.

The ICER is computed as follows:

ICER(E) =
147.7395

15793100
= 9.35× 10−6

ICER(F) =
145.7215− 147.7395

16883300− 15793100
= −1.85× 10−6

ICER(D) =
147.2869− 145.7215

20705052− 16883300
= 4.10× 10−7

ICER(I) =
195.7430− 147.2869

20716556− 20705052
= 4.21× 10−3

ICER(A) =
29.5708− 195.7430

20746244− 20716556
= −5.60× 10−3

ICER(All Controls) =
24.4073− 29.5708

20749089− 20746244
= −1.81× 10−3

ICER(G) =
117.9066− 24.4073

20753770− 20749089
= 19.97× 10−3

ICER(H) =
37.5736− 117.9066

20754270− 20753770
= −16.07× 10−2

ICER(C) =
26.7725− 37.5736

20760071− 20754270
= −1.86× 10−3

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3
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Table 5.3 Incremental Cost-Effectiveness Ratio in Increasing Order of Total
Infection Averted

Strategies Total Infection Averted Total Cost ICER
Strategy E 15793100 147.7395 9.35× 10−6

Strategy F 16883300 145.7215 −1.85× 10−6

Strategy D 20705052 147.2869 4.10× 10−7

Strategy I 20716556 195.7430 4.21× 10−3

Strategy A 20746244 29.5708 −5.60× 10−3

All Controls 20749089 24.4073 −1.81× 10−3

Strategy G 20753770 117.9066 19.97× 10−3

Strategy H 20754270 37.5736 −16.07× 10−2

Strategy C 20760071 26.7725 −1.86× 10−3

Strategy B 20762153 118.2229 43.93× 10−3

Table 5.3 shows a cost saving of 9.35 × 10−6 for Strategy E over Strategy F in

comparing just the two strategies. The lower ICER for Strategy F suggests that

Strategy E is strongly dominant over Strategy F. This means that Strategy E is more

costly and less effective compared to Strategy F. Therefore, Strategy E is excluded

and the ICER for the remaining strategies recomputed.

The ICER for the remaining strategues is recomputed as follows:

ICER(F) =
145.7215

16883300
= 8.63× 10−6

ICER(D) =
147.2869− 145.7215

20705052− 16883300
= 4.10× 10−7

ICER(I) =
195.7430− 147.2869

20716556− 20705052
= 4.21× 10−3

ICER(A) =
29.5708− 195.7430

20746244− 20716556
= −5.60× 10−3

ICER(All Controls) =
24.4073− 29.5708

20749089− 20746244
= −1.81× 10−3

ICER(G) =
117.9066− 24.4073

20753770− 20749089
= 19.97× 10−3
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ICER(H) =
37.5736− 117.9066

20754270− 20753770
= −16.07× 10−2

ICER(C) =
26.7725− 37.5736

20760071− 20754270
= −1.86× 10−3

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3

Table 5.4 Incremental Cost-Effectiveness Ratio in Increasing Order of Total
Infection Averted Excluding Strategy E

Strategies Total Infection Averted Total Cost ICER
Strategy F 16883300 145.7215 8.63× 10−6

Strategy D 20705052 147.2869 4.10× 10−7

Strategy I 20716556 195.7430 4.21× 10−3

Strategy A 20746244 29.5708 −5.60× 10−3

All Controls 20749089 24.4073 −1.81× 10−3

Strategy G 20753770 117.9066 19.97× 10−3

Strategy H 20754270 37.5736 −16.07× 10−2

Strategy C 20760071 26.7725 −1.86× 10−3

Strategy B 20762153 118.2229 43.93× 10−3

Comparing Strategies F and D in Table 5.4, the lower ICER for Strategy D is an

indication that Strategy F is strongly dominant over Strategy D, which means that

Strategy F is more costly and less effective compared to Strategy D. Therefore, Strategy

F is excluded and the ICER for the remaining strategies is recomputed.

The ICER for the remaining strategues is recomputed as follows:

ICER(D) =
147.2869

20705052
= 7.11× 10−6

ICER(I) =
195.7430− 147.2869

20716556− 20705052
= 4.21× 10−3

ICER(A) =
29.5708− 195.7430

20746244− 20716556
= −5.60× 10−3
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ICER(All Controls) =
24.4073− 29.5708

20749089− 20746244
= −1.81× 10−3

ICER(G) =
117.9066− 24.4073

20753770− 20749089
= 19.97× 10−3

ICER(H) =
37.5736− 117.9066

20754270− 20753770
= −16.07× 10−2

ICER(C) =
26.7725− 37.5736

20760071− 20754270
= −1.86× 10−3

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3

Table 5.5 Incremental Cost-Effectiveness Ratio in Increasing Order of Total
Infection Averted Excluding Strategy E and F

Strategies Total Infection Averted Total Cost ICER
Strategy D 20705052 147.2869 7.11× 10−6

Strategy I 20716556 195.7430 4.21× 10−3

Strategy A 20746244 29.5708 −5.60× 10−3

All Controls 20749089 24.4073 −1.81× 10−3

Strategy G 20753770 117.9066 19.97× 10−3

Strategy H 20754270 37.5736 −16.07× 10−2

Strategy C 20760071 26.7725 −1.86× 10−3

Strategy B 20762153 118.2229 43.93× 10−3

The comparison of Strategies D and I in Table 5.5 shows that Strategy D has the

lower ICER value. This suggests that Strategy I is strongly dominant over Strategy

D, thus Strategy I is more costly and less effective compared to Strategy D. Therefore,

Strategy I is left out and the ICER for the remaining strategies is recomputed.

The ICER for the remaining strategies is recomputed as follows:

ICER(D) =
147.2869

20705052
= 7.11× 10−6

ICER(A) =
29.5708− 147.2869

20746244− 20705052
= −2.86× 10−3
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ICER(All Controls) =
24.4073− 29.5708

20749089− 20746244
= −1.81× 10−3

ICER(G) =
117.9066− 24.4073

20753770− 20749089
= 19.97× 10−3

ICER(H) =
37.5736− 117.9066

20754270− 20753770
= −16.07× 10−2

ICER(C) =
26.7725− 37.5736

20760071− 20754270
= −1.86× 10−3

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3

Table 5.6 Incremental Cost-Effectiveness Ratio in Increasing Order of Total
Infection Averted Excluding Strategy E, F and I

Strategies Total Infection Averted Total Cost ICER
Strategy D 20705052 147.2869 7.11× 10−6

Strategy A 20746244 29.5708 −2.86× 10−3

All Controls 20749089 24.4073 −1.81× 10−3

Strategy G 20753770 117.9066 19.97× 10−3

Strategy H 20754270 37.5736 −16.07× 10−2

Strategy C 20760071 26.7725 −1.86× 10−3

Strategy B 20762153 118.2229 43.93× 10−3

Comparing Strategies D and A in Table 5.6, the cost saving of 7.11× 10−6 is observed

for Strategy D over Strategy A. The lower ICER value obtained for Strategy A

indicates that Strategy D is strongly dominant over Strategy A. This means Strategy

D is more costly and less effective compared to Strategy A, as such, Strategy D is

removed and the ICER for the remaining strategies is recomputed.

The ICER for the remaining strategies is recomputed as follows:

ICER(A) =
29.5708

20746244
= 1.43× 10−6
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ICER(All Controls) =
24.4073− 29.5708

20749089− 20746244
= −1.81× 10−3

ICER(G) =
117.9066− 24.4073

20753770− 20749089
= 19.97× 10−3

ICER(H) =
37.5736− 117.9066

20754270− 20753770
= −16.07× 10−2

ICER(C) =
26.7725− 37.5736

20760071− 20754270
= −1.86× 10−3

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3

Table 5.7 Incremental Cost-Effectiveness Ratio in Increasing Order of Total
Infection Averted Excluding Strategy E, F, I and D

Strategies Total Infection Averted Total Cost ICER
Strategy A 20746244 29.5708 1.43× 10−6

All Controls 20749089 24.4073 −1.81× 10−3

Strategy G 20753770 117.9066 19.97× 10−3

Strategy H 20754270 37.5736 −16.07× 10−2

Strategy C 20760071 26.7725 −1.86× 10−3

Strategy B 20762153 118.2229 43.93× 10−3

The comparison of Strategies A and All Controls in Table 5.7 presents the Strategy

involving All Controls to have the lower ICER. This is an indication that Strategy A

is strongly dominant over All Controls which means that Strategy A is more costly

and less effective compared to All Controls. As a result, Strategy A is excluded and

the ICER for the remaining strategies is recomputed.

The ICER for the remaining strategies is recomputed as follows:

ICER(All Controls) =
24.4073

20749089
= 1.18× 10−6

ICER(G) =
117.9066− 24.4073

20753770− 20749089
= 19.97× 10−3
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ICER(H) =
37.5736− 117.9066

20754270− 20753770
= −16.07× 10−2

ICER(C) =
26.7725− 37.5736

20760071− 20754270
= −1.86× 10−3

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3

Table 5.8 Incremental Cost-Effectiveness Ratio in Increasing Order of Total
Infection Averted Excluding Strategy E, F, I, D and A

Strategies Total Infection Averted Total Cost ICER
All Controls 20749089 24.4073 1.18× 10−6

Strategy G 20753770 117.9066 19.97× 10−3

Strategy H 20754270 37.5736 −16.07× 10−2

Strategy C 20760071 26.7725 −1.86× 10−3

Strategy B 20762153 118.2229 43.93× 10−3

From Table 5.8, All Controls is compared to Strategy G and Strategy G is revealed

to have the lower ICER. This suggests that Strategy G is strongly dominant over All

Controls which means that Strategy G is more costly and less effective compared to

All Controls. Thus, Strategy G is removed and the ICER for the remaining strategies

is recomputed.

The ICER for the remaining strategies is recomputed as follows:

ICER(All Controls) =
24.4073

20749089
= 1.18× 10−6

ICER(H) =
37.5736− 24.4073

20754270− 20749089
= 2.54× 10−3

ICER(C) =
26.7725− 37.5736

20760071− 20754270
= −1.86× 10−3

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3
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Table 5.9 Incremental Cost-Effectiveness Ratio in Increasing Order of Total
Infection Averted Excluding Strategy E, F, I, D, A and G

Strategies Total Infection Averted Total Cost ICER
All Controls 20749089 24.4073 1.18× 10−6

Strategy H 20754270 37.5736 2.54× 10−3

Strategy C 20760071 26.7725 −1.86× 10−3

Strategy B 20762153 118.2229 43.93× 10−3

Comparing the All Controls to Strategy H in Table 5.9, the All Controls is presented

to have the lower ICER which suggests that Strategy H is strongly dominant over All

Controls. This means that Strategy H is more costly and less effective compared to

All Controls. Therefore, it is better to exclude Strategy H and recompute the ICER

for the remaining strategies.

The ICER for the remaining strategies is recomputed as follows:

ICER(All Controls) =
24.4073

20749089
= 1.18× 10−6

ICER(C) =
26.7725− 24.4073

20760071− 20749089
= 2.15× 10−4

ICER(B) =
118.229− 26.7725

20762153− 20760071
= 43.93× 10−3

Table 5.10 Incremental Cost-Effectiveness Ratio in Increasing Order of
Total Infection Averted Excluding Strategy E, F, I, D, A, G and H

Strategies Total Infection Averted Total Cost ICER
All Controls 20749089 24.4073 1.18× 10−6

Strategy C 20760071 26.7725 2.15× 10−4

Strategy B 20762153 118.2229 43.93× 10−3

The comparison of All Controls and Strategy C in Table 5.10 presents the Strategy

involving All Controls to have the lower ICER. This suggests that Strategy C is

strongly dominant over All Controls which means that Strategy C is more costly and

less effective compared to All Controls. As a result, Strategy C is excluded and the
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ICER for the remaining strategies is recomputed.

The ICER for the remaining strategies is recomputed as follows:

ICER(All Controls) =
24.4073

20749089
= 1.18× 10−6

ICER(B) =
118.229− 24.4073

20762153− 20749089
= 7.18× 10−3

Table 5.11 Incremental Cost-Effectiveness Ratio in Increasing Order of
Total Infection Averted Excluding Strategy E, F, I, D, A, G, H and C

Strategies Total Infection Averted Total Cost ICER
All Controls 20749089 24.4073 1.18× 10−6

Strategy B 20762153 118.2229 7.18× 10−3

From Table 5.11, a comparison between the control strategies left, that is, All

Controls and Strategy B presents the All Controls to have the lower ICER. This is an

indication that Strategy B is strongly dominant over All Controls which means that

Strategy B is more costly and less effective compared to All Controls. As a result, it

is better to exclude Strategy B.

Based on all the computed results above, the combination of all the five control

variables (uP (t), uV 1(t), uV 2(t), uT1(t), uT2(t)) is the most cost-effective intervention

capable of diminishing the burden of Bacterial meningitis. This is not surprising, as

this strategy involves all the key parameters pertaining to curbing the transmission of

the disease.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

The application of mathematical models to determine the number of people who could

be infected or prevented from being infected under different vaccination campaigns is

potentially a cost and life saving tool. Formulating models that can be implemented

and easily understood makes the use and results of these models accessible to a wide

range of people. This research presents two main deterministic models of a coupled

system of ordinary differential equations for the transmission dynamics of Bacterial

meningitis disease.

In Chapter 3, The transmission dynamics of bacterial meningitis with a focus on

vaccination and effective treatment in curtailing the spread of the disease is presented.

The basic reproduction number of the model is computed using the Next Generation

matrix. The equilibrium solutions of the model are obtained and used to establish

criteria for the model’s stability. Using the basic reproduction number, R0, as a

threshold given R0 < 1, the disease-free equilibrium point is established to be both

locally and globally asymptotically stable. The numerical simulations established that

the disease can be eradicated with effective and efficient vaccination and treatment

since that led the basic reproduction number below unity.

In Chapter 4, a novel deterministic model of a coupled system of nine ordinary

differential equations for the transmission dynamics of a two-strain bacterial

meningitis disease is presented. The introduction of the vaccination populations

of strain 1 and strain 2 accommodates majority of the total human population,

thereby relatively curbing the spread of the infections. The positivity analysis of the

two-strain model shows that the model is epidemiologically feasible and represents

what is obtainable in real life. The mathematical analysis of the model shows that the

model has a DFE which is locally and globally asymptotically stable if R01,R02 < 1
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and unstable if R01,R02 > 1. The basic reproduction number indicates that with a

herd immunity of 25%, the disease could be eradicated over a certain period of time

as represented in the numerical simulation results.

The contributions of the model parameters on R0 using the normalized sensitivity

index was examined for the two models. The results indicate that the transmission

probability, β is an effective contributor to R0, as such very essential in the spread

and control of the disease. Therefore, control mechanisms that can reduce the

transmission probability significantly will most definitely curtail the endemicity of the

disease.

In Chapter 5, optimal control theory was used to study the impact of effective human

personal protection (such as face or surgical masks), vaccination of strain 1 and 2,

and timely and delayed diagnosis treatments as effective control measures against the

epidemics. It was established that the application of these time-dependent controls

can remarkably reduce the total number of infected (Carrier and Infected) individuals

in the population. The variation of the weights B1, B2, B3, B4 and B5 corresponding

to changes in the costs of implementing the controls uP (t), uV 1(t), uV 2(t), uT1(t) and

uT2(t) presents an inversely proportional relation between the cost of facial masks used

with vaccination of strain 1 and the cost of vaccination of strain 2 with the treatments

for timely and delayed diagnosis. Thus, as the cost of facial masks and vaccination of

strain 1 increases, the cost of vaccination of strain 2 with the treatments for timely and

delayed diagnosis decreases, and vice versa. The lower weights are more cost-effective

than the higher weights. When the weights on the costs are low, the five controls avert

more infections, but uV 2(t), uT1(t) and uT2(t) avert slightly more infections than uP (t),

uV 1(t). The most efficient and cost-effective control strategy is the strategy involving

all the five control variables. This is followed by Strategy C which is only the effective

human personal protection (such as face or surgical masks), uP (t). However, Strategy

F which involves vaccination for strain 2 and timely and delayed diagnosis treatments

(uV 2(t), uT1(t) and uT2(t)) is the least cost-effective strategy. Although Strategy F is

not cost-effective, it performs just as well as the other two strategies when the ability

to curtail the infection is assessed.
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6.2 Findings

The main findings from the study are;

1. Bacterial meningitis is indeed a vaccine preventable disease. This is because as

the vaccine uptake rates for both strains increase, the vaccinated populations

increase and remain stable, thereby relatively curbing the number of infections.

2. Individuals must commit to take all the available strain vaccines as a form of

protection from the disease.

3. Bacterial Meningitis will not spread in the population if at least 25% of the

population is immune to the disease.

4. Timely diagnosis with effective treatment plays an important role in reducing

the spread of the disease and its delibitating effects after recovery.

5. The transmission of Bacterial meningitis from one person to another can be

greatly reduced through the use of facial or surgical masks. This creates a

physical barrier against potential contaminants in the immediate environment

and prevents secretions from the nose and throat from contaminating the face.

6. The incorporation of the five time-dependent controls: effective human personal

protection (such as face or surgical masks), vaccination of strain 1 and 2, and

timely and delayed diagnosis treatments reduced the total number of infected

(Carrier and Infected) individuals in the population remarkably.

7. The combination of all the five control variables is the most efficient and cost-

effective control strategy in curtailing the spread of the disease.

8. The effective human personal-protection such as the use of face or surgical masks

is the next efficient and cost-effective control strategy.

6.3 Conclusions

Bacterial meningitis has posed a serious threat to lives and livelihood of people,

especially those in the meningitis belt given the potential impact on health systems,
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the economy and society as a whole. This study presents two deterministic

compartmental models of the disease based on Susceptible-Vaccinated-Carrier-

Infected-Treated-Recovered (SVCITR) and Susceptible-Vaccinated-Carrier-Infected-

Recovered (SVCIR) respectively. The invariant region, positivity of the solutions

and stability of the equilibrium points were examined using quantitative analysis.

The basic reproduction number, R0 was computed using the next generation matrix

approach and this was used as a threshold to establish the local and global stabilities

of the model. The numerical simulation results of the model demonstrate the effects

of the model parameters on each compartment. The results show that getting people

vaccinated is crucial to the control of the disease. Furthermore, the sensitivity analysis

of R0 was performed in order to determine the effect of each of the model parameters

in controlling the disease. Thus, reducing the values of the parameters with negative

sensitivity index will help curtail the spread of the disease.

Optimal Control theory was therefore applied to investigate the optimal strategy for

curtailing the spread of the disease using five time-dependent control variables. The

numerical simulations show that these control variables avert more infections at low

costs. As such, a cost-effective analysis was applied to investigate the most cost-

effective strategy from ten different combination of control strategies. The results

indicate that the strategy combining all the five control variables is the most cost-

effective strategy followed by Strategy C which is the effective human personal-

protection. The least cost-effective strategy is Strategy F which is the combination of

vaccination for strain 2 and timely and delayed diagnosis treatments.

6.4 Contributions to Science/Knowledge

The main contributions to science/knowledge are:

1. A mathematical model on the transmission dynamics of Bacterial Meningitis

disease with the incorporation of the Treated population has been developed

2. A novel two-strain compartmental model for the transmission dynamics of

Bacterial Meningitis disease in Ghana has been developed.
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3. The alarming prevalence of Bacterial Meningitis in Ghana has been formulated

as an optimal control problem.

4. The best strategies to curtail the spread of Bacterial Meningitis disease has been

proposed.

5. The most cost-effective strategy to control the spread of Bacterial Meningitis

disease has also been determined in this study

6.5 Recommendations

Based on this study, it is recommended that;

1. Epidemiologists use these models to better understand the prevalence, risk

factors and relative impact of the various available vaccines in the endemic areas.

2. Health professionals use the optimal control strategies in assessing the vaccine’s

efficiency once it is administered in a population.

3. Communities with limited resources, especially those in the meningitis belt

should consider complementing the use of available vaccines and treatments with

the use of facial masks when there is an outbreak.

4. Decision makers should incorporate the findings from this study to provide policy

guideline(s) in their quest for cost-effective control strategies whenever there is

a bacterial meningitis outbreak.

6.6 Suggestions for Future Work

It is better to have more comprehensive researches done in order to find out additional

effective strategies to incorporate in eradicating this disease. Based on this study, it

is suggested that future work should consider:

1. Expanding the model to incorporate the age-structure of the population, as

well as spatial effects associated with the movement of people and various

environmental factors.
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2. Investigate the impact of each of the available drugs on the treatment of the

infection.
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APPENDIX LATEX ERROR: THERE’S NO LINE HERE TO

ENDSEE THE LATEX MANUAL OR LATEX COMPANION

FOR EXPLANATION.YOUR COMMAND WAS

IGNORED.TYPE I <COMMAND> <RETURN> TO

REPLACE IT WITH ANOTHER COMMAND,OR

<RETURN> TO CONTINUE WITHOUT IT.

= *

% Simulation of the Vaccination-Treatment Bacterial Meningitis Model %

function dydt = basicmeningitis1(t,y)

alpha = 211; mu=0.000043; omega=0.00068; gamma=0.125; eta1=0.75; eta2=0.75,

kappa=0.6; epsilon=0.15; tau=0.85; delta=0.43; beta=0.88; theta=0.6; wedge=0.6;

sigma=0.25; r=0.13;

N=y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7);

dydt = zeros(7,1);

dydt(1)=alpha+omega*y(2) -(beta*(eta1*y(3)+y(4))/N+theta + mu)*y(1);

dydt(2)=theta*y(1)- (1-tau)*beta*(eta1*y(3)+y(4))/N*y(2)-(omega + mu)*y(2);

dydt(3)=beta*(eta1*y(3)+y(4))/N*y(1)+ (1-tau)*beta*(eta1*y(3)+y(4))/N*y(2) -

(sigma+kappa+r+delta+ mu)*y(3);

dydt(4)=sigma*y(3)- (kappa+r + delta + mu)*y(4);

dydt(5)=kappa*y(3)+kappa*y(4)-(1-eta2)*delta*y(5)-(1-wedge)*y(5) -

(gamma+gamma*r + mu)*y(5);

dydt(6)=r*y(3)+r*y(4)+gamma*r*y(5) -(epsilon +mu)*y(6);

dydt(7)=gamma*y(5)+(1-wedge)*y(5)+ epsilon*y(6)-mu*y(7);

end

unction [T,Y] = basicmeningitis2()

tspan = [0 30];

y10 = 3219640;

y20 = 495329.3;

y30 = 742993.95;
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y40 = 247664.65;

y50 = 247664.65;

y60 = 0;

y70 = 0;

[T,Y] = ode45(@basicmeningitis1,tspan,[y10 y20 y30 y40 y50 y60 y70]);

figure(1)

plot(T, Y(:,1), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’S(t)’);

figure(2)

plot(T, Y(:,2), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’V(t)’);

figure(3)

plot(T, Y(:,3), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’C(t)’);

figure(4)

plot(T, Y(:,4), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’I(t)’);

figure(5)

plot(T, Y(:,5), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’T(t)’);

figure(6)

plot(T, Y(:,6), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’R1(t)’);

figure(7)

plot(T, Y(:,7), ’b’, ’LineWidth’, 3);
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xlabel(’Time (days)’);

ylabel(’R2(t)’);

figure(8)

plot(T, (Y(:,3)+Y(:,4)),’-b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’C+I’);

%% Simulation of the two-strain Bacterial Meningitis Model %%

function dydt = reformmeningitis1(t,y)

alpha = 211; mu=0.000043; omega1=0.00054; omega2=0.00068; gammac1=0.143;

gammac2=0.3; eta=0.75; gammai1=0.125; gammai2=0.1; epsilon1=0.85;

epsilon2=0.90; tau1=0.3; tau2=0.5; delta=0.43; beta=0.88; theta1=0; theta2=0;

wedge=0.15; rho1=0.85; rho2=0.9; sigma1=0.5; sigma2=0.25;

N=y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+y(8)+y(9);

dydt = zeros(9,1);

dydt(1)=alpha+omega1*y(2)+omega2*y(3)-(beta*(eta*y(4)+y(6))/N)*y(1)-

(beta*(eta*y(5)+y(7))/N)*y(1)-(theta1+ theta2+ mu)*y(1);

dydt(2)=theta1*y(1)-(1-epsilon1)*beta*(eta*y(4)+y(6))/N*y(2)-

(beta*(eta*y(5)+y(7))/N)*y(2)-(omega1 + mu)*y(2);

dydt(3)=theta2*y(1)-(1-epsilon2)*beta*(eta*y(5)+y(7))/N*y(3)-

(beta*(eta*y(4)+y(6))/N)*y(3)-(omega2 + mu)*y(3);

dydt(4)=beta*(eta*y(4)+y(6))/N*(1-tau1)*y(1)+(1-epsilon1)*beta*(eta*y(4)+y(6))/N*y(2)

- (sigma1+ gammac1+ mu)*y(4);

dydt(5)=beta*(eta*y(5)+y(7))/N*(1-tau2)*y(1)+(1-epsilon2)*beta*(eta*y(5)+y(7))/N*y(3)

- (sigma2+ gammac2+ mu)*y(5);

dydt(6)=sigma1*y(4)+beta*(eta*y(4)+y(6))/N*tau1*y(1)+beta*(eta*y(4)+y(6))/N*y(3)-

(gammai1 + delta + mu)*y(6);

dydt(7)=sigma2*y(5)+beta*(eta*y(5)+y(7))/N*tau2*y(1)+beta*(eta*y(5)+y(7))/N*y(2)-

(gammai2 + delta + mu)*y(7);

dydt(8)=gammac1*y(4)+gammac2*y(5)+gammai1*rho1*y(6)+gammai2*rho2*y(7)

-(wedge +mu)*y(8);

dydt(9)=gammai1*(1-rho1)*y(6)+gammai2*(1-rho2)*y(7)+wedge*y(8)-mu*y(9);
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end

% function [T,Y] = reformmeningitis2()

tspan = [0 30];

y10 = 4952781;

y20 = 0;

y30 = 0;

y40 = 214;

y50 = 76;

y60 = 153;

y70 = 69;

y80 = 0;

y90 = 0;

[T,Y] = ode45(@reformmeningitis1,tspan,[y10 y20 y30 y40 y50 y60 y70 y80 y90]);

figure(1)

plot(T, Y(:,1), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’S(t)’);

legend(’S’);

figure(2)

plot(T, Y(:,2), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’V1(t)’);

legend(’V1’);

figure(3)

plot(T, Y(:,3), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’V2(t)’);

legend(’V2’);

figure(4)

plot(T, Y(:,4), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);
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ylabel(’C1(t)’);

legend(’C1’);

figure(5)

plot(T, Y(:,5), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’C2(t)’);

legend(’C2’);

figure(6)

plot(T, Y(:,6), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’I1(t)’);

legend(’I1’);

figure(7)

plot(T, Y(:,7), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’I2(t)’);

legend(’I2’);

figure(8)

plot(T, Y(:,8), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’R1(t)’);

legend(’R1’);

figure(9)

plot(T, Y(:,9), ’b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’R2(t)’);

legend(’R2’);

figure(10)

plot(T, (Y(:,4)+Y(:,5)+Y(:,6)+Y(:,7)),’-b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’C1+C2+I1+I2’);

Cst=sum(Y(:,4)+Y(:,5)+Y(:,6)+Y(:,7)) % Total Infected %
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disp(Cst)

%% Optimal Control code for the two-strain Bacterial Meningitis Model

%%

function Meningitis Optimal Controls ODE45 all in 1

tic;

clear all;

close all;

clc;

format long;

global x0 ptf tf step alpha omega1 omega2 mu epsilon1 epsilon2 tau1 tau2;

global sigma1 sigma2 gammai1 gammai2 delta gammac1 gammac2 rho1 rho2 wedge

global beta eta

global A1 A2 B1 B2 B3 B4 B5;

%% Initial conditions %% x0 = [4952621 60 100 214 76 153 69 0 0];

ptf = [0; 0; 0; 0; 0; 0; 0; 0; 0]; % Initial values for costates %

tf = 30; % Final time %

step = 0.25;

% Parameter values %

alpha = 211;

mu = 0.000043;

omega1 = 0.000547;

omega2 = 0.00068;

gammac1 = 0.143;

gammac2 = 0.3;

gammai1 = 0.125;

gammai2 = 0.1;

epsilon1 = 0.85;

epsilon2 = 0.90;

tau1 = 0.3;
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tau2 = 0.5;

delta = 0.43;

beta = 0.88;

rho1 = 0.85;

rho2 = 0.9;

sigma1 = 0.5;

sigma2 = 0.25;

eta = 0.75;

wedge = 0.15;

% Weight constants %

A1 = 1; A2 = 1; B1 = 1; B2 = 1; B3 = 1; B4 = 1; B5 = 1;

Tu = linspace(0, tf);

t= linspace(0, tf); % Discretization of time interval

f = @(Tu) (Tu > 0); % Heaviside function

uP = min(1,max(0,0.5*Tu)); % Initial value for u’s

uV1= min(1,max(0,0.5*Tu));

uV2= min(1,max(0,0.5*Tu));

uT1= min(1,max(0,0.5*Tu));

uT2= min(1,max(0,0.5*Tu));

for i=1:100 % Maximum number of iterations

% 1) start with assumed control u’s and move forward

options = odeset(’AbsTol’, 1e-4, ’RelTol’, 1e-4);

% [Tx, X] = ode45(@(t,x) stateEq(t, x, uP, uV1, uV2, uT1, uT2, Tu), [0; tf], x0,

options);

% 2) Move backward to get the trajectory costates

x1 = X(:, 1);

x2 = X(:, 2);

x3 = X(:, 3);

x4 = X(:, 4);
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x5 = X(:, 5);

x6 = X(:, 6);

x7 = X(:, 7);

x8 = X(:, 8);

x9 = X(:, 9);

options = odeset(’AbsTol’, 1e-4, ’RelTol’, 1e-4);

% [Tp, P] = ode45(@(t, p) costateEq(t, p, uP, uV1, uV2, uT1, uT2, Tu, x1, x2, x3,

x4, x5, x6, x7, x8, x9, Tx), [tf; 0], ptf, options);

p1 = P(:, 1);

p1 = interp1(Tp, p1, Tx);

p2 = P(:, 2);

p2 = interp1(Tp, p2, Tx);

p3 = P(:, 3);

p3 = interp1(Tp, p3, Tx);

p4 = P(:, 4);

p4 = interp1(Tp, p4, Tx);

p5 = P(:, 5);

p5 = interp1(Tp, p5, Tx);

p6 = P(:, 6);

p6 = interp1(Tp, p6, Tx);

p7 = P(:, 7);

p7 = interp1(Tp, p7, Tx);

p8 = P(:, 8);

p8 = interp1(Tp, p8, Tx);

p9 = P(:, 9);

p9 = interp1(Tp, p9, Tx);

% Calculate deltaH with x’s(t) and p’s(t)

dH1 = pH1(x1, x2, x3, x4, x5, x6, x7, x8, x9, p1, p2, p3, p4, p5, p6, p7, Tx, uP, Tu);

dH2 = pH2( x1, p1, p2, Tx, uV1, Tu);

dH3 = pH3( x1, p1, p3, Tx, uV2, Tu);

dH4 = pH4(x4, x5, p4, p5, p8, Tx, uT1, Tu);
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dH5 = pH5(x6, x7, p6, p7, p8, p9, Tx, uT2, Tu);

H1norm = dH1’*dH1;

H2norm = dH2’*dH2;

H3norm = dH3’*dH3;

H4norm = dH4’*dH4;

H5norm = dH5’*dH5;

% Calculate the Cost Function

% Weight constants for Strategy 5

A1 = 1; A2 = 1; B1 = 1; B2 = 1; B3 = 1; B4 = 1; B5 = 1;

% Cost function

J = tf*((A1*(x4+x6) +A2*(x5+x7))/length(Tx)+0.5*(B1*(uP*uP’)+B2*(uV1*uV1’)+

B3*(uV2*uV2’)+B4*(uT1*uT1’)+B5*(uT2*uT2’))/length(Tu));

obj=J

TCst=0.5*(B1*(uP*uP’)+B2*(uV1*uV1’)+B3*(uV2*uV2’)+B4*(uT1*uT1’)+B5*(uT2*uT2’));

% TCst(disp(J1)

% if dH/du < epsilon, exit

%if Hnorm < eps

eps = 1.0e-6;

if (H1norm < eps) && (H2norm < eps) && (H3norm < eps) && (H4norm < eps)

&& (H5norm < eps)

% Display final cost

J

break;

else

% adjust control for next iteration

uPold = uP;

uP = AdjControl1(dH1, Tx, uPold, Tu, step);

uV1old = uV1;

uV1 = AdjControl2(dH2, Tx, uV1old, Tu, step);

uV2old = uV2;
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uV2 = AdjControl3(dH3, Tx, uV2old, Tu, step);

uT1old = uT1;

uT1 = AdjControl4(dH3, Tx, uT1old, Tu, step);

uT2old = uT2;

uT2 = AdjControl5(dH3, Tx, uT2old, Tu, step);

end

end

figure(1)

plot(Tx, X(:, 1), ’-b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’S(t)’);

figure(2)

plot(Tx, X(:, 2), ’-g’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’V1(t)’);

figure(3)

plot(Tx, X(:, 3), ’-g’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’V2(t)’);

figure(4)

plot(Tx, X(:, 4), ’-b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’C1(t)’);

figure(5)

plot(Tx, X(:, 5), ’-b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’C2(t)’);

figure(6)

plot(Tx, X(:, 6), ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’I1(t)’);

figure(7)
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plot(Tx, X(:, 7), ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’I2(t)’);

figure(8)

plot(Tx, X(:, 8), ’-g’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’R1(t)’);

figure(9)

plot(Tx, X(:, 9), ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’R2(t)’);

figure(10)

plot(Tx, (X(:,4)+X(:,5)+X(:,6)+X(:,7)),’-b’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’C1+C2+I1+I2’);

Inf=sum(X(:,4)+X(:,5)+X(:,6)+X(:,7));

disp(Inf)

R=sum(X(:,8)+X(:,9));

disp(R)

figure(11)

plot(Tu, uP, ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’uP’);

legend(’uP’);

figure(12)

plot(Tu, uV1, ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’uV1’);

figure(13)

plot(Tu, uV2, ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’uV2’);
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figure(14)

plot(Tu, uT1, ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’uT1’);

figure(15)

plot(Tu, uT2, ’-r’, ’LineWidth’, 3);

xlabel(’Time (days)’);

ylabel(’uT2’);

%figure; plot(Tp, P(:, 1));

figure(16)

plot(Tu, uP, ’-r’, ’LineWidth’, 3);

hold on;

plot(Tu, uV1, ’–r’, ’LineWidth’, 3);

hold on;

plot(Tu, uV2, ’:k’, ’LineWidth’, 3);

hold on;

plot(Tu, uT1, ’-k’, ’LineWidth’, 3);

hold on;

plot(Tu, uT2, ’:b’, ’LineWidth’, 3);

hold off;

xlabel(’Time (days)’);

ylabel(’Control Profiles’);

h=legend(’uP’, ’uV1’, ’uV2’,’uT1’,’uT2’);

disp(J);

disp([R,Inf, TCst])

% state equations

function dx = stateEq(t, x, uP, uV1, uV2, uT1, uT2, Tu)

global beta eta epsilon1 epsilon2 alpha omega1 omega2 mu tau1 tau2 sigma1 sigma2;

global gammac1 gammac2 gammai1 gammai2 delta rho1 rho2 wedge;

dx = zeros (9,1);

uP = interp1(Tu, uP, t); % interpolate the controls at time t
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uV1 = interp1(Tu, uV1, t);

uV2 = interp1(Tu, uV2, t);

uT1 = interp1(Tu, uT1, t);

uT2 = interp1(Tu, uT2, t);

N = x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)+x(8)+x(9);

lambda1 = ((1-uP)*beta*(eta*x(4)+x(6)))/N;

lambda2 = ((1-uP)*beta*(eta*x(5)+x(7)))/N;

pi1 = 1-epsilon1;

pi2 = 1- epsilon2;

dx(1) = alpha + omega1*x(2) + omega2*x(3) - (lambda1 + lambda2 + uV1 + uV2

+ mu)*x(1);

dx(2) = uV1*x(1) - pi1*lambda1*x(2) -(lambda2+omega1+mu)*x(2);

dx(3) = uV2*x(1) - pi2*lambda2*x(3) - (lambda1 + omega2 + mu)*x(3);

dx(4) = lambda1*((1-tau1)*x(1)+pi1*x(2)) - (sigma1 + gammac1*(1+uT1) +

mu)*x(4);

dx(5) = lambda2*((1-tau2)*x(1)+pi2*x(3)) - (sigma2 + gammac2*(1+uT1) +

mu)*x(5);

dx(6) = sigma1*x(4) + lambda1*(tau1*x(1)+x(3)) -

(gammai1*(1+uT2)+delta+mu)*x(6);

dx(7) = sigma2*x(5) + lambda2*(tau2*x(1)+x(2)) -

(gammai2*(1+uT2)+delta+mu)*x(7);

dx(8) = gammac1*(1+uT1)*x(4)+gammac2*(1+uT2)*x(5)+rho1*gammai1*(1+uT2)*x(6)

+rho2*gammai2*(1+uT2)*x(7)-(wedge+mu)*x(8);

dx(9) = (1-rho1)*gammai1*(1+uT2)*x(6)+(1-rho2)*gammai2*(1+uT2)*x(7)+wedge*x(8)-

mu*x(8);

% Costate equations

function dp = costateEq(t, p, uP, uV1, uV2, uT1, uT2, Tu, x1,x2,x3,x4,x5,x6, x7, x8,

x9,xt)

global mu wedge delta gammai1 gammai2 rho1 rho2 beta epsilon1 epsilon2 tau1 tau2;

global A1 A2 % B1 B2 B3 B4 B5;

global sigma1 sigma2 gammac1 eta omega1 omega2 gammac2;
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dp = zeros(9, 1);

% Interpolate the state variables

x1 = interp1(xt, x1, t);

x2 = interp1(xt, x2, t);

x3 = interp1(xt, x3, t);

x4 = interp1(xt, x4, t);

x5 = interp1(xt, x5, t);

x6 = interp1(xt, x6, t);

x7 = interp1(xt, x7, t);

x8 = interp1(xt, x8, t);

x9 = interp1(xt, x9, t);

% Interpolate the control variables

uP = interp1(Tu, uP, t);

uV1 = interp1(Tu, uV1, t);

uV2 = interp1(Tu, uV2, t);

uT1 = interp1(Tu, uT1, t);

uT2 = interp1(Tu, uT2, t);

N = x1+x2+x3+x4+x5+x6+x7+x8+x9;

lambda1 = ((1-uP)*beta*(eta*x4+x6))/N;

lambda2 = ((1-uP)*beta*(eta*x5+x7))/N;

dp(1) = p(1)*mu+(p(1)-p(2)).*uV1+(p(1)-p(3)).*uV2+(p(1)-p(4)).*lambda1+(p(1)-

p(5)).*lambda2+(p(4)-p(6)).*(tau1*lambda1)+(p(5)-p(7)).*(tau2*lambda2);

dp(2) = p(2).*mu+(p(2)-p(1)).*omega1+(p(2)-p(7)).*lambda2+(p(2)-

p(4)).*(lambda1*(1-epsilon1));

dp(3) = p(3).*mu+(p(3)-p(1)).*omega2+(p(3)-p(6)).*lambda1+(p(3)-

p(5)).*(lambda2*(1-epsilon2));

dp(4) = (p(1)-p(4)).*(((1-uP)*beta*eta)./N-lambda1./N)*x1+(p(4)-p(6)).*(((1-

uP)*beta*eta)./N-lambda1./N)*tau1*x1 + (p(2)-p(4)).*(((1-uP)*beta*eta)./N-

lambda1./N)*(1-epsilon1)*x2 + (p(3)-p(6)).*(((1-uP)*beta*eta)./N-

lambda1./N)*x3+(p(4)-p(8)).*gammac1*(1+uT1)+(p(4)-p(6)).*sigma1+p(4).*mu-

A1;
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dp(5) = (p(1)-p(5)).*(((1-uP)*beta*eta)./N-lambda2./N)*x1+(p(5)-p(7)).*(((1-

uP)*beta*eta)./N-lambda2./N)*tau2*x1 + (p(3)-p(5)).*(((1-uP)*beta*eta)./N-

lambda2./N)*(1-epsilon2)*x3 + (p(2)-p(7)).*(((1-uP)*beta*eta)./N-

lambda2./N)*x2+(p(5)-p(8)).*gammac1*(1+uT1)+(p(5)-p(7)).*sigma2+p(5).*mu-

A2;

dp(6) = (p(1)-p(4)).*(((1-uP)*beta)./N-lambda1./N)*x1+(p(4)-

p(6)).*(((1-uP)*beta)./N-lambda1./N)*tau1*x1 + (p(2)-p(4)).*(((1-

uP)*beta)./N-lambda1./N)*(1-epsilon1)*x2 + (p(3)-p(6)).*(((1-

uP)*beta)./N-lambda1./N)*x3+(p(6)-p(9)).*gammai1*(1+uT2)+(p(9)-

p(8)).*rho1*gammai1*(1+uT2)+p(6).*(mu+delta)-A1;

dp(7) = (p(1)-p(5)).*(((1-uP)*beta)./N-lambda2./N)*x1+(p(5)-

p(7)).*(((1-uP)*beta)./N-lambda2./N)*tau2*x1 + (p(3)-p(5)).*(((1-

uP)*beta)./N-lambda2./N)*(1-epsilon2)*x3 + (p(3)-p(7)).*(((1-

uP)*beta)./N-lambda2./N)*x2+(p(7)-p(9)).*gammai2*(1+uT2)+(p(9)-

p(8)).*rho2*gammai2*(1+uT2)+p(7).*(mu+delta)-A2;

dp(8) = (p(8)-p(9)).*wedge + p(8).*mu;

dp(9) = p(9).*mu;

% partial derivative of H with respect to u

function dH1 = pH1(x1, x2, x3, x4, x5, x6, x7, x8, x9, p1, p2, p3, p4, p5, p6, p7, Tx,

uP, Tu)

% interpolate the control

global B1 tau1 tau2 epsilon1 epsilon2 beta eta;

uP = interp1(Tu, uP, Tx);

N = x1+x2+x3+x4+x5+x6+x7+x8+x9;

lambda1 = ((1-uP).*beta.*(eta*x4+x6))./N;

lambda2 = ((1-uP).*beta.*(eta*x5+x7))./N;

dH1 = B1*uP-(p4-p1).*(lambda1.*x1)-(p5-p1).*(lambda2.*x1)-(p6-

p4).*(lambda1*tau1.*x1) - (p7-p5).*(lambda2*tau2.*x1)-(p4-p2).*(lambda1*(1-

epsilon1).*x2) - (p7-p2).*(lambda2.*x2) - (p5-p3).*(lambda2*(1-epsilon2).*x3) -

(p6-p3).*(lambda1.*x3);

function dH2 = pH2( x1, p1, p2, Tx, uV1, Tu)
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% interpolate the control

global B2;

uV1 = interp1(Tu, uV1, Tx);

dH2 = B2*uV1 - (p1-p2).*x1;

% partial derivative of H with respect to u2

function dH3 = pH3( x1, p1, p3, Tx, uV2, Tu)

% interpolate the control

global B3;

uV2 = interp1(Tu, uV2, Tx);

dH3 = B3*uV2 - (p1-p3).*x1;

function dH4 = pH4(x4, x5, p4, p5, p8, Tx, uT1, Tu)

% interpolate the control

global gammac1 gammac2 B4;

uT1 = interp1(Tu, uT1, Tx);

dH4 = B4*uT1 - (p4-p8).*gammac1.*x4 - (p5-p8).*gammac2.*x5;

function dH5 = pH5(x6, x7, p6, p7, p8, p9, Tx, uT2, Tu)

% interpolate the control

global gammai1 gammai2 rho1 rho2 B5;

uT2 = interp1(Tu, uT2, Tx);

dH5 = B5*uT2 - (p6-p9).*gammai1.*x6 - (p7-p9).*gammai2.*x7-(p9-

p8).*rho1.*gammai1.*x6-(p9-p8).*rho2.*gammai2.*x7;

% adjust the control

function uPnew = AdjControl1(pH1, Tx, uP, Tu, step)

% interpolate dH/u

pH1 = interp1(Tx, pH1, Tu);

uPnew = min(1,max(0,uP - step*pH1));

function uV1new = AdjControl2(pH2, Tx, uV1, Tu, step)

% interpolate dH/u

pH2 = interp1(Tx, pH2, Tu);

uV1new = min(1,max(0,uV1 - step*pH2));

function uV2new = AdjControl3(pH3, Tx, uV2, Tu, step)
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% interpolate dH/u

pH3 = interp1(Tx, pH3, Tu);

uV2new = min(1,max(0,uV2 - step*pH3));

function uT1new = AdjControl4(pH4, Tx, uT1, Tu, step)

% interpolate dH/u

pH4 = interp1(Tx, pH4, Tu);

uT1new = min(1,max(0,uT1 - step*pH4));

function uT2new = AdjControl5(pH5, Tx, uT2, Tu, step)

% interpolate dH/u

pH5 = interp1(Tx, pH5, Tu);

uT2new = min(1,max(0,uT2 - step*pH5));
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