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ABSTRACT 

Undercharging of grinding media leads to grinding inefficiencies. However, overcharging on 

the other hand increases the overall mill weight thereby increasing the torque of the mill motor 

accordingly. Counterbalancing the increase in load torque by mill motor is achieved by drawing 

more current to produce enough power capable of overcoming the load. More power used 

means increase in cost. Studies reported in the literature have established that both 

undercharging and overcharging are undesirable since they contribute negatively to the overall 

economics of the grinding process. In this research, a non-linear ANN-based predictive model 

of optimal grinding media charge of the ball mill with consideration of minimum power draw 

was developed. Operational data of the ball mill involving nine variables were collected over 

a period of time from a gold mine in the Western Region of Ghana and employed in developing 

four predictive models. Further, the best performing model was optimised using Grey Wolf 

Optimisation (GWO) algorithm and Optimal Charging Practices (OCPs) datasets for the 

purpose of predicting 60 mm grinding media balls. Finally, investigations on how sensitive 

power draw and grinding media charge were to changes in selected input variables namely, 

throughput, ore hardness and grinding media wear rate were conducted. Both single and 

multiple variables analyses were performed in an attempt to find out the possibility of grinding 

with minimal power draw and minimal grinding media charge while maximising throughput.  

The analysed scenarios and cases revealed that, it is desirable to grind at 80.0% passing 106 

m  and that minimisation of 60 mm grinding media charge is achievable at the expense of the 

mill power draw.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Background to the Research   

Electrical energy is a valuable commodity that improves the quality of life in every facet of 

human endeavour. Though not entirely exploited during its invention, it later became a critical 

determinant for most developing economies during the advent of the industrial revolution. The 

rise in demand for electrical energy in the wake of the industrial era was mainly justified by 

the transition of most manufacturing companies from hand production methods to more 

advanced methods such as the development of machine tools and the rise of the factory system. 

Electrical energy has not only been at the forefront of industrial transformations but has also 

played revolutionary roles in the success stories of other sectors such as domestic, 

transportation and commercial ventures which form part of the intensive energy demand 

sectors.  

More recently, studies by Metayer et al. (2015) established that, there has been a total energy 

demand growth of about 70% over the last two decades and future projections expect energy 

demand to grow by an additional 40% in the year 2040. The studies also revealed that demand 

in the industrial sector alone is growing at a rate of 0.7% annually, by far the highest among 

the three other sectors aforementioned. Affirming these studies, reports by United States 

Energy Information Administration (USEIA) further supported that the industrial sector uses 

more delivered energy than any other end user sector, consuming about 54% of the world’s 

total delivered energy. A disaggregated view of this composition sees comminution alone 

accounting for about 60% of mine electric power load and more than 35% of the operation’s 

greenhouse gas emissions (Jeswiet and Szekeres, 2016).  

Comminution, which is one of the most important stages during mineral processing, plays a 

very crucial role in progressively reducing the size of ore bearing rocks to desirable sizes for 

further processing.  The works of Napier-Munn (2015), Taylor et al. (2020) and Wills and 

Finch (2016) unanimously agreed that comminution is a very energy intensive process and 

consumes about 30% - 70% of the total energy used in mineral processing plants. Grinding is 

considered as the last stage in the comminution chain and is accomplished by abrasion and 

impact of the ore with moving media such as rods or balls inside the mill. According to Abbey 

et al. (2015), grinding is the most energy intensive process and ranks ahead of blasting and 

crushing in terms of energy consumption in the comminution circuit. Yu (2017) also stated that 
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it is remarkable and worth noting that energy consumption of grinding far exceeds the energy 

consumption of other processes, reaching 40% of all the energy used by equipment across the 

mining industry.  

Globally, grinding is estimated to consume about 2% of the energy produced in the world. 

However, Mor et al. (2019) in his studies revealed that existing methods of milling are very 

inefficient and use only 5% of the input energy for real size reduction while the rest is 

consumed by the machine itself. The accounted inefficiencies during the grinding process 

included a greater percentage of the input energy dissipated as heat in ore bearing rocks due to 

uncontrolled velocity (Esteves et al., 2015). All these inefficiencies contribute significantly to 

a greater percentage of electrical energy wasted in mineral processing which is no longer 

consistent with modern sustainability recommendations.  

Optimisation of the usage of electrical energy is crucial in achieving improved energy 

efficiency in the minerals processing industry which invariably has the tendency to make 

significant contribution to solving local, national and global energy problems. More 

importantly, the need for the reduction of energy consumption associated with the ball mill 

comminution process is ever greater in recent times due to its direct interrelation with the cost 

of production. Griffin et al. (2016) revealed that 85% of minerals processing industries waste 

capital or more money in meeting energy cost. Recent significant increment in electricity tariffs 

has hard-pressed the minerals processing industry to find solutions to optimally use electrical 

energy so as to pay lower bills and increase profit margins.  

 

1.2 Problem Definition 

The wet ball mill is a very common form of grinding equipment in the industrial production 

process. Widely used in ceramics, chemicals, cement, glass, refractories and other industries, 

it is a critical equipment which helps with the grinding process in the comminution chain (Nath, 

2017). Grinding media is always used in conjunction with the wet ball mill to achieve grinding. 

Kinetic energy in the rotating grinding media is transferred to the ore to cause breakage during 

mill operation. The grinding media used depends to a larger extent on the particle size desired, 

infeed ore size and energy considerations. Efficient grinding is achieved by the type and size 

of grinding media used. Attaining the required product particle size according to production 

standards is dependent on the proper charging of grinding media.  

Both undercharging and overcharging are undesirable practices in the minerals processing plant 

(Rupare et al., 2013). Undercharging of grinding media leads to grinding inefficiencies while 
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overcharging on the other hand, increases the overall mill weight and increases electromagnetic 

torque required to drive the mill motor. Increased torque means more power is used in 

overcoming the mill load. More power used per time means increase in energy cost. In most 

continuous milling plants, there is the need to replenish grinding media while the mill is in 

operation. Foucher et al. (2014) established that charging of grinding media in most mineral 

processing plants is done manually at the experience of the mill operator. This condition leaves 

operators in the swing of trading in-between attaining the required product particle size for 

downstream processing and paying exorbitant electricity bills for the cost of electric power 

(Machalek et al., 2020; Nath, 2017). The work further revealed that mill overcharging in most 

cases is the resultant effect of manual replenishing of grinding media. 

According to Rupare et al. (2013), overcharging does not only lead to increased power 

consumption but increases both wear rate of steel balls and down times. Significant reduction 

in the cost associated with grinding over the years has been achieved by improving the design 

of crushers and mills (Bian et al., 2017). However, there has not been any major breakthrough 

in improving the energy efficiency of the comminution process. Today, the utilisation of both 

conventional and non-conventional energy resources is under critical review. This research 

seeks to address the problem of predicting optimal grinding media charging of the ball mill to 

achieve the required product particle size and reduce the cost of energy demanded by the ore 

size reduction. 

  

1.3 Purpose of the Research  

This research aims at predicting optimal grinding media charge of the ball mill in order to 

minimise the power drawn without compromising on the required product particle size.  

 

1.4 Objectives of the Research  

The main objective of this research work is to predict optimal grinding media charge to 

minimise the electrical energy wasted by ball mills due to inefficient charging practices.  

The specific objectives of this research are to:  

i. Develop ANN-based models of the ball mill comminution process from 

experimental data;  

ii. Investigate the scenarios of undercharging and overcharging using the 

developed model; 
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iii. Optimise the electric power drawn by the ball mill and the quantity of grinding 

media charged; and 

iv. Perform sensitivity analysis on the effect of input variables on both the power 

draw and grinding media charge requirement for a desirable product particle 

size. 
 

1.5 Expected Outcomes  

The following outcomes are expected after the implementation of findings of this research 

work: 

i. An accurate model developed for the purpose of optimal charging of grinding 

media;  

ii. Reduction in electrical energy wasted as a result of overcharging of the ball mill; 

and    

iii. Appropriate quantity of steel balls required for size reduction of ore in the ball 

mill. 

 

1.6 Research Questions and Hypothesis  

This research was guided by the following questions.  

i. Is it possible to develop accurate models for the purpose of optimally charging 

ball mill with grinding media?  

ii. Is it possible to reduce the amount of power drawn during ore size reduction in 

tumbling wet ball mills at the required product particle size?  

 

Therefore, the research hypothesis is stated as: An ANN-based model can optimally make 

decisions on the amount of grinding media charge to reduce the power drawn by tumbling wet 

ball mills during grinding at the required product particle size.  

 

1.7 Scope of the Research  

This research work is dedicated to predicting grinding media charge for optimal power draw 

of wet ball mills in a closed loop comminution circuit for ore size reduction using Artificial 

Neural Networks (ANN).   

1.8 Research Methods Used  

The following methods were employed to attain the set objectives: 

i. Literature review on existing solutions to the problem and their limitations;  
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ii. Field visits, data collection, validation and analysis;  

iii. Development of optimal models using ANN techniques;  

iv. Investigation of the accuracy of the developed models against standard 

performance metrics;  

v. Use of Artificial Neural Networks – Grey Wolf Optimisation (ANN – GWO) 

algorithm to optimally predict the charging of grinding media and power draw;  

vi. Computer simulations using scripts in MATLAB software version 2019b 

environment; and  

vii. Sensitivity analyses to validate robustness of predictions. 

 

1.9 Facilities Used for the Research  

The following facilities were deployed in this research:  

i. Library, Laboratory, Computer and Internet facilities at UMaT; 

ii. Laptop Computer with MATLAB/Simulink software; and 

iii. Ball mill circuit facility of a mineral processing plant in the Prestea – Huni 

Valley district.   

1.10 Significance of the Research  

The significance of this research is stated as follows:  

i. The successful implementation of research outcome will go a long way to cut 

down on total electric power wasted during comminution due to overcharging 

of ball mills with grinding media and eventually, raise profit margins of mill 

operations; and  

ii. Establish a more appropriate grinding media requirement for ore size reduction 

in tumbling overflow wet ball mills.  

 

1.11 Limitations of the Research  

Since ball mills are an integral part of the production flow in a typical mineral processing 

setting, shutting it down for the purpose of this investigation would cost companies under 

consideration millions of dollars. Hence, this work resorted to the use of data driven models 

and computer simulations. However, influential factors and data that affect mill power draw 

and optimal operation are used for the purpose of model development and analyses. 
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1.12 Definition of Terms and Key Concepts  

Ball mill: A type of equipment used to grind and blend materials for use in mineral processing 

plants and other industrial setting.  

Comminution: It is the reduction of solid materials from one average particle size to a smaller 

average particle size, by blasting, crushing, grinding, cutting, vibrating, or other processes.  

Critical speed: the speed at which the mill charge centrifuges.  

Grindability: It is a measure of an ore’s resistance to grinding.  

Grinding media in ball mills: It refers to loaded steel balls used for grinding in the ball mill.  

Load level: It is the level of the free surface of the load with respect to the mill axis when the 

mill is stopped.  

Media: This may be steel balls in a ball mill, or large lumps of ore in an autogenous mill or a 

mixture of lumps of ore and balls in a semi – autogenous mill, as well as the slurry that makes 

up the operating charge.  

Mill charge residence time: It is the time taken between the entry of the feed into the mill and 

its discharge from the mill.   

Mill load: It refers to the mill content which consists of a mixture of grinding media and pulp 

or slurry.  

Ore: A type of rock that contains sufficient minerals with important elements including metals 

that can be economically extracted from the rock.  

Prediction of process variables: It is the technique of determining the output of a particular 

process variable in previously unseen data using a developed model.  

Slurry: It is a mixture of fine solids and water produced in the ball mill.  

Throughput: It is the rate of production of products. 

 

1.13 Organisation of the Thesis  

This thesis consists of six chapters. Chapter 1 covers the general introduction which comprises 

background to the research, problem definition, purpose of the research, objectives of the 

research, expected outcomes, research methods used, facilities used for the research, 

significance of the research, limitations of the research and organisation of the thesis.  
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Chapter 2 is devoted to the literature review, which consists of an intensive review of theories 

and concepts, review of related works on prediction of mill process variables, and statement of 

research gap in the literature that the research seeks to address.  

Chapter 3 deals with the methodology used in the development of the predictive models. It 

expounds on data acquisition, pre-processing, data analysis, representation and interpretation. 

It examines the performance of the various predictive models developed based on standard 

performance metrics. It finally looked at the investigation of overcharging and undercharging 

using the best of the developed models.  

Chapter 4 focuses on the development of an optimised grinding media consumption prediction 

model using a bionic optimisation algorithm for enhanced performance. The grinding media 

prediction model is developed from optimal charging practices identified from the test dataset 

in the previous chapter.  

Chapter 5 performs sensitivity analysis of investigated scenarios and their effect on mill power 

draw and grinding media consumed while desirably keeping product particle size constant.  

Chapter 6 gives the conclusions and recommendations, research contributions and future work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction  

Electric power is a key player in any industrial setting. It serves as an engine on which a lot of 

processes thrive. Industrialisation over the past few decades has seen a significant rise in 

electric power demand. With the present trajectory of load growth, there is the need to conserve 

electric power at every level within the industrial setup to help meet demand as well as cut 

down on extra expenses. 

Ball mill grinding media charging control is vital in ensuring that electric power is efficiently 

used and conserved. It has a significant effect on the power drawn and the particle size required 

for downstream processing. It is therefore needful to optimally charge grinding media to meet 

the two seemingly competing parameters, namely power drawn and output product particle 

size. One critical parameter that is very essential during downstream processing is the final 

particle size. The fragmentation of the ore bearing rocks to the required particle size is dictated 

largely by the number of balls inside the ball mill at a time per the loaded mill feed (Esteves, 

2015; Siwella, 2017).   

Currently in most mining companies within the Prestea-Huni valley district, grinding media 

charging of ball mills is done manually or semi-automated without consideration of other 

influential factors. The ideal condition is for the model to help in optimally charging grinding 

media to result in minimum power draw by the mill as well as meeting the required product 

particle size. However, this is rarely achieved. In most cases, the process is done based on the 

experience of mill operators. The efficient charging of ball mill grinding media will help in the 

reduction of electric power consumed (Rupare et al., 2013). 

This chapter therefore gives an elaboration of some theories and concepts of the ball mill and 

mill grinding efficiency. Some related works are equally reviewed to serve as a foundation for 

this research. 

  

2.2 Ball Mills 

The ball mill is a machine that is deployed to reduce the size of mineral bearing ore, chemical, 

ceramic raw materials and paint into fragments that can be used for downstream processing. It 

basically consists of a hollow cylinder containing balls mounted on a metallic frame which 

gives it the flexibility to rotate about its longitudinal axis. The grinding media is made up of 
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either balls or rods. The balls which could be made of different diameters occupy 30% to 50% 

of the mill volume and their size depends on the feed and mill size (Calistus, 2016). Grinding 

in ball mills is achieved by impact and attrition (Piras et al., 2019). 

2.2.1 Constructional Features of Ball Mills  

There are different types of ball mills usually differentiated by the discharge system (Yu, 2017). 

Grate discharge, conical, air swept, tube, screen discharge and batch mills are some examples 

of the types of ball mills available. The empirical construction of all ball mills is fundamentally 

the same irrespective of their peculiar use. However, variations can be seen in the design based 

on the size of the mill, the feeders that are used to load the starting material and the system 

employed for discharging the output product.   

2.2.2 Principle of Operation of Wet Ball Mills 

Fig. 2.1 (Aguila-Camacho et al., 2017) shows a closed loop wet ball mill comminution circuit 

which comprises the mill with load, sump, sump pump and the hydrocyclone. 

Mill Load
Mill Feed Water

Product 

Particle 

Size

Sump

Hydrocyclone

Sump 

Pump

Sump 

Dilution

Water Steel Balls Feed

Fresh Ore Feed 

Circulating Load

(Hydrocyclone 

Underflow)

 

Fig. 2.1 A Closed Loop Wet Ball Mill Comminution Circuit 

The operating principle of the wet ball mill consists essentially of milling and separation. In a 

continuous operating ball mill, the mill receives four streams as inputs: mill feed ore, mill 

infeed water to assist with material transport, steel balls to assist with ore breakage, and 

underflow from the hydrocyclone. The fraction of the mill filled with charge is known as the 
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mill load. The ground ore in the mill mixes with water to form slurry. The slurry is discharged 

from the mill into the sump through an end-discharge grate. The end-discharge grate limits the 

solids particle size of the discharged slurry. The slurry in the sump is diluted with water and 

pumped to the hydrocyclone for classification. The total volume of slurry in the sump is known 

as the sump volume. The pump is usually fitted with a variable speed motor to manipulate the 

hydrocyclone feed flow rate. The hydrocyclone feed density can be adjusted by the sump 

dilution water as long as the sump does not overflow or run dry.  

The hydrocyclone is responsible for the separation of the in-specification and out-of-

specification ore discharged from the sump. The lighter, smaller in-specification particles in 

the slurry pass to the overflow of the hydrocyclone, while the relatively heavier, larger and out-

of-specification particles pass to the underflow. The hydrocyclone underflow is passed to the 

mill for further grinding while the overflow flows to a downstream process for beneficiation.  

The volumetric flow rate of solids in the overflow is the throughput of the circuit and it is equal 

to the volumetric infeed rate of ore at steady-state operation of the circuit (Le Roux et al., 

2016). The quality of the circuit product is indicated by the fraction of particles in the overflow 

smaller than specification size of the material fed through the central hole into the drum and 

moves there along, being exposed by grinding media. The material grinding occurs during 

impact of falling balls and abrasion of the particles between the balls. Then, discharge of 

ground material is performed through the central hole in the discharge cap or through the grid 

(mills with center unloading the milled product and mills with unloading the milled product 

through the grid). 

 

2.3 Comminution  

Comminution is the process whereby ore size is progressively reduced until the mineral of 

interest is liberated from the matrix of gangue within the rock and can be separated through 

physical or other means (Resabal, 2017). Crushing and grinding are two major processes that 

are of utmost importance within the comminution chain after blasting. Crushing is 

accomplished by compression of the ore against rigid surfaces, or by impact against surfaces 

in a constrained motion path. According to Wang (2012), crushing is usually done in dry 

conditions. Grinding on the other hand is accomplished by abrasion and impact of the ore by 

the free motion of discrete media such as rods, balls or pebbles. Size reduction however is 

fundamentally an energy intensive operation, consuming about 3% to 4% of the total electrical 

energy consumed worldwide (Abbey et al., 2015; Napier-Munn, 2015; Petrakis et al., 2017a). 

Also, comminution is estimated to consume the largest part of the energy used in mining 
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operations, from 30% to 70% according to Diaz et al. (2018) and Taylor et al. (2020). To a 

greater extent, in the comminution process, it takes energy to fracture a particle and 

progressively reduce it to the size required for downstream processing.  

At every point in time a particle requires different amounts of energy depending on the 

distribution of flaw sizes, rate of stress application and the orientation of particle in the size 

field. Greater amounts of energy transmitted to particles lead to finer average size of the product 

population. This is usually rarely achieved due to inefficient methods of milling according to 

Hlabangana et al. (2018) and Singh et al. (2013). The relationship between comminution 

energy absorbed per unit mass and the representative size is defined by a differential equation 

according to King (2012) as presented in Equation (2.1).  

  r

r

d E
f (d )

d d
=  (2.1) 

where, f (dr) = a decreasing function of dr reflecting the fact that more energy per unit 

            mass is required as the particles get smaller 

dE = is the increment in energy to effect an incremental decrease in representative 

size (dr) 

dr = representative size  

2.3.1 Theories of Comminution  

Over the last century, there has been progressive research pertaining to the development of 

theoretical comminution models. According to Petrakis et al. (2017a), the main and well known 

theories that first described the relationship between specific energy requirements and size 

reduction in comminution are those of Von Rittinger propounded in 1867, Kick in 1885 and 

Bond in 1952. Von Rittinger’s theory tried to explain the relationship between the input power 

and the change in surface area from feed to product size material. Von Rittinger’s theory states 

that the energy consumed in size reduction is proportional to the area of new surface produced. 

Mathematically, Rittinger’s theory is represented by Equation (2.2) (Wills and Finch, 2016).  

 
1 1

E K
P F

 
= − 

 
                                                          (2.2) 

where, ER = Von Rittinger’s energy consumed in size reduction  

  K = constant related to the material type  

 F = measure of feed particle size (diameter in m )  
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 P = measure of product particle size (diameter in m )  

Works by Kick considered that energy requirement depends only on the reduction ratio, and 

not on the original size of the particles. Equation (2.3) (Wills and Finch, 2016) depicts energy 

required as a proportion to the reduction in volume of the particle as stated by Kick.  

 
F

E K ln
P

 
=  

 
                                                           (2.3) 

Bond’s theory, often referred to as the “third theory” saw the addition of new crack tip length 

as an extension to the works done by Rittinger and Kick. Input energy is proportional to the 

new crack tip length produced in particle breakage. The theory of Bond is commonly expressed 

as the governing Equation (2.4) (Wills and Finch, 2016). 

 
i

80 80

1 1
W 10 W

P F

 
=  − 

 
 

                                               (2.4) 

where,W = energy input (work) in kilowatt hours per metric ton   

           Wi = work index in kilowatt hours per metric ton   

           F80 = 80% feed passing sizes in micrometers   

           P80 = 80% product passing sizes in micrometers  

Leveraging on works done earlier, Walker and Shaw in 1937 proposed the differential equation 

consisting of the theories of Rittinger, Kick and Bond as partial cases and states, that the energy 

required to make a small change in the size of an object is proportional to the size change and 

inversely proportional to the object size raised to the power n as depicted in Equation (2.5) 

(Petrakis et al., 2017a).  This equation is known as the general energy-based comminution 

equation in differential form.   

 
n

cdE K x dx−= −                       (2.5) 

where, 
cdE = the infinitesimal specific energy required to reduce by dx the size of a particle 

with size x (kWhr/t) 

              K = constant related to the material type 

              n = constant indicating the order of the process  

 

In the integral form, Equation (2.5) is transformed into Equation (2.6). 
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P

n

F
E K x dx−= −                                                          (2.6) 

Bond’s model remains the most widely used model, at least for conventional comminution 

equipment (Wills and Finch, 2016). With the advent of separator technology, earlier 

comminution theories fell short as they did not incorporate the concept of Particle Size 

Distribution (PSD). Models such as Gates-Gaudin-Schuhmann (GGS) evolved to address some 

of the limitations that were associated with improvements in grinding efficiency due to the use 

of separator technology.   

2.3.2 Mathematical Comminution Models 

The basic idea of modelling comminution processes (crushing and grinding) is to obtain 

mathematical relations between the feed and the size of the product. The basic approach is to 

recognise the fact that comminution processes accept ore and impart physical energy, either 

single impact or multiple impacts till disintegration occurs. Disintegration only occurs to 

produce a distribution of smaller sizes if the total breaking energy imparted is greater than the 

bonding energy between individual particles.  

In the development of comminution models, a material balance of components and an energy 

balance of the comminution system are first established. The material balance and the energy 

balance of the operation are given by Equation (2.7) and Equation (2.8), respectively.  

    Feed in  Breakage    Total Product out            + =                           (2.7) 

 
Energy input Energy transmitted for Energy transformed as

for breakage particle breakage heat and sound energy

     
     
 

=
   

+              (2.8) 

Usually, energy transformed as heat and sound energy are neglected due to their insignificant 

contributions. Also, a fundamental assumption in the approach is that the residence time of 

particles in the mill is the same as if the entire charge is mixed thoroughly and is uniform.  

Three comminution models are commonly accepted in the literature: Kinetic, energy and 

matrix models (Monov et al., 2012). However, other ball mill operational models such as 

Banerjee, statistical and ANN are also considered. 

Kinetic model   

The kinetic model of the grinding process is based on the population balance or mass-size 

balance equations. This involves tracking and manipulating whole or partial particle size 

distributions along the comminution chain. This model allows the simulation of grinding 
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circuits without generalising that all particle sizes have the same normal shape but allows for 

specifications by giving room for additional model configuration to fit the simulation scenario 

perfectly. Assuming that the mill is a perfectly mixed model, a kinetic model of second order 

is given in the form of Equation (2.9) (Monov et al., 2012). 

 
2i 1

i i i
i i j ij j i i2

j 1

dw (l, t) d w (l, t) dw (l, t)
S w (l, t) S b w (l, t) D u

dt dl dl

−

=

= − + + −                  (2.9) 

where, idw (l, t)

dt
 = variation of the mass of fraction of the material in size class i within a 

                   particular time interval in (kg) 

t = grinding time in (s)  

 l = space coordinate in the axial direction  

            wi (l, t) = mass fraction of material in the i-th size class in (kg)  

            bij = breakage function  

         Si = selection function  

            Di = mixing coefficient  

 ui = velocity of convective transport of particles in the axial direction  

                   (ms-1) 

The first and second terms in the right hand side represent the mass of disappearing and 

appearing particles in this class, respectively. The third term describes the axial dispersion and 

the last term represents the convective transport of particles in the axial direction with velocity, 

ui. The kinetic model in Equation (2.9) (Monov et al., 2012).  is subject to the following 

boundary conditions:    

 i iw (l,0) f (l)=                                                         (2.10) 

 
( )i

i i i i

d w l, t
w (l, t) u w (l, t) D for l 0

dl
= − =                                  (2.11) 

 
( )idw l, t

0 for l L
dt

= =                                                 (2.12) 

where, if (l)  = mass fraction of the feed in size class i   

     L  = length of the mill in (m)  
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Considering an operation where the charge is assumed to be thoroughly mixed and uniform in 

both radial and axial directions, Equation (2.9) can be represented as Equation (2.13) (Monov 

et al., 2012).  

i 1
i

i i j ij j

j 1

dw (t)
S w (t) S b w (t)

dt

−

=

= − +              (2.13)  

Energy model  

Energy-based models are very similar to kinetic models used in describing the grinding 

process. However, the energy-based model differs from the kinetic model in that, the energy-

based equation used in describing the grinding kinetics is expressed in terms of the specific 

energy as an independent variable instead of the grinding time.  Equation (2.14) gives the 

energy-balance equation modelling of the grinding process.  

 
( )

( ) ( )
i 1

i E E

i i j ij j

j 1

dw E
S w E S b w E

dE

−

=

= − +                                      (2.14) 

where, E  = specific energy input to the mill in (kWh/t) 

            E

iS = energy-normalised breakage rate parameter defined as in equation (2.15)  

 E i
i

E

S
S

P W
=                                                          (2.15) 

where, PE = power input to the mill in (kW) 

           W= mass of the feed material in the mill in (tonnes) 

Matrix model   

The matrix model developed by Lynch, expresses the relationship between selection function 

Si and feed analysis representing the feed and product size distributions as N size ranges. The 

model assumes that Si is the proportion of particles within a sieve fraction, i, that would break 

preferentially. Considering the masses of the material in each size fraction as F1, F2…..Fn and 

the proportion of particles that have the probability of breaking in the corresponding size 

interval as S1, S2…..Sn.  The matrix model can be written as in Equation (2.16) and Equation 

(2.17) (Gupta and Yan, 2016).  
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1 1 1 1

2 2 2 2

N N N N

Size Feed Selection function Mass of particle broken

F S 0 0 FS1

F 0 S 0 F S2

N F 0 0 S F S

      
      
       • =
      
      

       

           (2.16) 

From the matrix above, the entire breakage operation being a sum of broken and unbroken 

particles can now be expressed by the general Equation (2.17). 

 P B S F (I S) F=   + −          (2.17) 

  P = particle size distribution  

where, (I S) F−   = mass of particles unbroken in (kg) 

 S F  = mass of particles broken in (kg) 

  B = breakage function   

Banerjee model   

Mathematical model developed by Banerjee is given in Equation (2.18) and Equation (2.19).  

Experimental data used in the development of the model were based on ball diameter (Db), 

ball–ore ratio (R) and grinding time (t). The model was developed for the purpose of optimising 

ball mill load, ball size, ball to ore ratio, grinding time, pulp density and ball mill rpm. Ball 

mill rpm and pulp density were ignored during the model development due to their negligible 

contribution on product particle size distribution.  

       75 bS 19.30 0.31D 12.60R 0.47 t= − + +                                   (2.18) 

 38 bS 4.39 16D 9.52R 0.31t= − + +                                         (2.19) 

where, S75 = percentage of particles below 75 micron  

 S38 = percentage of particles below 38 micron  

 Db = ball diameter  

 R = ball-ore ratio  

 t = grinding time  

Statistical model  

Statistical models are derived from statistical modelling. The statistical model given in 
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Equation (2.20) and Equation (2.21) (Singh et al., 2013) is an extension of the Banerjee model, 

giving room for more number of inputs to ensure better reliability of the model.  

 75 4.0 25 18S 23.3 0.11BS 0.89BS 0.98BS 0.43BL 3.98R 0.43t= − − − + + +   (2.20) 

     38 40 25 18S 0.39 0.017BS 0.002BS 0.015BS 0.35BL 2.71R 0.31t= − − + + + + +   (2.21) 

where, BS = ball size  

 BL = ball load 

            R   = ball to ore ratio  

Artificial neural networks model  

An ANN model learns and develops the relationship between input parameters and particle size 

distribution using operational data sets collected over a period of time. Input data such as ball 

size, ore type and grinding time and output targets such as the particle size distribution obtained 

were used to train the model to be able to predict future particle size distribution based on input 

parameters that the mill will be configured with. Fig. 2.2 (Singh et al., 2013) shows the ANN 

model of the ball mill.  

 

Fig. 2.2 Artificial Neural Network Model of a Ball Mill 

  

2.3.3 Grinding Efficiency of Tumbling Wet Ball Mills  

The grinding action in wet ball mills is induced by relative motion between free motion of 

unconnected media such as rods, balls or pebbles. This motion can be characterised as collision 

with breakage induced primarily by impact or as rolling with breakage induced primarily by 

crushing and attrition (King, 2012). In autogenous grinding machines, fracture of the media 

particles also occurs by both impact (self-breakage) and attrition. 
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The relative motion of the media is determined by the tumbling action which in turn is quite 

strongly influenced by the liners and lifters that are fixed inside the shell of the mill. The liners 

protect the outer shell of the mill from wear and are renewable while lifters prevent slipping 

between the medium and slurry charge in the mill and the mill shell. Slippage consumes energy 

wastefully but more importantly, reduces the ability of the mill shell to transmit energy to the 

tumbling charge (Taylor et al., 2020). This energy is required to cause grinding of the material 

in the mill. The geometry (liners, lifters and mill diameter) and the energy applied is indicative 

of the movement of the grinding media inside the mill (Francioli, 2015).  

The rotary motion of the ball mill exerts a partial centrifugal force that keeps the charge close 

to the internal mill shell. At sufficient height right above the stable point (the bottom of the 

mill), the centrifugal force is not sufficient enough to keep the ball and ore attached to the shell 

leading to a sudden fall to the bottom. By this action, the balls impinge on the ore leading to 

particle size reduction. Fig. 2.3 (Lv et al., 2018) shows the load behaviour in a dynamic wet 

ball mill.  

 

Fig. 2.3 Load Behaviour of a Dynamic Wet Ball Mill 

Size reduction is the most inefficient and energy consuming operation in any beneficiation 

process (Abbey et al., 2015; Hlabangana et al., 2018; Petrakis et al., 2017b). Research into 

maximising grinding efficiency, reducing energy consumption and subsequently reduction in 

operational cost is a major leeway to fill the gap. Grinding efficiency is however affected by a 



19 

 

number of factors such as feed particle size and composition, mill loading, mill speed, slurry 

properties and grinding media size distribution.  

Feed particle size and composition   

A change in feed size influences particle-particle and particle-grinding media interactions 

(Hlabangana et al., 2018). The shape and structure of the crushed ore affects the product 

particle size in a ball mill grinding circuit (Abazarpoor and Halali, 2017; Ghassa et al., 2016). 

In order to ensure higher grinding efficiency of the grinding circuit, control of mill feed particle 

size distribution can be achieved by optimising crushers and using screening circuits to ensure 

that output particle size from the crusher falls within the infeed particle size specification. Also, 

feed particle size greatly influences optimum grinding media size selection. In fine grinding, 

steel ball size is very important in providing accurate crushing force to grind the ore and 

improve fine grinding efficiency (Xiao et al., 2014). Use of oversized steel balls reduces 

grinding time considerably but produces fine product particles which are undesired.  

On the other hand, smaller balls lead to finer grinds but have the demerit of energy loss. Energy 

loss can be reduced by limiting the production of ultrafine particles which can be achieved by 

increasing grinding media size (Vijayakumar, 2016).  Grinding efficiency can be improved in 

the case of ore size variability by employing different sizes of grinding balls. According to 

Hlabangana et al. (2018), this process has an added advantage in that different particle sizes 

can be effectively milled because each media size can effectively break a particular particle 

size during the size reduction process ensuring that the product fineness is optimised. However, 

rapid variation of the feed size will affect the final product size considerably as it poses the 

challenge of a corresponding buffer with an equivalent grinding media size.  

Mill loading   

One key to efficient milling is a properly charged mill, since the performance of ball mills is 

very sensitive to the  volumetric mill filling. Volumetric fill, to a greater extent influences 

grinding media wear rates, throughput, power draw, and product grind size. The charge 

(grinding media, infeed ore and infeed water) is specified as a percentage of the overall mill 

volume. Optimum grinding rates are obtained with about 30% to 50% charge filling with 

grinding media alone (Calistus, 2016; Usman, 2015), This gives a cascading surface equal to 

the diameter of the mill, representing the maximum surface length. Too much media or too 

little of it will decrease the length of this cascading zone and increase milling time. According 

to Helmi et al. (2016) and Rashidi et al. (2017) increasing grinding media increases the 

grinding performance until the saturation point where an increase in grinding media does not 
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correspondingly increase product fineness. Further increase in grinding media above this 

saturation point which can be anywhere between the 30% - 50% leads to overcharging. 

 Overcharging is characterised by inefficient grinding and increased grinding media wear due 

to rigorous collision between the overcrowded grinding media inside the mill. Mill electric 

power consumption increases due to increased mill load by the expression given in Equation 

(2.22) (Li et al., 2017).  

 P

v v s s

2 2

max P x P P P x r P rPWR P {1 Z 2 Z Z Z } (SPD)
    = −  −      −                  (2.22) 

where, PWR = mill electric power consumption (kWh) 

maxP  = maximum mill motor power (kW) 

 
vP   = power change parameter for volume  

 xZ   = effect of mill load on power consumption  

 p   = cross – term for maximum power  

 
sP  = power change for solids fraction 

 rZ  = effect of rheology on power consumption  

            (SPD) = mill speed  

p = fraction of power reduction per fractional reduction from maximum mill 

        speed  

Moreover, a mill with undercharged grinding media is characterised by an overcharged infeed 

material. Too much material interferes with efficient grinding by creating a shock-absorbing 

cushion between the media, thus compounding the inefficiency with a combination of the 

reduced cascading zone in addition to the cushioning effect of the overcharged material.  

Speed of ball mill    

The speed at which the ball mill rotates is responsible for maintaining the slope of the cascading 

media pile, known as the “angle of break”. This angle can be between 40 to 65 degrees as 

measured from the horizontal. Shallow angles do not allow grinding media to cascade much 

from one end to the other. Steeper angles on the other hand cause inefficiencies in the cascading 

action since grinding media break free and fall from top to bottom without striking anything. 

The speed of rotation of the mill also determines the basic operating modes of the mill (Bian 

et al., 2017; Monov et al., 2012). Slow rotation leads to the mill operating in a cascading 

regime. In this regime, grinding is achieved by attrition, which produces finer product particle 

size but compromises on mill liner wear.  
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Faster rotation causes the grinding media to cataract. This causes impact grinding, leading to 

coarser product particle size but with reduced liner wear and lower mill torque as a result of 

grinding media being transformed into turning moments supporting the rotation of the mill. 

Very fast speeds cause the grinding media to centrifuge away from the pile and not cascade or 

cataract at all, reducing mill active load. The speed at which this begins to occur is known as 

the critical speed (Francioli, 2015; Tripathy et al., 2017). Operation of the mill in any of the 

three regimes can be achieved by operating at a speed which is a percentage of the critical 

speed. Mathematically, critical speed is represented in Equation (2.23) (Tripathy et al., 2017).  

 
c

42.3
N

D
=                                                            (2.23) 

where, Nc = critical speed in (rpm) 

 D = the mill diameter in (m) 

  

According to works by Sinnott et al. (2017) and Wills and Finch (2016), operating the ball mill 

at a speed range of 70% to 80% of the critical speed causes the mill to operate in the cascading 

regime relative to the mill volumetric fill. Increasing the speed above 80% of the critical speed 

leads to the grinding media assuming a dominant cataracting regime and above 100% of the 

critical speed or slightly below the critical speed at higher volumetric fills causes a transition 

of the mill to start to centrifuge. According to Hoseinian et al. (2017), mill speed has the most 

direct effect on mill power draw since there is a linear relationship between the two as 

expressed in Equation (2.22). Increase in mill speed leads to a corresponding increase in 

electric power draw of the mill because of an increase in the electromagnetic torque required 

to rotate the mill at that speed.  

Moreover, studies by Bazin and Lavoie (2016), further established the fact that, increasing 

speed does not only lead to an increase in power draw but changes the operating regime from 

cascading to cataracting which has significant effect on the grinding efficiency. Results showed 

that increasing the mill speed improves the rate of breakage of the coarse size intervals due to 

additional energy drawn from the acceleration of the mill. Inefficiencies however arise since 

most of the energy is lost in heating the slurry and in the vaporisation of water (Makokha and 

Letting, 2019). To ensure that maximum throughput is obtained at low cost (low energy 

consumption and reduced wear of grinding media and liners), the choice of mill operating speed 

can be regulated using a variable speed drive while optimising volumetric charge of the mill in 

the best proportion of infeed ore, infeed water, circulating load and the infeed grinding media 

charged.  
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Slurry properties   

Mineral slurry is a proportionate mixture of fine ore particles and water. The water which is 

added as a proportion to the mill ore feed rate acts as carrier fluid, distributing the ore particles 

within the mill load and subsequently transporting it out of the mill. Slurry density and slurry 

viscosity are two crucial properties that significantly influence the efficient flow of slurry 

within the mill and greatly affects grinding efficiency (Vos, 2017). Viscosity of a fluid can 

generally be defined as a measure of the fluid’s resistance to flow. Optimum value of slurry 

viscosity is always needful to achieve maximum breakage rate. Excessively high viscosity 

forms thick slurries which act as a cushion reducing the stressing force necessary for breakage 

action. Too dilute slurries on the other hand increases metal-to-metal contact, giving rise to 

increased steel ball consumption due to wear and reduced efficiency. 

Slurry density is closely related to slurry viscosity.  For a mixture of media and slurry, the 

density is estimated as percentage by weight of solids in the mixture. A change in the slurry 

density affects the internal charge action, that is the movement pattern of the balls and the 

flowing ability of slurry within the ball charge during the tumbling process. Slurry density can 

be estimated using Equation (2.24) (Vos, 2017). 

 sl
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                                                (2.24) 

where, sl  = slurry density (kg/m3) 

            solids  = density of the solid (kg/m3) 

            water  = density of the liquid (kg/m3) 

            sw  = weight fraction of solids in the mixture (%) 

Flow and mixing behaviour of slurry within the mill determines the slurry residence time in 

the mill and consequently breakage rate, holdup volume and mill power draw which have a 

large influence on the milling efficiency. The holdup volume influences the effectiveness of 

material transport to the breakage zones and the rate of breakage. Slurry density is related to 

its mass hold-up in the mill according to Equation (2.25) (Vos, 2017). 

 sl sl v L mM U J V =                                                      (2.25) 

where, Msl = mass hold-up in the mill (tonne)  

            U = fractional filling of voids with slurry (%)   
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            v  = void volume fraction (m3)  

            LJ = load volume as a fraction of the mill volume (%)  

            mV = volume of the mill (m3) 

Decreasing solid content optimally decreases mass hold-up rate and increases movability of 

particles which causes effective interaction between ore and grinding media (Vos, 2017). 

Sorgenfrei (2016) revealed that too high mill solid concentration can lead to blockade in the 

mill which in a continuous plant is undesirable due to downtime economic losses. Studies by 

Flach et al. (2016) showed that to ensure higher efficiency at reduced grinding media wear rate, 

ball mills should operate between 65% and 80% solids by weight, depending on the ore. Works 

by Costea et al. (2017) and Aguila – Camacho et al. (2017) focused on the design of controllers 

to ensure proportionate ratio of infeed ore and water to obtain optimal slurry density. 

Besides key mill control parameters, predicting the optimal slurry residence time and mass 

hold-up which correspond to efficient grinding warrants undivided attention. Results of 

Makokha et al. (2014) while using a salt tracer to investigate the mean residence time of an 

industrial ball mill, indicated that residence time is greatly influenced by slurry concentration 

and ball loading. Earlier works by Vos (2017), which focused on the development of a model 

to better predict residence time distribution at various operating conditions of the mill, revealed 

that the mean residence time of slurry in a mill is affected greatly by slurry concentration than 

ball loading. Other findings included the inverse relationship between the mean residence time 

and the feed flow rate.  

Grinding media size distribution   

Grinding media size distribution is very imperative in achieving higher efficiencies in grinding 

circuits. Works by Kabezya and Motjotji (2015) showed that there are significant variations in 

mill performance when different ball size diameters are used as well as different proportions 

of ball size diameters. According to Deniz (2016) and Shahbazi et al. (2020), the selection of 

optimal grinding media can considerably enhance mill performance and reduce operating cost. 

From empirical studies reported in literature, optimal grinding media loading is estimated to 

be within the range of 30% to 50% of the total mill charge. However, the right proportion of 

grinding media sizes plays an integral role in the determination of mill power draw and grinding 

media wear rate. Some influential factors that should be taken into consideration when 

selecting grinding media sizes include ore hardness which is always considered as a disturbance 

and feed particle sizes. 
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The use of larger ball sizes has benefited from the advantage of providing larger impact forces 

for breaking larger ores faster, reducing ore grinding time and increasing product throughput 

but compromises on product particle size, leading to higher circulating loads. Smaller balls on 

the other hand, suffer from the drawbacks of either not able to break larger ore sizes or take a 

considerably long time to grind ore into micron fine particles required for downstream 

processing due to low impact forces exerted by them (Francioli, 2015). Grinding with smaller 

balls has the tendency to attain desired product particle size which is an advantage but uses 

more kilowatt hours in the process which is expensive. To ensure efficient grinding in ball mills 

characterised by higher throughput, lower mill power draw and finer or optimal product particle 

size, Simba and Moys (2014) and Hlabangana et al. (2018) suggested the use of a mixture of 

different ball sizes to meet the requirements of the different feed material sizes to be ground. 

According to Tripathy et al. (2017), the top make–up size of balls during mono-sized ball 

selection can be computed using the relation expressed in Equation (2.26): 

 
( )

80

s

F sgWI
b 3 25.4

K %C 9.2ID

  
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                                    (2.26) 

where, b = diameter of ball make-up in (mm)   

            F80 = the feed size in ( m ) ( 80% passing)    

            K = a constant which depends on the mill type  

            sg = the specific gravity of the feed ore  

            WI = the work index of the feed in (kWhr/t)  

            % C = the percentage critical speed of the mill in (%)    

            D = the diameter inside the shell liners in (m)  

Works by Tripathy et al. (2017) considered the selection of only mono sized balls which has 

the limitation of not being able to handle varying particle size distributions and this 

consequently affects grinding efficiency. Other researchers highly appreciated the role of ball 

charge and wear rate on ball size distribution and the complexity involved with controlling the 

ball size distribution parameter. Based on valuable insights provided by the works of Chimwani 

et al. (2015), Hassanzadeh (2018b) and Hlabangana et al. (2018) from their investigations they 

concluded that a binary mixture of make-up ball sizes among other factors such as feed size, 

the product particle size, the mill diameter and the breakage parameters, perform better than a 

mixture of three ball sizes. The Austin and Klimpel model given by Equation (2.27) was then 

adopted to investigate the best make-up ball charge distribution at any given time and mill 
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efficiency. Equation (2.27) is used to represent make-up balls consisting of two balls d1 and d2 

of mass fraction m1 and m2, respectively. 
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where,  P(d) = mass fraction of balls in the load which are smaller than d  

             K    = wear rate parameter   

             dmax  = largest ball size in the mill in (mm)  

             dmin  = smallest ball size in the mill which is still retained in (mm)  

                 = constant which relates to wear law and determines the steady state of P (d)  

To calculate the ball size distribution at any given time, an initial estimate of the wear parameter 

is made possible by employing the formulae expressed by Equation (2.28) (Chimwani et al., 

2015).  
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                                                  (2.28) 

Employing binary ball size distribution, Panjipour and Barani (2018) investigated the effect of 

ball size distribution on power draw, charge motion and breakage mechanism. Results showed 

that at a constant mill filling, the power draw was changed with changing the ball size 

distribution and for all mill fillings, the minimum power draw occurred when the fraction of 

small balls was between 30% – 40%. The effect of ball size distribution increased with 

increasing mill filling and for the mill filling of 35%, the ball size distribution had the maximum 

effect on the power drawn. 

2.3.4 Grinding Mill Optimisation: Profit Function  

The grinding circuit like any other process has to be operated to maximise profit. According to 

Zuo et al. (2015), the mineral industry is facing increasing challenges in improving 

comminution energy efficiency and reducing operational cost.   Effective optimisation of the 

mill is needful to improve the product quality, market competition and cut down energy 

consumption (Niu et al., 2017).  The function of the grinding mill is to reduce the infeed ore 

particle size using grinding media such that the valuable mineral constituent is exposed and 
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can be recovered in the subsequent flotation operation. For a grinding mill, the profit function 

can be expressed as given by Equation (2.29) (Ghanei, 2020).  

   1 1 1

c cc cP Ft EE tPS  –  M F tO− − −= − −                                   (2.29) 

where, 1Pt−   = profit per unit time of the mill (USD) 

       = mill throughput per unit time (USD) 

            PSEc  = unit cost of desired product (USD) 

            MFOc = unit cost of infeed ore (USD) 

            1

cE t− = cost of energy per unit time (USD) 

 1

cF t−  = fixed cost per unit time (USD) 

In order to maximise the profit function, efforts should be geared towards increasing 

throughput, reducing energy cost and fixed costs associated with the grinding process.  

Increased throughput 

Low qualified rate of product particle size causes unacceptable economic loss in any 

comminution process. Increased throughput is usually desired in any mine economic operation 

for the purposes of profit maximisation. However, increased throughput is largely dependent 

on grinding efficiency of the mill, sump water addition rate and separation efficiency of the 

hydrocyclone. Optimum grinding conditions inside the mill are prerequisites to obtain higher 

throughputs. Besides the higher power consumed during overgrinding which is considered as 

an inefficiency, production of slimes reduces significantly the total product throughput and 

consequently the efficiency of recovery in the floatation process. Also, slime production 

increases drastically the cost of sedimentation in the final tailings discharge from the mill. 

Undergrinding on the other hand also leads to lower throughputs since ground ore does not 

qualify to overflow during the separation process in the hydrocyclone. This leads to higher 

circulating loads which in most cases exceed the 250% optimum acceptable circulating load 

range according to studies by Yang et al. (2017).  

Optimisation of parameters such as, ball size distribution, proportionate addition of infeed ore 

and water to control slurry density and viscosity and residence time distribution is a major 

leeway to achieve grinding efficiency and consequently yield higher throughputs. Moreover, 

cyclone inefficiencies may be another reason that account for reduced throughputs. 

Inappropriate selection of equipment can lead to size classification failure. Works by Botha et 

al. (2015) investigated hydrocyclone modifications to increase product throughput by 
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employing a non-linear model predictive controller in the switching of the hydrocyclones. 

Results revealed that higher throughput could be achieved by switching of the hydrocyclones 

and treating the discrete switching of hydrocyclones as a manipulated variable. Throughput can 

be increased by regulating hydrocyclone’s slurry infeed density. This is possible by optimising 

sump water addition rate.  Effective sump control is critical to stable operation without which, 

an off specification particle size product and poor flotation performance result thereby reducing 

product throughput.  

Nunan and Delboni Junior (2017) on the other hand studied different mill operating scenarios 

to ascertain whether installation of new equipment or the optimisation of existing ones could 

lead to an increase in mill throughput. The studied scenarios were: (1) adding a third ball mill 

in series with existing two ball mills, (2) adding a third ball mill in parallel with existing mills, 

(3) adding a vertical mill in series with existing mills and (4) adding High Pressure Grinding 

Rolls (HPGR) to existing mills. Simulations were carried out on design considerations of the 

respective circuits, assessing how easy it will be to interface the newly considered scenarios 

with existing equipment and installations, and finally comparing the energy consumption 

requirements of the proposed expansion alternatives. Apart from the HPGR alternative, all 

simulations of the three other scenarios resulted in the required product particle size (P80) 

without compromising on the capacity. Among the three selected scenarios that showed 

promising results, the Vertimill alternative showed the smallest energy consumption. 

Energy consumption  

Energy consumption reduction strategies in the mining industry are on the rise lately, gaining 

widespread attention due to energy cost increments. According to Abbey et al. (2015), energy 

requirement as well as cost per tonne of ore comminuted increases from blasting (0.43 kWh/t) 

through crushing (3.24 kWh/t) to grinding (10.0 kWh/t). It can be deduced from the foregoing 

discussion that, given the large power consumption figures involving grinding in ball mills, a 

small increase in efficiency in the grinding processes may have a large impact on the operating 

cost of the plant. This stands to yield a palpable reflection in the profit function in Equation 

(2.29), as well as on the conservation and optimisation of energy resources (Melero et al., 

2014).  

Energy consumption in a mill relates to net mill power drawn and grinding time through the 

relationship expressed in Equation (2.30):  

 E P t=                                                               (2.30) 
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where, E = energy consumed (kWh)  

            PNet = net mill power drawn (kW)  

            t = grinding time (s)   

Minimisation of energy consumption lies in the ability to optimally control mill charge volume 

which has a direct bearing on power draw and grinding time. Cost of energy per unit time 

increases as a result of excessive power draw due to running overloaded mills, prolonged 

grinding time and sometimes, running mills above the optimal speed relative to the critical 

speed. Works by Esteves et al. (2015), Sorgenfrei (2016) and Wang et al. (2020) revealed that 

40% of charging of grinding media resulted in optimal grinding in ball mills and deviation from 

this value resulted in increased electric power draw to handle the high load torque exerted on 

the mill motor. Rupare et al. (2013) however, noted from the expression in Equation (2.31) that 

poor charging practices of grinding media during replenishing was a major cause of running 

overloaded mills since grinding media constituted a greater percentage of mill load and 

consequently led to an increment in power draw in ball mills.  

 P A B C L=                                                        (2.31) 

where, PNet = power drawn in a ball mill (kW) 

            A = factor for diameter inside the shell liners 

            B = factor for mill type and charge volume (% loading)  

            C = factor for mill speed expressed as a percentage of mill critical speed  

            Lc = length of grinding chamber measured between head liners at the junction of the 

                   shell and head liners (m) 

Soleymani et al. (2015) further added that apart from mill ball filling which has a direct 

influence on power draw, mill speed, slurry volume and solid concentration of mills are 

contributing factors to power increment as well. The relationship between power draw and 

these variables are shown in Morrel’s net power model of the ball mill and expressed by 

Equation (2.32) according to King (2012).  
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 where, NetP  = net electric power drawn by the ball mill in kWhr 

(2.32) 
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 c    = density of the ball mill charge in (tonnes/m3)   

 p    = density of slurry in (tonnes/m3) 

rN   = ball mill speed in (rpm)  

 L    = length of ball mill in (m) 

 g    = acceleration due to gravity (m/s2) 

 rm   = ball mill’s internal radius in (m)  

 ri   = ball mill’s inner surface radius (m)  

S   = ball mill shoulder’s angular position in (rad)  

T  = ball mill toe’s angular position in (rad)  

OT = slurry toe angle for grate discharge mills in (rad) 

tj   = the ball mill filling (%) 

 z   = ( )
0.4532

t1 j−     

Also, reduction in energy consumption can be achieved by reducing the time used in grinding 

one tonne of ore. Optimisation of this can be met by using a mixture of grinding balls. Larger 

balls for faster grinds and smaller balls for finer grinds.  

Grinding media wear rate 

In a continuous mill, grinding balls are replenished to compensate for ball wear inside the mill 

to ensure efficient grinding (Chimwani et al., 2015). According to observation by Foucher et 

al. (2014), the process of replenishing which is usually done manually at the experience of the 

mill operator leads to overcharging in most cases. Overcharging is not only undesirable in the 

energy variable of the profit function in Equation (2.29) but also has adverse effects on the 

operating cost due to faster wear rate of grinding media.  

Sorgenfrei (2016) observed that under normal conditions of the grinding process, the expected 

wear on the grinding media should be caused by the interaction of the media, water and ore, 

but due to overcharging, there is increased and rigorous collision between the grinding media 

resulting in breakage and increased wear. Jankovic et al. (2016) on the other hand attributed 

faster wear rates to ore type. Softer ores accounting for 10 – 15 μm/hr wear and abrasive gold, 

copper and molybdenum all contributing to 20 μm/hr wear, respectively.   

As of 2006, 0.23 billion kg of steel in the United States of America and over 0.45 billion kg in 

the world were estimated to be consumed each year in wet grinding (Rupare et al., 2013). These 
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alarming figures are not only inconsistent with sustainable development concepts of 

responsible consumption but also has a direct impact on the operational cost.  

Media milling expenses account for about 37% of the total 50% operational cost associated 

with the grinding circuit. Hassanzadeh (2015) in his industrial optimisation study on a primary 

grinding circuit performance at Sarcheshmeh concentrator plant, stated that an average of 750 

g/t of steel balls are consumed in the grinding circuit using 80 mm forged steel balls per tonne 

of ore milled. Results from his study noted that this amounted to more than USD 100,000.00 

lost per month for a single mill reflecting about 80% of the total grinding cost.    

Ensuing from the enumerated research, a significant reduction in production costs can be 

achieved if media milling properties (i.e., top ball size, ball size distribution and charge 

volume) in operating wet ball mills are appropriately optimised (Hassanzadeh, 2017b). 

Optimisation lies in properly replenishing grinding media to prevent overloading and 

consequently higher wear rates. This calls for accurate grinding media charge prediction. Also, 

ore type should be considered when selecting grinding media (ball size diameter) to ensure that 

they can appropriately handle the intrinsic characteristics of the ore without wearing at a faster 

rate. 

 

2.4 Prediction of Process Variables 

According to Bunker and Thabtah (2019), prediction refers to the output of an algorithm after 

it has been trained on a historical dataset and applied to new data when forecasting the 

likelihood of a particular outcome. The algorithm will generate probable values for an unknown 

variable for each record in the new data, allowing the model builder to identify what that value 

will most likely be. 

The advantages of prediction include the following (Ghasemi et al., 2016; Kim et al., 2016; 

Wang and Srinivasan, 2016): 

i. Compared with engineering methods, AI-based prediction methods require less 

detailed physical information of the plant. There is no need for model developer to 

have high level knowledge of the physical parameters of plant, which in return saves 

both time and cost for conducting the prediction; 

ii. The process of data acquisition and data loading is relatively convenient, which 

means the prediction model can be easily established; and 

iii. AI-based prediction methods provide promising prediction accuracy once the 

model is well trained. 

https://www.datarobot.com/wiki/algorithm/
https://www.datarobot.com/wiki/training-validation-holdout/
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The demerits of prediction are (Ghasemi et al., 2016; Kim et al., 2016; Wang and Srinivasan, 

2016): 

i. There is no explicit relation between the physical plant parameters and model 

inputs, which makes it impossible to extrapolate energy performance of plant once 

the design and/or operation of the plant has changed; 

ii. The AI-based method is hard to be applied in plant design phase as it requires 

historical plant performance data to train the prediction model; 

iii. AI-based prediction method requires extensive training data for model 

establishment and maintenance of prediction quality; and 

iv. The AI-based prediction model needs to be re-trained once changes are made to the 

plant envelope, system or operation. 

2.4.1 Prediction of Wet Ball Milling Process Variables 

Process variables are generally categorised into three broad groups, namely, manipulative 

variables, state variables and controlled variables. Although there are several input and output 

process parameters that characterise the ball mill, a few are used for the purpose of modelling, 

simulations and performance evaluation. The three most often controlled variables in the 

grinding mill circuit include the product particle size, the slurry level in the sump and the 

hydrocyclone feed density (Collins, 2016; Hassanzadeh, 2018b). State variables on the other 

hand include mill load, mill power draw, mill speed, slurry density and viscosity, residence 

time and wear rate of grinding media and liners (Le Roux et al., 2020). Difficulty in the 

measuring of state variables due to the rigorous internal action of wet ball mills always results 

in the use of indirect methods to estimate them. Input or manipulative variables such as ore 

feed rate, infeed water rate, circulating load and balls feed rate are usually considered.  

Disturbances that affect the whole grinding circuit and consequently its overall efficiency 

include change in feed rate and size of ore, change in hardness of ore (grindability), change in 

sump and infeed water addition which usually result in change in slurry properties (Ebadnejad, 

2016; Khodadadi and Ghadiri, 2019). The various parameters grouped under the broad 

categories are subject to change based on the variables of interest or evaluation.  State variables 

such as mill speed can be considered as manipulative-based when mill is fitted with a Variable 

Speed Drive (VSD).  

So far, a number of predictions on mill operating variables have been researched and duly 

reported in the literature in recent times. These include the prediction of Residence Time 

Distribution (Breitung-Faes, 2016; Hassanzadeh, 2017a; Hassanzadeh, 2018a; Shi, 2016), 
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slurry pool level (Morrell, 2016; Mulenga, 2017a), solids concentration of slurry (Faria et al., 

2019; Iwata and Mori, 2020), grinding media wear (Abdelhaffez, 2018; Azizi et al., 2016; Peng 

et al., 2017). Works on the prediction of mill load and product particle size are summarised in 

Table 2.1 and Table 2.2, respectively.  

  Table 2.1 Prediction of Mill Load 

SN 
Author and 

Year 
Title of Paper Contribution Limitation 

1. 

Mulenga 

and Bwalya 

(2019). 

Determination of the 

Formal Powder Filling 

of a Wet Ball Mill in 

Open Circuit 

Configuration. 

Predicted powder 

filling of open circuit 

overflow mill using 

three estimation 

models. 

Only one steel ball 

size was used. 

Closed circuit was 

not used. 

2. 
Pedrayes et 

al. (2018). 

Frequency Domain 

Characterisation of 

Torque in Tumbling 

Ball Mills using DEM 

Modelling: Application 

of Filling Level 

Monitoring. 

A methodology to 

predict mill filling 

level using DEM 

based load torque 

spectral analysis under 

dry grinding 

conditions. 

Wet ball mill was 

not considered. 

3. 
Cai et al. 

(2020). 

Load State 

Identification Method 

for Wet Ball Mills 

based on the MEEMD 

Singular Value Entropy 

and PNN Classification 

Use of MEEMD 

singular value entropy 

magnitude of cylinder 

vibration signals and 

PNN classification to 

predict the wet ball 

mill load. 

Optimisation of the 

algorithms was not 

considered. 

4. 
Tang et al. 

(2018). 

Mechanism 

Characteristic Analysis 

and Soft Measuring 

Method Review for 

Ball Mill Load based 

on Mechanical 

Vibration and Acoustic 

Signals in the Grinding 

Process. 

Proposed an industrial 

application of soft 

techniques in 

predicting ball mill 

load. 

Power draw was 

not considered. 

5. 
Tang et al. 

(2017). 

Modelling Mill Load 

Parameter based on 

Least Absolute 

Shrinkage and 

Selection Operator 

(LASSO) using Multi-

scale High 

Dimensional 

Frequency Spectra 

Data. 

Proposed a Mill Load 

Parameter Forecasting 

(MLPF) method based 

on LASSO and 

Selective Ensemble 

(SEN) algorithm. 

Power draw was 

not considered. 

 

1. DEM – Discrete Element Modeling  

2. MEEMD – Modified Ensemble Empirical Mode Decomposition 

3. PNN – Probabilistic Neural Network 
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  Table 2.2 Prediction of Product Particle Size Distribution 

SN 
Author and 

Year 
Title of Paper Contribution Limitation 

1. Tavares (2017). 

A Review of 

Advanced Ball Mill 

Modelling. 

Reviewed literature on 

the application of 

models based on 

distributed collision 

energy information to 

predict size reduction 

in tumbling ball mills. 

Power draw was 

not considered. 

2. Lee et al. (2019). 

Analysis of Grinding 

Kinetics in a 

Laboratory Ball Mill 

using Population-

Balance-Model and 

Discrete-Element-

Method. 

Predicted the particle 

size distribution of 

ball mills using PBM 

and DEM methods. 

Optimisation of 

the methods 

were not 

considered. 

3. 

Petrakis and 

Komnitsas 

(2017). 

Improved Modelling 

of the Grinding 

Process through the 

Combined use of 

Matrix and 

Population Balance 

Models. 

 

Used matrix and 

population models 

with MATLAB codes 

to predict size 

distribution of 

grinding products of 

quartz, marble 

quartzite and 

metasandstone. 

Power draw was 

not considered. 

4. 
Gharehgheshiagh 

et al. (2017). 

Investigation of 

Laboratory 

Conditions Effect on 

Prediction Accuracy 

of Size Distribution 

of Industrial Ball Mill 

Discharge by using a 

Perfect Mixing 

Model. A Case Study: 

Ozdogu Copper-

molybdenum Plant. 

 

Use of matrix and 

energy models to 

predict the particle 

size distribution of 

industrial ball mill 

discharges. 

Power draw was 

not considered. 

5. 

Chimwani and 

Hildebrandt 

(2019). 

Modelling of an Open 

Mill with Scalped 

Feed for the 

Maximum Production 

of a Desired Particle 

Size Range. 

Development of a 

mathematical grinding 

simulation model to 

obtain highest 

production by optimal 

combination of ball 

filling mill speed and 

energy consumption.  

Closed circuit 

ball mill and 

minimal 

grinding media 

charge were not 

given 

consideration. 

6. 
Fragnière et al. 

(2018). 

Predicting Effects of 

Operating Condition 

Variations on 

Breakage Rates in 

Stirred Media Mills. 

Successful 

experimentation of the 

breakage rates in wet 

operated stirred mills. 

Wet ball mill 

circuit and 

power draw 

were not 

considered. 
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   Table 2.2 Cont’d  

7. 
Rocha et al. 

(2018). 

Predicting the Particle 

Size Distribution from 

a Laboratory Vertical 

Stirred Mill. 

Designed a model to 

predict the response of 

particle size 

distribution in vertical 

stirred ball mill. 

Wet ball mill 

circuit and 

power draw 

were not 

considered. 

8. Davey (2017). 

Prediction of the 

Performance of 

Regrind/Floatation 

Circuit using 

Laboratory Tests and 

Quantitative 

Mineralogical 

Information. 

Investigated three 

regrind circuits and 

predicted the product 

particle size 

distribution and 

mineralogy from 

process audits. 

Power draw was 

not considered. 

9. 
Wentao et al. 

(2019). 

Research on 

Prediction Model of 

Ore Grinding Particle 

Size Distribution. 

Predicted the particle 

sizes of cassiterite 

polymetallic sulfide 

ore and lead-zinc ore 

based on the drop 

weight test, batch 

grinding test of media 

motion in ball mill and 

population balance 

model. 

Power draw was 

not considered. 

10. 
Rosales-Marin 

et al. (2019). 

Study of Lifter Wear 

and Breakage Rates 

for Different Lifter 

Geometries in 

Tumbling Mill: 

Experimental and 

Simulation Analysis 

using Population 

Balance Model. 

Prediction of product 

particle size 

distribution of 

tumbling ball mill for 

different lifters and 

critical speeds. 

Power draw was 

not considered. 

 

PBM – Population Balance Model 

Further prediction of mill operating variables is looked at in Section 2.4.2 in terms of mill 

power draw and grinding media consumption.  

 

2.4.2 Review of Related Works on Grinding Media Charge and Mill Power Draw Predictions  

 

This section reviews recent researches on the mill with regard to prediction of mill power draw 

and grinding media consumption. Morrell (2016) reported on the structure of a slurry pool 

level-based power draw predictive model developed by Citic SMCC Process Technology Pty 

Ltd for tumbling autogenous, semi-autogenous and ball mills. Model was tested using a large 

operational data. Validation of model was based on comparison of measured and predicted 

power draws. The overall power draw was obtained as an addition of power draws of slurry 

and grinding media phases and so served as the contribution of the paper. The slurry phase 
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volume was dependent on discharge system design, volume occupied by the grinding media 

and slurry flow rate. In this very work, neural networks known for accurate predictions were 

not utilised. Also, grinding media consumed were not predicted alongside prediction of the 

power drawn. Overcharging of grinding media results in ball-to-ball collisions giving rise to 

higher power draw and resultant less use of it to cause actual size reduction in the tumbling 

ball mill. 

Cleary and Owen (2018) developed models to predict power draw of a generic 8.4 m diameter 

semi-autogenous mill using charge slope, mill operating parameters (fill level, lifter height and 

mill speed) and 3D Discrete Element Modelling (DEM) simulations. Parametric models were 

used for validation. Once again, prediction of grinding media consumption as well as the ball 

mill were not considered. 

In the prediction of power draw of semi-autogenous mill using hybrid Genetic ANN (GANN), 

Hoseinian et al. (2018) avoided long experiments by considering seven operating parameters 

namely feed moisture, mass flowrate, mill load cell mass, mill solid percentage, inlet and outlet 

water to the mill and work index. Sensitivity analysis on the parameters was conducted. 

Authors however failed to predict grinding media consumption alongside the prediction of 

power draw. Also, grinding media wear rate was not considered and this research was not 

conducted for the ball mill. 

In a review paper on the effects of grinding media geometries on tumbling mill performance 

factors, Shahbazi et al. (2020) made clear the fact that shoulder and toe positions in a tumbling 

mill are dependent on the type of media and surface area used and, cylpebs draw less power 

compared to the relatively more used spherical steel balls. According to the authors, the 

grinding energy and steel media consumption constitute 40% of milling costs. This underlines 

the fact that the two factors should be predicted together for effective analysis. 

Larsson et al. (2020) considered among others power draw of wet comminution in stirred media 

mills. Their approach involved modelling of slurry using Particle Finite Element Method 

(PFEM), modelling of grinding media using the DEM and modelling of mill structure by way 

of Finite Element Method (FEM). Power draw was calculated after prediction of slurry motion 

and grinding media. Indirectly, power draw was predicted together with direct prediction of 

grinding media consumption. These however, were not accomplished for the tumbling wet ball 

mill lest to make use of data on operational variables. Furthermore, direct prediction of the 

power draw could serve as a better option compared to its indirect determination. 
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Avalos et al. (2020) predicted semi-autogenous mill energy consumption or power draw 

making use of real-time operating data on feed tonnage, bearing pressure and spindle speed in 

machine learning and deep learning environments where six methods were studied and 

Recurrent Neural Networks (RNN) was strongly recommended. This study in the first place 

was not conducted for the tumbling wet ball mill. Secondly, influencing factors such as ore 

hardness and grinding media wear rate were not considered. 

A Random Forest (RF) power draw predictive model was accomplished for an iron ore 

processing, constant speed, industrial overflow discharge ball mill plant by Tohry et al. (2020) 

to overcome setbacks of empirical stepwise regression-based models. The ten parameters used 

in variable importance measurement determination using RF in developing the model were 

power draw, feed rate, ball charge, F80, work index, P80, water weight, slurry weight, volumetric 

flow rate of slurry to the mill and ball consumption. They declared grinding media consumption 

and work index as most important factors. A coefficient of determination value of 0.98 was 

achieved. It is important to predict two variables simultaneously, namely power draw and 

grinding media consumption. This could enable exploitation of the possibility of grinding at 

minimum values of the two input variables. 

With regard to prediction of grinding media consumption, Petrakis et al. (2017b) investigated 

population balance modelling based simulation of the grinding of quartz and then identified 

optimal mill operating parameters for use in prediction of the optimal ball filling volume of 

mill. Authors however did not predict mill power draw alongside the prediction of filling 

volume. Also, in the determinations, ball size and other operating variables such as ore hardness 

and grinding media wear rate were not considered. 

Diaz et al. (2018) experimentally predicted grinding media consumption of three Chilean 

copper sulphide ores using empirical and predictive models that considered ore grindability, 

operational variables (pulp pH and grinding time) and ore mineralogy. The advanced mineral 

characterisation techniques used to estimate the grinding media consumption included 

reflectance spectroscopy, X-ray diffraction and portable X-ray fluorescence. They concluded 

that the pH of pulp and ore grindability greatly influence grinding media consumption. In this 

paper however, authors could not give equal attention to the simultaneous prediction of mill 

power draw. 

The grinding media consumption and work index are considered as very important variables 

that influence grinding media consumption (Tohry et al., 2020) and mill power draw. 

Additionally, throughput or ore feed rate merit equal attention. Much of the time, practices at 
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the milling plant give rise to increasing the throughput for the sake of profitability. From the 

related works, few publications considered all of these three highly influential variables. More 

importantly, hardly any publication predicted the mill grinding media consumption and power 

draw to establish further clarity with regard to the prediction. 

 

2.5 Summary and Research Gap  

This chapter gave an elaboration on some comminution theories and concepts of the wet ball 

mill and mill grinding efficiency. Works relating to the prediction of wet ball mill process 

variables were extensively reviewed. A major development from the reviewed literature 

established that steel media and grinding energy contributed greatly to the overall economics 

of the grinding process. Yet, little work has been done with regards to establishing the optimal 

combination of these variables. Therefore, the prediction of the right amounts of the 

aforementioned influential parameters presented cost savings opportunities. Prediction of 

optimal grinding media charge for a possible minimal power draw using historical plant data 

and investigation of the effect of changes in plant throughput, ore hardness and grinding media 

wear rate on power draw and grinding media demand constitute a glaring research gap that 

merits further research.  

The focus of this research work is to develop a non-linear ANN-based predictive model of 

optimal grinding media charge of the wet ball mill with consideration of a possible minimum 

power draw. 
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CHAPTER 3 

PREDICTIVE MODELS OF THE MILL POWER DRAW AND PRODUCT 

PARTICLE SIZE 

3.1 Introduction  

This chapter focuses on the development of ANN-based models to determine appropriate 

charging of grinding media with regard to mill power draw and product particle size. The 

chapter expounds on the wet ball mill grinding circuit, data collection and interpretation, 

models development and the prediction of power draw and the product particle size. Three 

major ANN predictive models and Adaptive Neuro – Fuzzy Inference System (ANFIS) are 

employed in MATLAB/Simulink software version 2019b environment for the prediction.   

3.2 The Wet Ball Mill Grinding Circuit 

Fig. 3.1 shows the ball mill grinding circuit under consideration. 

Ball Mill

SAG Mill

GMA

Desired Particle Size

(106 µm, 80% Passing)

Mill

Sump

Hydrocyclone

Sump 

Pump

Sump Water 

Addition Valve

MWA

Valve

Fresh Ore

(600 µm)

Hydrocyclone Underflow (>106 µm)

Slurry as

Mill Product

(106 - 300 µm)

Coarse Grind

(< 600 µm)
 

Fig. 3.1 The Wet Ball Mill Grinding Circuit 
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For better recovery rates, a product particle size of 106 m  is always expected at the overflow 

for downstream processing. The process is also qualified as a reverse process, since the ball 

mill receives its infeed from the underflow of the hydrocyclone. The hydrocyclone in the circuit 

initially receives its feed from the SAG mill through the mill sump. After the classification 

process, coarse ores greater than 106 m  to 600 m   are fed to the ball mill. In a single stage 

circuit, the underflow from the hydrocyclone to the ball mill is known as circulating load. The 

infeed from the hydrocyclone to the ball mill is by gravity action and regulated by the rate of 

classification of the hydrocyclone. The faster the hydrocyclone classifies its infeed, the more 

ore is fed into the ball mill.  The 5.8 MW rated ball mill motor drives the 6.1 m by 9.0 m grate 

discharge ball mill through a gear coupling arrangement. The motor drives the ball mill at 75% 

of the critical speed which is 13.1 rpm to prevent centrifuging and enable grinding to take place. 

The mill sump receives ground ore from the ball mill discharge and with the help of the sump 

pump, the ground ore is pumped to the hydrocyclone for classification.  

The grinding media charge process of the considered circuit is not automated. Mill operators 

with the help of a crane help replenish the ball mill with Hi – chrome steel balls. The chart 

presented in Fig. 3.2 (Gupta and Yan, 2016) is used by mill operators to determine the 

proportion of grinding media size distributions to use to ensure effective grinding at the start 

of the mill. 

Ball diameter              

Inches   5.0 4.5 4.0 3.5 3.0  2.5 2.0 1.5 1.25 1.0 0.5 0.25 

 mm 127.0 114.3 101.6 88.9 76.2 63.5 50.8 38.1 31.8 25.4 12.7 6.4  

5.0 127.0 17.0            

4.5 114.3 25.0 16.0           

4.0 101.6 20.0 30.0 20.0          

3.5 88.9 15.0 21.5 32.0 22.0          

3.0 76.2 10.0  14.0 21.0 35.0  26.0         

2.5 63.5 6.4 9.1 12.5  19.0  36.0  32.0       

2.0 50.8 3.8 5.4 8.6 14.6 22.0 39.0 38.0       

1.5 38.1 2.8 2.4  3.4 5.3 9.2 16.5 35.0 28.0     

1.25 31.8  1.6  1.2 2.0 3.2 6.1 13.0 36.0 30.0    

1.0 25.4   1.3  1.0 1.7 2.9 6.4 16.0 32.0 22.0   

0.5 12.7    1.1 1.9 1.4  3.1 8.0 14.5 52.0 24.0   

0.25 6.4      2.1  4.5 12.0 23.5 26.0 76.0 100.0  

Fig. 3.2 Ball Charge Distribution during Mill Start-Up 
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A mixture of grinding balls of different sizes is needed to ensure that after the bigger balls with 

the larger impact have reduced ore bearing rocks to smaller sizes, the smaller balls will continue 

the size reduction. Also, the smaller balls are usually employed to fill the cavities or spaces in-

between the larger diameter balls.  

In reading Fig. 3.2, the column and the row labelled “mm” is the approximate possible ball 

size. The approximate highest ball size is usually identified and traced to the “inches” column, 

the value on the “inches” column is then traced downward to know the percentage composition 

by weight of the various ball sizes that should be used for the start of the mill.  

The highest ball size used at the plant is 60 mm. Based on the approximate ball size traced, 

from the highlighted numbers on Fig. 3.2, it means the charge distribution during the start 

should be in the following proportions, 32% of 60 mm balls, 39% of 50 mm balls, 16.5% of 38 

mm balls, 6.1% of 30 mm balls, 2.9% of 25 mm balls, 1.4% of 12 mm balls and 2.1% of 6 mm 

balls. 

However, it is the bigger ball size that is always charged with the assumption that, as they wear, 

they do so into the sizes of the specified smaller balls. All things being equal, replenishing is 

supposed to be composed of only the bigger balls since the balls that wear are to fill in for the 

other smaller balls. Mill operators have to determine the right distribution of ball sizes to 

replenish at some points in time so as to prevent excessive power draw due to overcharging. 

At the same time, proper grinding need to be ensured to attain the required product particle 

size. However, replenishing is done at a constant rate of 8 tonnes a day (6 tonnes of 60 mm 

balls and 2 tonnes of 50 mm balls). The constant nature of the charging practice has the 

tendency to increase the overall mill content above the 35% filling since the estimated rate of 

wear is not constant. The current research work seeks to develop a data-based model 

establishing the relationship between the input and output variables using the collected data 

and investigating how parameter variations influence charging of the grinding media for 

desirable electric power draw and the product particle size.  

3.3 Data Collection and Interpretation  

Data on important parameters that affect the performance of the mill were gathered for a period 

of 18 months for the purpose of this research. Information on key design parameters was 

obtained from manufacturers’ manuals of the systems used in the mine for validity and 

reliability purposes. Operational data on crucial parameters that affect the performance of the 

mill were also obtained from the metallurgical department of the mine.  
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The data collected on operational parameters were basically structured since they were highly 

organised. In all, 520 data points were collected over the period considered. The data points 

captured were the average values of the recordings measured within the three shifts run in a 

day. The operational parameters taken into consideration included the ones that had the 

tendency to alter the two competing needs, namely, the power draw and the product particle 

size percentage passing. Power draw was measured with a Wattmeter while product particle 

size percentage passing was determined by output samples that were taken at regular intervals 

to the mineral laboratory for testing. The various input parameters that were considered 

included, Total Tonnes Milled (TTM), Tonnes per Hour Milled (TPH), Mill Infeed Water 

(MIW), 60 mm Balls (GM60), 50 mm Balls (GM50), Total Grinding Media (TGM), Grinding 

Media Wear Rate (GMWR) and Bond Work Index (BWI).  

Power draw and product particle size passing through a benchmark criterion were used to locate 

optimal points within the dataset to determine the state of the charge. Windows of data trends 

were captured and analysed. 

3.3.1 Manufacturer’s Design Data  

The ball mill parameters, mill motor and grinding media specifications are provided in Table 

1, Table 2 and Table 3, respectively.  

  Table 3.1 Ball Mill Parameters  

SN Parameter  Value 

1. Effective Length of Mill  9.0 m 

2. Effective Diameter of Mill  6.1 m 

3. Speed of Mill  13.1 rpm 

4. Mill Load (Volumetric Fill) 35% 

5. Mill Solid Concentration  75% solids and 78% solids 

6. Fresh Ore Hardness  16.5 kWh/t 

7. Hydrocyclone Overflow  40% solids and 45% solids 

8. Hydrocyclone Underflow  80% solids and 85% solids 

9. Feed Ore Size  80% passing 600 m   

10. Product Particle Size  80% passing 106 m   

  (Source: Datasheet) 

 

  Table 3.2 Mill Motor Specifications 

SN Parameter  Value 

1.  Motor Rated Power (kW) 5800  

2. Power Factor  0.89 

3. Operating Power Range (kW) 4000  – 4500  

   (Source: Datasheet) 
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  Table 3.3 Grinding Media Parameters  

SN Parameter  60 mm Balls 50 mm Balls 

1. Grinding Media Type  Hi – chrome Steel Balls Hi – chrome Steel Balls 

2. Charge Rate  Daily Daily 

3. 
Average Quantity of Grinding 

Media Charged (kg) 
6 000 2 000 

4. Average Wear Rate (kg/t) 0.7 0.7 

5. 
Mass of Steel Balls per Tonne 

Milled (kg/t) 
1  1  

  (Source: Datasheet) 

3.3.2 Operational Data  

The operational data presented in the form of plots in Fig. 3.3, Fig. 3.4, Fig. 3.5 and Fig. 3.6 

are snapshots of the months of October 2017 and February 2018 are trends selected from the 

entire dataset presented at Appendix A. The selection was done in a way to capture the most 

dominant operational trends that existed in the dataset for the purpose of analysis.  

 
 

Fig. 3.3 A Graph of Power Draw and Percent Particle Size Passing versus Time 

             for October 2017 
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Fig. 3.4 A Graph of Ore Hardness and Grinding Media Wear Rate versus Time for  

              October 2017 

 

 

Fig. 3.5 A Graph of Grinding Media Charged and Wear Rate versus Time for 

  October 2017 
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Fig. 3.6 A Graph of Grinding Media Charged and Wear Rate versus Time for  

              February 2018 

3.3.3 Data Interpretation 

For the purpose of interpretation, data for the month of October 2017 and February 2018 were 

randomly selected and visualised to better appreciate the major trends existing in the dataset 

and underlying reasons for those trends.  

Power draw as seen by Fig. 3.3 remains a critical parameter that needs to be given due attention 

just as particle size 80% passing and above remains a non-negotiable parameter since its 

importance cannot be underestimated. From Fig. 3.3, power draw for the month of October 

2017 varied in the range from 4130 kW/hr to 4440 kW/hr. However, power draw variations 

from the dataset presented in Appendix A for the entire period under consideration varied 

between 2000 kW/hr and 5000 kW/hr. From empirical studies, it can be deduced that the erratic 

and wide variation in the power draw as evidenced by the collected data is dependent on a 

number of dominant parameters such as mill load or charge volume, mill speed, effective 

diameter and effective length of the grinding chamber. To a greater extent, the latter three 

parameters outlined are constants, meaning the power draw is proportional to the mill load or 

charge volume. Cumulatively, mill load is the sum of infeed ore, infeed water and grinding 

media. 

Proportionately, grinding media constitute a greater percentage of the entire mill load. 

Empirical studies again establishes that 40% load by volume of grinding media results in 

optimum operation. It can then be inferred that, the current practice of charging grinding media 

manually at the experience of the mill operator may have the tendency of exceeding the 
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optimum set limit of 40% load by volume thereby leading to an increased mill load.  Unstable 

mill load as a result of improper charging practices can be attributable to the great variations 

existing in the presented graph of Fig. 3.3. Though grinding media constitute the greater 

percentage, the other factors such as mill infeed and mill water can considerably be major 

contributors to the confirmed power variations.  

Finally, the variations of the ore hardness as presented in Fig. 3.4 is another possibility that 

could contribute to the erratic power variations. Ore hardness can influence greatly the daily 

power draw. From Fig. 3.4, highest ore hardness of 17.25 kWhr/t occurred on 11/10/2017 and 

the least hardness was 15.5 kWhr/t of 27/10/2017. The corresponding power draws from Fig. 

3.3 were 4445 kW/hr and 4240 kW/hr, respectively. The harder ore drew more electric power 

compared to the softer ore. However, there were underlying trends that deviated from this 

normal observation.  

The product particle percentage size varied between 70% and 90% for both the cross section 

of the data that was visualised and the entire data. However, the dataset had a lot of the data 

points lying between the range of 74% and 83%. Variations of the particle percentage size can 

be hypothesised as caused by changes in the ore hardness and also either undercharging or 

overcharging of grinding media.  The higher the ore hardness, the more resistant the ore is to 

grinding and the lower the ore hardness, the less resistant it is to grinding. From Fig. 3.3, there 

is a peculiar trend worth noting though it is not a dominant trend for most parts of the dataset 

presented in Appendix A. The particle percentage size recorded on the 26/10/2017 was above 

90%. A quick trace onto Fig. 3.4 for the same day gave ore hardness to be around 15.5 kWhr/t 

which happens to be the lowest value recorded within the dataset. Lower ore hardness resulted 

in higher product particle percentage size passing the 106 m .  

Fig. 3.4 shows a plot of hardness of ore and grinding media wear rate with time in days for the 

month of October 2017. It can be deduced from the plots that there was a corresponding trend 

of the two parameters over the period under review. Ore hardness is a crucial parameter and 

always considered as a disturbance in most analyses. It can be deduced from the trend shown 

by Fig. 3.4 that the higher the ore hardness the higher the wear rate. This trend is so because, 

more collisions are required in reducing size of harder ore. More collisions as a result of harder 

ores resistance to grinding result in greater wear of the grinding media. Ideally, the charging of 

grinding media should correspond to the wear rate to augment for the proportions of wear 

encountered during the abrasion process.  
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Fig. 3.5 and Fig. 3.6 presented the grinding media charged and the wear rate for the days of the 

month of October 2017 and February 2018, respectively. It can be realised from the plot of Fig. 

3.5 that the wear rate varied so irregularly with the balls that were charged on a daily basis. All 

things being equal, the amount of grinding media by weight that should be charged should be 

done in such proportion to compensate for the wear of balls inside the mill as a result of 

abrasion between the balls and the ore. This is needful to ensure that the stipulated overall mill 

weight is not exceeded or drastically reduced as these affect the mill efficiency.  

Deducing from the trend over the period considered, it can be seen that the grinding media 

charged varied alongside the wear rate as the days went by, though a significant corresponding 

trend was not observed. The aforementioned observations leave the tendency to hypothesise 

the possibility of undercharging or overcharging existing within the plant system. However, an 

interesting trend in Fig. 3.6 can be seen as an observation which further consolidates the 

mentioned hypothesis. The charging of the 60 mm and 50 mm balls were replenished at a 

constant rate of 6 tons of 60 mm and 2 tons of 50 mm daily. However, a critical look at the 

corresponding grinding media wear rate sees a varying trend. It clearly shows that the grinding 

media were not replenished in a way that augmented the abrasive wear of balls inside the mill 

and therefore the tendency to overcharge the mill is very high.  

 

3.4 Methodology of Predictive Model Development 

The non-linear model of grinding media charge between the input and output variables is 

realised in this research by employing ANN-based algorithms in the training and validation of 

the model. The proposed model is developed with the two major competing output parameters 

taken into consideration from plant operations: that is, mill power draw and product particle 

size. Parameters such as infeed ore, water addition rate, grinding media size distribution, wear 

rate and bond work index are considered as input variables to the model. The Bond work index 

determines the grindability of the ore which relates to ore hardness. The input parameters are 

selected based on the fact that they contribute significantly to the overall mill weight which in 

turn increases the power drawn and affects the grinding efficiency of the mill.  

A criterion is developed to determine the actual power required to progressively reduce an ore 

bearing rock from a particular size to another. The Bond equation gives the ideal power 

required to reduce an ore of a higher size to a lower size and it is also employed to determine 

the range of optimality of power drawn during the whole reduction process. The product 

particle size requirement of 80% passing to be 106 m  is also considered as well in the 

determination of optimal data sets within the model. A supervised learning approach is then 
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employed, making use of both the input and the output data points. The model learns and 

generalises the input – output non-linear relationship to predict the average power draw and 

product particle size expected. The set of input variables which will satisfy the competing needs 

of product particle size and mill power draw are considered as Optimal Charging Practice 

(OPC) and those set of input parameters that fall outside the criteria are considered as Non-

optimal Charging Practice (NCP). Fig. 3.7 gives a representation of the proposed predictive 

models. 

 

 

 

Fig. 3.7 A Representation of the Proposed Predictive Models  

Inputs are as follows:  

X1 = Total Tonnes Milled (TTM)  X2 = Tonnes per Hour Milled (TPH) 

X3 = Mill Infeed Water (MIW)  X4 = 60 mm Balls (GM60) 

X5 = 50 mm Balls (GM50)    X6 = Total Grinding Media (TGM) 

X7 = Grinding Media Wear Rate (GMWR) X8 = Bond Work Index 

The outputs are: 

Y1 = Power Draw (PD)    Y2 = Product Particle Size (PPS%)  

 

Machine learning is the art and science of giving machines the ability to learn and make 

decisions from data without being explicitly programmed. That is to say, they have the ability 

to learn from a system without having prior knowledge of the system.  

The first method looked at in this section is the modelling of the non-linear relationship that 

exists between the input-output ball mill parameters using the collected data. This requires 

learning through the multidimensional search space of the training data given to the algorithm. 

Learning is complete when an approximate best fit is achieved between the input and output 

variables. Also, tuning of model is conducted to improve the performance of the developed 

model after it has been tested against test data. The performance of the model is measured by 

its generalisation ability. After the collection of sufficient data which is the main resource in 

the development of the proposed model, overcharging and undercharging of the wet ball mill 

Predictive Model 

(FBNN, RBFNN, GRNN, ANFIS) 
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Y2 

X1 

 X2 

  

 X8 
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is investigated. The steps of model development from data collection to the investigation are 

summarised in Fig. 3.8.  

Start
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Development of Predictive Models 
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Model Achieved?

End

No

Yes

No

 

Fig. 3.8 The Design Methodology of Models Development  

3.4.1 Data Acquisition and Processing  
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Data on the input and output variables were acquired and interpreted as presented in Section 

3.3. Data pre-processing is an important task, because it affects the degree of accuracy of the 

learning process. It cannot be underestimated since unprocessed data to a greater degree can 

hinder the learning ability of the best learning algorithms. Data during the collection stage can 

usually be utterly noisy and mostly characterised by a lot of missing points in the dataset. 

Missing data can usually be entirely eliminated or extrapolation is done to fill in for the missing 

data.  

A crucial assumption to ensure that meaningful information is derived from input – output data 

is that changes in output are solely affected by the input and not some form of noise or 

disturbances that exist in the data. Cleaning the data to remove underlying trends and major 

outliers is very crucial to ensure that the data collected represented the process dynamics to a 

greater extent. Abrupt changes in data points due to downtimes and sudden trips were as well 

removed to eliminate misleading trends that were likely to be captured during the learning 

process.  

Looping through the collected data, due to the variations of the distinct datasets, normalisation 

of the data was done to ensure that the dataset was well scaled to be understood by the activation 

functions. Banadaki et al. (2015) affirmed that normalisation of data in the pre-processing stage 

is very crucial in improving the accuracy of predictive models. Equation (3.1) (Banadaki et al., 

2015) shows the mathematical relationship between the normalised data point and the original 

data point.  

      min
N

max min

X X
X

X X

−
=

−
          (3.1) 

where, XN = normalised data point 

           X = original data point  

           Xmin = minimum value of the data point  

           Xmax = maximum value of the data point   

   

3.4.2 Data Division  

The pre-processed data were basically divided using default division techniques in MATLAB 

software environment. The default division techniques divide the data into 70% training data 

and 30% testing data.  The main rationale for this division is to give more room for the models 

to learn and be able to generalise well. The more the data that is allocated for the training phase, 

the better the generalising ability of the model.  
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3.4.3 Development of the Predictive Models   

The ball mill grinding circuit is characterised by a lot of non–linear dynamic processes which 

make it difficult to establish accurate relationships between the variables using conventional 

means such as statistical methods. ANN from empirical literature has proven to be very robust 

in the establishment of nearly accurate relationships between input – output parameters which 

have strong presence of non-linearity. As widely accepted by the intellectual caucus, ANN 

development is basically in two major phases: Training phase where the model is realised and 

the prediction phase where the model is tested against a new set of data. Four architectures are 

employed in the model realisation, namely, Feedforward Back Propagation Neural Network 

(FBNN), Radial Basis Function Neural Network (RBFNN), General Regression Neural 

Network (GRNN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Fig. 3.9 shows the 

flowchart of the ANN-based model development process.   
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Fig. 3.9 Flowchart of the Model Development Process 

 

Feedforward backpropagation neural network model  

The FBNN is a type of ANN that uses the back-propagation algorithm to train its network. It 

is largely dependent on the error correction rule. The error correction rule primarily consists of 

forward computing and backwards learning. In forward computing, the feedforward network 

takes a set of inputs through the input layer and connects them to a set of nodes known as the 

hidden layer before finally giving an output in the output layer. Equation (3.2) (Gajawada, 

2019) gives the mathematical relationship between the input layer and the hidden layer. 
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Equation (3.3) (Gajawada, 2019) gives the output of the hidden layer after an activation 

function was applied to it.  

n

j ij j 0

i 0

H x w b
=

= +          (3.2) 

where, Hj = input to the hidden layer  

            xij = inputs from the input layers   

 wj = weight indicating the effect of that input variable  

 b0 = bias 

                 
j

j H

1
Y

1 e
−

=
+

                       (3.3) 

where, Yj = transformed hidden layer by the activation function  

The backwards learning starts from the output and calculates the error between the output result 

and the target value and computes the error from each connection back through the various 

layers to the input layer to adjust both the weights and the biases for another forward computing 

cycle. Equation (3.4) (Gajawada, 2019) shows the calculation of the error correction during the 

backwards learning rule of the FBNN algorithm.  

  ( )
2

T j j j

j j

1
E E T Y

2
= = −                         (3.4) 

where, ET = total error in the feedforward loop  

            Ej = error contributed by the jth output neuron   

            Yj = output value of the jth output neuron   

            Tj = desired value of the jth output neuron   

The initialised weights and biases are adjusted during each iterative cycle to ensure minimum 

deviation between the computed output and target values.  This key feature of FBNN 

underscores its learning ability. The learning process according to Al – Masri (2019) is the 

method of fine-tuning the weights of a neural net based on the error rate obtained in the 

previous epoch (i.e. iteration). Proper tuning enables reduced error rates and makes the model 

reliable by increasing its generalisation. 

The FBNN was realised using the neural network toolbox in Matlab software version 2019b 

environment. In employing the FBNN for predicting power draw by the ball mill, the sensitive 

parameters that contribute significantly to the power drawn are taken into consideration. Input 
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parameters outlined in the legend of Fig. 3.7 are used as both inputs and outputs for the model 

realisation stage.   

Fig. 3.10 shows the architecture of the FBNN.  The total number of neurons were varied 

between 10 and 100 and a graph of performance of the model against increased neurons was 

also plotted. The Levenberg-Marquardt algorithm was used in the training process.  
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Fig. 3.10 The Architecture of FBNN 

 

Radial basis function neural network model 

RBFNN is an ANN that uses radial basis function as the activation function. The distinctive 

factor of the RBFNN is the network architecture and its activation function. Activation function 

influences the outputs of processing nodes significantly and usually achieves this by using 

established mathematical formulae. The formulae have the ability to relate input variables to 

output variables without compromising on any non-linearity that exists between the input and 

output relationships.  

RBFNNs in their basic form are feedforward networks which have one–way connections 

commonly employed for prediction and non-linear function fitting. They are always considered 
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as the preferred choice for the aforementioned functions because of their universal 

approximation capabilities. Generally, Radial Basis Function (RBF) is represented 

mathematically as given by Equation (3.5) (Dias et al., 2019). 

                                                                 ( )− cG X                                                      (3.5) 

where, G = positive nonlinear symmetric radial function 

 X = input pattern  

           c  = center of the function  

In its basic form, it is a three-layered feed forward neural network made up of an input layer, a 

single hidden layer and an output layer. RBFNN provides a powerful technique for generating 

multivariate, non-linear mappings. Each RBFNN neuron stores a “prototype”, which is just one 

of the examples from the training data set. 

Architecturally, the RBFNN has input vector X (X1, X2, X3, …, X8), radial basis functions φi 

(φ1, φ2, φ3, …, φ8), weights (w1, w2, w3, …, w8) and an output (y). The input layer transmits 

inputs from the environment external to the hidden layer without any weight connections. Each 

hidden layer neuron possesses a radial basis activation function which accounts for the non-

linear processing element in the hidden layer. Fig. 3.11 depicts the architectural layout of the 

RBFNN.  
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Fig. 3.11 The Architectural Layout of the RBFNN 
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In the use of the RBFNN for the modelling of the wet ball mill grinding process, the Gaussian 

function was used in the hidden layer. This is because the Gaussian function has a normal 

distribution curve or in most instances what is known as the bell curve shape. According to Del 

Rosario et al. (2016), use of the Gaussian function for the modelling of real-world problems is 

justified by the fact that the function is local in its response and it is more acceptable than most 

other functions. Equation (3.6) (Chandradeven, 2017) depicts the mathematical representation 

of the Gaussian function.  

  ( )
( )

2

r

2

r

x
G x exp





 −
= − 

 
 

        (3.6) 

where, G(x) = output of the gaussian function with input x  

 x = input variable  

           r  = center of the radial function  

 r  = radius of the radial function   

Each neuron performs the computation expressed by Equation (3.6) that is calculating the 

Euclidean distance from each input object to the center of the Gaussian function. The choice 

of the number and centre of the RBF is a very important consideration in RBFNN. The most 

natural choice was employed to train the dataset, that is, letting each data point in the training 

set correspond to a basis function centre.  

The output of the hidden layer and the output layer are related by way of Equation (3.7) 

(Chandradeven, 2017). The overall goal of the RBFNN training session is to reduce the error 

between the predicted output and the actual output. This is achieved by variations of the 

connection weights and centers of the radial functions.  

N

p ij

j 1

ŷ b w G (x)
=

= + •                                                (3.7) 

where,  pŷ  = predicted output  

             wij = weights applied to the output of the hidden layer  

             b = bias  

             N = number of neurons in the hidden layer  

             G(x) = output of the hidden neuron  

Generalised regression neural network model  

The GRNN employs a single pass training algorithm in its network development process. It 

has gained widespread attention over the past years because of its fast learning abilities in 
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approximating relationships between output and input parameters hence, its suitability for 

online systems. The basic architecture of a GRNN consists of a four-layer network: The input 

layer, the pattern layer, summation layer and the output layer. The pattern and summation 

layers constitute the hidden layer in the case of GRNN.  

Entries from the input layer in the form of data points are primarily distributed to the neurons 

in the first hidden layer (pattern layer). The pattern layer basically contains nodes which help 

in the processing of the data it received from the input layer. Each node in the pattern layer 

performs the computation of subtracting the input layer vector, Xi from the vector assigned to 

the node Xj. The results from the computation are then squared by the node and multiplied to 

a non-linear kernel which is usually an exponential function (Del Rosario et al., 2016). 

The second hidden layer known as the summation layer has only two neurons which receive 

inputs from the pattern layer for a one output architecture. One of the two neurons in the 

summation layer outputs a summation of the weighted output while the other neuron outputs a 

summation of the unweighted output of the pattern neurons.  Equation (3.8) and Equation (3.9) 

(Arthur et al., 2019) are the parameters employed in the summation of the unweighted and the 

weighted outputs, respectively.  
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Finally, the output layer is a quotient of the two neurons from the summation layer to predict 

the final value, Ŷ . Equation (3.10) (Arthur et al., 2019) depicts the relationship between the 

two neurons in the hidden layer to produce the final predicted value. 
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where, Ŷ(x)  = final predicted value  

 n = total number of neurons in the pattern layer 

 D = the Euclidean distance between the ith input variable and the ith neuron centre           

           s  = smoothing factor (spread) 
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Fig. 3.12 Architectural Layout of the GRNN 

In employing GRNN in the development of a model for the grinding media charge, the batch 

mode method was used. The batch mode method allows the use of observable data collected 

over a period of time in the training process. In other words, it makes use of data in the offline 

mode (non-real time data) in the training process which requires a great chunk of datasets to 

be able to establish accurate relationship between the input and output values. The 520 

observable data points which were collected over the period of 18 months were divided into 

training dataset, and testing data set. Input and output data to the GRNN included parameters 

outlined in the legend of Fig. 3.7. After the training stage, the trained model was validated 

using random samples from the validation dataset to ascertain its performance. An average of 

the validation error was calculated using the k–fold technique. The generalisation ability of the 

developed model was then tested against the testing data that was employed. A “for” loop 

function was employed to loop between the 0 and 1 whiles checking the spread that produces 

a least error between the predicted and the actual values. 

Adaptive neuro-fuzzy inference system model  

ANFIS is a type of artificial intelligence technique which leverages both the advantages of 

fuzzy logic system and ANN framework to enhance model performance. ANFIS incorporates 

the learning ability of the ANN architecture to tune the fuzzy parameters in the fuzzy logic 

framework. ANFIS empirically eliminates manual enhancement of fuzzy framework 

parameters and hence, is noted for high accuracy. Apart from the high accuracy, modelling 

with ANFIS is usually a preferred option because it gives the advantage to know how each 

input variable influences the final output variable. This is made possible by using the rule 
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viewer.  However, one major drawback of the ANFIS architecture is its inability to handle 

multiple output parameters (Egrioglu et al., 2014).  

Generally, the basic structure of a standard ANFIS architecture is presented in Fig. 3.13 

(Seesara and Gadit, 2015).  Equations (3.11) to (3.16) show the mathematical relationships 

between the various layers. In Layer 1, the node output is the membership function for the input 

variables x and y. The node output of Layer 2 is the product of membership functions for each 

variable which is called the firing strength. The node output in Layer 3 is a normalised firing 

strength. The adaptive node is represented by the fourth layer and finally, the summation of all 

the rules’ output is done in Layer 5.  

 

Fig. 3.13 Architectural Layout of ANFIS 

The crisp inputs x and y to the node of the first layer and the output  of this node are defined 

as in Equation (3.11) (Ewees and Elaziz, 2018; Ewees et al., 2017). 

          
1 1 2( ), 1,2, ( ), 3,4,  −= = = =i i i iO A x i O B y i                          (3.11) 

where,  and  = the membership values of the generalised Gaussian membership 

 function  

The Gaussian membership function is expressed by Equation (3.12) (Handoyo and Efendi, 

2019; Radhakrishna et al., 2017). 
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where,  and  = the premise parameters  
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In the second layer, the node’s output is the firing strength of a rule given as in Equation 

(3.13) (Ewees et al., 2017; Khalil et al., 2018).  

                  
2 2( ) ( )  −= i i iO A x B y                                               (3.13) 

The node’s output in the third layer is the normalised firing strength given by Equation (3.14) 

(Barman et al., 2016; Khalil et al., 2018)  
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O w                                                   (3.14) 

The node in Layer 4 is an adaptive node and its output is computed using Equation (3.15) 

(Barman et al., 2016; Khalil et al., 2018) 

                                
4, ( )= = + +i i i i i i iO w f w p x q y r                                    (3.15) 

where, ,  and  = the consequent parameters of the node .  

In the last layer, there exists only one node whose output is computed by using Equation 

(3.16) (Barman et al., 2016; Khalil et al., 2018). 

                                                                
5 = i i

i

O w f                                                   (3.16) 

In the realisation of the ANFIS model, the ANFIS GUI in Matlab software 2019b software 

version was employed. Due to the limitation of ANFIS in handling multiple output parameters, 

both power draw and product particle size were developed separately. Fig. 3.14 and Fig. 3.15 

present the development process in both the training and the testing phases. Configuration 

parameters used in the development process are presented in Table 3.4. Model performance 

results are presented in Section 3.6.    
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Fig. 3.14 Model Training Interface with Mill Power Draw as Output 

 

Fig. 3.15 Model Training Interface with Product Particle Size as Output 
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Table 3.4 presents a summarised form of the training configuration parameters used in the 

development of the predictive models.  

  Table 3.4 Summarised Configuration Parameters  

SN Parameter  Value /Unit 

                                          FBNN 

1.  Inputs Variables 8 

2. Output Variables  2 

3 Training Algorithm  Levenberg – Marquardt 

4. Performance Metric  MSE, R 

5 Number of Neurons  10 – 100 

   

                                          RBFNN 

1 Input Variables  8 

2. Output Variables  2 

3. Sum Squared Error Goal  0.02 

4. Spread Constant  0.1 – 1 

5. Performance Metric  MSE, R 

6. Activation   Gaussian Function  

   

                                          GRNN 

1. Input Variables  8 

2. Output Variables  2 

3. Spread Constant  0.1 – 1 

4. Performance Metric  MSE, R  

5. Input Variables  8 

   

                                         ANFIS 

1. Error Tolerance  0  

2. Number of Iterations  50 

3. Performance Metric  MSE 

4. Optimisation Method  Hybrid  

 

 

3.4.4 Prediction of Mill Power Draw and Product Particle Size  

After the development of the models, predictions were done using the various models 

developed to ascertain how well they performed using 151 datasets from the test data presented 

as in Table B.1 of Appendix B. Graphs of predicted results using the models above were also 

“Actual Data” presented in section 3.6.1.  
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3.5 Investigation of Overcharging and Undercharging the Wet Ball Mill  

To establish the validity of the hypothesis that undercharging and overcharging of grinding 

media has direct effect on power draw and product particle size, the best model is used to 

investigate two major scenarios that affect the power draw and the product particle size of the 

ball mill considerably. The two major scenarios investigated are outlined.   

3.5.1 Overcharging Scenarios  

The overcharging scenarios formulated are based on the assumption that, the number of infeed 

balls to the mill are increased at an incremental order while all other parameters remain 

constant. At a constant throughput averaged from the collected data, the average ore infeed rate 

was calculated to be 600 t/h. Considering a constant throughput, the mill filling in percentage 

will be increased, since greater percentage of the mill volume will be occupied by the grinding 

media 

3.5.1 Undercharging Scenarios  

Similarly undercharging scenarios were equally formulated based on the assumption that the   

infeed balls to the mill are decreased at an incremental order while all other parameters 

remained fairly constant. Still considering a throughput of 600 t/h, decreasing the grinding 

media balls fed into the mill reduces considerably the overall mill filling.   

Results of the overcharging and undercharging scenarios and their effects on product particle 

size and mill power draw are presented in Section 3.6.   

3.6 Results and Discussions  

This section presents the results of the performance of the ANN predictive models based on 

the evaluation metrics used for the purpose of evaluation. The Mean Square Error (MSE) and 

Correlation Coefficient (R) were the two major evaluation metrics used to compare the 

accuracy of the predictive models in matching predicted values to actual values. MSE as an 

evaluation metric is basically the average squared difference between outputs and targets. 

Mathematically, MSE is represented by Equation (3.11) (Dias et al., 2019) 

                                                      ( )
2N

i ii 1

1
ˆMSE y y

N =
= −                                           (3.11) 

where, iŷ  = predicted value of ith data   

 iy  = real value of the ith data  
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In the evaluation of the predictive models using MSE, the model with the least MSE is always 

considered as the better predictor since its squared difference between the predicted value and 

the actual value is very small. The lower the MSE, the better the predictive model. A model 

which has zero MSE, means it accurately predicted output values given a certain set of inputs 

without any error.  

R on the other hand measures the correlation between the output and the target variables. The 

model with an R value closer to 1 is always considered as a better model. It is considered a 

better model because there is a close relationship between the predicted value and the real 

value.  

3.6.1 Results of Model Performance  

This section presents the performance graphs of the four developed models based on their MSE 

and R. It also captured the performances of the models during the iterative stages in search of 

more accurate models. Finally, graphs of predicted and actual values versus time in days were 

also plotted to observe the performance of the developed models using test data. The graphs 

are presented as in Fig. 3.16 to Fig. 3.27.  

 

Fig. 3.16 A Graph of Mean Square Error Performance of FBNN against Number of 
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Fig. 3.17 A Graph of Correlation Coefficient Performance of FBNN against Number  

    of Neurons  

                     

 

Fig. 3.18 A Graph of Mean Square Error Performance of RBFNN against  

   Spread  
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Fig. 3.19 A Graph of Correlation Coefficient Performance of RBFNN against Spread 

 

 

Fig. 3.20 A Graph of Mean Square Error Performance of GRNN against Spread 
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Fig. 3.21 A Graph of Correlation Coefficient Performance of GRNN against Spread 

 

 

Fig. 3.22 A Graph of Comparison of ANN-based Models Mean Square Error 

                Performances  
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Fig. 3.23 A Graph of Comparison of ANN-based Models Correlation Coefficient 

                Performances  

 

 

Fig. 3.24 A Graph of FBNN Predicted and Actual Values versus Time 
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Fig. 3.25 A Graph of RBFNN Predicted and Actual Values versus Time 

 

Fig. 3.26 A Graph of GRNN Predicted and Actual Values versus Time  
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Fig. 3.27 A Graph of Mill Power Draw and Product Particle Size Passing versus Mill 

                Filling   

3.6.2 Discussions  

To ensure that accurate predictive models are obtained for the purposes of predicting power 

draw and product particle size, the models were tuned to ensure that the best outcomes were 

realised. Fig. 3.16 and Fig. 3.17 present the MSE and R performances of the FBNN model, 

respectively in terms of training and testing data. It can be inferred from the Fig. 3.16 that, the 

training data recorded lower MSE values across the range of neurons that were varied. This 

was due to the fact that FBNN model was able to learn the data that it was trained with and so 

it was able to replicate the trained data with minimum errors. A lower MSE of 0.00320812 was 

recorded for the FBNN training data when the number of neurons used during the tuning phase 

was 90. A higher MSE value of 0.00478433 was however recorded when the number of 

neurons was increased to 100 for the same training data. Testing data which are usually a 

measure of the generalisation ability of a model recorded an MSE value of 0.0054308 when 

the number of neurons was 20.  

On the other hand, the highest R value for training and testing were 0.971852 and 0.796865 for 

90 neurons and 0.965249 and 0.953670 for 20 neurons, respectively. It can be inferred that 

increasing the number of neurons affected both the MSE value and the R value significantly. 

An increase in the number of neurons does not necessarily make a model perform better. 

However, an increase in the number of neurons affects the computational time especially with 
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other learning algorithms like the Bayesian regularisation. From Fig. 3.16, it can be seen that 

the MSE for testing data increases steadily after the neurons were increased above 20. Also, 

variations can be observed in the case of R values as the number of neurons increased.  

Fig. 3.18 and Fig. 3.19 show the MSE and R performances of the RBFNN model against the 

spread. The spread is the parameter that defines the number of Gaussian neurons required to 

smoothly fit a function. The larger the spread, the smoother will be the function approximation. 

Too large a spread means more neurons are required to fit a fast changing function. Too small 

spread means many neurons are required to fit a function smoothly which in most instances 

may lead to over fitting and affect the generalisation ability of the model. From Fig. 3.18 and 

Fig. 3.19, the spread was varied over a range of 0.1 to 1 to find the optimal spread that gave 

the least MSE value and the highest R value.  The developed RBFNN model gave the lower 

MSE and highest R values at a spread of 1 and 6 neurons. The corresponding MSE and R values 

at the spread of 1 and 6 neurons for both training data and testing data are 0.00671 and 0.94223 

and 0.00849 and 0.92474, respectively.  

Fig. 3.20 and Fig. 3.21 show the performance evaluation of the GRNN which is a variation of 

the RBFNN. The major determining factor that affected the performance of the GRNN is the 

spread or width parameter. Optimal spread constant was found by looping through the data 

while varying the spread and observing the MSE and R. The lowest MSE values of 0.00440 

and 0.00748 and highest R values of 0.96286 and 0.93376 corresponded to an optimal spread 

of 0.1 for the training data and testing data, respectively. It can also be inferred from the two 

figures that the performance of the model decreased as the spread increased. 

Fig. 3.22 and Fig. 3.23 make a comparative analysis of the MSE and R values of the three 

optimally tuned ANN models. The optimal MSE values for GRNN, FBNN and RBFNN are 

0.00440 and 0.00748, 0.00406 and 0.00543, 0.00671 and 0.00849 for both training data and 

testing data, respectively. Optimal values of R recorded were 0.96286 and 0.93376, 0.96525 

and 0.95367, 0.94223 and 0.92474, respectively for both training and testing data for the 

respective models being compared. Based on the evaluation criteria established, the FBNN 

model performed better compared to the other two ANN models since it had the least MSE 

values and the highest R values for both training and testing data. GRNN comparatively 

performed better than RBFNN. ANFIS was the worst performer of the MSE.  

Fig. 3.24, Fig 3.25 and Fig 3.26 presents graphs of actual power draw and product particle size 

passing and that of predicted mill power draw and product particle size passing using the 

developed FBNN, RBFNN and GRNN models respectively. The goal of the prediction was to 
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determine which of the developed models predicted mill power draw and product particle size 

passing closest to the actual with minimal errors. It was observed that the predicted values 

fitted quite well with the actual values for Fig. 3.24, Fig. 3.25 and Fig. 3.26. However, it was 

noted that the predicted FBNN had the best fit with its turning points following closely on the 

benchmarked actual data for the 151 observed points.   

Fig. 3.27 showed effect of increasing grinding media on mill power draw and product particle 

size passing at a constant throuphput of 600t/h. At constant throughput, mill filling increases 

considerably with increased grinding media charge since mill infeed water is a fraction of the 

throughput and will be constant at constant throughput. It was realised that increasing grinding 

media charge led to an increase in the overall mill power draw and a decrease in the product 

particle size passing and vice versa when the grinding media was decrease. This behaviour was 

partly attributable to the fact that, increasing grinding media charge increases the overall weight 

of the mill and hence will lead to a corresponding increase in mill power draw. Also increment 

of grinding media increase the probability of the grinding media collision, which does lead to 

product size reduction and hence the reduction in the product passing size percentage. 

3.7 Summary  

In summary, this chapter outlined the steps in the development of ANN models for the 

prediction of power draw and product particle size of the wet ball mill grinding media circuit. 

It elaborated on the data acquisition and pre-processing techniques employed, the model 

development, performance evaluation and the investigation of the model against hypotheses 

from literature. The performance of the models investigated are to serve as basis for selecting 

the best model that will be utilised in the next chapter. Based on the performances of all the 

models, the tuned FBNN model with twenty hidden neurons proved robust when used for the 

purpose of prediction of product particle size passing and mill power draw. The FBNN model 

looks promising for further improvement since the error margin between the trained data and 

the test data is closer and can be easily improved compared to the other error margins. Hence, 

the FBNN shall be optimised for the purpose of predicting 60 mm grinding media balls and 

this serves as the focus of Chapter 4.  
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CHAPTER 4 

OPTIMISATION OF GRINDING MEDIA PREDICTION MODEL 

4.1 Introduction  

This chapter focuses on the development of grinding media prediction model from OCPs 

obtained from the models of the previous chapter. The criteria used in selecting OCPs, 

identification of OCPs and development of the model are given attention in this chapter. Fig. 

4.1 is a flowchart of the major highlights of the entire chapter.   

 

Start

Establish Criteria for the Selection 

of OCP from Predicted Values

Identification of OCPs 

End

Yes

No

Grinding Media Prediction Model 

Development from OCPs 

Optimisation of  Grinding Media 

Prediction Model Using GWO 

Algorithm     

Satisfactory 

Optimised  Model 

Obtained?

 

Fig. 4.1 A Flowchart of the Methodology for System Optimisation 
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4.2 Criteria for Optimal Charging Practice Determination  

OCPs are conditions that result in optimum power draw and a greater passing of product 

particle size. The criteria for the determination of these OCPs are based on theoretical 

assumptions and key performance indices established by the considered mill under study. A 

product particle size passing of 80% is required because it leads to higher recovery rates and 

less leaching time during downstream processing. So to be considered as an OCP, one of the 

assumptions is that the product particle size passing should be equal or greater than 80%. Also, 

the theoretical energy required to reduce an ore from 300 m  to 106 m is calculated using 

Bond’s equation (see Equation 2.4).  

In calculating the theoretical energy, the Bond work index of the ore is considered since it 

determines how resistant the ore is to grinding. The highest Bond work index of the ore in the 

mine under consideration was 17.5 kWh/t while the lowest index recorded for ore hardness was 

15.5 kWh/t. Also, a significant factor is the total tonnes milled per hour. From the 507 datasets 

in Appendix A, the highest tonnage recorded was 670 t/h and the lowest recorded was 230 t/h. 

Using both the upper and the lower limits of the Bond work index and the tonnes per hour 

milled, the average power draw in an hour which is considered optimum based on theoretical 

assumptions lies between the ranges of 4619 kW for harder ores and 4091 kW for softer ores 

when running at full capacity. Power draw recorded which is lower than 4091 kW will only be 

considered optimum if the mill capacity is 70% utilised.  

The criteria above form the bedrock for the identification of the OCPs in the next section.  

4.3 Identification of Optimal Charging Practices  

The OCP conditions are first identified with their corresponding input values in the test data 

used in the testing phase during development of the predictive models in the previous chapter. 

The established criteria and assumptions discussed in section 4.2 were employed in the 

identification of the OCPs. The identification is necessary to ensure that only desired practices 

are used in the development of the grinding media prediction model. It is also important to 

eliminate NOCP based on the assumptions to ensure that the developed model only learns from 

the OCPs. Table 4.1 shows the identified OCPs extracted from the dataset. On Table 4.1, TTM 

= Total Tonnes Milled; TPH = Tonnes Per Hour; MIW = Mill Infeed Water; GM60 = 60 mm 

Balls; GM50 = 50 mm Balls; TGM = Total Grinding Media; GMWR = Grinding Media Wear 

Rate; BWI = Bond Work Index; PPS = Product Particle Size; PD = Power Draw. 
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    Table 4. 1 Identified Optimal Charging Practices from Dataset 

TTM TPH MIW GM60 GM50 TGM GMWR BWI PPS PD 

10922 455 59 6.00 4.00 10.00 0.92 16.70 81.4 4325.0 

13406 559 73 8.00 2.00 10.00 0.75 15.90 81.3 4290.0 

13078 545 71 6.00 2.00 8.00 0.61 16.40 79.7 4280.0 

13425 559 73 6.00 2.00 8.00 0.60 15.90 83.7 4220.0 

13239 552 72 6.00 2.00 8.00 0.60 16.50 79.3 4230.0 

12541 523 68 6.00 2.00 8.00 0.64 16.40 80.6 4455.0 

10907 454 59 6.00 2.00 8.00 0.78 16.80 80.4 4621.3 

14432 601 78 4.00 2.00 6.00 1.06 16.00 82.2 4451.7 

15848 660 86 6.00 2.00 8.00 0.60 16.50 79.2 4489.5 

15348 640 83 6.00 2.00 8.00 0.70 16.40 80.1 4453.8 

10487 437 57 4.00 2.00 6.00 0.72 16.60 82.1 4693.5 

13449 560 73 6.00 2.00 8.00 0.72 16.80 80.5 4642.6 

14313 596 78 6.00 2.00 8.00 1.21 16.50 82.4 4501.5 

14391 600 78 8.00 2.00 10.00 0.71 16.50 79.1 4488.8 

14026 584 76 6.00 2.00 8.00 0.98 16.50 80.9 4463.3 

14124 588 77 6.00 2.00 8.00 0.76 16.50 80.5 4485.7 

13922 580 75 6.00 2.00 8.00 0.73 16.40 80.0 4487.5 

10572 441 57 2.00 2.00 4.00 0.96 16.30 81.7 4404.5 

14715 613 80 6.00 2.00 8.00 0.74 16.00 83.1 4320.6 

13926 580 75 6.00 2.00 8.00 0.68 16.60 79.5 4580.1 

12332 514 67 6.00 2.00 8.00 0.65 16.40 80.1 4444.6 

13467 561 73 4.00 2.00 6.00 0.60 16.40 83.1 4588.6 

10268 428 56 6.00 2.00 8.00 0.78 16.20 82.4 4398.0 

13361 557 72 6.00 2.00 8.00 0.60 16.50 80.1 4570.6 

12916 538 70 6.00 2.00 8.00 0.62 16.40 81.2 4331.0 

 

4.4 Grinding Media Prediction Model Development from Optimal Charging 

            Practices  

The prediction of grinding media is supposed to be very imperative in every processing plant 

as it gives an idea of the quantity of grinding media that should be replenished on a daily basis 

to ensure that the conditions of the power draw and product particle size passing remain within 

the expected limits. In the development of the grinding media prediction model from the 

identified OCPs, FBNN was employed in model realisation because of its superior performance 

exhibited in Chapter 3. The grinding media prediction model considers the replenishing of only 

60 mm balls on a daily basis. This assumption is due to the fact that the 60 mm balls wear as 

the days go by into the various smaller sizes to fill in-between the mill cavities that exist when 

the 60 mm balls are used. The weight of the 60 mm balls is then considered as an output during 

the training of the FBNN. The rest of the variables are considered as inputs in the development 
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of the model. The whole idea is about finding the weights of FBNN that best fit input variables 

to the output variable with minimum error.  

      ( )
1 2 3 9

1 2 3 4 5 6 7 8 9
x ,x ,x ...x

y min fit x ,x ,x ,x ,x ,x ,x ,x ,x=                             (4.1) 

where, y = output variable representing predicted value (t)  

            x1 = input variable representing total tonnes milled (t)  

  x2 = input variable representing tonnes per hour milled (t/h)  

   x3 = input variable representing mill infeed water (m3/h)   

     x4 = input variable representing 50 mm balls (t)  

  x5 = input variable representing total grinding media (t)   

      x6 = input variable representing grinding media wear rate (kg/t)   

     x7 = input  variable representing Bond Work Index/ore hardness (kWh/t)  

       x8 = input variable representing product particle size passing (%)  

        x9  = power draw (kW)   

 

The dataset in Table 4.1 is normalised during the pre-processing stage to ensure that it is well 

scaled to be understood by the activation functions. The Bayesian Regularisation (BR) 

algorithm was employed for the training of the model. The reason for the choice of the 

algorithm was because of its good generalisation capability for difficult, small and noisy 

datasets. The algorithm stops according to adaptive weight minimisation.   Total number of 

iterations was set to 1000 epochs.  

Though the FBNN showed superior performance, optimisation of the developed model is 

highly recommended to realise an accurate model.  Optimisation of the model allows for further 

reduction of the error between the predicted and the actual grinding media consumed. Grey 

Wolf Optimisation (GWO) algorithm was proposed to be employed because empirical 

literature shows that it has a small number of parameters compared to other algorithms when 

configuring and its performance has been established in several applications, to be good in 

enhancing the performance of a neural network (Ahmed and Mohamed, 2020). GWO algorithm 

does the above by exploring different regions of the search space that have many local minima 

and then reduces the domain of search to the area that contains the global solution. This solves 

the drawback of the FBNN of having the tendency to get stuck in the local point and therefore 

impede the performance of the model at arriving at a global solution which is vital at arriving 

at the best weights that fit input and output variables accurately.  
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4.5  Grey Wolf Optimisation Algorithm 

GWO algorithm is a new nature-inspired, swarm-based meta-heuristic, bionic optimisation 

algorithm which was introduced by Mirjalili in 2014 (Niu et al., 2019).  Singh and Singh (2017) 

developed the GWO algorithm to solve an optimisation problem of nonlinear double-layer 

grids.  The results illustrated that GWO algorithm had better performance than other algorithms 

in finding the optimal design of non-linear double-layer grids. According to Mirjalili et al. 

(2015), grey wolves live together and hunt in groups. Mirjalili designed the optimisation 

algorithm imitating the searching and hunting processes of grey wolves.  According to Faris et 

al. (2018), GWO algorithm has successfully been applied in the domains of band selection, 

automatic control, power dispatch, automated offshore crane design, feature selection in neural 

networks, parameter estimation and shop scheduling. Simplicity, easy implementation, minor 

parameters, flexibility, derivation-free and local minima avoidance are the merits of GWO 

algorithm (Emary et al., 2016). However, according to Gao and Zhao (2019), the setbacks of 

GWO algorithm are low solving accuracy, bad local searching ability and slow convergence 

rate. 

GWO algorithm mimics the behaviour of grey wolves to capture prey with a clear division of 

labour and mutual cooperation. At the top of the food chain, grey wolves mostly prefer to live 

in a pack. Usually, there are five (5) to twelve (12) wolves in each group. They have a strict 

hierarchical management system that constitutes a hierarchical pyramid as shown in Fig. 4.2.  

 

 

 

 
 

Fig. 4.2 A Social Hierarchy of Grey Wolves  
 

The hierarchy allows the grey wolf pack to efficiently kill the prey. α layer is the head wolf, 

which is the strongest and most capable individual. It is also the only leader in a wolf pack who 

directs the team’s predation actions, food distribution and other decision-making tasks. β and 

δ layers are two wolves groupings that are second only to α. Their responsibility is mainly to 

assist α layer in the behaviour of group organisations. ω layer is at the bottom of the pyramid, 

which occupies the majority of the total. This ω layer is mainly responsible for balancing the 

internal relationship of the population and looking after the young wolves (Mirjalili et al., 

2015). Fig. 4.3 shows the attacking toward prey versus searching for prey. 
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Fig. 4.3 The Position Vectors and their Possible Next Locations 

4.6 Mathematical Model of Grey Wolf Optimisation Algorithm 

The mathematical models of the encircling, tracking and attacking prey are as follows: 

4.6.1 Encircling Prey 

The encircling behaviour of the prey is mathematically modelled using the following equations:  

                                                          p pD = C × X (t) - X(t)                                                (4.2)                                            

 p p pX (t + 1) = X (t) - A×D   (4.3) 

 1A 2= −ar a  (4.4) 

    22=C r   (4.5) 

where, pD = distance vector of the prey from a wolf 

 X(t) = position vector of a grey wolf 

 pX (t) = position vector of the prey 

 A  and C  = coefficient vectors 

t = the current iteration i.e the iteration number   

 pX (t + 1)  = next position vector that the prey arrives 

 a = convergence vector factor which decreases from 2 to 0 over the iteration 

 1r , 2r = random vector numbers in the range [0,1] 

 



77 

 

4.6.2 Hunting Prey 

After encircling the prey under the guidance of α, β, δ grey wolves, they then hunt the prey by 

moving towards it with the β and δ wolves estimating their own position with reference to the 

α wolves. Update principle in this hunting action process is represented in Equation (4.6) to 

Equation (4.12).  

                                             

1

2

3

1 2 3

D (t) C X (t) X(t) (4.6)

D (t) C X (t) X(t) (4.7)

D (t) C X (t) X(t) (4.8)

X X (t) A (D ) (4.9)

X X (t) A (D ) (4.10)

X X (t) A (D ) (4.11)

X (t) X (t) X (t)
X(t 1) (4.12)

3

  

  

  

  

  

  

=  −

=  −

=  −

= − 

= − 

= − 

+ +
+ =  

 

where, D , D , D = distance from α, β, δ to the prey, respectively 

 C , C , C = coefficient vectors of α, β, δ, respectively 

 X , X , X = position vectors of the grey wolf at α, β, δ, respectively 

 1X , 2X , 3X = effects of α, β, δ wolves on the prey, respectively 

 

4.6.3 Attacking Prey 

As mentioned, the grey wolves finish the hunt by attacking the prey when it stops moving. In 

order to mathematically model approaching the prey, α is decreased in terms of its value 

(convergence and get results) and this can be seen in Equation (4.4). When A 1 , the wolves 

pack gather to attack the prey. When A 1 , the wolves pack diverge and search for the new 

potential prey. The flowchart of the GWO algorithm is illustrated in Fig. 4.4 (Bozorg-Haddad, 

2018) and Fig. 4.5 (Mirjalili et al., 2015) shows the pseudocode of GWO algorithm. 
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Stopping 

Criteria 

Satisfied?

End

No

Yes

 

Fig. 4.4 A Flowchart of the Grey Wolf Optimisation Algorithm 

 

Steps of the flowchart  

Step 1: Initialise the GWO parameters such as search agents (Gs), design variable size (Gd), 

vectors a, A, C and maximum number of iterations (itermax). 

Step 2: Generate wolves randomly based on size of the pack. 

Step 3: Estimate the fitness value of each hunt agent.  

Step 4: Identify the best hunt agent (Gα), the second best hunt agent (Gβ) and the third best hunt 

agent (Gδ).  

Step 5: Renew the location of the current hunt agent. 

Step 6: Estimate the fitness value of all hunts. 

Step 7: Update the value of Gα, Gβ and Gδ. 

Step 8: Check for stopping condition i.e., whether the iteration reaches Itermax, if yes, print 

            the best value of solutions otherwise go to Step 5. 
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Begin 

Initialise the population of grey wolves Xi (i = 1, 2, ... , n) 

Initialise a, A and C 

Calculate the fitness values of search agents and grade them. (Xα = the best solution in 

the search agent, Xβ = the second best solution in the search agent, and Xδ = the third 

best solution in the search agent) 

t = 0 

While (t < Max number of iterations)  

For each search agent 

Update the position of the current search agent  

End for 

Update a, A and C 

Calculate the fitness values of all search agents and grade them 

Update the positions of Xα, Xβ and Xδ 

t = t +1 

End while 

End 

 

Fig. 4.5 Pseudocode of the Grey Wolf Optimisation Algorithm  

In the use of the GWO algorithm in optimising the FBNN, information on the actual output 

and predicted output values was obtained and used in updating the weights in the hidden layer 

of the FBNN. In the training phase, the GWO algorithm started by generating a population X 

with random positions for each wolf with the size of the population set to size, N and dimension, 

D which represented the number of weight parameters in the hidden layer. The values of α, β 

and δ were updated based on error of the objective function value presented in Equation (4.13) 

where the best solution was considered as the weights which help generate a minimum 

objective function value.  

2

obj
ˆF y y= −       (4.13) 

where, Fobj = objective function   

    y = target value of 60 mm balls   

   ŷ  = predicted values of 60 mm balls  
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The configuration parameter values are presented in Table 4.2 while the full implementation 

codes used in the optimisation process are presented in Appendix D.  

  Table 4.2 Configuration Parameters of the GWO – FBNN Algorithm  

SN Configuration Parameter Value 

1. Population Size (Number of Grey Wolves)  50 

2. Number of Iterations  1000 

3. α, β, δ Random value 0 to 1 

 

4.7 Results and Discussions  

To evaluate performance of FBNN-GWO algorithm in predicting grinding media consumption, 

it was compared against just the traditional FBNN. The results, presented in the form of graphs 

are illustrated in Figs. 4.6 to Fig. 4.9 and discussed in Section 4.7.2.  

 

4.7.1 Results  

 

Fig. 4.6 A Graph of Mean Square Error versus Number of Iterations for FBNN 

              Performance 
 

Training  

Testing  

Best  
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Fig. 4.7 A Graph of Learning Rate versus Number of Iterations for FBNN 

 

Fig. 4.8 A Graph of Mean Square Error versus Number of Iterations for FBNN – GWO 

              Algorithm Performance during the Training Phase  
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Fig. 4.9 A Graph of Actual and Predicted Grinding Media Weight of 60 mm Balls versus 

             Time   

4.7.2 Discussions  

The metric used in evaluating performance between the traditional FBNN and the FBNN – 

GWO algorithm is the MSE. Interpretation of the MSE is guided by the fact that the closer the 

MSE is to 0, the smaller the error between the predicted value and the actual value of grinding 

media consumption. Fig. 4.6 and Fig. 4.7 show the performance of the traditional FBNN. The 

MSE recorded during the training process was 0.008876, 0.0253485 during the validation stage 

and 0.0187532 during the testing stage. Though the total number of iterations was set to 1000 

epochs, the training however ended prematurely after 6 epochs. It was realised after the first 

epoch that there was great divergence between the trained result and the validation and test 

results. The training was stopped since the validation results were not improving any further. 

This is one of the major drawbacks of the traditional FBNN, since the entire search space in 

search of a global solution was not adequately exploited.  

Fig 4.8 presents the performance of the FBNN – GWO algorithm during the training phase. 

The MSE recorded was 0.0043022 which is far lower than the MSE recorded for the traditional 

case. Also, the MSE recorded during the testing phase was 0.0084321 which was lower than 

the value recorded for the traditional FBNN. It is realised that the FBNN – GWO algorithm 

explored all the search space in search of a global solution which led to its better performance. 

It however solved the major problem of the traditional FBNN which only stops performing 

when the generalisation stops and does not go on further in search of a better global solution 

for better performance.   
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4.8  Summary  

This chapter developed an optimal grinding media prediction model for the purpose of grinding 

media replenishing of wet ball mills from OCPs identified from the previous chapter. The 

traditional FBNN and the enhanced FBNN were used in the development process. It was 

reaslised that the enhanced FBNN – GWO algorithm showed better performance in the 

prediction of grinding media charging of the wet ball mill. The FBNN – GWO algorithm model 

is then used for further analysis in the next chapter.  
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CHAPTER 5 

SENSITIVITY ANALYSES  

5.1 Introduction  

This chapter is dedicated to performance of sensitivity analyses on the best performing 

optimised model to see the effect of each input variable on power draw and product particle 

size which is of major concern. The goal of chapter looks at the feasibility of grinding with 

minimum power draw and minimum grinding media while looking at the possibility of 

increasing throughput.    

5.2 Sensitivity of Grinding Media Charge and Mill Power Draw to Changes in Input 

Variables  

Fig. 5.1 shows FBNN – GWO algorithm based model whilst Fig. 5.2 shows the GWO 

optimised FBNN. 

 

 

 

 

Fig. 5.1 A Representation of FBNN – GWO Algorithm based Model 

The input variables are as follows:   

X1 = input variable representing total tonnes of ore milled (t)  

X2 = input variable representing tonnes per hour of ore milled (t/h)  

X3 = input variable representing mill infeed water (m3/h)   

X4 = input variable representing 50 mm balls (t)  

X5 = input variable representing total grinding media (t)   

X6 = input variable representing grinding media wear rate (kg/t)   

X7 = input  variable representing Bond Work Index/ore hardness (kWh/t)  

X8 = input variable representing product particle size passing (%)  

The outputs are:    

Y1  = output variable representing grinding media charge (t)  

Y2  = output variable representing power draw (kW)   

FBNN – GWO Algorithm 
Y1 

Y2 

X1 

 X2 

  

 X8 
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X1

X2

X3

X8

Y1

Y2

Input Layer Hidden Layer Output Layer

Xi

 

Fig. 5.2 The Network of FBNN – GWO based Algorithm  

The sensitive analyses were performed using the FBNN-GWO algorithm based model shown 

in Fig. 5.1. Codes for the development of the model are presented in Appendix D. The 

architecture of the model considered grinding media charge and mill power draw as the critical 

output parameters since the goal remains investigating the feasibility of grinding with 

minimum power draw and minimum grinding media charge with the possibility of maximising 

throughput. The choice of the FBNN-GWO algorithm was due to its superior prediction 

capability with minimum error exhibited in previous chapters. In the investigation of the 

sensitivity of grinding media charge and mill power draw to changes in input variables, 

throughput (tonnes per hour milled), grinding media wear rate and ore hardness were varied to 

see the effect on the aforementioned output variables under observation. The rationale for the 

choice in varying the above input variables was to mirror the practice of mill operators at most 

mineral processing plants.  

The varying of throughput has a direct effect on input parameters such as mill load (total tonnes 

milled) and mill infeed water since the mill load is a function of the throughput. Mill water on 

the other hand is always a percentage of the mill throughput. It therefore implies that an 

increase or decrease in throughput will have similar reflections in both mill load and mill infeed 
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water. The minimum and maximum values of the selected inputs for the purposes of the 

sensitivity analyses are presented in Table 5.1.  

  Table 5.1 Minimum and Maximum Values of the Varying Input Variables  

SN Input Parameter  Minimum Maximum 

1. Throughput (t/h) 400 700 

2. Ore hardness (kWhr/t)  15.0 17.5 

3. Grinding Media Wear Rate (kg/t)  0.4 1.0 

The minimum and maximum values help to determine the range in which the variation can be 

made. The minimum and maximum values are mainly extracted from the dataset which is a 

depiction of the usual practice in the mill under consideration.  The reason for the determination 

of the range is to establish a benchmark to contrast between the current practice and the 

possibility of improving the practice that is currently being used.  

5.2.1 Sensitivity Regarding Changes in One Input Variable  

In this section, the interest lies in investigating how sensitive grinding media consumption and 

power draw are to changes in one single variable. As mentioned earlier, all the selected input 

variables that are to be varied are usual practices in the plant under consideration. For instance, 

in an attempt to increase productivity, there is always the likelihood of increasing the tonnes 

milled per hour in an attempt to maximise throughput. Also, ore hardness to a larger extent is 

dependent on the pit from which the ore was sourced. The hardness varies from one pit to 

another and from one depth to another. Varying the ore hardness attempts to investigate how 

ore hardness affects the two outputs under consideration in this section. Grinding media wear 

rate always is a function of the type of grinding media used and in most instances accelerated 

by the type of ore that is being milled.  

Variations were carried out with the product particle size percentage passing 106 m   which 

is one of the input variables held constant at 80% passing. Alternate possibility of achieving 

more than the required 80% passing is always desirable at every processing plant since it leads 

to higher recovery rates and so considered as a scenario. Finally, the situation where the 

percentage passing of the product particle size falls below the required 80% remains a likely 

event hence, it was also investigated. For the three scenarios of product particle size passing of 

80.0%, 82.4% and 79.10%, under one input variable variation, the throughput, ore hardness 

and grinding media wear rate were treated to the incremental steps of 20 t/h, 0.2 kWhr/t and 

0.1 kg/t, respectively. The initial values of all variables for the three scenarios are summarised 

in Table 5.2.   
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  Table 5.2 Initial Values of Variables Under Consideration  

SN 
PPS Passing 

106 m (%) 

Throughput  

(t/h) 

TPH 

 (t/h) 

MIW 

(m3/hr) 

GM50 

(t) 

TGM 

(t) 

GMWR 

 (kg/t) 

BWI 

(kWhr/t) 

1. 80.0 13921 580 75.0 2 8 0.730 16.4 

2. 82.4 10267 428 55.0 2 8 0.779 16.2 

3. 79.1 14391 599 78.0 2 8 0.705 16.5 

5.2.2 Sensitivity Relative to Changes in Multiple Input Variables  

Multiple variations of the selected input parameters are an attempt to exploit the limitation of 

varying only one parameter and find the possibility of grinding with minimum power draw and 

minimum grinding media. Variation of two or three of the selected input variables are possible 

cases that encompass real circumstances in the plant under consideration. There is the 

possibility of wanting to increase throughput while encountering changes in ore hardness. 

There is also the possibility of encountering changes in ore hardness while grinding media wear 

rate increases or decreases due to changes in the internal grinding action. Finally, changes in 

the three selected input variables were investigated since there is the possibility of having to 

increase throughput under varying conditions of ore hardness and grinding media wear rate. 

For the changes in the multiple input variables, once again, throughput, ore hardness and 

grinding media wear rate were incremented at the steps of 20 t/h, 0.2 kWhr/t and 0.1 kg/t, 

respectively. The initial values for the variations of all the scenarios aforementioned are 

summarised into the Table 5.2 earlier presented. Also, for the changes in multiple input 

variables for the three scenarios, ten cases of combination of the variations in the three variables 

were actualised and these are summarised in Table 5.3, Table 5.4 and Table 5.5 for 80.0%, 

82.4% and 79.1% passing 106 m .  

   Table 5.3 The Ten Cases of Variation of Inputs for 80.0% Passing 106 m    

SN 

 

Input 

  

Cases 

1 2 3 4 5 6 7 8 9 10 

1. TPH 500 520 540 560 580 600 620 640 660 680 

2. BWI 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 

3. GMWR 0.329 0.429 0.529 0.629 0.729 0.829 0.929 1.029 1.129 1.229 

 

  Table 5.4 The Ten Cases of Variation of Inputs for 82.4% Passing 106 m    

SN Input 
Cases 

1 2 3 4 5 6 7 8 9 10 

1. TPH 368 388 408 428 448 468 488 508 528 548 

2. BWI 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 

3. GMWR 0.479 0.579 0.679 0.779 0.879 0.979 1.079 1.179 1.279 1.379 
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  Table 5.5 The Ten Cases of Variation of Inputs for 79.1% Passing 106 m    

SN  Input  
Cases 

1 2 3 4 5 6 7 8 9 10 

1. TPH 520 540 560 580 600 620 640 660 680 700 

2. BWI  15.7 15.9 16.1 16.3 16.5 16.7 16.9 17.1 17.3 17.5 

3. GMWR 0.305 0.405 0.505 0.605 0.705 0.805 0.905 1.005 1.105 1.205 

 

5.3 Results and Discussions  

5.3.1 Simulation Results for Changes in One Input Variable  

The simulation results are presented in Fig. 5.3 to Fig. 5.11 for the changes in one input variable 

for the three scenarios of product particle size passing.  

 

Fig. 5.3 A Graph of Power Draw and 60 mm Grinding Media Weight versus 

                Throughput at 80.0% Product Particle Size Passing 106 m   
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Fig. 5.4 A Graph of Power Draw and 60 mm Grinding Media Weight versus Ore     

               Hardness at 80.0% Product Particle Size Passing 106 m    

 

 
 

Fig. 5.5 A Graph of Power Draw and 60 mm Grinding Media Weight versus 

             Grinding Media Wear Rate at 80.0% Product Particle Size Passing 106 m   
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Fig. 5.6 A Graph of Power Draw and 60 mm Grinding Media Weight versus 

                 Throughput at 82.4% Product Particle Size Passing 106 m     

 

 

Fig. 5.7 A Graph of Power Draw and 60 mm Grinding Media Weight versus Ore   

              Hardness at 82.4% Product Particle Size Passing 106 m   
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Fig. 5.8 A Graph of Power Draw and 60 mm Grinding Media Weight versus Grinding    

              Media Wear Rate at 82.4% Product Particle Size Passing 106 m   

 

Fig. 5.9 A Graph of Power Draw and 60 mm Grinding Media Weight versus 

             Throughput at 79.1% Product Particle Size Passing 106 m   
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Fig. 5.10 A Graph of Power Draw and 60 mm Grinding Media Weight versus Ore 

                 Hardness at 79.1% Product Particle Size Passing 106 m   

 

 

Fig. 5.11 A Graph of Power Draw and 60 mm Grinding Media Weight versus 

                  Grinding Media Wear Rate at 79.1% Product Particle Size Passing 106 m   
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5.3.2 Simulation Results for Changes in Multiple Input Variables  

Due to simultaneous variations of multiple parameters in the x – axis, numbers were used to 

represent the combinations of two or three changing variables. Corresponding values of the 

changing variables were presented in Table 5.3, Table 5.4 and Table 5.5 on pages 86 and 87. 

The results for the changes in multiple input variables are as shown in Fig. 5.12 to Fig. 5.23.  

Fig. 5.12 A Graph of Power Draw and 60 mm Grinding Media Weight versus 

                  Variations in Throughput and Ore Hardness at 80.0% Product Particle Size 

                  Passing 106 m   

 

Fig. 5.13     A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Throughput and Grinding Media Wear Rate at 80.0% Product Particle Size 

Passing 106 m    
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Fig. 5.14    A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Ore Hardness and Grinding Media Wear Rate at 80.0% Product Particle 

Size Passing 106 m   

 

 

 

Fig. 5.15     A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Throughput, Ore Hardness and Grinding Media Wear Rate at 80.0% 

Product Particle Size Passing 106 m   
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Fig. 5.16     A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Throughput and Ore Hardness at 82.4% Product Particle Size Passing 106
m    

 

 

 
 

Fig. 5.17 A Graph of Power Draw and 60 mm Grinding Media Weight versus  

                  Variations in Throughput and Grinding Media Wear Rate at 82.4% Product 

                  Particle Size Passing 106 m   
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Fig. 5.18  A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Ore Hardness and Grinding Media Wear Rate at 82.4% Product Particle 

Size Passing 106 m    

 

 

Fig. 5.19     A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Throughput, Ore Hardness and Grinding Media Wear Rate at 82.4% 

Product Particle Size Passing 106 m   
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Fig. 5.20    A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Throughput and Ore Hardness at 79.1% Product Particle Size Passing 106
m   

 

 

 

Fig. 5.21 A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Throughput and Grinding Media Wear Rate at 79.1% Product Particles Size 

Passing 106 m   
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Fig. 5. 22 A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Ore Hardness and Grinding Media Wear Rate at 79.1% Product Particle 

Size Passing 106 m   

 

 

Fig. 5.23  A Graph of Power Draw and 60 mm Grinding Media Weight versus Variations 

in Throughput, Ore Hardness and Grinding Media Wear Rate at 79.1% 

Product Particle Size Passing 106 m    
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5.3.3 Discussion of Simulation Results  

This section is dedicated to the discussion of the simulation results presented in the previous 

section. The graphs presented in Section 5.3 are discussed accordingly.  

Discussions of results of changes in one input variable  

With regards to throughput, results presented in Fig. 5.3 and Fig. 5.6 suggest that a decrease in 

grinding media consumption and power draw are achievable at 80.0% product particle size and 

above. This occurred at increasing the throughput from 520 t/h for the 80.0% passing (Fig. 5.3) 

and 388 t/h for 82.4% passing (Fig. 5.6). At 79.1% passing from Fig. 5.9, grinding media 

consumption decreased whilst power draw increased for throughputs of 630 t/h and above and 

vice versa for throughputs below 630 t/h. This striking difference at 79.1% passing could be 

explained by the relatively higher throughputs that consequently require more power draw for 

effective mill load dynamics. It is to be noted that any addition of grinding media would have 

caused more mill load and hence, further increase in the power draw. Clearly, from the 

perspective of throughputs only, it is preferable to operate the mill not below 80.0% passing in 

the throughput range of 400 t/h to 680 t/h. 

Simulation outcomes on variation of ore hardness presented in Fig. 5.4, Fig. 5.7 and Fig. 5.10 

suggest noticeable increases in grinding media consumption and mill power draw for ore 

hardness of 17.0 kWhr/t and above at 80.0% passing, 16.2 kWhr/t and above at 82.4% passing 

and 17.1 kWhr/t and above for 79.1% passing 106 µm. At the respective indicated ore hardness, 

4.25 tonnes and 5100 kW, 2 tonnes and 4540 kW and 4.8 tonnes and 5150 kW, respectively 

were consumed for the respective grindings at 80.0%, 82.4% and 79.1% passing 106 µm. 

Clearly, the lower the ore hardness the less consumption of grinding media and the less power 

drawn by mill. Operational plant practice beholds high ore hardness especially from deeper 

pits and the need for mixing of ores from a number of pits in order to reduce the effective 

hardness of ore. Judging from Fig. 5.4, it is preferable to grind at an ore hardness in the range 

of 16.4 kWhr/t to 17.2 kWhr/t giving 60 mm grinding media consumption in the range of 5 

tonnes to 6.3 tonnes and power draw in the range of 4420 kW to 5140 kW at 80.0% passing 

106 µm. 

From Fig. 5.5, Fig. 5.8 and Fig. 5.11, a grinding media wear rate of 0.63 t/h and beyond led to 

a rise in power draw and a decrease in demand of 60 mm grinding media balls for the three 

scenarios. The reverse case is true for wear rates below 0.63 kg/t. Ideally, higher grinding media 

wear rates should result in higher levels of replenishment of grinding media balls to result in 

additional power draw. This anomaly of decrement in 60 mm balls demanded for increased 

wear rates could be due to the possibility of exceeding the filling limit of the wet ball mill due 
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to the cumulative filling effect of grinding media. Increment of the grinding media wear rate 

from 0.63 t/h to 0.93 t/h resulted in a decrease of 0.5 tonnes (from 6.5 tonnes to 6.0 tonnes) in 

grinding media ball demand and increase of 100 kW (from 4400 kW to 4500 kW) in mill power 

draw at 80.0% passing 106 µm. Similarly, at 82.4% passing, grinding balls demand reduced by 

6 tonnes (from 9 tonnes to 3 tonnes) and power draw increased by 1100 kW (from 4400 kW to 

5500 kW). At 79.1% passing 106 µm, grinding media demanded reduced by 0.5 tonnes (from 

6.3 tonnes to 5.8 tonnes) and power draw increased by 150 kW (from 4350 kW to 4500 kW). 

It stands to reason that it is beneficial to operate at 80.0% passing in the grinding media wear 

rate range of 0.63 t/h to 0.93 t/h as this offers minimal changes in grinding media consumption 

and power draw. 

Discussion of results of changes in multiple input variables  

From Fig. 5.12, Fig. 5.16 and 5.20, throughput and ore hardness significantly influenced power 

draw and required 60 mm grinding media weight. At 80.0% passing from Fig. 5.12, increasing 

throughput and ore hardness above Case 5 (throughput of 580 t/h and ore hardness of 16.4 

kWhr/t from Table 5.3) resulted in an increase in power draw and a decrease of grinding media 

charge and vice versa for cases below 5. Fig. 5.12 however suggested that decrease in power 

draw of nearly 200 kW is achievable from Case 2 to Case 5 but at a trade-off of additional 

grinding media charge of about 1 tonne. Fig. 5.16, however, revealed no hope of achieving 

close to insignificant changes in the output variables to result in their minimum values. 

Achieving minimum power draw from Case 1 to Case 5 gave a change of 500 kW that is from 

4500 kW to 5000 kW. Also, beyond Case 5, both output variables increased to high 

unacceptable values for the 82.4% passing 106 m . Fig. 5.20 showed a general increase in 

power draw and a decrease in grinding media charge for Case 5 (which from Table 5.5 

corresponded to 600 t/h and 16.5 kWhr/t) and vice versa for the predicted variables below Case 

5. From the three scenarios as presented in Fig. 5.12, Fig. 5.16 and Fig. 5.20, it can be seen 

that, the better option is to grind not beyond Case 5 at 80.0% passing 106 m  and this 

corresponds to throughputs up to 580 t/h and ore hardness up to 16.4 kWhr/t.    

From Fig. 5.13, 5.17 and Fig 5.21, similar patterns of influence of variations in throughput and 

grinding media wear rate are observable. Quite gradual decreases in 60 mm grinding media 

weight charge result in gradual increases in mill power draw from Case 1 to Case 10. There is 

a conflicting desire to grind more at less grinding media wear rate. The minimum and maximum 

grinding media wear rates are 0.4 kg/t and 1 kg/t, respectively. Maximum throughput stands at 

700 t/h. These translate into focus on Cases 2 to 7 on Fig. 5.15, Cases 1 to 6 on Fig. 5.17 and 

Cases 2 to 7 on Fig. 5.21. The corresponding throughputs are 520 t/h to 620 t/h, 368 t/h to 468 
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t/h and 540 t/h to 640 t/h, respectively. A standard minimum throughput of 400 t/h could not 

be achieved by Fig. 5.17 for 82.4% passing. More so, its corresponding throughput range was 

low compared to the other two scenarios of 80.0 % and 79.1% passing. To grind at less than 

the stipulated 6 tonnes of 60 mm grinding media weight strongly suggested operating at Cases 

6 and 7 for the two scenarios resulting in a grinding media weight not below 5 tonnes. For this, 

the power draw stood at a constant 4450 kW at the 80.0 % passing (Fig. 5.13) and 4500 kW, 

respectively giving a savings of 50 kW at the scenario of 80.0% passing. Further reduction in 

grinding media weight on Fig. 5.13 hardly affected the power drawn, though assuring of 

increased throughput, it also led to higher wear rate of balls beyond the maximum value.      

Variation of ore hardness and grinding media wear rate reflected a steady increase of power 

draw whilst grinding media increased to a point and decreased to lower values as depicted in 

Fig. 5.14, Fig. 5.18 and Fig. 5.22. From Fig. 5.18, the increase in both predicted variables from 

Case 3 to Case 7 was untenable and this rules out grinding at 82.4% passing.  From Fig. 5.14 

and Fig. 5.22, increasing ore hardness and grinding media wear rate from Case 6 to Case 8 

resulted in less 60 mm grinding media weight demand below 6 tonnes to as low as 3 tonnes for 

80.0% passing and 3.6 tonnes for 79.1% passing both for power draw increment of 350 kW. 

The 0.6 tonnes of weight reduction achievable at 80.0% passing instead of 79.1% passing is 

highly desirable. Grinding at the 80.0% passing offered ore hardness in the range 16.6 kWhr/t 

to 17.0 kWhr/t and grinding media wear rate range of 0.829 kg/t to 1.029 kg/t offering a 

throughput range of 600 t/h to 640 t/h (see Table 5.3). So, a wear rate beyond the standard 1 

kg/t could be risked to achieve some reduced weight of balls, grind harder ore and achieve 

throughput of 640 t/h.  

Variations in three variables, simply, throughput, ore hardness and grinding media wear rate 

are an attempt to exploit the possible improvements in power draw and grinding media charge 

minimisations. A closer look at Fig. 5.15, 5.19 and 5.23, reveal much similarity with results 

regarding variations in ore hardness and grinding media wear rate (see Fig. 5.14, Fig. 5.18 and 

Fig. 5.22). The exception has to do with the increment in 60 mm grinding media weight at the 

lower cases due to the inclusion of throughput. The need for more throughput and grinding of 

harder ores change significantly the internal grinding dynamics of the mill and hence, the need 

for more grinding media at the lower cases and comparative need for less grinding media at the 

higher cases of 7 to 10 whilst the power draw remained quite unchanged with regard to the 

corresponding scenarios in the variation of ore hardness and grinding media wear rate. In the 

midst of increasing throughput, there is the possibility of reducing the 60 mm grinding media 

charge for an increment in power draw of about 350 kW for a grind at 80.0% passing 106 m.
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Further increase in the three input variables based on Fig. 5.15, gave the possibility of only 

achieving minimum grinding media charge at a trade-off of mill power draw.  

5.4 Summary  

This section investigated how sensitive power draw and grinding media charge were to changes 

in selected input variables namely, throughput, ore hardness and grinding media wear rate. 

Both single and multiple variables analyses were performed in an attempt to find out the 

possibility of grinding with minimal power draw and minimal grinding media charge while 

maximising throughput.  The analysed scenarios and cases revealed that, it is desirable to grind 

at 80.0% passing 106 m  and that minimisation of 60 mm grinding media charge is achievable 

at the expense of the mill power draw.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

This research sought to predict grinding media charge for optimum power draw using 

developed ANN-based models. The ANN-based models were developed making use of 

tumbling wet ball mill operational data collected over a period of time at the plant under 

consideration. The goal was to achieve an accurate model for the purpose of predicting power 

draw and grinding media charge. Four types of ANN models namely, FBNN, RBFNN, GRNN 

and ANFIS were utilised in predicting accurately, power draw and product particle size 

percentage passing 106 m from operational data. All the four models showed promising 

results however, results from the FBNN were however outstanding compared to the other three 

though its accuracy was not entirely 100%.  

A criterion for determining OCPs from the predicted data was formulated and used to identify 

OCPs from the predicted dataset. The accuracy of the model was further optimised using GWO 

algorithm to better predict grinding media charge and power draw. Finally, sensitivity analyses 

were performed to determine how sensitive power draw and grinding media charge were to 

changes in three input variables namely, throughput, ore hardness and grinding media wear 

rate. Conclusively, reductions in grinding media charge are achievable at the expense of mill 

power draw. Also, throughputs up to 640 t/h with regard to the studied wet ball mill stand to 

be implemented.  

6.2 Recommendations  

It is recommended that online data logging methods should be improved in order to improve 

the accuracy of predictive models for the purposes of grinding media charge and power draw 

predictions. Also, possible deployment schemes should be investigated on a pilot basis before 

full deployment.  

6.3 Research Contributions 

The contributions of this research are as follows:  

i. A developed ANN – based optimised model for the purpose of predicting grinding 

media charge and power draw; and 

ii. Informed knowledge on how sensitive grinding media charge and power draw are 

to changes in some varying input variables.  
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6.4 Future Research Directions  

The following research directions can be considered as future work: 

i. With improved data logging schemes, dynamic mode training should be investigated to 

explore the possibilities of capturing intermittent trends; and 

ii. Other bionic metaheuristic optimisation algorithms such as Flower Pollination 

Algorithm and Whale Optimisation Algorithm can be looked at as an alternative to 

better enhance the accuracy of the developed predictive models.  
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APPENDICES 

APPENDIX A 

BALL MILL OPERATIONAL DATA 

  Table A.1 Ball Mill Operational Data from September 2017 to February 2019 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

24-09-17 13932 580 75 0 0 0 0 17.2 76.4 4330 

25-09-17 13935 581 75 16 4 20 1.44 17.3 76.8 4405 

26-09-17 13819 576 75 4 4 8 0.58 17.1 77.8 4470 

27-09-17 9158 382 50 0 0 0 0 17.3 76.5 4400 

28-09-17 13900 579 75 8 2 10 0.72 16.8 77.9 4265 

29-09-17 9223 384 50 8 2 10 1.08 16.8 79.8 4320 

30-09-17 13303 554 72 8 2 10 0.75 16.8 78.8 4325 

01-10-17 12842 535 70 8 2 10 0.78 16.7 79.4 4260 

02-10-17 13281 553 72 12 18 30 2.26 17.1 77.6 4405 

03-10-17 13394 558 73 8 6 14 1.05 17 77.6 4330 

04-10-17 13747 573 74 20 0 20 1.45 17 76.3 4300 

05-10-17 14037 585 76 18 0 18 1.28 17.2 77.8 4430 

06-10-17 13896 579 75 12 0 12 0.86 16.8 78.5 4390 

07-10-17 13239 552 72 12 2 14 1.06 17 78.8 4420 

08-10-17 13992 583 76 6 6 12 0.86 16.8 77.7 4295 

09-10-17 14407 600 78 6 4 10 0.69 17 78.9 4430 

10-10-17 14642 610 79 10 0 10 0.68 17 76.2 4385 

11-10-17 12980 541 70 12 6 18 1.39 17.2 77 4440 

12-10-17 14177 591 77 12 4 16 1.13 17.1 76 4375 

13-10-17 14098 587 76 6 6 12 0.85 16.8 77.8 4290 

14-10-17 14704 613 80 5.4 6.9 12.3 0.84 16.7 79.9 4245 

15-10-17 15209 634 82 5.4 7.8 13.2 0.87 16.8 77.6 4240 

16-10-17 14873 620 81 6 4 10 0.67 17 75 4240 

17-10-17 14184 591 77 6 4 10 0.71 16.7 77.5 4130 

18-10-17 14218 592 77 6 4 10 0.7 17 75.9 4205 

19-10-17 14608 609 79 6 4 10 0.68 16.9 76.5 4225 

20-10-17 13650 569 74 16 0 16 1.17 16.7 79.5 4295 

21-10-17 12330 514 67 6 4 10 0.81 16.9 78.2 4350 

22-10-17 12440 518 67 6 4 10 0.81 16.9 77.4 4370 

23-10-17 13893 579 75 6 4 10 0.72 16.9 78.2 4280 

24-10-17 13710 571 74 6 4 10 0.73 17.1 73.7 4220 

25-10-17 13935 581 75 6 4 10 0.72 17 74.1 4290 

26-10-17 1276 53 7 0 0 0 0 15.5 91.8 4240 

27-10-17 14038 585 76 12 4 16 1.14 16.3 83.8 4320 

28-10-17 14513 605 79 10 4 14 0.96 16.9 78.4 4410 

 



118 

 

  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

29-10-17 14285 595 77 8 6 14 0.98 16.8 79.8 4390 

30-10-17 14397 600 78 10 4 14 0.97 17.1 77.8 4400 

31-10-17 13493 562 73 6 4 10 0.74 16.8 79.4 4385 

01-11-17 13466 561 73 6 4 10 0.74 16.9 78.9 4345 

02-11-17 10922 455 59 6 4 10 0.92 16.7 81.4 4325 

03-11-17 13395 558 73 8 2 10 0.75 16.9 77.3 4345 

04-11-17 14190 591 77 6 4 10 0.7 16.7 81 4305 

05-11-17 13741 573 74 6 4 10 0.73 16.9 78.2 4360 

06-11-17 13197 550 71 6 4 10 0.76 17.1 78.3 4425 

07-11-17 13945 581 76 6 4 10 0.72 16.8 79.7 4355 

08-11-17 13406 559 73 8 2 10 0.75 15.9 81.3 4290 

09-11-17 13156 548 71 12 8 20 1.52 16.8 79.9 4315 

10-11-17 13243 552 72 6 4 10 0.76 16.6 82.5 4430 

11-11-17 13039 543 71 6 4 10 0.77 17 79.7 4455 

12-11-17 12340 514 67 6 4 10 0.81 16.8 79 4370 

13-11-17 12835 535 70 6 4 10 0.78 16.8 81.7 4425 

14-11-17 13181 549 71 6 4 10 0.76 15.9 81 4280 

15-11-17 13910 580 75 6 4 10 0.72 16 80.4 4285 

16-11-17 13506 563 73 6 4 10 0.74 16.9 77.2 4305 

17-11-17 12046 502 65 6 2 8 0.66 16.5 78.5 4270 

18-11-17 13078 545 71 6 2 8 0.61 16.4 79.7 4280 

19-11-17 13920 580 75 6 2 8 0.57 16.8 76.6 4235 

20-11-17 13575 566 74 6 2 8 0.59 16.4 79.2 4255 

21-11-17 13345 556 72 6 2 8 0.6 16 82.4 4290 

22-11-17 13425 559 73 6 2 8 0.6 15.9 83.7 4220 

23-11-17 13610 567 74 6 2 8 0.59 15.7 84.5 4140 

24-11-17 11855 494 64 6 2 8 0.67 15.7 85.4 4245 

25-11-17 13067 544 71 10 2 12 0.92 16.3 79.5 4200 

26-11-17 12972 540 70 6 2 8 0.62 16.1 79.4 4175 

27-11-17 13471 561 73 6 2 8 0.59 15.8 80.8 4100 

29-11-17 4929 205 27 0 0 0 0 16.6 76.6 4230 

30-11-17 11156 465 60 6 2 8 0.72 16.6 77.3 4205 

01-12-17 13732 572 74 6 2 8 0.58 16.4 78.1 4180 

02-12-17 13502 563 73 14 2 16 1.18 16.8 74.9 4115 

03-12-17 12851 535 70 10 4 14 1.09 16.5 77.1 4145 

04-12-17 13937 581 75 12 4 16 1.15 16.4 73.5 4060 

05-12-17 13194 550 71 12 6 18 1.36 16.5 77 4140 

06-12-17 13994 583 76 8 0 8 0.57 16.5 76.6 4175 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

07-12-17 13040 543 71 6 2 8 0.61 16.8 71.1 4175 

08-12-17 13239 552 72 6 2 8 0.6 16.5 79.3 4230 

09-12-17 13539 564 73 12 4 16 1.18 16.8 77.7 4200 

10-12-17 14188 591 77 10 2 12 0.85 16.5 76.2 4175 

11-12-17 13224 551 72 6 2 8 0.6 16.9 76.2 4305 

12-12-17 13432 560 73 12 4 16 1.19 17 74.8 4275 

13-12-17 12894 537 70 6 2 8 0.62 16.6 76.9 4070 

14-12-17 13190 550 71 16 0 16 1.21 16.9 75.5 4255 

15-12-17 13659 569 74 8 0 8 0.59 17 76 4225 

16-12-17 12715 530 69 14 0 14 1.1 16.5 76.3 4160 

17-12-17 11749 490 64 8 0 8 0.68 17 76.2 4230 

18-12-17 13481 562 73 8 0 8 0.59 17.1 75.4 4330 

19-12-17 14044 585 76 6 2 8 0.57 16.9 76 4360 

20-12-17 12872 536 70 4 0 4 0.31 16.8 78.8 4355 

21-12-17 12298 512 67 4 0 4 0.33 16.9 76 4315 

22-12-17 12617 526 68 4 0 4 0.32 16.5 76.4 4190 

23-12-17 12768 532 69 8 4 12 0.94 16.5 76.6 4140 

24-12-17 12513 521 68 8 4 12 0.96 16.8 76.8 4255 

25-12-17 12473 520 68 6 2 8 0.64 17 75.3 4220 

26-12-17 12655 527 69 6 2 8 0.63 16.4 79.7 4170 

27-12-17 13595 566 74 6 2 8  0.67 16.8 76.6 4215 

28-12-17 13621 568 74 6 2 8 0.59 17 75.2 4200 

29-12-17 12999 542 70 6 2 8 0.62 17.1 74.5 4190 

30-12-17 13396 558 73 10 6 16 1.19 16.8 76.8 4235 

31-12-17 12542 523 68 6 8 14 1.12 17 75.3 4400 

01-01-18 12541 523 68 6 2 8 0.64 16.4 80.6 4455 

02-01-18 12271 511 66 2 6 8 0.65 16.7 79 4250 

03-01-18 12321 513 67 2 6 8 0.65 16.7 79.5 4265 

05-01-18 8170 340 44 0 0 0 0 16.8 80.4 4360 

06-01-18 13939 581 76 2 6 8 0.57 16.7 78.6 4210 

07-01-18 12829 535 69 2 6 8 0.62 16.6 77.2 4245 

08-01-18 12673 528 69 2 6 8 0.63 16.5 76 4090 

09-01-18 13343 556 72 2 6 8 0.6 16.4 77.6 4135 

10-01-18 13595 566 74 6 2 8 0.59 16.5 76.3 4045 

11-01-18 13464 561 73 6 2 8 0.59 16.5 77.8 4185 

12-01-18 9895 412 54 2 6 8 0.81 16.5 77.3 4190 

13-01-18 13547 564 73 4 12 16 1.18 16.6 77.7 4215 

14-01-18 13808 575 75 2 6 8 0.58 16.6 77.2 4230 

15-01-18 13645 569 74 2 6 8 0.59 16.5 77.2 4175 
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 Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

16-01-18 13582 566 74 0 0 0 0 16.4 77.5 4060 

17-01-18 13648 569 74 12 4 16 1.17 16.4 77.7 4040 

18-01-18 13225 551 72 0 16 16 1.21 16.4 77.8 4070 

19-01-18 11566 482 63 0 8 8 0.69 15.9 79.2 3965 

20-01-18 13427 559 73 0 8 8 0.6 16.6 75.9 4055 

21-01-18 13392 558 73 0 8 8 0.6 16.1 78.3 3975 

22-01-18 11581 483 63 0 16 16 1.38 16.3 79.8 4310 

23-01-18 12772 532 69 0 10 10 0.78 16.2 78.4 3955 

24-01-18 13976 582 76 6 2 8 0.58 16.6 80.1 4532 

25-01-18 13596 566 74 6 2 8 0.72 16.9 79.2 4527 

26-01-18 10907 454 59 6 2 8 0.78 16.8 80.4 4621 

27-01-18 14978 624 81 6 2 8 2.62 16.8 78.2 4485 

28-01-18 14432 601 78 6 2 8 1.06 16 82.2 4452 

29-01-18 14010 584 76 6 2 8 0.68 17 78.2 4577 

30-01-18 14735 614 80 6 2 8 0 16.9 77.9 4475 

31-01-18 13815 576 75 6 2 8 0.32 16.6 80.6 4538 

01-02-18 13662 569 74 6 2 8 0.87 16.6 80.1 4547 

02-02-18 13528 564 73 6 2 8 0.71 16.6 79.6 4443 

03-02-18 13501 563 73 6 2 8 0.7 16.4 78.3 4278 

04-02-18 14267 594 77 6 2 8 0.81 16.2 77.2 3878 

05-02-18 12431 518 67 6 2 8 0.73 16.8 78.2 4447 

06-02-18 13580 566 74 6 2 8 0 16.7 79.5 4428 

07-02-18 13443 560 73 6 2 8 0.98 16.2 81.2 4426 

08-02-18 13109 546 71 6 2 8 0.74 16.9 79.2 4511 

09-02-18 13906 579 75 6 2 8 0.75 15.8 80.1 4179 

10-02-18 14695 612 80 6 2 8 0.76 16.2 79.4 4185 

11-02-18 13742 573 74 6 2 8 1.52 16.5 79.2 4370 

12-02-18 14053 586 76 6 2 8 0.77 17 78.2 4470 

13-02-18 14456 602 78 6 2 8 0.72 16.9 77.8 4434 

14-02-18 14460 603 78 6 2 8 0.61 16.9 77.8 4432 

15-02-18 13694 571 74 6 2 8 0.6 17.1 76.2 4463 

16-02-18 13460 561 73 6 2 8 0.67 17.1 77.7 4546 

17-02-18 13206 550 72 6 2 8 0.62 16.9 77.9 4496 

18-02-18 13997 583 76 6 2 8 0.72 16.6 79 4463 

19-02-18 13742 573 74 6 2 8 1.09 16.8 78.1 4467 

20-02-18 13607 567 74 6 2 8 1.36 17 78.6 4519 

21-02-18 14328 597 78 6 2 8 1.18 16.4 79.6 4207 

22-02-18 12853 536 70 6 2 8 0.6 17 77.8 4536 

23-02-18 14358 598 78 6 2 8 1.21 17.3 75.6 4437 

24-02-18 14375 599 78 6 2 8 0.68 16.8 78.3 4404 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

25-02-18 14351 598 78 6 2 8 0.57 16.8 78.6 4446 

26-02-18 14085 587 76 6 2 8 0.32 17 78.2 4534 

27-02-18 15226 634 82 6 2 8 0.96 16.6 79.2 4434 

28-02-18 15601 650 85 6 2 8 0.62 16.8 78.7 4431 

01-03-18 15388 641 83 6 2 8 1.12 16.4 80.2 4420 

02-03-18 15601 650 85 6 2 8 0.65 16.6 79.9 4480 

03-03-18 15492 645 84 6 2 8 0.57 16.8 78.1 4513 

04-03-18 15735 656 85 6 2 8 0.6 15.9 81.7 4224 

05-03-18 15051 627 82 6 2 8 0.59 16.6 78.6 4489 

06-03-18 14400 600 78 6 2 8 0.58 16.9 77.6 4490 

07-03-18 14529 605 79 6 2 8 1.17 16.8 78.4 4500 

08-03-18 14825 618 80 6 2 8 1.21 16.8 78.6 4534 

09-03-18 15848 660 86 6 2 8 0.6 16.5 79.2 4490 

10-03-18 16123 672 87 6 2 8 1.38 16.5 79.8 4427 

11-03-18 14204 592 77 6 2 8 1.08 16.8 78.1 4533 

12-03-18 14783 616 80 6 2 8 1.06 16.8 78.3 4535 

13-03-18 15033 626 81 6 2 8 0.68 16.8 78.2 4562 

14-03-18 14561 607 79 6 2 8 0.32 16.8 78.4 4555 

15-03-18 15305 638 83 6 2 8 0.68 16.5 79.1 4493 

16-03-18 14868 619 81 6 2 8 0.81 17 77.9 4515 

17-03-18 14745 614 80 6 2 8 1.14 16.8 78.6 4559 

18-03-18 14792 616 80 6 2 8 0.97 16.7 79.1 4538 

19-03-18 15369 640 83 6 2 8 0.74 16.5 79.8 4487 

20-03-18 15348 640 83 6 2 8 0.7 16.4 80.1 4454 

21-03-18 10487 437 57 6 2 8 0.72 16.6 82.1 4693 

22-03-18 11805 492 64 6 2 8 0.76 17 80.6 4708 

23-03-18 10393 433 56 6 2 8 0.81 17.2 79.9 4711 

24-03-18 13449 560 73 6 2 8 0.72 16.8 80.5 4643 

25-03-18 14956 623 81 6 2 8 0.66 17 77.2 4584 

26-03-18 15273 636 83 6 2 8 0.59 17.1 78.5 4604 

27-03-18 13494 562 73 6 2 8 0.6 17 79.7 4643 

28-03-18 13792 575 75 6 2 8 0.67 17.2 76.6 4650 

29-03-18 15015 626 81 6 2 8 0.62 16.9 79.2 4583 

30-03-18 14887 620 81 6 2 8 0.72 16.4 82.4 4581 

31-03-18 14672 611 79 6 2 8 1.18 16.4 83.7 4613 

01-04-18 13188 550 71 6 2 8 1.36 16.3 84.5 4674 

02-04-18 11147 464 60 6 2 8 0.61 17 79.7 4692 

03-04-18 15540 648 84 6 2 8 1.18 17.4 74.5 4604 

04-04-18 15191 633 82 6 2 8 0.6 16.6 80.4 4585 

05-04-18 14553 606 79 6 2 8 0.62 17.2 76.3 4628 
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 Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

06-04-18 14941 623 81 6 2 8 1.21 17 77.2 4631 

07-04-18 14620 609 79 6 2 8 1.1 16.8 80.1 4607 

08-04-18 14854 619 80 6 2 8 0.57 16.8 78.2 4573 

09-04-18 15079 628 82 6 2 8 0.33 16.8 78.1 4555 

10-04-18 16086 670 87 6 2 8 0.96 16.9 77.8 4532 

11-04-18 15608 650 85 6 2 8 0.62 16.8 78.6 4558 

12-04-18 15155 631 82 6 2 8 1.12 16.6 80.9 4559 

13-04-18 14907 621 81 6 2 8 0.65 16.8 78.9 4547 

14-04-18 14914 621 81 6 2 8 0.57 16.5 81.7 4510 

15-04-18 14365 599 78 6 2 8 0.6 16.5 81.2 4562 

16-04-18 14932 622 81 6 2 8 0.59 16.8 78.4 4546 

17-04-18 14771 615 80 6 2 8 1.18 16.8 78.8 4552 

18-04-18 14602 608 79 6 2 8 0 16.6 80.9 4523 

19-04-18 14313 596 78 6 2 8 1.21 16.5 82.4 4502 

20-04-18 14301 596 77 6 2 8 0.69 16.8 78.3 4569 

21-04-18 15019 626 81 6 2 8 0.6 16.6 80.1 4553 

22-04-18 14919 622 81 6 2 8 0.58 16.5 82.1 4509 

23-04-18 14443 602 78 6 2 8 0.78 16.4 82.4 4469 

24-04-18 13247 552 72 6 2 8 1.06 16.5 80.1 4470 

25-04-18 14207 592 77 6 2 8 0.32 16.6 79.4 4528 

26-04-18 14391 600 78 6 2 8 0.71 16.5 79.1 4489 

27-04-18 14354 598 78 6 2 8 0.81 16.4 81.1 4414 

28-04-18 14026 584 76 6 2 8 0.98 16.5 80.9 4463 

29-04-18 14124 588 77 6 2 8 0.76 16.5 80.5 4486 

30-04-18 13836 576 75 6 2 8 0.77 16.8 78.5 4542 

01-05-18 13984 583 76 6 2 8 0.6 16.6 79.2 4520 

02-05-18 14086 587 76 6 2 8 0.62 16.4 80.2 4497 

03-05-18 13907 579 75 6 2 8 1.09 16.5 79.9 4486 

04-05-18 13246 552 72 6 2 8 0.6 16.5 79.5 4491 

05-05-18 13343 556 72 6 2 8 0.68 16.8 78.2 4556 

06-05-18 14224 593 77 6 2 8 0.32 16.8 78.6 4528 

07-05-18 13931 580 75 6 2 8 0.62 16.5 80.1 4473 

08-05-18 13922 580 75 6 2 8 0.65 16.4 82.4 4438 

09-05-18 12546 523 68 6 2 8 0.6 16.8 78.6 4518 

10-05-18 13874 578 75 6 2 8 1.17 16.8 78.2 4518 

11-05-18 13967 582 76 6 2 8 0.6 16.5 80.1 4486 

12-05-18 13661 569 74 6 2 8 0.58 16.5 80.9 4461 

13-05-18 13889 579 75 6 2 8 1.08 16.4 81.1 4434 

14-05-18 13292 554 72 6 2 8 0.78 16.9 78.9 4506 

15-05-18 13426 559 73 6 2 8 0 16.8 78.2 4510 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

16-05-18 13933 581 75 6 2 8 0.86 16.5 79.9 4487 

17-05-18 13832 576 75 6 2 8 0.69 16.4 80.1 4485 

18-05-18 13221 551 72 6 2 8 0 16.4 80.6 4473 

19-05-18 14084 587 76 6 2 8 0.87 16.8 78 4565 

20-05-18 14066 586 76 6 2 8 0.7 16.8 78.1 4526 

21-05-18 13920 580 75 6 2 8 0.81 16.8 78.4 4512 

22-05-18 13922 580 75 6 2 8 0.73 16.4 80 4487 

23-05-18 10572 441 57 6 2 8 0.96 16.3 81.7 4405 

29-05-18 14265 594 77 6 2 8 0.97 16.1 82.7 4323 

30-05-18 15023 626 81 6 2 8 0.74 16.3 81.2 4437 

31-05-18 14577 607 79 6 2 8 0.75 16.8 78.4 4526 

01-06-18 14278 595 77 6 2 8 0.76 16.8 78.9 4535 

02-06-18 13217 551 72 6 2 8 0.75 16.8 78.8 4526 

03-06-18 14716 613 80 6 2 8 0.76 16.7 78.9 4439 

04-06-18 15063 628 82 6 2 8 0.81 16.4 80.9 4400 

05-06-18 14040 585 76 6 2 8 0.76 16.1 82.4 4399 

06-06-18 14715 613 80 6 2 8 0.74 16 83.1 4321 

07-06-18 11338 472 61 6 2 8 0.61 16.1 82.4 4382 

08-06-18 14614 609 79 6 2 8 0.59 16.3 81.5 4456 

09-06-18 14311 596 78 6 2 8 0.6 16.1 82.4 4379 

10-06-18 13511 563 73 6 2 8 0.67 16.8 78.3 4511 

11-06-18 13798 575 75 6 2 8 0.59 16.8 78.6 4503 

12-06-18 13614 567 74 6 2 8 0.58 16.9 77.9 4527 

13-06-18 13360 557 72 6 2 8 1.09 16.6 80.1 4579 

14-06-18 14066 586 76 6 2 8 0.57 16.1 83.4 4368 

15-06-18 14276 595 77 6 2 8 1.18 16 81.9 4285 

16-06-18 14471 603 78 6 2 8 0.6 15.9 82.1 4249 

17-06-18 12758 532 69 6 2 8 1.21 16.4 80.9 4426 

18-06-18 13883 578 75 6 2 8 1.1 16.1 82.4 4321 

19-06-18 13921 580 75 6 2 8 0.31 16.4 83.1 4524 

20-06-18 13912 580 75 6 2 8 0.32 16.5 82.4 4541 

21-06-18 12755 531 69 6 2 8 0.96 16.3 81.5 4463 

22-06-18 14373 599 78 6 2 8 1.19 16 82.4 4212 

23-06-18 14038 585 76 6 2 8 1.12 16.1 82.4 4339 

24-06-18 13535 564 73 6 2 8 0.65 16.8 78.6 4655 

25-06-18 14373 599 78 6 2 8 0.62 16.5 80.1 4494 

26-06-18 13647 569 74 6 2 8 0.59 16.2 82.1 4391 

27-06-18 13040 543 71 6 2 8 1.18 16.3 82.4 4470 

28-06-18 13484 562 73 6 2 8 1.17 16.3 81.5 4438 

29-06-18 13922 580 75 6 2 8 0.69 16.2 81.4 4335 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

30-06-18 13903 579 75 6 2 8 0.6 16.9 81 4680 

01-07-18 13570 565 74 6 2 8 0.78 16.8 78.2 4645 

02-07-18 13218 551 72 6 2 8 0.72 16.4 79.7 4320 

03-07-18 12031 501 65 6 2 8 2.62 17 82.5 4715 

04-07-18 11590 483 63 6 2 8 0.76 17 81 4798 

05-07-18 13908 580 75 6 2 8 0.77 16.8 78.5 4681 

06-07-18 14384 599 78 6 2 8 0.6 16.7 79.7 4635 

07-07-18 13812 575 75 6 2 8 0.72 16.9 83.7 4738 

08-07-18 13814 576 75 6 2 8 1.18 16.8 85.4 4788 

09-07-18 13926 580 75 6 2 8 0.68 16.6 79.5 4580 

10-07-18 15010 625 81 6 2 8 0.96 16.5 80.8 4571 

11-07-18 14637 610 79 6 2 8 1.12 16.8 77.3 4531 

12-07-18 14417 601 78 6 2 8 0.57 16.7 78.1 4561 

13-07-18 14095 587 76 6 2 8 0.59 16.9 76.6 4452 

14-07-18 13545 564 73 6 2 8 1.17 16.7 77.7 4493 

15-07-18 13852 577 75 6 2 8 1.38 16.7 79.7 4626 

16-07-18 13779 574 75 6 2 8 0.68 16.4 80.4 4437 

17-07-18 14312 596 78 6 2 8 0.68 16.8 77.8 4515 

18-07-18 14264 594 77 6 2 8 0.81 16.7 77.3 4446 

19-07-18 14551 606 79 6 2 8 0.97 16.7 77.2 4481 

20-07-18 14457 602 78 6 2 8 0.72 16.9 75.9 4617 

21-07-18 9629 401 52 6 2 8 0.6 16.9 79.8 4832 

22-07-18 11741 489 64 6 2 8 0.62 17 78.2 4851 

23-07-18 13724 572 74 6 2 8 1.18 16.8 80.6 4831 

24-07-18 14590 608 79 6 2 8 0.6 16.5 79.6 4661 

25-07-18 14514 605 79 6 2 8 1.21 16.4 78.2 4456 

26-07-18 14123 588 76 6 2 8 0.57 16.8 79.4 4520 

27-07-18 13902 579 75 6 2 8 0.96 17 78.6 4806 

28-07-18 12332 514 67 6 2 8 0.65 16.4 80.1 4445 

29-07-18 9742 406 53 6 2 8 0.6 15.4 78.5 3174 

30-07-18 13674 570 74 6 2 8 1.18 16.9 79.9 4725 

31-07-18 13575 566 74 6 2 8 1.21 16.4 79.5 4599 

01-08-18 13561 565 73 6 2 8 0.69 16.3 78.6 4560 

02-08-18 13858 577 75 6 2 8 0.58 16.4 80.9 4612 

03-08-18 13893 579 75 6 2 8 1.06 16.6 78.9 4688 

04-08-18 13276 553 72 6 2 8 0.81 16.8 78.2 4721 

05-08-18 14195 591 77 6 2 8 0.76 16.4 79.9 4544 

06-08-18 12992 541 70 6 2 8 0.6 16.4 78.1 4530 

07-08-18 11905 496 64 6 2 8 1.09 16.8 78.4 4724 

08-08-18 13972 582 76 6 2 8 0.32 16.6 82.7 4619 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

09-08-18 13467 561 73 6 2 8 0.6 16.4 83.1 4589 

10-08-18 11944 498 65 6 2 8 0.6 16.8 82.4 4747 

11-08-18 10268 428 56 6 2 8 0.78 16.2 82.4 4398 

12-08-18 12952 540 70 6 2 8 0.62 16.5 80.1 4673 

13-08-18 14914 621 81 6 2 8 0.54 16.4 82.1 4558 

14-08-18 13385 558 73 6 2 8 0.6 16.8 79.4 4679 

15-08-18 13583 566 74 6 2 8 0.59 16.8 81.4 4782 

16-08-18 12399 517 67 6 2 8 0.65 16.6 81 4683 

17-08-18 13743 573 74 6 2 8 0.58 16.5 81.3 4524 

18-08-18 13909 580 75 6 2 8 0.58 17 79.9 4566 

19-08-18 13938 581 75 6 2 8 0.57 16.4 79.7 4473 

20-08-18 14782 616 80 6 2 8 0.54 16.7 81 4582 

21-08-18 7945 331 43 6 2 8 1.01 15.6 80.4 3367 

22-08-18 13805 575 75 6 2 8 0.58 16.8 78.5 4791 

23-08-18 13498 562 73 6 2 8 0.59 17 79.7 4735 

24-08-18 13757 573 75 6 2 8 0.58 16.6 82.4 4710 

25-08-18 14269 595 77 6 2 8 0.56 16.4 84.5 4713 

26-08-18 13545 564 73 6 2 8 0.59 16.8 78.1 4742 

27-08-18 12984 541 70 6 2 8 0.62 17 76.2 4584 

28-08-18 13392 558 73 6 2 8 0.6 17.1 76 4679 

29-08-18 13817 576 75 6 2 8 0.58 17.2 76 4790 

30-08-18 13181 549 71 6 2 8 0.61 17.3 76.8 4868 

31-08-18 13444 560 73 6 2 8 0.6 16.8 79.7 4849 

01-09-18 14536 606 79 6 2 8 0.55 17.1 75.2 4585 

02-09-18 14525 605 79 6 2 8 0.55 16.5 80.6 4524 

03-09-18 13706 571 74 6 2 8 0.58 16.3 79 4344 

04-09-18 13983 583 76 6 2 8 0.57 17 79.5 4782 

05-09-18 13424 559 73 6 2 8 0.6 16.8 80.4 4761 

06-09-18 13870 578 75 6 2 8 0.58 16.8 78.6 4552 

07-09-18 13720 572 74 6 2 8 0.58 17 79.2 4746 

08-09-18 11556 482 63 6 2 8 0.69 17 78.3 4786 

09-09-18 13257 552 72 6 2 8 0.6 16.9 79.8 4743 

10-09-18 13720 572 74 6 2 8 0.58 16.6 78.4 4483 

11-09-18 13361 557 72 6 2 8 0.6 16.5 80.1 4571 

12-09-18 12037 502 65 6 2 8 0.66 17.1 78.2 4792 

13-09-18 9923 413 54 6 2 8 0.81 17 80.1 4895 

14-09-18 9005 375 49 6 2 8 0.89 17 78.3 4914 

15-09-18 8407 350 46 6 2 8 0.95 17.1 77.2 4901 

16-09-18 13033 543 71 6 2 8 0.61 16.7 79.5 4466 

17-09-18 12916 538 70 6 2 8 0.62 16.4 81.2 4331 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

18-09-18 13577 566 74 6 2 8 0.59 16.8 79.2 4512 

19-09-18 11588 483 63 6 2 8 0.69 17 78.2 4667 

20-09-18 13064 544 71 6 2 8 0.61 16.9 78.6 4579 

21-09-18 14371 599 78 6 2 8 0.56 16.4 79.6 4378 

22-09-18 13428 559 73 6 2 8 0.6 16.6 78.2 4394 

23-09-18 13433 560 73 6 2 8 0.6 16.4 80.2 4482 

25-09-18 14014 584 76 6 2 8 0.57 17.2 78.1 4881 

26-09-18 14307 596 77 6 2 8 0.56 16.7 81.7 4838 

27-09-18 14114 588 76 6 2 8 0.57 16.9 78.4 4819 

28-09-18 14046 585 76 6 2 8 0.57 16.8 79.8 4805 

29-09-18 13797 575 75 6 2 8 0.58 16.9 78.4 4846 

30-09-18 14230 593 77 6 2 8 0.56 16.8 79.1 4644 

01-10-18 12834 535 70 6 2 8 0.62 16.5 82.1 4741 

02-10-18 12262 511 66 6 2 8 0.65 16.8 80.6 4710 

03-10-18 13767 574 75 6 2 8 0.58 16.6 80.5 4567 

04-10-18 11077 462 60 6 2 8 0.72 17.3 77.2 4914 

05-10-18 11886 495 64 6 2 8 0.67 17.1 79.7 4902 

06-10-18 10060 419 54 6 2 8 0.8 17.3 76.6 4899 

11-10-18 5545 231 30 6 2 8 1.44 15.5 79.2 2030 

12-10-18 14485 604 78 6 2 8 0.55 16.9 82.4 4952 

13-10-18 14529 605 79 6 2 8 0.55 16.8 83.7 4936 

14-10-18 14649 610 79 6 2 8 0.55 16.5 84.5 4875 

15-10-18 14700 612 80 6 2 8 0.54 16.9 80.4 4818 

16-10-18 13313 555 72 6 2 8 0.6 17 80.1 4939 

17-10-18 14864 619 81 6 2 8 0.54 17.2 78.2 4952 

18-10-18 13929 580 75 6 2 8 0.57 17.2 78.1 4967 

19-10-18 14320 597 78 6 2 8 0.56 17.2 78.6 4955 

20-10-18 13871 578 75 6 2 8 0.58 16.9 81 4939 

21-10-18 15028 626 81 6 2 8 0.53 17.3 78.3 5003 

22-10-18 14887 620 81 6 2 8 0.54 17.1 79.7 4978 

23-10-18 15108 630 82 6 2 8 0.53 17.1 79.9 4990 

24-10-18 14767 615 80 6 2 8 0.54 17.1 79 4930 

25-10-18 14772 616 80 6 2 8 0.54 16.9 81 4912 

26-10-18 13534 564 73 6 2 8 0.59 17.2 78.5 4982 

27-10-18 15823 659 86 6 2 8 0.51 17 79.7 4884 

28-10-18 16452 686 89 6 2 8 0.49 16.8 83.7 4951 

29-10-18 16341 681 89 6 2 8 0.49 17.1 79.5 4939 

30-10-18 14759 615 80 6 2 8 0.54 17.1 79.4 4961 

31-10-18 14642 610 79 6 2 8 0.55 16.7 80.8 4896 

01-11-18 13508 563 73 6 2 8 0.59 17.1 78.1 5001 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

02-11-18 16261 678 88 6 2 8 0.49 17.4 76.6 4893 

03-11-18 15389 641 83 6 2 8 0.52 17.1 79.3 4940 

04-11-18 14672 611 79 6 2 8 0.55 17.1 79.7 4938 

05-11-18 15565 649 84 6 2 8 0.51 16.7 80.6 4833 

06-11-18 14266 594 77 6 2 8 0.56 17.3 77.6 4991 

07-11-18 16068 669 87 6 2 8 0.5 17.3 76.3 4842 

08-11-18 15245 635 83 6 2 8 0.52 16.8 79.2 4855 

09-11-18 13084 545 71 6 2 8 0.61 17 78.4 4941 

10-11-18 12652 527 69 6 2 8 0.63 17.5 77.9 5033 

11-11-18 10920 455 59 6 2 8 0.73 17 80.1 5045 

12-11-18 14090 587 76 6 2 8 0.57 17.2 78.2 4993 

13-11-18 15447 644 84 6 2 8 0.52 17.4 75.6 4911 

14-11-18 14843 618 80 6 2 8 0.54 17.2 78.2 4959 

15-11-18 14555 606 79 6 2 8 0.55 17 80.2 4963 

16-11-18 14290 595 77 6 2 8 0.56 16.9 81.7 4992 

17-11-18 15022 626 81 6 2 8 0.53 17.3 77.9 4904 

18-11-18 14446 602 78 6 2 8 0.55 17 80.1 4942 

19-11-18 14756 615 80 6 2 8 0.54 16.9 79.9 4849 

20-11-18 14716 613 80 6 2 8 0.54 16.9 79.2 4884 

21-11-18 14892 621 81 6 2 8 0.54 17.1 79.7 4937 

22-11-18 14861 619 80 6 2 8 0.54 16.8 80.4 4878 

23-11-18 15467 644 84 6 2 8 0.52 16.8 79.1 4785 

24-11-18 14911 621 81 6 2 8 0.54 16.8 80.9 4813 

25-11-18 14731 614 80 6 2 8 0.54 16.8 80.2 4887 

26-11-18 15173 632 82 6 2 8 0.53 17 79.5 4845 

27-11-18 15126 630 82 6 2 8 0.53 16.5 78.6 4626 

28-11-18 14553 606 79 6 2 8 0.55 16.7 81.1 4782 

29-11-18 14009 584 76 6 2 8 0.57 16.9 78.2 4865 

30-11-18 14573 607 79 6 2 8 0.55 16.7 80.1 4819 

01-12-18 14110 588 76 6 2 8 0.57 16.7 81.2 4870 

02-12-18 14163 590 77 6 2 8 0.56 17.1 78.4 4875 

03-12-18 14148 590 77 6 2 8 0.57 16.8 80.9 4855 

04-12-18 13509 563 73 6 2 8 0.59 16.8 82.4 4943 

05-12-18 14163 590 77 6 2 8 0.56 16.8 82.4 4935 

06-12-18 14156 590 77 6 2 8 0.57 17.2 78.6 4922 

07-12-18 14155 590 77 6 2 8 0.57 16.7 83.4 4900 

08-12-18 13877 578 75 6 2 8 0.58 16.8 82.1 4900 

09-12-18 13700 571 74 6 2 8 0.58 17 81.5 4985 

10-12-18 14147 589 77 6 2 8 0.57 17.2 78.6 4933 

11-12-18 14078 587 76 6 2 8 0.57 16.8 82.4 4948 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

12-12-18 14192 591 77 6 2 8 0.56 17.1 79.7 4929 

13-12-18 14164 590 77 6 2 8 0.56 17 81 4936 

14-12-18 14156 590 77 6 2 8 0.57 17.3 79.7 5010 

15-12-18 14136 589 77 6 2 8 0.57 17 85.4 5006 

16-12-18 14186 591 77 6 2 8 0.56 17.1 79.5 4970 

17-12-18 14162 590 77 6 2 8 0.56 17 79.7 4951 

18-12-18 14160 590 77 6 2 8 0.56 16.8 80.4 4922 

19-12-18 14161 590 77 6 2 8 0.56 17.3 77.8 4986 

20-12-18 14090 587 76 6 2 8 0.57 17.1 79.8 4995 

21-12-18 14167 590 77 6 2 8 0.56 17.1 79.6 4947 

22-12-18 14192 591 77 6 2 8 0.56 17.1 79.4 4967 

23-12-18 14156 590 77 6 2 8 0.57 17.1 78.6 4967 

24-12-18 13996 583 76 6 2 8 0.57 16.9 79.9 4864 

25-12-18 13907 579 75 6 2 8 0.58 17 79.5 4980 

26-12-18 14124 589 77 6 2 8 0.57 17 78.6 4864 

27-12-18 13024 543 71 6 2 8 0.61 16.7 80.9 4868 

28-12-18 14297 596 77 6 2 8 0.56 17.1 78.4 4918 

29-12-18 14322 597 78 6 2 8 0.56 16.7 83.1 4962 

30-12-18 13772 574 75 6 2 8 0.58 16.8 82.4 4922 

31-12-18 8173 341 44 6 2 8 0.98 15.7 79.4 2922 

01-01-19 12570 524 68 6 2 8 0.64 16.8 81 4812 

02-01-19 13362 557 72 6 2 8 0.6 17 79.7 4957 

03-01-19 13916 580 75 6 2 8 0.57 16.9 80.4 5016 

04-01-19 13280 553 72 6 2 8 0.6 17.1 82.4 5001 

05-01-19 14266 594 77 6 2 8 0.56 16.9 84.5 4927 

06-01-19 13976 582 76 6 2 8 0.57 17.3 76.2 4863 

07-01-19 13374 557 72 6 2 8 0.6 17.3 76 4896 

08-01-19 14149 590 77 6 2 8 0.57 17.1 78.3 4963 

09-01-19 14143 589 77 6 2 8 0.57 17.1 78.6 4939 

10-01-19 14262 594 77 6 2 8 0.56 17.1 77.9 4918 

11-01-19 14162 590 77 6 2 8 0.56 16.8 82.4 4908 

12-01-19 14161 590 77 6 2 8 0.56 17.1 78.6 4963 

13-01-19 14083 587 76 6 2 8 0.57 16.7 82.1 4961 

14-01-19 14146 589 77 6 2 8 0.57 16.8 81.5 4952 

15-01-19 14147 589 77 6 2 8 0.57 16.8 81 4924 

16-01-19 14159 590 77 6 2 8 0.57 17.1 78.2 4905 

17-01-19 14157 590 77 6 2 8 0.57 17.1 77.2 4952 

18-01-19 14122 588 76 6 2 8 0.57 17 79.2 4957 

19-01-19 14146 589 77 6 2 8 0.57 16.9 80.2 4940 

20-01-19 14158 590 77 6 2 8 0.57 17.1 78.4 4923 
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  Table A.1 Cont’d 

Date TTM TPH MIW GM60 GM50 TGM GWR BWI PPS% PD 

21-01-19 13860 577 75 6 2 8 0.58 17.1 78.4 4904 

22-01-19 12157 507 66 6 2 8 0.66 17 80.6 5023 

23-01-19 10404 434 56 6 2 8 0.77 17.5 76.6 5034 

24-01-19 12568 524 68 6 2 8 0.64 17 82.4 5003 

25-01-19 14387 599 78 6 2 8 0.56 16.5 84.5 4898 

26-01-19 13908 580 75 6 2 8 0.58 16.9 80.1 4903 

27-01-19 14130 589 77 6 2 8 0.57 17.1 78.2 4966 

28-01-19 13529 564 73 6 2 8 0.59 17.1 78.6 4979 

29-01-19 14360 598 78 6 2 8 0.56 17 79.7 4965 

30-01-19 14039 585 76 6 2 8 0.57 17 79 4920 

31-01-19 13661 569 74 6 2 8 0.59 17 79.3 4979 

01-02-19 10945 456 59 6 2 8 0.73 15.8 79.7 3670 

02-02-19 11987 499 65 6 2 8 0.67 15.9 80.6 4357 

03-02-19 14130 589 77 6 2 8 0.57 17.1 76.3 4946 

04-02-19 14023 584 76 6 2 8 0.57 17.1 78.4 4908 

05-02-19 14130 589 77 6 2 8 0.57 17 77.9 4789 

06-02-19 14166 590 77 6 2 8 0.56 17.2 75.6 4952 

07-02-19 14355 598 78 6 2 8 0.56 16.5 80.2 4610 

08-02-19 14151 590 77 6 2 8 0.57 16.9 80.1 4837 

09-02-19 14138 589 77 6 2 8 0.57 16.8 80.4 4844 

10-02-19 14143 589 77 6 2 8 0.57 17 80.9 4903 

11-02-19 14227 593 77 6 2 8 0.56 16.9 81.1 4935 

12-02-19 14177 591 77 6 2 8 0.56 17 78.2 4849 

13-02-19 12524 522 68 6 2 8 0.64 17 78.4 4874 

14-02-19 11421 476 62 6 2 8 0.7 17 80.9 4917 

15-02-19 13857 577 75 6 2 8 0.58 16.2 83.4 4642 

16-02-19 14109 588 76 6 2 8 0.57 16 81.5 4470 

17-02-19 13842 577 75 6 2 8 0.58 16.7 82.4 4809 

18-02-19 14308 596 78 6 2 8 0.56 16.5 79.5 4600 

19-02-19 14171 590 77 6 2 8 0.56 16.5 79.7 4669 

20-02-19 13636 568 74 6 2 8 0.59 16.8 79.8 4708 

21-02-19 13016 542 71 6 2 8 0.61 16.5 79.6 4636 

22-02-19 13761 573 75 6 2 8 0.58 16.8 79.4 4734 

23-02-19 13877 578 75 6 2 8 0.58 16.8 79.9 4724 

24-02-19 9105 379 49 6 2 8 0.88 16.2 79.5 4461 
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APPENDIX B 

PREDICTED RESULTS OF DEVELOPED MODELS 

    Table B.1 Comparison of Predicted Results from Developed Models  

Actual Data   FBNN Prediction RBFNN Prediction GRNN Prediction 

PPS    PD  PPS   PD  PPS PD PPS  PD 

76.4 4330.0 76.2 4412.9 77.9 4715.5 76.8 4357.1 

77.8 4470.0 77.5 4544.9 78.1 4758.0 78.4 4743.9 

78.8 4325.0 78.6 4548.2 79.0 4626.9 79.1 4612.0 

77.8 4430.0 74.1 4280.4 78.3 4368.9 76.3 4300.2 

78.5 4390.0 76.7 4333.0 79.0 4597.2 78.5 4472.8 

78.9 4430.0 77.6 4454.1 78.4 4705.3 78.5 4679.0 

79.5 4295.0 75.6 4088.2 79.3 4498.8 77.7 4252.9 

78.2 4350.0 77.9 4408.3 78.7 4669.3 78.7 4587.1 

79.4 4385.0 78.1 4364.5 79.0 4621.3 79.0 4585.2 

78.9 4345.0 77.7 4391.1 78.7 4671.4 78.7 4609.1 

81.4 4325.0 79.4 4409.2 79.3 4542.9 80.6 4438.8 

81.3 4290.0 81.3 4206.2 81.7 4121.4 81.5 4284.1 

79.0 4370.0 78.1 4358.6 79.0 4619.7 79.0 4543.3 

78.5 4270.0 80.1 4427.5 80.0 4462.0 79.4 4443.7 

79.7 4280.0 80.2 4397.7 80.3 4408.0 79.7 4450.8 

76.6 4235.0 79.5 4674.6 79.1 4624.5 79.5 4684.7 

83.7 4220.0 81.3 4196.1 81.7 4121.4 81.6 4277.6 

76.6 4175.0 78.6 4242.3 80.0 4453.9 79.9 4534.2 

71.1 4175.0 79.3 4628.5 79.0 4630.9 79.2 4635.6 

79.3 4230.0 80.0 4464.5 80.0 4465.3 79.7 4502.7 

76.2 4175.0 79.5 4403.7 80.0 4447.8 79.4 4460.1 

75.4 4330.0 75.7 4421.9 78.1 4761.8 78.4 4730.5 

76.0 4315.0 76.9 4173.8 78.7 4655.0 77.5 4487.1 

76.4 4190.0 77.9 3971.8 80.0 4447.2 78.2 4356.2 

76.6 4140.0 78.0 4141.7 80.0 4451.9 78.9 4346.0 

76.8 4235.0 77.1 4153.0 79.0 4558.1 77.2 4250.0 

80.6 4455.0 80.1 4374.9 80.3 4407.5 79.6 4427.9 

79.0 4250.0 78.1 4171.1 79.4 4547.2 79.2 4296.7 

79.5 4265.0 78.0 4166.3 79.4 4547.5 79.1 4297.4 

76.3 4045.0 80.2 4485.6 80.0 4463.5 79.9 4526.4 

77.7 4215.0 77.8 4260.6 79.5 4372.7 77.7 4215.1 

77.2 4175.0 78.2 4127.4 80.0 4439.7 78.5 4265.1 

78.3 3975.0 78.8 4115.8 81.0 4203.0 78.1 4023.3 

80.4 4621.3 80.3 4637.5 79.0 4603.4 79.6 4638.0 

82.2 4451.7 81.8 4312.6 81.3 4170.0 82.1 4312.4 

80.6 4538.5 79.9 4545.0 79.7 4510.5 80.1 4605.6 

79.6 4443.3 79.9 4536.8 79.7 4521.0 79.6 4562.6 

77.2 3877.8 81.2 4374.2 80.9 4285.6 80.9 4429.6 

79.2 4511.3 78.9 4663.1 78.7 4681.3 78.9 4655.3 

77.8 4432.3 79.3 4744.9 78.7 4665.9 79.2 4728.5 
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  Table B.1 Cont’d  

Actual Data   FBNN Prediction RBFNN Prediction GRNN Prediction 

PPS    PD  PPS   PD  PPS PD PPS  PD 

76.2 4463.2 78.3 4805.2 78.1 4769.0 78.6 4778.6 

77.7 4545.9 78.1 4774.3 78.1 4771.6 78.6 4755.0 

77.9 4496.5 79.0 4687.7 78.7 4681.2 79.0 4678.6 

77.8 4536.4 78.6 4731.5 78.4 4729.0 78.7 4692.2 

78.3 4404.5 79.6 4679.2 79.0 4618.2 79.4 4677.7 

78.6 4446.3 79.7 4697.7 79.1 4617.8 79.5 4696.1 

78.2 4533.9 79.0 4819.3 78.4 4710.1 79.1 4779.3 

78.4 4500.5 78.8 4539.5 79.0 4597.6 79.0 4572.5 

79.2 4489.5 80.7 4558.9 80.0 4424.6 80.2 4566.2 

78.1 4533.4 79.0 4571.2 79.0 4609.0 79.1 4586.8 

78.3 4535.5 79.0 4570.6 79.0 4599.3 79.0 4579.7 

78.2 4562.0 79.6 4693.8 79.0 4603.5 79.4 4675.9 

80.1 4453.8 80.9 4494.4 80.3 4382.8 80.5 4537.1 

82.1 4693.5 80.7 4491.4 79.6 4489.9 80.3 4526.0 

80.6 4707.7 79.1 4718.8 78.4 4718.9 78.7 4696.2 

80.5 4642.6 79.3 4632.7 79.0 4629.5 79.2 4642.7 

83.7 4612.7 80.5 4436.1 80.2 4383.6 80.2 4443.5 

74.5 4604.3 74.6 4521.1 77.4 4799.2 76.5 4576.8 

80.1 4606.6 78.9 4559.9 79.0 4600.3 79.0 4576.4 

78.2 4573.0 79.8 4717.4 79.1 4607.2 79.5 4698.3 

78.8 4552.3 78.8 4528.2 79.0 4591.8 79.0 4565.6 

82.4 4501.5 80.2 4471.8 79.9 4442.1 79.8 4489.7 

79.4 4528.4 80.2 4574.3 79.7 4506.0 80.2 4623.0 

79.1 4488.8 80.5 4526.9 80.0 4455.7 80.1 4555.6 

80.9 4463.3 80.3 4492.8 80.0 4455.7 79.8 4506.7 

80.5 4485.7 80.4 4512.0 80.0 4459.0 80.0 4538.1 

78.5 4541.6 79.3 4640.8 79.0 4625.6 79.3 4649.0 

79.2 4519.6 80.1 4566.4 79.7 4516.5 79.9 4598.1 

78.2 4517.6 79.0 4552.0 79.0 4607.8 79.2 4586.7 

78.9 4505.5 78.9 4661.2 78.7 4680.1 79.0 4658.2 

80.6 4473.3 79.4 4309.7 80.3 4383.7 80.6 4490.5 

78.0 4564.5 79.3 4627.0 79.0 4620.2 79.2 4631.6 

78.4 4511.5 79.3 4635.1 79.0 4623.8 79.2 4641.9 

80.0 4487.5 80.6 4453.1 80.3 4404.1 80.1 4491.9 

81.7 4404.5 81.3 4292.1 80.5 4325.6 81.5 4410.2 

78.4 4525.6 79.5 4669.8 79.0 4613.8 79.3 4664.5 

78.8 4525.6 79.3 4620.0 79.0 4630.4 79.2 4627.3 

80.9 4400.4 80.8 4477.8 80.3 4387.8 80.4 4520.9 

83.1 4320.6 81.9 4310.4 81.4 4170.0 81.9 4353.8 

80.1 4494.0 80.5 4531.8 80.0 4455.7 80.2 4565.5 

81.0 4680.2 79.1 4722.3 78.7 4675.2 79.2 4716.4 

82.5 4715.5 82.2 4790.3 78.5 4461.0 78.2 4484.8 

81.0 4798.1 79.3 4729.3 78.4 4714.8 78.8 4713.9 
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   Table B.1 Cont’d 

Actual Data   FBNN Prediction RBFNN Prediction GRNN Prediction 

PPS    PD  PPS   PD  PPS PD PPS  PD 

79.5 4580.1 80.0 4558.7 79.7 4517.6 79.8 4585.3 

77.3 4445.9 79.7 4604.4 79.4 4566.6 79.5 4614.2 

78.2 4851.1 79.2 4748.7 78.4 4718.2 78.6 4701.4 

79.4 4520.0 79.6 4686.2 79.1 4621.6 79.5 4691.5 

78.6 4806.1 78.2 4657.8 78.4 4715.7 78.7 4671.1 

80.1 4444.6 80.2 4369.3 80.3 4406.6 79.5 4420.7 

78.6 4559.7 80.6 4379.8 80.6 4348.7 80.1 4440.7 

80.9 4612.4 80.5 4446.0 80.3 4403.9 80.1 4500.8 

78.2 4720.6 79.3 4613.3 79.0 4629.3 79.1 4620.4 

78.1 4530.1 80.1 4391.7 80.3 4407.9 79.7 4447.1 

82.7 4619.3 80.0 4556.4 79.7 4508.8 80.2 4613.2 

83.1 4588.6 80.3 4420.8 80.3 4406.7 79.9 4473.5 

82.4 4398.0 81.0 4151.5 80.8 4268.0 81.6 4395.5 

80.1 4673.0 80.0 4450.2 80.0 4465.9 79.6 4485.4 

79.4 4678.7 79.3 4644.4 79.0 4629.6 79.3 4657.2 

78.5 4791.3 79.5 4667.9 79.1 4625.9 79.4 4679.7 

79.7 4734.8 78.7 4753.3 78.4 4726.8 78.9 4732.9 

82.4 4710.3 80.0 4553.2 79.7 4518.6 79.8 4588.8 

78.1 4741.6 79.4 4653.0 79.1 4628.5 79.4 4666.5 

76.2 4584.0 78.6 4731.7 78.4 4729.2 78.7 4698.4 

76.0 4789.6 77.9 4857.7 77.8 4807.3 78.4 4820.0 

79.5 4782.4 78.8 4779.8 78.4 4720.9 79.0 4759.5 

78.4 4483.1 80.0 4550.9 79.7 4519.0 79.8 4586.6 

80.1 4570.6 80.1 4471.4 80.0 4464.8 79.8 4510.6 

80.1 4894.7 79.7 4794.4 78.4 4662.0 79.4 4780.3 

78.3 4913.7 78.5 4774.3 78.5 4617.2 79.5 4663.1 

77.2 4901.3 76.7 4853.7 78.2 4619.1 79.1 4617.8 

79.5 4465.9 79.5 4571.5 79.4 4577.8 79.4 4593.6 

81.2 4331.0 80.1 4389.6 80.3 4408.1 79.6 4442.9 

79.2 4512.4 79.4 4654.8 79.1 4628.2 79.4 4668.3 

78.6 4578.7 79.0 4683.6 78.7 4681.5 79.0 4670.8 

81.7 4838.1 80.0 4642.7 79.4 4566.1 79.8 4658.2 

79.1 4643.8 79.6 4692.7 79.1 4619.8 79.5 4695.0 

82.1 4740.8 80.0 4445.1 80.0 4465.9 79.6 4479.0 

79.7 4901.8 78.7 4783.1 78.1 4764.5 78.5 4722.7 

82.4 4952.1 79.4 4758.2 78.7 4664.6 79.3 4737.9 

78.2 4951.6 78.2 4911.8 77.8 4783.4 78.5 4857.3 

78.6 4954.9 78.0 4885.6 77.8 4797.9 78.4 4841.1 

78.3 5003.0 77.7 4956.7 77.6 4812.8 78.2 4884.8 

81.0 4911.8 79.4 4771.4 78.7 4657.8 79.3 4742.0 

79.7 4937.7 78.6 4861.6 78.1 4749.7 78.8 4820.2 

77.6 4991.0 77.5 4920.0 77.5 4834.7 78.2 4864.1 

76.3 4842.2 77.8 4967.2 77.6 4769.0 77.7 4893.0 
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  Table B.1 Cont’d  

Actual Data   FBNN Prediction RBFNN Prediction GRNN Prediction 

PPS    PD  PPS   PD  PPS PD PPS  PD 

80.2 4962.5 79.0 4810.5 78.4 4709.6 79.0 4778.9 

81.7 4992.0 79.3 4748.0 78.7 4668.6 79.3 4733.4 

82.4 4943.1 79.4 4651.0 79.1 4628.8 79.4 4664.5 

78.6 4921.9 78.0 4876.5 77.8 4801.4 78.4 4835.0 

81.5 4985.0 78.7 4764.0 78.4 4724.8 78.9 4745.0 

79.7 5009.8 77.4 4913.9 77.5 4837.1 78.2 4860.5 

79.5 4969.6 78.5 4836.7 78.1 4761.0 78.7 4804.4 

80.4 4922.5 79.6 4688.7 79.1 4620.9 79.5 4693.0 

79.6 4946.5 78.4 4835.6 78.1 4761.4 78.7 4803.6 

79.5 4979.6 78.8 4775.5 78.4 4722.1 78.9 4755.9 

78.6 4863.9 78.9 4787.8 78.4 4718.6 79.0 4765.5 

78.4 4917.9 78.5 4842.8 78.1 4758.7 78.7 4808.6 

83.1 4962.0 80.0 4643.5 79.4 4565.8 79.8 4658.6 

78.6 4939.2 78.4 4834.3 78.1 4761.9 78.7 4802.7 

81.0 4924.4 79.6 4688.0 79.1 4621.1 79.5 4692.7 

77.2 4951.8 78.4 4835.1 78.1 4761.6 78.7 4803.2 

80.1 4903.2 79.2 4726.4 78.7 4674.8 79.2 4719.8 

79.7 4965.1 78.9 4800.7 78.4 4714.0 79.0 4773.7 

79.3 4978.8 78.7 4761.8 78.4 4725.2 78.9 4742.8 

75.6 4952.2 78.0 4877.1 77.8 4801.2 78.4 4835.4 

78.4 4873.9 78.7 4723.0 78.4 4727.9 78.6 4675.9 

79.5 4600.0 80.5 4530.7 80.0 4455.9 80.2 4570.1 

79.7 4668.8 80.4 4522.3 80.0 4557.7 80.2 4563.1 

79.5 4460.7 80.0 3979.5 80.6 4243.3 80.3 4443.9 
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APPENDIX C 

SIMULATION RESULTS 

   Table C.1 Sensitivity Results for Varying Throughput at PPS = 80.0% 
SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 13830 500 65 2 8 0.729 16.4 80.0 7.8 4453 

2. 13853 520 68 2 8 0.729 16.4 80.0 7.4 4458 

3. 13876 540 70 2 8 0.729 16.4 80.0 6.9 4454 

4. 13899 560 73 2 8 0.729 16.4 80.0 6.6 4446 

5. 13922 580 75 2 8 0.729 16.4 80.0 6.2 4438 

6. 13945 600 78 2 8 0.729 16.4 80.0 5.9 4430 

7. 13968 620 81 2 8 0.729 16.4 80.0 5.7 4423 

8. 13991 640 83 2 8 0.729 16.4 80.0 5.5 4417 

9. 14014 660 86 2 8 0.729 16.4 80.0 5.2 4412 

10. 14037 680 88 2 8 0.729 16.4 80.0 5.0 4410 

 

   Table C.2 Sensitivity Results for Varying Ore Hardness at PPS = 80.0%  

SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 13922 580 75 2 8 0.729 15.6 80.0 3.1 4576 

2. 13922 580 75 2 8 0.729 15.8 80.0 4.0 4561 

3. 13922 580 75 2 8 0.729 16.0 80.0 5.1 4504 

4. 13922 580 75 2 8 0.729 16.2 80.0 6.0 4442 

5. 13922 580 75 2 8 0.729 16.4 80.0 6.2 4438 

6. 13922 580 75 2 8 0.729 16.6 80.0 5.7 4629 

7. 13922 580 75 2 8 0.729 16.8 80.0 4.5 4984 

8. 13922 580 75 2 8 0.729 17.0 80.0 4.3 5110 

9. 13922 580 75 2 8 0.729 17.2 80.0 5.0 5122 

10. 13922 580 75 2 8 0.729 17.4 80.0 6.4 5119 

 

    Table C.3 Sensitivity Results for Varying Grinding Media Wear Rate at PPS = 80% 
SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 13922 580 75 2 8 0.329 16.4 80.0 6.3 3997 

2. 13922 580 75 2 8 0.429 16.4 80.0 6.4 4151 

3. 13922 580 75 2 8 0.529 16.4 80.0 6.4 4301 

4. 13922 580 75 2 8 0.629 16.4 80.0 6.3 4393 

5. 13922 580 75 2 8 0.729 16.4 80.0 6.2 4438 

6. 13922 580 75 2 8 0.829 16.4 80.0 6.1 4467 

7. 13922 580 75 2 8 0.929 16.4 80.0 5.9 4495 

8. 13922 580 75 2 8 1.029 16.4 80.0 5.4 4521 

9. 13922 580 75 2 8 1.129 16.4 80.0 4.5 4541 

10. 13922 580 75 2 8 1.229 16.4 80.0 3.3 4553 
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    Table C.4 Sensitivity Results for Varying Throughput at PPS = 82.4% 

SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 10199 368 48 2 8 0.779 16.2 82.4 8.4 4408 

2. 10222 388 50 2 8 0.779 16.2 82.4 7.6 4407 

3. 10245 408 53 2 8 0.779 16.2 82.4 6.7 4404 

4. 10268 428 56 2 8 0.779 16.2 82.4 6.0 4402 

5. 10291 448 58 2 8 0.779 16.2 82.4 5.3 4401 

6. 10314 468 61 2 8 0.779 16.2 82.4 4.8 4400 

7. 10337 488 63 2 8 0.779 16.2 82.4 4.5 4399 

8. 10360 508 66 2 8 0.779 16.2 82.4 4.4 4398 

9. 10383 528 69 2 8 0.779 16.2 82.4 4.3 4396 

 

 

    Table C.5 Sensitivity Results for Varying Ore Hardness at PPS = 82.4% 
SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 10268 428 56 2 8 0.479 15.6 82.4 11.5 4383 

2. 10268 428 56 2 8 0.579 15.8 82.4 9.9 4398 

3. 10268 428 56 2 8 0.679 16.0 82.4 8.0 4401 

4. 10268 428 56 2 8 0.779 16.2 82.4 6.0 4402 

5. 10268 428 56 2 8 0.879 16.4 82.4 3.9 4407 

6. 10268 428 56 2 8 0.979 16.6 82.4 2.0 4419 

7. 10268 428 56 2 8 1.079 16.8 82.4 0.3 4436 

8. 10268 428 56 2 8 1.179 17.0 82.4 -1.2 4456 

9. 10268 428 56 2 8 1.279 17.2 82.4 -2.3 4474 

 

 

    Table C.6 Sensitivity Results for Varying Grinding Media Wear Rate at PPS = 82.4% 

SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 10268 428 56 2 8 0.479 16.2 82.4 11.5 4383 

2. 10268 428 56 2 8 0.579 16.2 82.4 9.9 4398 

3. 10268 428 56 2 8 0.679 16.2 82.4 8.0 4401 

4. 10268 428 56 2 8 0.779 16.2 82.4 6.0 4402 

5. 10268 428 56 2 8 0.879 16.2 82.4 3.9 4407 

6. 10268 428 56 2 8 0.979 16.2 82.4 2.0 4419 

7. 10268 428 56 2 8 1.079 16.2 82.4 0.3 4436 

8. 10268 428 56 2 8 1.179 16.2 82.4 -1.2 4456 

9. 10268 428 56 2 8 1.279 16.2 82.4 -2.3 4474 
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    Table C.7 Sensitivity Results for Varying Throughput at PPS = 79.1% 
SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 14299 520 68 2 8 0.705 16.5 79.10 7.2 4268 

2. 14322 540 70 2 8 0.705 16.5 79.10 6.9 4313 

3. 14345 560 73 2 8 0.705 16.5 79.10 6.7 4355 

4. 14368 580 75 2 8 0.705 16.5 79.10 6.5 4392 

5. 14391 600 78 2 8 0.705 16.5 79.10 6.3 4425 

6. 14414 620 81 2 8 0.705 16.5 79.10 6.1 4454 

7. 14437 640 83 2 8 0.705 16.5 79.10 5.9 4479 

8. 14460 660 86 2 8 0.705 16.5 79.10 5.7 4502 

9. 14483 680 88 2 8 0.705 16.5 79.10 5.4 4524 

10. 14506 700 91 2 8 0.705 16.5 79.10 5.2 4546 

 

 

    Table C.8 Sensitivity Results for Varying Ore Hardness at PPS = 79.1% 
SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 14391 600 78 2 8 0.705 15.7 79.1 2.8 4321 

2. 14391 600 78 2 8 0.705 15.9 79.1 3.7 4296 

3. 14391 600 78 2 8 0.705 16.1 79.1 5.0 4268 

4. 14391 600 78 2 8 0.705 16.3 79.1 6.0 4284 

5. 14391 600 78 2 8 0.705 16.5 79.1 6.3 4425 

6. 14391 600 78 2 8 0.705 16.7 79.1 5.5 4806 

7. 14391 600 78 2 8 0.705 16.9 79.1 4.8 5076 

8. 14391 600 78 2 8 0.705 17.1 79.1 4.7 5159 

9. 14391 600 78 2 8 0.705 17.3 79.1 5.1 5169 

10. 14391 600 78 2 8 0.705 17.5 79.1 5.9 5159 

 

 

    Table C.9 Sensitivity Results for Varying Grinding Media Wear Rate at PPS = 79.1% 
SN TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 14391 600 78 2 8 0.305 16.5 79.10 6.0 4003 

2. 14391 600 78 2 8 0.405 16.5 79.10 6.0 4050 

3. 14391 600 78 2 8 0.505 16.5 79.10 6.2 4164 

4. 14391 600 78 2 8 0.605 16.5 79.10 6.3 4313 

5. 14391 600 78 2 8 0.705 16.5 79.10 6.3 4425 

6. 14391 600 78 2 8 0.805 16.5 79.10 6.2 4481 

7. 14391 600 78 2 8 0.905 16.5 79.10 5.9 4506 

8. 14391 600 78 2 8 1.005 16.5 79.10 5.5 4527 

9. 14391 600 78 2 8 1.105 16.5 79.10 5.0 4556 

10. 14391 600 78 2 8 1.205 16.5 79.10 4.3 4587 
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  Table C.10 Sensitivity Results for Varying Throughput and Ore Hardness at PPS =    

                      80.0% 
Case TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 13830 500 65 2 8 0.729 15.6 80.0 7.8 4453 

2. 13853 520 68 2 8 0.729 15.8 80.0 7.4 4458 

3. 13876 540 70 2 8 0.729 16.0 80.0 6.9 4454 

4. 13899 560 73 2 8 0.729 16.2 80.0 6.6 4446 

5. 13922 580 75 2 8 0.729 16.4 80.0 6.2 4438 

6. 13945 600 78 2 8 0.729 16.6 80.0 5.9 4430 

7. 13968 620 81 2 8 0.729 16.8 80.0 5.7 4423 

8. 13991 640 83 2 8 0.729 17.0 80.0 5.5 4417 

9. 14014 660 86 2 8 0.729 17.2 80.0 5.2 4412 

10. 14037 680 88 2 8 0.729 17.4 80.0 5.0 4410 

 

 

 

   Table C.11 Sensitivity Results for Varying Throughput and Grinding Media Wear  

                       Rate at PPS = 80.0% 
Case  TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

 1. 13830 500 65 2 8 0.329 16.4 80.0 8.2 3836 

 2. 13853 520 68 2 8 0.429 16.4 80.0 7.3 3993 

 3. 13876 540 70 2 8 0.529 16.4 80.0 6.9 4219 

 4. 13899 560 73 2 8 0.629 16.4 80.0 6.6 4380 

 5. 13922 580 75 2 8 0.729 16.4 80.0 6.2 4438 

 6. 13945 600 78 2 8 0.829 16.4 80.0 5.7 4447 

 7. 13968 620 81 2 8 0.929 16.4 80.0 5.1 4445 

 8. 13991 640 83 2 8 1.029 16.4 80.0 4.4 4445 

 9. 14014 660 86 2 8 1.129 16.4 80.0 3.5 4449 

 10. 14037 680 88 2 8 1.229 16.4 80.0 2.6 4456 

 

 

 

   Table C.12 Sensitivity Results for Varying Ore Hardness and Grinding Media Wear    

                    Rate at PPS = 80.0% 

Case TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

 1. 13922 580 75 2 8 0.329 15.6 80.0 3.5 3774 

 2. 13922 580 75 2 8 0.429 15.8 80.0 4.5 3945 

 3. 13922 580 75 2 8 0.529 16.0 80.0 5.5 4177 

 4. 13922 580 75 2 8 0.629 16.2 80.0 6.1 4346 

 5. 13922 580 75 2 8 0.729 16.4 80.0 6.2 4438 

 6. 13922 580 75 2 8 0.829 16.6 80.0 5.6 4592 

 7. 13922 580 75 2 8 0.929 16.8 80.0 4.1 4895 

 8. 13922 580 75 2 8 1.029 17.0 80.0 3.2 5047 

 9. 13922 580 75 2 8 1.129 17.2 80.0 3.3 5069 

 10. 13922 580 75 2 8 1.229 17.4 80.0 3.8 5071 
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    Table C.13 Sensitivity Results for Varying Throughput, Ore Hardness and Grinding 

                        Media Wear Rate at PPS = 80.0% 
Case  TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

 1. 13830 500 65 2 8 0.329 15.6 80.0 6.1 3844 

 2. 13853 520 68 2 8 0.429 15.8 80.0 6.1 3941 

 3. 13876 540 70 2 8 0.529 16.0 80.0 6.3 4156 

 4. 13899 560 73 2 8 0.629 16.2 80.0 6.5 4352 

 5. 13922 580 75 2 8 0.729 16.4 80.0 6.2 4438 

 6. 13945 600 78 2 8 0.829 16.6 80.0 5.3 4608 

 7. 13968 620 81 2 8 0.929 16.8 80.0 3.7 4919 

 8. 13991 640 83 2 8 1.029 17.0 80.0 2.7 5040 

 9. 14014 660 86 2 8 1.129 17.2 80.0 2.4 5046 

 10. 14037 680 88 2 8 1.229 17.4 80.0 2.3 5034 

 

 

   Table C.14 Sensitivity Results for Varying Throughput and Ore Hardness at PPS =    

                       82.4% 
Case TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 10199 368 48 2 8 0.779 15.6 82.4 8.4 4408 

2. 10222 388 50 2 8 0.779 15.8 82.4 7.6 4407 

3. 10245 408 53 2 8 0.779 16.0 82.4 6.7 4404 

4. 10268 428 56 2 8 0.779 16.2 82.4 6.0 4402 

5. 10291 448 58 2 8 0.779 16.4 82.4 5.3 4401 

6. 10314 468 61 2 8 0.779 16.6 82.4 4.8 4400 

7. 10337 488 63 2 8 0.779 16.8 82.4 4.5 4399 

8. 10360 508 66 2 8 0.779 17.0 82.4 4.4 4398 

9. 10383 528 69 2 8 0.779 17.2 82.4 4.3 4396 

 

 

  Table C.15 Sensitivity Results for Varying Throughput and Grinding Media Wear       

                      Rate at PPS = 82.4% 
Case  TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 10199 368 48 2 8 0.479 16.2 82.4 13.3 4339 

2. 10222 388 50 2 8 0.579 16.2 82.4 11.3 4392 

3. 10245 408 53 2 8 0.679 16.2 82.4 8.8 4402 

4. 10268 428 56 2 8 0.779 16.2 82.4 6.0 4402 

5. 10291 448 58 2 8 0.879 16.2 82.4 3.4 4406 

6. 10314 468 61 2 8 0.979 16.2 82.4 1.4 4417 

7. 10337 488 63 2 8 1.079 16.2 82.4 -0.2 4435 

8. 10360 508 66 2 8 1.179 16.2 82.4 -1.4 4458 

9. 10383 528 69 2 8 1.279 16.2 82.4 -2.5 4480 
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  Table C.16 Sensitivity Results for Varying Ore Hardness and Grinding Media Wear     

                      Rate at PPS = 82.4% 
Case TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 10268 428 56 2 8 0.479 15.6 82.4 4.4 4464 

2. 10268 428 56 2 8 0.579 15.8 82.4 4.8 4439 

3. 10268 428 56 2 8 0.679 16.0 82.4 5.3 4412 

4. 10268 428 56 2 8 0.779 16.2 82.4 6.0 4402 

5. 10268 428 56 2 8 0.879 16.4 82.4 6.6 4434 

6. 10268 428 56 2 8 0.979 16.6 82.4 6.9 4536 

7. 10268 428 56 2 8 1.079 16.8 82.4 6.8 4657 

8. 10268 428 56 2 8 1.179 17.0 82.4 6.3 4847 

9. 10268 428 56 2 8 1.279 17.2 82.4 5.5 5096 

 

 

Table C.17 Sensitivity Results for Varying Throughput, Ore Hardness, Grinding                                                     

Media Wear Rate at PPS = 82.4% 
Case  TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 10199 368 48 2 8 0.479 15.6 82.4 5.5 4345 

2. 10222 388 50 2 8 0.579 15.8 82.4 5.7 4410 

3. 10245 408 53 2 8 0.679 16.0 82.4 5.9 4408 

4. 10268 428 56 2 8 0.779 16.2 82.4 6.0 4402 

5. 10291 448 58 2 8 0.879 16.4 82.4 5.9 4426 

6. 10314 468 61 2 8 0.979 16.6 82.4 5.5 4514 

7. 10337 488 63 2 8 1.079 16.8 82.4 4.9 4672 

8. 10360 508 66 2 8 1.179 17.0 82.4 4.2 4965 

9. 10383 528 69 2 8 1.279 17.2 82.4 3.8 5148 

 

 

  Table C.18 Sensitivity Results for Varying Throughput and Ore Hardness at PPS =  

                      79.1% 
Case  TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 14299 520 68 2 8 0.705 15.7 79.10 4.0 4239 

2. 14322 540 70 2 8 0.705 15.9 79.10 4.9 4278 

3. 14345 560 73 2 8 0.705 16.1 79.10 5.7 4261 

4. 14368 580 75 2 8 0.705 16.3 79.10 6.3 4273 

5. 14391 600 78 2 8 0.705 16.5 79.10 6.3 4425 

6. 14414 620 81 2 8 0.705 16.7 79.10 5.4 4837 

7. 14437 640 83 2 8 0.705 16.9 79.10 4.7 5091 

8. 14460 660 86 2 8 0.705 17.1 79.10 4.5 5190 

9. 14483 680 88 2 8 0.705 17.3 79.10 4.5 5222 

10. 14506 700 91 2 8 0.705 17.5 79.10 4.6 5229 
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   Table C.19 Sensitivity Results for Varying Throughput and Grinding Media Wear 

                       Rate at PPS = 79.1% 
Case  TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 14299 520 68 2 8 0.305 16.5 79.10 7.9 3871 

2. 14322 540 70 2 8 0.405 16.5 79.10 7.0 3925 

3. 14345 560 73 2 8 0.505 16.5 79.10 6.6 4047 

4. 14368 580 75 2 8 0.605 16.5 79.10 6.5 4256 

5. 14391 600 78 2 8 0.705 16.5 79.10 6.3 4425 

6. 14414 620 81 2 8 0.805 16.5 79.10 6.0 4488 

7. 14437 640 83 2 8 0.905 16.5 79.10 5.4 4494 

8. 14460 660 86 2 8 1.005 16.5 79.10 4.7 4485 

9. 14483 680 88 2 8 1.105 16.5 79.10 3.9 4477 

10. 14506 700 91 2 8 1.205 16.5 79.10 2.9 4473 

 

   Table C.20 Sensitivity Results for Varying Ore Hardness and Grinding Media Wear  

                       Rate at PPS = 79.1% 
Case TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 14391 600 78 2 8 0.305 15.7 79.1 3.9 3613 

2. 14391 600 78 2 8 0.405 15.9 79.1 4.7 3676 

3. 14391 600 78 2 8 0.505 16.1 79.1 5.5 3844 

4. 14391 600 78 2 8 0.605 16.3 79.1 6.2 4114 

5. 14391 600 78 2 8 0.705 16.5 79.1 6.3 4425 

6. 14391 600 78 2 8 0.805 16.7 79.1 5.5 4818 

7. 14391 600 78 2 8 0.905 16.9 79.1 4.3 5090 

8. 14391 600 78 2 8 1.005 17.1 79.1 3.7 5138 

9. 14391 600 78 2 8 1.105 17.3 79.1 3.5 5108 

10. 14391 600 78 2 8 1.205 17.5 79.1 3.6 5082 

 

 

   Table C.21 Sensitivity Results for Varying Throughput, Ore Hardness and Grinding 

                       Media Wear Rate at PPS = 79.1% 
Case TTM TPH MIW GM TGM GMWR BWI PPS GM PD 

1. 14299 520 68 2 8 0.305 15.7 79.10 6.1 3662 

2. 14322 540 70 2 8 0.405 15.9 79.10 5.9 3699 

3. 14345 560 73 2 8 0.505 16.1 79.10 6.0 3813 

4. 14368 580 75 2 8 0.605 16.3 79.10 6.3 4081 

5. 14391 600 78 2 8 0.705 16.5 79.10 6.3 4425 

6. 14414 620 81 2 8 0.805 16.7 79.10 5.3 4842 

7. 14437 640 83 2 8 0.905 16.9 79.10 4.2 5093 

8. 14460 660 86 2 8 1.005 17.1 79.10 3.6 5152 

9. 14483 680 88 2 8 1.105 17.3 79.10 3.3 5131 

10. 14506 700 91 2 8 1.205 17.5 79.10 3.1 5094 
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APPENDIX D 

DEVELOPMENT CODES OF MODELS 

 

General Regression Neural Network  

clc; 

% Load datasets 

load('targetTrain.mat'); % Training input target dataset 

load('dataTrain.mat'); % Input training dataset 

load('targetTest.mat'); % Training testing target dataset 

load('dataTest.mat'); % Input testing dataset 

% Loop for spread between 0.1 and 1 with step size of 0.1 

for r = 0.1:0.1:1 

 net1 = newgrnn(dataTrain', targetTrain', r); % net is the trained model.  

 save('net1.mat','net1'); 

 % Simulate Network with training dataset 

 hb = sim(net1,dataTrain'); 

 % Calculate MSE of training dataset 

 mb = mse(net1,targetTrain,hb'); 

 % Simulate Network with testing dataset 

 nb = sim(net1,dataTest'); 

 % Calculate MSE of testing dataset 

 db = mse(net1,targetTest,nb'); 

 % Print out results 

 formatSpec = 'MSE for training data %1.5f and test data %1.5f\n'; 

 fprintf(formatSpec,mb,db) 

end 
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Radial Basis Function Neural Network  

clc; 

% Load datasets 

load('targetTrain.mat'); % Training input target dataset 

load('dataTrain.mat'); % Input training dataset 

load('targetTest.mat'); % Training testing target dataset 

load('dataTest.mat'); % Input testing dataset 

% Loop for spread between 0.1 and 1 with step size of 0.1 

for r = 0.1:0.1:1 

 net = newrb(dataTrain', targetTrain', 0.02, r); % net is the trained model.

 save('net.mat','net'); 

 % Simulate Network with training dataset 

 yb = sim(net,dataTrain'); 

 % Calculate MSE of training dataset 

 pb = mse(net,targetTrain,yb'); 

 % Simulate Network with testing dataset 

 kb = sim(net3,dataTest'); 

 % Calculate MSE of testing dataset 

 ib = mse(net3,targetTest,kb'); 

 % Print out results 

 formatSpec = 'MSE for training data %1.5f and test data %1.5f\n'; 

 fprintf(formatSpec,pb,ib) 

end 
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Grey Wolf Optimisation: Main File 

clc; 

SearchAgents_no=200; % Number of search agents 

Max_iteration=1000; % Maximum number of iterations 

% Load details of the selected benchmark function 

fobj=@MLP_Grinding; % Minimization function 

lb=-100; %lower bounds 

ub=5; %upper bounds 

dim=156; % specify number of penalty agents  

 

% Start training using GWO 

[Best_MSE,Best_NN,cg_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); 

% Draw the convergence curve 

figure('Position',[500 500 660 290]) 

semilogy(cg_curve,'Color','r') 

hold on 

title('Convergence curve') 

xlabel('Iteration'); 

ylabel('MSE'); 

axis tight 

grid off 

box on 

legend('GWO') 
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Grey Wolf Optimisation  

% Grey Wolf Optimizer 

function 

[Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,f

ob) 

 

% initialize alpha, beta, and delta_pos 

Alpha_pos=zeros(1,dim); 

Alpha_score=inf;  %change this to -inf for maximization problems 

 

Beta_pos=zeros(1,dim); 

Beta_score=inf; %change this to -inf for maximization problems 

 

Delta_pos=zeros(1,dim); 

Delta_score=inf; %change this to -inf for maximization problems 

 

%Initialize the positions of search agents 

Positions=initialization(SearchAgents_no,dim,ub,lb); 

Convergence_curve=zeros(1,Max_iter); 

l=0; % Loop counter 

 

% Main loop 

while l<Max_iter 

    for i=1:size(Positions,1) 

        % Calculate objective function for each search agent 

        fitness=fobj(Positions(i,:)); 

        % Update Alpha, Beta, and Delta 

        if fitness<Alpha_score 

            Alpha_score=fitness; % Update alpha 

            Alpha_pos=Positions(i,:); 

        end 

        if fitness>Alpha_score && fitness<Beta_score 

            Beta_score=fitness; % Update beta 

            Beta_pos=Positions(i,:); 

        end 
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        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 

            Delta_score=fitness; % Update delta 

            Delta_pos=Positions(i,:); 

        end 

    end     

    a=2-l*((2)/Max_iter); % a decreases linearly from 2 to 0 

     

    % Update the Position of search agents including omegas 

    for i=1:size(Positions,1) 

        for j=1:size(Positions,2) 

            r1=rand(); % r1 is a random number in [0,1] 

            r2=rand(); % r2 is a random number in [0,1] 

            A1=2*a*r1-a; % Equation (3.3) 

            C1=2*r2; % Equation (3.4) 

            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1 

            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1 

            r1=rand(); 

            r2=rand(); 

            A2=2*a*r1-a; % Equation (3.3) 

            C2=2*r2; % Equation (3.4) 

            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2 

            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2   

            r1=rand(); 

            r2=rand(); 

            A3=2*a*r1-a; % Equation (3.3) 

            C3=2*r2; % Equation (3.4)      

            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3 

            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3    

            Positions(i,j)=(X1+X2+X3)/3;    % Equation (3.7) 

        end 

        % Return back the search agents that go beyond the boundaries of the search space 

        Flag4ub=Positions(i,:)>ub; 

        Flag4lb=Positions(i,:)<lb; 

        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; 

    end 
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    l=l+1; 

    Convergence_curve(l)=Alpha_score; 

     

    if mod(l,50)==0 

        display(['At iteration ', num2str(l), ' the MSE is ', num2str(Alpha_score)]); 

    end 

end 
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Grey Wolf Optimisation: MLP_Grinding 

function o=MLP_Grinding(solution) % Minimizing function 

 load('targetTrain.mat'); % Training input target dataset 

 load('dataTrain.mat'); % Input training dataset 

 

 % Organizing Penalty Agents for Layer Weights and Biases  

 for ww=1:160 

     W1(ww)=solution(1,ww); 

 end 

 for bb=161:200 

     W2(bb-160)=solution(1,bb); 

 end 

 for cc=201:220 

     B1(cc-200)=solution(1,cc); 

 end 

 for dd=221:222 

     B2(dd-220)=solution(1,dd); 

 End 

 

 % Predict Values using Neural Network and GWO Penalty Agents 

 actualvalue = myNeuralNetworkFunctionb(dataTrain, W1, W2, B1, B2); 

 % Error between Predicted values and Target values 

 e = targetTrain-actualvalue; 

 fitness=mean(e(:).^2);  % calculating MSE 

 o=fitness; 

end 
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Grey Wolf Optimisation: myNeuralNetworkFunctionb 

function [Y, Xf, Af] = myNeuralNetworkFunctionb (X, W1,W2, B1,B2,~,~) 

% ===== NEURAL NETWORK CONSTANTS ===== 

 

% Input 1 

x1_step1.xoffset = [0;0;0;0;0;0;0.111111111111111;0]; 

x1_step1.gain = [2;2;2;2;2;2;2.25;2.285]; 

x1_step1.ymin = -1; 

 

% Layer 1 

b1_1 = [-1.8835376404642052428;-1.5982856271486525213;-0.9988010649813621189;-

1.2172028960407785814;0.76323811209739900185;1.1053073655276306475;-

0.2158673758830374767;0.19304914566990677427;-

0.32915823848525355144;0.42301747668088474086;0.81079674048937888653;-

1.1621157581285357363;-1.5462685198619612326;2.253032398422421867]; 

IW1_1_1 = [0.70932565488281817956 -0.73725472122962187882 -

0.86668374177447815576 0.70428562876941203097 0.69208368701313793814 -

0.62211087280381516251 -0.036934838132523656329 -

0.75579377715128048809;0.43616366419387814224 -0.33137264007990757664 -

0.99401421357373864751 0.50540716213352199215 -0.29817403771853534522 -

0.32234013636851066575 1.0392052636351853945 

1.2831451726698834825;1.1376696238840044995 0.98783961633198036356 -

0.55399655304066885986 -1.2892350620646086945 -0.66860770796513790959 -

0.63580957475872545981 0.28170413551008505193 0.614743333239366474;-

0.0035990451818982902021 0.44498252001044968917 0.068614691563656210471 

0.64148068956985582201 -0.81414470743636291328 0.70043648642286082673 -

0.96514230945675616447 -0.036695993972437029873;0.078713570458698409182 

0.35128324320210191356 1.1707234606705319013 0.97558715295075604246 

0.51636451992827803181 -1.1994836377775766056 0.89897455578694629441 -

0.63206035698041862503;-0.36722505293747809141 0.27632237273688331491 

0.61782692270213168673 -0.63325966090492391558 -1.4538075165489756646 

1.52412178307930124 0.20163991165149044993 

1.7154601140990182184;1.0266667531791011658 0.98433967139055478235 -

0.1332595731193597921 0.12758216436780256409 1.0479546764208051979 -

0.20980594285831988266 -0.52216249608007880845 -0.11390462431194131598;-
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0.29081690120635633745 0.37991078351971863114 0.073981143012873673559 -

0.87754675477779942039 -0.12958110974372824553 0.0070238164883813028472 -

1.729769650861296526 -0.43411740067301313184;-0.55971278327184725843 -

0.092856641295728931107 -0.53715839015838540149 -1.0955819131285844392 

0.045320368458657556143 0.64406114437495898262 0.53482818601690718108 

1.1611427009259152054;0.64824850764200381281 0.22404888773597550489 

0.47055743583315101652 1.1443207481606711973 1.3162223595295288181 -

0.55267011613897454314 2.2988069732753992902 

0.24674567917567480357;1.2631662088769406438 -0.30037906642433109816 -

0.1655606981349459772 1.1017881282348833683 0.38660702450287054432 -

0.2637529173574471586 0.29257342462360819146 -0.44305105430288688195;-

0.16364294744466995057 0.39241487535269459208 -0.46456774555490748524 -

0.59767022319622897797 0.54552719835305363283 0.91670858107893982147 -

1.3732007786703559482 -0.51004183132951352864;-1.3329393647181639881 -

0.20234149810497156774 -0.9721645589555163447 0.76674957900080487061 

0.3923408157544739927 -0.87426961149713822152 0.48689782231620143405 -

0.04399120748921526991;0.33845437999792638006 0.42083182170467359207 

0.35263721735977876515 0.68667726781432669725 -1.2197650941295459237 

0.16408570641237577026 -0.20141306986245990918 0.80547237263939941432]; 

 

% Layer 2 

b2_1 = [0.47807069611306596268;-0.50044963622964833139]; 

LW2_1_1 = [0.65546977986319154841 0.88477152713734785738 1.385449619760525497 

-0.23621996193881517057 -0.50040597750766790952 0.15345487039587307754 -

0.1820142239510147697 0.25159077470769336538 -0.24720413513866146271 -

0.27892507312418562959 0.51411640187143814451 -0.48105325507821450337 

0.89393144056918139029 -0.040976952199555181922;-0.78593362049306059181 

0.12396748221861751682 0.19874832459059382783 0.14783510780138472973 -

0.58385317932002434027 1.9441699443451285756 -0.7765770263163099818 -

0.65462745593509774622 -0.79375898301787350952 1.438010773029072098 

0.22098692923616028438 0.37787261381678949324 0.013332090692382017605 -

0.19077382104835477472]; 

 

% GWO weights and biases 

w1 = reshape(W1,14,8); 
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w2 = reshape(W2,2,14); 

B1 = B1'; 

B2 = B2'; 

 

% New weights and biases 

IW1_1 = w1.*IW1_1_1; 

LW2_1 = w2.*LW2_1_1; 

b1 = B1.*b1_1; 

b2 = B2.*b2_1; 

 

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = [2;2.42033430455451]; 

y1_step1.xoffset = [0;0.0211197702169]; 

 

% ===== SIMULATION ======== 

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

 

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty (X) 

    Q = size (X {1},1); % samples/series 

else 

    Q = 0; 

end 

 

% Allocate Outputs 

Y = cell(1,TS); 

 

% Time loop 

for ts=1:TS 
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    % Input 1 

    X{1, ts} = X{1,ts}'; 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

    Y{1,ts} = Y{1,ts}'; 

end 

 

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

 

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

 

% ===== MODULE FUNCTIONS ======== 

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

 

% Sigmoid Symmetric Transfer Function 



152 

 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

 

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

 


