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ABSTRACT 

This research proposes a generalised feed-forward artificial neural network model that 

fulfils the failure prediction of CSLGH900/6-214, 5.8 MW, 11 kV/3 ph/50 Hz slip ring SAG 

Mill induction motor at Goldfields Ghana Limited, Damang Mine. It provides a general 

understanding of three phase induction motors, faults associated with induction motors and 

also emphasizes the use of intelligent system, particularly artificial neural network, in 

modern failure prediction technology of induction motors. Site analysis and motor data 

(Current, Power and winding temperatures) collection were conducted at Goldfields, 

Damang Mine. Simulation results are presented using MATLAB software (2017a) package 

to develop the fault prediction model. The proposed feed-forward neural network used the 

Levenberg-Marquardt and Bayesian Regularisation in training. The research also employed 

the use of Log sigmoid and Tan sigmoid as the activation functions of the hidden layer, with 

hidden layer size being kept at 10 neurons. The simulation and calculation were done with 

real-time on-load measurement from the SAG Mill motor. Analysis of the model’s output 

performance were done using correlation of coefficient of network performance, R and 

Mean Squared Error, MSE. When the proposed model is implemented, common faults could 

be prevented from escalating into major breakdowns, thereby reducing the downtime and 

hence increasing the availability of the motor for general operation. In the absence of major 

breakdowns, safety of employees and equipment could be assured. It is therefore worthwhile 

to invest in deploying this model to augment the conditional monitoring needs like 

temperature, current and vibration of the SAG Mill motor and other such equipment like the 

Ball Mill motor in the plant.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1       Background to the Study 

Damang Gold Mine, a subsidiary of Goldfields International is a world class mining 

operation consisting of a 25 MTPA open pit mining operation and a 5.2 MTPA Carbon in 

Leach (CIL) metallurgical plant. 

Located in the south western part of Ghana, 300 km by road from the capital of Ghana 

Accra, the mine exploits oxide and fresh hydrothermal mineralization in addition to 

Witwatersrand – style transitional paleo placer gold. The plant is designed to treat 5.2 MTPA 

of gold ore from a blend of approximately 20% oxide ore and 80% fresh ore sourced from 

various open pit mining operations. Process feed for the 12-month period of 2016 comprised 

4.3 Mt at a yield of 1.17 g/t for a 148 koz of gold. 

The plant has 2 × 5.8 MW ball mill and sag mill, a 1 × 600 kW primary gyratory crusher, 1 

× 375 kW pebble crusher, 8 CIL tanks and a secondary crushing plant with a maximum 

electric power draw of 17.5 MW at peak times. The mine uses many induction motors at the 

crushing circuit, milling circuit, CIL circuit, elution circuit, tailings circuit, village, 

accommodation and dewatering section. 

The plant is often faced with issues associated with burnt induction motors. Preliminary 

cause of the burnt motor is attributed to high temperatures but the root cause is not easily 

determined. 

1.2       Problem Definition 

With the mines current maintenance cost of electrical motors on the high, the mine must 

come up with strategies to bring the overall cost of engineering maintenance down. Fig. 1.1 

is a graph showing annual motor change-out from 2012 to 2016. With the current price of 

gold on the downside, the maintenance department is under intense pressure to efficiently 

maintain the plant machinery to continue to stay in business. Table 1.1 and Fig. 1.3 shows 

prices and percentage change in gold price from 2012 to 2016 respectively.  
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This research work seeks to identify and assess in detail, all the various root causes of 

induction motor failures in the mine and suggest a means of accurately predicting future 

failures. 

 

Fig. 1.1 Graph Showing Number of Annual Motor Change - Out 

Research has shown that failures associated with induction motors are often caused by rotor, 

stator, and bearing failures. (Bhowmik et al, 2013). Fig. 1.2 (Bhowmik et al, 2013) shows 

the probability of occurrence of faults in an operating induction motor. 

 

Fig. 1.2 Probability of Occurrence of Faults  
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  Table 1.1 Gold Price from 2012 to 2016 Year 

Year 
Closing 

Price 
Year Open Year High Year Low Year Close % Change 

2012 $1,668.86  $1,590.00  $1,790.00  $1,537.50  $1,664.00  5.68% 

2013 $1,409.51  $1,681.50  $1,692.50  $1,192.75  $1,201.50  -27.79% 

2014 $1,266.06  $1,219.75  $1,379.00  $1,144.50  $1,199.25  -0.19% 

2015 $1,158.86  $1,184.25  $1,298.00  $1,049.60  $1,060.20  -11.59% 

2016 $1,251.92  $1,075.20  $1,372.60  $1,073.60  $1,151.70  8.63% 

  (Source: Anon, 2019a) 

 

Fig. 1.3 Graph Showing Percent Change in Gold Price from 2012 to 2016 

1.3      Objectives of Research 

The objectives of this research work are to: 

i. Identify the root causes of induction motor failures at Damang Gold Mine;  

ii. Develop an ANN Model for failure prediction of SAG Mill motor; and 

iii. Suggest methods for implementing ANN aided failure prediction of SAG Mill 

motors at the Damang Gold Mine. 

1.4      Expected Outcomes 

At the end of this research, it is expected that: 

i. There shall be integration of all induction motor data into a common programme 

at the Damang Gold Mine; and 
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ii. There shall be cost savings and/or prevention of catastrophic failures of 

induction motors upon the implementation of findings of this research. 

1.5       Research Questions and Hypothesis 

The objectives and the expected outcomes of the research give rise to the following research 

questions: 

i. Is there an efficient and applicable method of using ANN in predicting failure of 

electrical induction motors at Goldfields, Damang mine? 

ii. What does Goldfields, Damang mine stand to gain from implementing this 

solution? 

The research hypothesis is stated thus: 

At the end of this research, there will be an efficient way of using ANN in predicting failure 

of electrical induction motors at Goldfields, Damang site. 

1.6       Scope of Research 

This research work was conducted using data samples collected from three phase 5.8 MW, 

11 kV slip ring SAG Mill induction motor at Goldfields Ghana Limited, Damang Mine. The 

data samples collected were current, power and winding temperatures.  

1.7       Methods Used 

The methods used in the research include the following: 

i. Data collection and analysis of induction motors at the plant; 

ii. Identification of all induction motors and condition monitoring devices; and 

iii. Computer modelling and simulations. 

1.8       Significance of Research 

Damang Gold Mine upon implementation of this proposed model not only help in increasing 

SAG Mill motor availability, but also help in cost savings and safety of workers.  

1.9       Facilities Used 

Facilities used for this research include: 
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i. Internet, library and computer facilities at UMaT; 

ii. Induction motors installed at Damang mine; 

iii. Supervisory Control And Data Acquisition (SCADA) system at the processing 

plant; and 

iv. Condition monitoring and instrumentation devices at Damang mine. 

1.10       Limitation of Research 

This research work was limited to the use of power, current and winding temperatures of 

healthy SAG Mill motor to train ANN – Model to assist in predicting faulty conditions of 

the motor.   

1.11       Organisation of the Thesis 

This project consists of five chapters. The first chapter defines the problem of failure of 

electrical induction motors as well as implication of high maintenance cost on Goldfields, 

Damang mine. The objectives, expected outcome, methods used and facilities used are also 

provided in this chapter of the project. 

The second chapter is based working principles, types and faults associated with induction 

motors. Intelligent systems for motor failure predictions emphasizing Artificial Neural 

Networks are discussed. Related works on the use of Artificial Neural Networks for failure 

predictions of electrical induction motors are also reviewed and summarised. 

The third chapter takes a detailed look at the SAG Mill motor, manufacturer, major 

components and its auxiliary equipment’s. 

The fourth chapter proposes a design methodology for using Feed-Forward Neural 

Networks for failure prediction of 5.8 MW 11 kV SAG Mill motor using current, winding 

temperatures of the motor as input parameters and power as the output parameter. 

The fifth chapter provides results and discussion of design and simulation of the proposed 

Feed-Forward Network using Levenberg-Marquardt and Bayesian Regularisation as the 

training algorithm. Results shows positive prospects of the network identifying failures.The 

conclusion and recommendations for further work are detailed in the sixth chapter. 

References and appendices showing detailed MATLAB Scripts used for simulation of the 

proposed network are also provided.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Induction motors are the mainstay for every industry. They are widely used in 

transportation, mining, petrochemical, manufacturing and in almost every other field 

dealing with electrical power. These motors are simple, efficient, highly robust and rugged 

thus offering a very high degree of reliability. However, like any other machine, they are 

susceptible to faults, which if left unmonitored, might lead to catastrophic failure of the 

machine in the long run especially due to heavy duty cycles, poor working environment 

alongside with installation and manufacturing factors. 

In a bid to detect fault and avoid complete breakdown of induction motors with its 

concomitant production losses, on-line condition monitoring of the induction motors has 

been the order of the day for effective operation of these machines. With increasing demands 

for reliability and efficiency, fault prediction in induction motors has become necessary 

particularly in industries that make use of these rotary equipment of which the Damang Gold 

Mine is no exception (Bhowmik et al., 2013). Various fault conditions of induction motors 

as well as methods of their detection and prediction are presented in this chapter. 

2.2 Induction Motor 

An induction motor is a type of asynchronous Alternating Current (AC) motor where power 

is supplied to the rotating device (rotor) by means of electromagnetic induction. There are 

two types, namely wound or slip-ring induction motor and squirrel-cage induction motor. 

The wound or wrapped rotor type was invented by Nikola Tesla in 1882 in France though 

the initial patent was issued in 1888. About a year later, the squirrel-cage induction motor 

type was invented by Mikhail Dolivo-Dobrovolsky in Europe. The polyphase induction 

motor is the most widely used motor in industrial and commercial applications. It is 

sometimes called a rotating transformer because the stationary part (stator) is essentially the 

primary side of the transformer and the rotating part (rotor) is the secondary side (Anon, 

2018a). 

Squirrel-cage induction motors are now the preferred choice for industrial motors due to 

their low cost, high reliability, absence of slip-rings and brushes which eliminate risk of 
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sparking thereby making them explosion proof and high efficiency over a wide range of 

power outputs. They also have the ability to control their speed. From a constant frequency 

source, they operate as constant speed drives. For continuous speed control over a wide 

speed range, a solid-state variable-frequency converter provides an indirect source of supply 

(Anon, 2018a).  

2.2.1 Construction of Induction Motors 

A typical induction motor consists of two parts, namely:  

i. An outside stationary stator having coils supplied with AC current to produce a 

rotating magnetic field; and 

ii. An inside revolving rotor attached to the output shaft that is given a torque by 

the rotating field. 

Fig. 2.1 (Anon, 2018a) shows the construction and components of an induction motor.  

 
(a) 

                             

 
(b) 

Fig. 2.1 (a) Construction and (b) Components of Induction Motor 



8 

The rotor is separated from the stator by a small air-gap which ranges from 0.4 mm to 4 mm 

depending on the power rating of the motor. 

Stator construction 

The stator of an induction motor consists of a steel frame which encloses or houses a hollow, 

cylindrical iron core made up of stacked laminations. A number of slots are punched 

uniformly round the gap surface of the core. Coils are placed in the slots to form a single or 

three phase winding. Fig. 2.2 and Fig. 2.3 (Anon, 2018a) show the construction of the stator. 

 

Fig. 2.2 Single Phase Stator with Windings 

 

Fig. 2.3 Induction Motor Magnetic Circuit Showing Stator and Rotor Slots 

Rotor construction 

The rotor is also composed of punched laminations which are carefully stacked to create a 

series of rotor slots or spaces for the rotor winding. Two types of rotor windings are used. 

These are: 



9 

i. Squirrel cage rotor; and  

ii. Wound rotor. 

The type of winding gives rise to the two main classes of motors: squirrel-cage induction 

motors and wound-rotor or slip-ring induction motors. 

Squirrel-cage rotor: In this type of rotor, the rotor winding consists of single copper or 

aluminium bars placed in the slots and short-circuited by end-rings on both sides of the rotor. 

One or two fans are attached to the sides of the shaft to cool the rotor.  

 

Fig. 2.4 Squirrel Cage Rotor Construction 

Fig. 2.4(a) (Anon, 2018a) shows a cage representing rotor bars and end rings similar to 

squirrel in a cage as shown in (b); suggesting the name of this commonly used type of rotor 

(squirrel-cage rotor). Fig. 2.4(c) provides the construction of the squirrel-cage rotor with 

shaft and cooling fan blades. 

Wound or slip-ring rotor: This type of rotor contains revolving slip rings and stationary 

brushes. An insulated three-phase winding similar to the stator winding, wound for the same 

number of poles as stator, is placed in the rotor slots. The ends of the star-connected rotor 

(a) (b) 

(c) 
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winding are brought to three slip rings on the shaft so that a connection can be made to it 

for starting or speed control. This connection is made via brushes. The revolving slip-rings 

and associated stationary brushes enable series connection of external resistors with the rotor 

windings. 

This rotor type is usually for large three-phase induction motor. The rotor has a winding the 

same as stator and the end of each phase is connected to a slip-ring. Relative to squirrel-

cage rotors, wound rotors are expensive and require maintenance of the slip-rings and 

brushes. They are therefore not so common in industry applications. The rotor can be wound 

for a number of phases different from that for the stator. Fig. 2.5 (Anon, 2018a) shows the 

wound rotor of a large induction motor. 

 

Fig. 2.5 Wound Rotor of a Large Induction Motor 

2.2.2 Principle of Operation 

A rotating magnetic field is generated in the stator magnetic circuit when a three-phase 

voltage is applied to the stator of an induction motor. The rotating field or flux induces a 

voltage or electromotive force (EMF) in all the rotor conductors or conducting bars as they 

cut across them (rotor conductors). According to Faraday’s law of electromagnetic 

induction, the magnitude of this emf is proportional to the rate of change of the rotating 

magnetic flux linking the rotor circuit. 
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Large currents flow in the rotor circuit due to the induced emf which in turn, interact with 

the stator magnetic flux to produce a torque as an output. The torque, according to Lenz’s 

law, drags the rotor along in the direction of the rotating field. 

Thus, in a three-phase induction motor, the three-phase currents are of equal magnitude but 

differ in phase by 120°. There is also a physical 120° shift between each magnetic flux 

produced by each of the three-phase currents. The sum of the three fluxes gives a total 

rotating magnetic flux or field in the machine which turns with constant speed (synchronous 

speed) and has constant amplitude. The existence of a rotating magnetic field is an essential 

condition for the operation of an induction motor.  

If stator is energized by an AC current, a rotating flux is generated due to the applied current 

to the stator winding. This flux produces magnetic field which revolves in the air gap 

between stator and rotor. Consequently, the emf or voltage, induced by the magnetic field 

in the short-circuited bars of the squirrel-cage rotor, drives current through the rotor bars. 

The interaction of the stator rotating flux and the rotor current generates a force that drives 

the motor and a torque is developed immediately as explained earlier. The torque (F) is 

proportional to the flux density (B) and the rotor bar current (I) with bar length L (F = BIL). 

The motor speed is less than the synchronous speed. The direction of the rotation of the 

rotor is the same as the direction of the rotation of the revolving magnetic field in the air 

gap.  

However, for these currents to be induced, the speed of the physical rotor and the speed of 

the rotating magnetic field in the stator must be different to effect a relative movement 

between the magnetic field and the rotor conductors. In such cases, the rotor typically slows 

slightly until a current is re-induced and then the rotor continues as before. This difference 

between the speed of the rotor and speed of the rotating magnetic field in the stator is called 

slip. It is unitless and is the ratio between the relative speed of the magnetic field as seen by 

the rotor the (slip speed) to the speed of the rotating stator field. Due to this an induction 

motor may sometimes be referred to as an asynchronous machine.  

Slip  

The relationship between the supply frequency, f, the number of poles, p, and the 

synchronous speed (speed of rotating field), ns is given by:  
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s

f
n 120

p
  

The rotating or stator magnetic field rotates at a synchronous speed, ns. If, n = speed of the 

rotor, the slip, s for an induction motor is defined as: 

 s

s

n n
s

n


  

At stand still, rotor does not rotate, n = 0, so s = 1. At synchronous speed, n = ns, s = 0. The 

mechanical speed of the rotor, in terms of slip and synchronous speed is given by:  

  sn 1 s n   

As the motor picks up speed, the relative velocity of the field with respect to the rotor 

diminishes progressively. As a result, both the magnitude and the frequency of the rotor 

induced voltage decrease as the rotor conductors are cut more slowly. This causes the rotor 

current, very large at first, to decrease rapidly as the motor picks up speed. 

The speed continues to increase but never catches up with the synchronous speed of the 

rotating field. However, if the rotor turns at the same speed as the field, there will be no 

induced voltage and current as the rotating field no longer cuts the rotor conductors. Under 

these conditions, the force acting on the rotor conductors also becomes zero and friction and 

windage immediately cause the rotor to decelerate or slow down. 

To overcome the braking torque, sufficiently large current must be produced in the rotor 

bars. This is achieved when the rotor speed is always slightly less than the synchronous 

speed. At no load, the difference in speed between the rotor and field is very small, usually 

less than 0.1% of synchronous speed. 

Frequency of rotor current and voltage 

With the rotor at stand-still, the frequency of the induced voltages and currents is the same 

as that of the stator (supply) frequency, fe. If the rotor rotates at speed of n, then the relative 

speed is the slip speed: nslip= ns-n and nslip is responsible for induction. Hence, the frequency 

of the induced voltages and currents in the rotor is, fr = sfe. Thus, the frequency of the voltage 

induced in the rotor depends upon the slip. 

(2.1) 

(2.2) 

(2.3) 
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2.2.3 Equivalent Circuit 

The induction motor consists of a two magnetically connected systems namely, stator and 

rotor. This is similar to a transformer that also has two magnetically connected systems 

namely primary and secondary windings. Hence, the equivalent circuit of an induction 

motor is arrived at in the same way as for a transformer. In view of this, the induction motor 

may sometimes also be called a rotating transformer. Circuits are normally drawn on single-

phase basis of the induction motor. The rotor circuit and the equivalent circuit of the 

induction motor with the secondary rotor referred to the primary stator are shown in Fig. 2.6 

and Fig. 2.7 (Anon, 2018a) respectively. 

 

Fig. 2.6 Diagram of the Rotor Circuit 

            

Fig. 2.7 Equivalent Circuit of a Stator 

where, I1 = stator current/phase  

R1 and R2 or RR= stator and rotor winding resistance/phase  

X1 and X2 or XR= stator and rotor winding reactance/phase  

RR = stator winding resistance/phase  

s = slip/phase  

IR = rotor current  

V1 = applied voltage to the stator/phase  
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Io = Ic+Im (Io – core current; Im-magnetising component; Ic-core loss component) 

Pmech, Pcore and PRCL = mechanical-, core- and rotor copper losses 

Pout = output or power 

The actual rotor impedance and the ratio by which it is transferred to the stator are of interest 

mainly to the designer, not the analyst. The study of the motor performance is based on the 

value of impedances of the equivalent circuit and other parameters or impedances obtained 

from experimental test results. 

2.2.4 Power Flow Diagram of a Motor 

 

Fig. 2.8 Power Flow Diagram of a Motor 

Fig. 2.8 (Anon, 2018a) shows the power flow diagram of a Motor with such parameters as 

stator copper losses (PSCL), rotor copper losses (PRCL) and rotor power input (PRPI). 

The efficiency increases as the speed of the motor increases. Hence, an induction machine 

should always be operated at low values of slip to ensure efficient (and a high power factor) 

operation. 

2.2.5 Torque-Speed Characteristics 

For small values of slip s, the torque is directly proportional to s. For large values of slip s, 

the torque is inversely proportional to s. Fig. 2.9 (Anon, 2018a) shows the torque-speed 

characteristics of the induction motor. 
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Fig. 2.9 Torque-Speed Characteristics of Induction Motor 

2.2.6 Starting of Three-Phase Induction Motors 

There are two important factors to be considered in starting of induction motors. These are: 

i. The starting current drawn from the supply; and 

ii. The starting torque. 

 

The starting current should be kept low to avoid overheating of motor and excessive voltage 

drops in the supply network. The starting torque must be about 50 to 100% more than the 

expected load torque to ensure that the motor runs up in a reasonably short time. Also the 

motor: 

i. At synchronous speed, s = 0, and therefore, R2/s = ∞, so I2′= 0; 

ii. The stator current therefore comprises only the magnetizing current i.e. I1 = Iᶲ 

and is quite therefore quite small; 

iii. At low speeds, R2′/s + jX2 = ∞ is small, and therefore I2′ is quite high and 

consequently I1 is quite large; and 

iv. Actually, the typical starting currents for an induction machine are five to eight 

times the normal running current. 

 

Hence the starting currents should be reduced. The most usual methods of starting three-

phase induction motors are rotor resistance starting (for slip-ring motors) and direct-on-line 

starting, star-delta starting and autotransformer starting (for squirrel-cage motors). 
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Rotor resistance starting 

By adding eternal resistance to the rotor circuit, any starting torque up to the maximum 

torque can be achieved; and by gradually cutting out the resistance, a high torque can be 

maintained throughout the starting period. Fig. 2.10 (Anon, 2018a) shows a rotor resistance 

starting of a three-phase induction motor. The added resistance also reduces the starting 

current, so that a starting torque in the range of 2 to 2.5 times the full load torque can be 

obtained at a starting current of 1 to 1.5 times the full load current. 

 

Fig. 2.10 Rotor Resistance Starting 

Direct-on-line starting 

This is the most simple and inexpensive method of starting a squirrel cage induction motor. 

The motor is switched on directly to full supply voltage. The initial starting current is large, 

normally about five to seven times the rated current but the starting torque is likely to be 

0.75 to 2 times the full load torque. To avoid excessive supply voltage drops because of 

large starting currents the method is restricted to small motors only. 

To decrease the starting current, cage motors of medium and larger sizes are started at a 

reduced supply voltage. The reduced supply voltage starting is applied in the next two 

methods. Fig. 2.11 (Anon, 2018a) shows the direct-on-line starting of an induction motor. 
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Fig. 2.11 Direct-on-Line Starting 

Star-delta starting 

This is applicable to motors designed for delta connection in normal running conditions. 

Both ends of each phase of the stator winding are brought out and connected to a three-

phase change-over switch. 

 

Fig. 2.12 Star-Delta Starting 

For starting, the stator windings are connected in star and when the machine is running the 

switch is thrown quickly to the running position, thus connecting the motor in delta for 

normal operation. The phase voltages and the phase currents of the motor in star connection 

are reduced to 1/√3 of the direct-on-line values in delta. The line current is 1/3 of the value 

in delta. Fig. 2.12 (Anon, 2018a) shows the star-delta starting of the induction motor. 

A disadvantage of this method is that the starting torque (which is proportional to the square 

of the applied voltage) is also reduced to 1/3 of its delta value. 
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Auto-transformer starting 

This method also reduces the initial voltage applied to the motor and therefore the starting 

current and torque. The motor, which can be connected permanently in delta or in star, is 

switched first on reduced voltage from a three-phase tapped auto-transformer and when it 

has accelerated sufficiently, it is switched to the running (full voltage) position. The 

principle is similar to star/delta starting and has similar limitations. The advantage of the 

method is that the current and torque can be adjusted to the required value, by taking the 

correct tapping on the autotransformer. This method is more expensive because of the 

additional autotransformer. Fig. 2.13 (Anon, 2018a) shows the auto-transformer starting of 

the induction motor. 

 

Fig. 2.13 Auto-Transformer Starting 

2.2.7 Speed Control of Induction Machines 

In the stable region of operation in the motoring mode, the curve is rather steep and goes 

from zero torque at synchronous speed to the stall torque at a value of slip s = ŝ. Normally, 

ŝ may be such that stall torque is about three times that of the rated operating torque of the 

machine, and hence may be about 0.3 or less. This means that in the entire loading range of 

the machine, the speed change is quite small. The machine speed is quite stiff with respect 

to load changes. The entire speed variation is only in the range ns to (1-s)ns, ns being 

dependent on supply frequency and the number of poles. 

The foregoing discussion shows that the induction machine, when operating from mains is 

essentially a constant speed machine. Many industrial drives, typically for fan or pump 

applications, have typically constant speed requirements and hence the induction machine 
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is ideally suited for these. However, the induction machine, especially the squirrel cage type, 

is quite rugged and has a simple construction. Therefore, it is good candidate for variable 

speed applications if it can be achieved. 

Speed control by changing applied voltage 

The torque equation of the induction machine reveals that the torque depends on the square 

of the applied voltage. The variation of speed torque curves with respect to the applied 

voltage is shown in Fig. 2.14 (Anon, 2018a). These curves show that the slip at maximum 

torque remains same, while the value of stall torque comes down with decrease in applied 

voltage. The speed range for stable operation remains the same. 

Further, we also note that the starting torque is also lower at lower voltages. Thus, even if a 

given voltage level is sufficient for achieving the running torque, the machine may not start. 

This method of trying to control the speed is best suited for loads that require very little 

starting torque, but their torque requirement may increase with speed.  

 

Fig. 2.14 Speed-Torque Curves: Voltage Variation 

Fig. 2.14 shows a load torque characteristic, one that is typical of a fan type of load. In a fan 

(blower) type of load, the variation of torque with speed is such that T α ω2. It may then be 
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possible to run the motor to lower speeds within the range ns to (1-s) ns. Further, since the 

load torque at zero speed is zero, the machine can start even at reduced voltages. This will 

not be possible with constant torque type of loads. One may note that if the applied voltage 

is reduced, the voltage across the magnetizing branch also comes down. This in turn means 

that the magnetizing current and hence flux level are reduced. Reduction in the flux level in 

the machine impairs torque production, which is primarily the explanation for Fig. 2.14.  

If, however, the machine is running under lightly loaded conditions, then operating under 

rated flux levels is not required. Under such conditions, reduction in magnetizing current 

improves the power factor of operation. Some amount of energy saving may also be 

achieved. Voltage control may be achieved by adding series resistors (a lossy, inefficient 

proposition), or a series inductor/autotransformer (a bulky solution) or a more modern 

solution using semiconductor devices. A typical solid-state circuit used for this purpose is 

the AC voltage controller or AC chopper. Another use of voltage control is in the so-called 

‘soft-start’ of the machine. This is discussed in the section on starting methods. 

Rotor resistance control 

Torque is dependent on the rotor resistance. The maximum value is independent of the rotor 

resistance. The slip at maximum torque is dependent on the rotor resistance. Therefore, we 

may expect that if the rotor resistance is changed, the maximum torque point shifts to higher 

slip values, while retaining a constant torque. Fig. 2.15 (Anon, 2018a) shows a family of 

torque-speed characteristic obtained by changing the rotor resistance.  

While the maximum torque and synchronous speed remain constant, the slip at which 

maximum torque occurs increases with increase in rotor resistance, and so does the starting 

torque. Whether the load is of constant torque type or fan-type, it is evident that the speed 

control range is more with this method. Further, rotor resistance control could also be used 

as a means of generating high starting torque.  

For all its advantages, the scheme has two serious drawbacks. Firstly, in order to vary the 

rotor resistance, it is necessary to connect external variable resistors (winding resistance 

itself cannot be changed). This therefore necessitates a slip-ring machine, since only in that 

case rotor terminals are available outside. For cage rotor machines, there are no rotor 

terminals. Secondly, the method is not very efficient since the additional resistance and 

operation at high slips entails dissipation. 
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Fig. 2.15 Speed-Torque Curves: Rotor Resistance Variation 

The resistors connected to the slip-ring brushes should have good power dissipation 

capability. Water based rheostats may be used for this. A ‘solid-state’ alternative to a 

rheostat is a chopper-controlled resistance where the duty ratio control of the chopper 

presents a variable resistance load to the rotor of the induction machine. 

2.2.8 Pole Changing Schemes 

Sometimes induction machines have a special stator winding capable of being externally 

connected to form two different number of pole numbers. Since the synchronous speed of 

the induction machine is given by ns = fs/p (in rev/s) where p is the number of pole pairs, 

this would correspond to changing the synchronous speed. With the slip now corresponding 

to the new synchronous speed, the operating speed is changed. This method of speed control 

is a stepped variation and generally restricted to two steps. 

If the changes in stator winding connections are made so that the air gap flux remains 

constant, then at any winding connection, the same maximum torque is achievable. Such 

winding arrangements are therefore referred to as constant-torque connections. If however 

such connection changes result in air gap flux changes that are inversely proportional to the 

synchronous speeds, then such connections are called constant-horsepower type. Fig. 2.16 
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(Anon, 2018a) serves to illustrate the basic principle. Consider a magnetic pole structure 

consisting of four pole faces A, B, C, D as shown in Fig. 2.16. 

 

Fig. 2.16 Pole Arrangement 

Coils are wound on A and C in the directions shown. The two coils on A and C may be 

connected in series in two different ways - A2 may be connected to C1 or C2. A1 with the 

other terminal at C then form the terminals of the overall combination. Thus, two 

connections result as shown in Fig. 2.17 (a) and (b). 

 

     (a)              (b) 

 

(c) 

Fig. 2.17 Pole Changing: (a) Flux lines out of pole A into pole C (b) Flux lines out of 

poles A and C (c) One coiled induced emf to balance the applied voltage 

For a given direction of current flow at terminal A1, say into terminal A1, the flux directions 

within the poles are shown in the figures. In case (a) of Fig. 2.17 (Anon, 2018a), the flux 
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lines are out of the pole A (seen from the rotor) for and into pole C, thus establishing a two-

pole structure. In case (b) however, the flux lines are out of the poles in A and C. The flux 

lines will then have to complete the circuit by flowing into the pole structures on the sides. 

If, when seen from the rotor, the pole emanating flux lines is considered as north pole and 

the pole into which they enter is termed as south, then the pole configurations produced by 

these connections is a two-pole arrangement in Fig. 2.18(a) and a four-pole arrangement in 

Fig. 2.18(b). Thus, by changing the terminal connections we get either a two pole air-gap 

field or a four-pole field. In an induction machine this would correspond to a synchronous 

speed reduction in half from case (a) to case (b). 

Further note that irrespective of the connection, the applied voltage is balanced by the series 

addition of induced electromotive forces (emfs) in two coils. Therefore, the air-gap flux in 

both cases is the same. Cases (a) and (b) therefore form a pair of constant torque 

connections.  

Consider, on the other hand a connection as shown in the Fig. 2.17(c). The terminals T1 and 

T2 are where the input excitation is given. Note that current direction in the coils now 

resembles that of case (b), and hence this would result in a four-pole structure. However, in 

Fig. 2.17(c), there is only one coil induced emf to balance the applied voltage. Therefore, 

flux in case (c) would therefore be halved compared to that of case (b) (or case (a), for that 

matter). Cases (a) and (c) therefore form a pair of constant horse-power connections. It is 

important to note that in generating a different pole number, the current through one coil 

(out of two, coil C in this case) is reversed. 

2.2.9 Stator Frequency Control 

The expression for the synchronous speed indicates that by changing the stator frequency 

also it can be changed. This can be achieved by using power electronic circuits called 

inverters which convert DC to AC of desired frequency. Depending on the type of control 

scheme of the inverter, the ac generated may be variable-frequency-fixed amplitude or 

variable-frequency variable-amplitude type. Power electronic control achieves smooth 

variation of voltage and frequency of the ac output. This when fed to the machine is capable 

of running at a controlled speed.  

However, consider the equation for the induced emf in the induction machine; V = 4.44 

NØmf, where N is the number of the turns per phase, m is the peak flux in the air gap and f 
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is the frequency. Note that in order to reduce the speed, frequency has to be reduced. If the 

frequency is reduced while the voltage is kept constant, thereby requiring the amplitude of 

induced emf to remain the same, flux has to increase. This is not advisable since the machine 

likely to enter deep saturation. If this is to be avoided, then flux level must be maintained 

constant which implies that voltage must be reduced along with frequency. The ratio is held 

constant in order to maintain the flux level for maximum torque capability. 

Actually, it is the voltage across the magnetizing branch of the exact equivalent circuit that 

must be maintained constant, for it is that which determines the induced emf. Under 

conditions where the stator voltage drop is negligible compared the applied voltage, the 

above equation is valid. 

In this mode of operation, the voltage across the magnetizing inductance in the ’exact’ 

equivalent circuit reduces in amplitude with reduction in frequency and so does the 

inductive reactance. This implies that the current through the inductance and the flux in the 

machine remains constant. The speed torque characteristics at any frequency may be 

estimated as before. There is one curve for every excitation frequency considered 

corresponding to every value of synchronous speed. The curves are shown in Fig. 2.18 

(Anon, 2018a). It may be seen that the maximum torque remains constant. 

 

Fig. 2.18 Torque-Speed Curves with E/f Held Constant 
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With this kind of control, it is possible to get a good starting torque and steady state 

performance. However, under dynamic conditions, this control is insufficient. Advanced 

control techniques such as field- oriented control (vector control) or direct torque control 

(DTC) are necessary. 

2.3 Induction Motor Failure 

Induction motors are rugged, low cost, low maintenance, reasonably small sized, reasonably 

highly efficient and operating with an easily available power supply. They are reliable in 

operations but are subject to different types of undesirable faults.  

 

Fig. 2.19 Block Diagram Presentation of Internal Faults 

 

    Fig. 2.20 Block Diagram Representation of External Faults 
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Sources of induction motor faults may be internal or external. In Fig. 2.19 and Fig. 2.20 

(Bhowmik et al., 2013), block diagrams of internal and external faults are depicted.  

The most vulnerable parts for fault in the induction motor are bearing, stator winding, rotor 

bar, and shaft. Besides, due to non-uniformity of the air gap between stator-inner surface 

and rotor-outer surface motor, faults also occur (Karmakar et al., 2016). Faults in induction 

motors can be categorized as: 

i. Electrical-related faults due to unbalance supply voltage or current, single 

phasing, under or over voltage or current, reverse phase sequence, earth fault, 

overload, inter-turn short-circuit fault, and crawling; 

ii. Mechanical-related faults due to broken rotor bar, mass unbalance, air gap 

eccentricity, bearing damage, rotor winding failure and stator winding failure; 

and 

iii. Environmental-related faults such as ambient temperature, external moisture as 

well as vibrations of machine due to reasons like installation defect and 

foundation defect affect the performance of induction motor. 

Industrial processes make use of a large number of asynchronous motors even in sensitive 

applications. Consequently, a defect can induce high losses in terms of cost and can be 

dangerous in terms of security and safety. Motor failures are mostly directly or indirectly 

caused by insulation breakdown, bearing wear or extensive heating of different motor parts 

involved in motor operation (Anon, 2018b). Multiple faults may occur simultaneously in an 

induction motor which may result in unbalanced stator currents and voltages, oscillations in 

torque, reduction in efficiency and torque, overheating and excessive vibration. Normally 

electric motors do not fail suddenly. It happens over time and regular inspection will detect 

a problem before a serious situation develops. Three main components of electric motors 

that experience faults are the stator, rotor and bearings. These faults may be a growing one 

with only small effects on the operation, a partial non-catastrophic one with emergency 

operation possible or a catastrophic one with total drive breakdown (Anon, 2018b). Incipient 

fault detection is preferably done to find faults before complete motor failure in order to 

avoid service downtime and large losses. 
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2.3.1 Broken Rotor Bar Fault 

This occurs when there is a crack or complete break in one or more of the rotor bars in a 

squirrel cage induction motor. Rotor asymmetry in squirrel cage induction motor occurs 

mainly due to manufacturing defect such as non-uniform metallurgical stresses occurring in 

cage assemble during the brazing process. This leads to failure during rotation of the rotor. 

Heavy end rings of rotor result in large centrifugal forces which may cause extra stresses on 

the rotor bars. 

As a result, rotor bars may get damaged resulting in asymmetrical distribution of rotor 

currents. If any of the rotor bars gets cracked for such asymmetry or long run of the motor, 

overheating will occur in the cracked position which may lead to breaking of the bar. 

Consequently, the side bars will carry higher currents for which larger thermal and 

mechanical stresses may happen on these side bars. If the rotor continues to rotate in this 

condition, the side bars may also get cracked. Thus, damage may spread to various locations 

of the rotor, leading to fracture of multiple bars, in end rings or at the joints of bars and end 

rings. Moreover, long start-up time and frequent starts and stops of the motor may enhance 

possibilities of crack increase. Fig. 2.21 (Karmakar et al., 2016) shows rotor and parts of 

broken rotor bar. 

 

Fig. 2.21 Photograph of Rotor and Parts of Broken Rotor Bars 

Conversely, the main causes of rotor broken bar of an induction motor are manufacturing 

defects, thermal stresses, mechanical stress caused by bearing faults, frequent starts of the 

Broken 
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Rotor 
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motor at rated voltage and rotor bar metal fatigue. Cracked or broken bar fault produces a 

series of sideband frequencies. This can cause ripples of torque and speed. Magnitude of 

lower sideband over the fundamental can be used as an indicator of rotor broken bar fault 

(Karmakar et al., 2016). 

2.3.2 Rotor Mass Unbalance 

The rotor is placed inside the stator bore and it rotates coaxially with the stator. In a healthy 

motor, rotor is centrally aligned with the stator and the axis of rotation of the rotor is the 

same as the geometrical axis of the stator. This results in identical air gap between the outer 

surface of the rotor and the inner surface of the stator. However, if the rotor is not centrally 

aligned or its axis of rotation is not the same as the geometrical axis of the stator, then the 

air gap will not be identical and the situation is referred to as air-gap eccentricity. In fact, 

air-gap eccentricity is common to rotor fault in an induction motor. Air-gap eccentricity may 

occur due to any of the rotor faults like rotor mass unbalance fault and bowed rotor fault. 

Due to this air-gap eccentricity fault in an induction motor, electromagnetic pull will be 

unbalanced. The rotor side where the air gap is minimum will experience greater pull and 

the opposite side will experience lower pull and as a result rotor will tend to move in the 

greater pull direction across that gap. The chance of rotor pullover is normally greatest 

during the starting period when motor current is also the greatest. In severe case rotor may 

rub the stator which may result in damage to the rotor and/or stator. Air-gap eccentricity can 

also cause noise and/or vibration. 

General description of rotor mass unbalance 

This rotor mass unbalance occurs mainly due to manufacturing defect, if not may occur even 

after an extended period of operation, for non-symmetrical addition or subtraction of mass 

around the centre of rotation of rotor or due to internal misalignment or shaft bending due 

to which the centre of gravity of the rotor does not coincide with the centre of rotation. In 

severe case of rotor eccentricity, due to unbalanced electromagnetic pull if rotor rubs the 

stator then a small part of material of rotor body may wear out which is being described here 

as subtraction of mass, resulting in rotor mass unbalance fault. Fig. 2.22 (Karmakar et al., 

2016) shows rotor mass unbalance fault. 
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Fig. 2.22 Rotor with Mass Unbalance Fault 

Classification of mass unbalance 

There are three types of mass unbalanced rotor as shown in Fig. 2.21 (Karmakar et al., 

2016). These are: 

i. Static mass unbalanced rotor; 

ii. Couple unbalance rotor; and 

iii. Dynamic unbalance rotor. 

 

Static mass unbalanced rotor: For this fault shaft rotational axis and weight distribution axis 

of rotor are parallel but offset, as shown in Fig. 2.23(a). Without special equipment this type 

of eccentricity is difficult to detect. 

Couple unbalance rotor: It is shown in Fig. 2.23(b). If this fault occurs then the shaft 

rotational axis and weight distribution axis of rotor intersect at the centre of the rotor. 
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(a) 

 

(b) 

 

(c) 

Fig. 2.23 Mass Unbalanced Rotor Fault Types: (a) Static (b) Couple and (c) Dynamic 

Dynamic unbalance rotor: It is shown in Fig. 2.23(c). If this fault occurs then shaft rotational 

axis and weight distribution axis of rotor do not coincide. It is the combination of coupling 

unbalance and static unbalance. The main causes of rotor mass unbalance in an induction 

motor can be mentioned, pointwise, as follows: 

i. Manufacturing defect;  

ii. Internal misalignment or shaft bending; and 

iii. It may occur after an extended period of operation, for non-symmetrical addition 

or subtraction of mass around the centre of rotation of rotor. 

Effect of rotor mass unbalance 

If an induction motor rotor mass unbalance occurs, its effect will be as follows: 

i. Mass unbalance produces dynamic eccentricity which results in oscillation in the 

air gap length; 
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ii. Oscillation in the air gap length which causes variation in air gap flux density, 

and hence variation in induced voltage in the winding; and 

iii. Induced voltage which causes current whose frequencies are determined by the 

frequency of the air gap flux density harmonics  

2.3.3 Bearing Fault 

Two sets of bearings are placed at both the ends of the rotor of an induction motor to support 

the rotating shaft. They held the rotor in place and help it to rotate freely by decreasing the 

frictions. Each bearing consists of an inner and an outer ring called races and a set of rolling 

elements called balls in between these two races. Normally, in case of motor, inner race is 

attached to the shaft and load is transmitted through the rotating balls—this decreases the 

friction. Using lubricant (oil or grease) in between the races friction is further decreased. 

Fig. 2.24 (a) shows a typical ball bearing and (b) shows a dissected ball bearing (Karmakar 

et al., 2016). 

Any physical damage of the inner race or in the outer race or on the surface of the balls is 

termed as bearing fault. In terms of induction motor failure, bearing is the weakest 

component of an induction motor. It is the single largest cause of fault in induction motor 

(Karmakar et al., 2016). 

 

(a)        (b)    

Fig. 2.24 Ball Bearing: (a) Typical and (b) Dissected 

Causes and effects of bearing failure 

Excessive loads, tight fits, and excessive temperature rise: All of these can anneal the two 

races and ball materials. They can also degrade, even destroy, the lubricant. If the load 

exceeds the elastic limit of the bearing material, brinelling occurs. 
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Fatigue failure: This is due to long run of the bearings. It causes fracture and subsequently 

removal of small discrete particles of materials from the surfaces of races or balls. This type 

of bearing failure is progressive, that is, if once initiated will spread when further operation 

of bearings takes place. For this bearing failure, vibration and noise level of motor will 

increase. 

Corrosion: This results, if bearings are exposed to corrosive fluids (acids, etc.) or corrosive 

atmosphere. If lubricants deteriorate or the bearings are handled carelessly during 

installation, then also corrosion of bearings may take place. Early fatigue failure may creep 

in due to corrosion. 

Contamination: It is one of the leading factors of bearing failure. Lubricants get 

contaminated by dirt and other foreign particles which are most often present in industrial 

environment. High vibration and wear are the effects of contamination. 

Lubricant failure: For restricted flow of lubricant or excessive temperature this takes place. 

It degrades the property of the lubricant for which excessive wear of balls and races takes 

place which results in overheating. If bearing temperature gets too high, grease (the 

lubricant) melts and runs out of bearing. Discoloured balls and ball tracks are the symptoms 

of lubricant failure. 

Misalignment of bearings: For this, wear in the surfaces of balls and races takes place which 

results in rise in temperature of the bearings.  

It is observed that for any of the bearing failures, normally friction increases which causes 

rise in temperature of the bearings and increase in vibration of the concerned machine. For 

this, bearing temperature and vibration can provide useful information regarding bearing 

condition and hence machine health. 

2.3.4 Stator Fault 

Stator of an induction motor is subjected to various stresses such as mechanical, electrical, 

thermal, and environmental. Depending upon the severity of these stresses stator faults may 

occur. If for a well-designed motor operations and maintenance are done properly, then 

these stresses remain under control. The stator faults can be classified as: 

i. Faults in laminations and frame of stator; and  
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ii. Faults in stator winding.  

Though most stator faults are due to a combination of above stresses, the second one is more 

common. 

2.3.5 Stator Winding Fault 

This fault is due to failure of insulation of the stator winding. It is mainly termed as inter-

turn short-circuit fault. Different types of stator winding faults are: 

i. Short circuit between two turns of same phase (turn-to-turn fault); 

ii. Short circuit between two coils of same phase (coil to coil fault); 

iii. Short circuit between turns of two phases (phase to phase fault); 

iv. Short circuit between turns of all three phases; 

v. Short circuit between winding conductors and the stator core (coil to ground 

fault); and 

vi. Open-circuit fault when winding gets break.  

Short-circuit winding fault shows up when total or a partial of the stator windings get 

shorted. Open-circuit fault shows up when total or a partial of the stator windings get 

disconnected and no current flows in that phase or line as shown in Fig. 2.25 (Karmakar et 

al., 2016). 

 

Fig. 2.25 Star-Connected Stator Showing Different Types of Stator Winding Faults 
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Fig. 2.26 Photograph of Damaged Stator Winding 

Causes and effects of stator winding faults 

Mechanical stresses: These are due to movement of stator coil and rotor striking the stator. 

Coil movement which is due to the stator current (as force is proportional to the square of 

the current may loosen the top sticks and also may cause damage to the copper conductor 

and its insulation. Rotor may strike the stator due to rotor-to-stator misalignment or due to 

shaft deflection or due to bearing failure and if strikes then the striking force will cause the 

stator laminations to puncture the coil insulation resulting coil to ground fault. High 

mechanical vibration may disconnect the stator winding producing the open-circuit fault.  

Electrical stresses: These are mainly due to the supply voltage transient. This transient 

arises due to different faults (like line-to-line, line-to-ground, or three-phase fault), due to 

lightning, opening, or closing of circuit breakers or due to variable frequency drives. This 

transient voltage reduces life of stator winding and in severe case may cause turn-to-turn or 

turn-to-ground fault.  

Thermal stresses: These are mainly due to thermal overloading and are the main reason, 

among the other possible causes, for deterioration of the insulation of the stator winding. 

Thermal stress happens due to over current flowing due to sustained overload or fault, higher 

ambient temperature, obstructed ventilation and unbalanced supply voltage. A thumb rule 

is there which states that winding temperature will increase by 25% in the phase having the 

highest current if there is a voltage unbalance of 3.5% per phase. Winding temperature will 

also increase if within a short span of time a number of starts and stops are made in the 
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motor. What may be the reason, if winding temperature increases and the motor is operated 

over its temperature limit, the best insulation may also fail quickly. The thumb rule, in this 

regard, states that for every 10°C increase in temperature above the stator winding 

temperature limit, the insulation life is reduced by 50%.  

Environmental stresses: These stresses may arise if the motor operates in a hostile 

environment with too hot or too cold or too humid. The presence of foreign material can 

contaminate insulation of stator winding and also may reduce the rate of heat dissipation 

from the motor, resulting reduction in insulation life. Air flow should be free where the 

motor is situated, otherwise the heat generated in the rotor and stator will increase the 

winding temperature which will reduce the life of insulation. 

2.3.6 Single Phasing Fault 

For proper working of any three-phase induction motor, it must be connected to a three-

phase alternating current (ac) power supply of rated voltage and load. Once these three-

phase motors are started, they will continue to run even if one of the three-phase supply 

lines gets disconnected. For a three-phase motor, when one of the phases gets lost, then the 

condition is known as single phasing. 

Causes of single phasing fault 

Single phasing fault in an induction motor may be due to: 

i. A downed line or a blown fuse of the utility system; 

ii. An equipment failure of the supply system; and 

iii. Short circuit in one phase of the star-connected or delta-connected motor. 

 

Effects of single phasing fault 

The effects of this type of fault are viewed as follows: 

i. Single phasing fault motor windings get over heated, primarily due to flow of 

negative sequence current; 

ii. If during running condition of the motor single phasing fault occurs motor 

continues to run due to the torque produced by the remaining two phases and this 

torque is produced as per the demand by the load. As a result, healthy phases 
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may be overloaded and hence overheated leading to critical damage to the motor 

itself; and 

iii. A three-phase motor will not start if a single phasing fault already persists in the 

supply line. 

2.3.7 Crawling 

It is an electromechanical fault of an induction motor. When an induction motor, though the 

full-load supply is provided, does not accelerate but runs at a speed nearly one-seventh of 

its synchronous speed, the phenomenon is known as crawling of the motor. 

General description of crawling 

The air-gap flux in between stator and rotor of an induction motor is not purely sinusoidal 

because it contains some odd harmonics. Due to these harmonics, unwanted torque is 

developed. The flux due to third harmonics and its multiples produced by each of the three 

phases differs in time phase by 120° and hence neutralize each other. For this reason, 

harmonics present in air-gap flux are normally 5th, 7th, or 11th among others. 

The fundamental air-gap flux rotates at synchronous speed given by Ns = 120f/P rpm where 

f is the supply frequency and P is the number of poles. However, harmonic fluxes rotate at 

Ns/k rpm speed (k denotes the order of the harmonics), in the same direction of the 

fundamental except the 5th harmonic. Flux due to 5th harmonic rotates in opposite direction 

to the fundamental flux. Magnitudes of 11th and higher order harmonics being very small 

5th and 7th harmonics are the most important and predominant harmonics. 

Like fundamental flux, these two harmonic fluxes also produce torque. Thus, total motor 

torque has three components, namely: 

i. Fundamental torque rotating at synchronous speed Ns; 

ii. 5th harmonic torque rotating at speed Ns/5 in the opposite direction of 

fundamental; and  

iii. 7th harmonic torque rotating at speed Ns/7 in the same direction of fundamental. 

Thus 5th harmonic torque produces a breaking action whose magnitude is very small and 

hence can be neglected; consequently, the resultant torque can be taken as the sum of the 

fundamental torque and the 7th harmonic torque as shown in Fig. 2.27 (Karmakar et al., 

2016). The 7th harmonic torque has value zero at one-seventh of the synchronous speed. 

The resultant torque shows a dip near slip 6/7, which is more significant because torque here 
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decreases with increase in speed. The motor under loaded condition will not accelerate up 

to its normal speed but will remain running at a speed nearly one-seventh of the synchronous 

speed. This phenomenon is called crawling of the induction motor. It is predominant in the 

squirrel-cage type induction motor. By proper selection of the number of stator and rotor 

slots, the crawling effect can be reduced. 

 

Fig. 2.27 Torque-Slip Curve Showing Resultant of Fundamental and 7th Harmonic 

Torque 

Causes of crawling 

Crawling is caused by the 7th harmonic. The 7th harmonic is introduced due to abnormal 

magneto motive force. Another reason is high harmonic content in the power supply to the 

motor. 

Effects of crawling 

The following are the effects of crawling: 

i. Motor under loaded condition will not accelerate up to its normal speed; 

ii. Loaded motor will remain running at a speed nearly one-seventh of the 

synchronous speed; 

iii. There will be much higher stator current; and 

iv. Motor vibration and noise will be high. 

2.3.8 Over Voltage, Under Voltage, Overload and Blocked Rotor 

Over and under voltages occur due to change of voltage level at supply end. Over voltage 

causes stress on insulation, whereas under voltage causes excessive line current increasing 

temperature of the winding. These faults are normally detected by over/under voltage relays. 
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Overload occurs due to increase of mechanical load above the rating of the motor. At 

excessive mechanical load, rotor fails to rotate and gets blocked. This situation is equivalent 

to short circuit. Normally, overload and blocked rotor are protected by over current relay or 

simply fuse. 

2.4 Condition Monitoring and Its Necessity 

Induction motors are the main workhorse of industrial prime movers due to their ruggedness, 

low cost, low maintenance, reasonably small size, reasonably high efficiency, and operating 

with an easily available power supply. About 50% of the total generated power of a nation 

is consumed by these induction motors. These statistics gives an idea regarding the use of 

huge number of induction motors, but they have some limitations in their operating 

conditions. If these conditions exceed then some premature failure may occur in stator 

or/and rotor. This failure, in many applications in industry, may shut down, even, the entire 

industrial process resulting loss of production time and money. Hence, it is an important 

issue to avoid any kind of failure of induction motor. Operators and technicians of induction 

motors are under continual pressure to prevent unscheduled downtime and also to reduce 

maintenance cost of motors. 

Maintenance of electrical motors can be done in three forms: breakdown maintenance, 

fixed-time maintenance, and condition-based maintenance. In breakdown maintenance, the 

strategy is ‘run the motor until it fails’ which means maintenance action is taken only when 

the motor gets break down. In this case though the motor may run comparatively for a long 

time before the maintenance is done but when break down occurs it is necessary to replace 

the entire machine which is much costlier compared to replacing or repairing the faulty parts 

of the motor. Also, it causes loss of productivity due to downtime. In fixed-time 

maintenance, motor is required to stop for inspection which causes long downtime. Also 

trained and experienced technical persons are required to recognize each and every fault 

correctly. All these necessitate the condition-based maintenance of the motor. In this form 

of maintenance, motor is allowed to run normally and action is taken at the very first sign 

of an incipient fault.  

In condition monitoring, when a fault has been identified, sufficient data is required for the 

plant operator for the best possible decision making on the correct course of action. If data 

is insufficient there remains the chance for wrong diagnosis of fault which leads to 
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inappropriate replacement of components, and if the root of the problem is not identified 

properly, the replacement or any other action taken already will succumb to the same fate. 

In condition monitoring, signals from the concerned motor are continuously fed to the data 

acquisition system and the health of the motor is continuously evaluated during its operation 

for which it is also referred as online condition monitoring of motor, and hence it is possible 

to identify the faults even while they are developing. The operator/technician can take 

preparation for the preventive maintenance and can arrange for necessary spare parts, in 

advance, for repairing. Thus condition monitoring can optimize maintenance schedule and 

minimize motors downtime and thereby increase the reliability of the motor. Advantages of 

using condition monitoring can be mentioned pointwise as follows: 

i. Prediction of motor failure; 

ii. Optimization of the maintenance schedule of the motor; 

iii. Reduction of maintenance cost; 

iv. Reduction of the downtime of the machine; and 

v. Improvement of the reliability of the motor. 

Condition monitoring and fault detection are usually carried out by investigating the 

corresponding anomalies in machine current, voltage and leakage flux. Other methods 

include monitoring the core temperature, bearing vibration level and pyrolysed products. 

Fault conditions such as insulation defects and bearing degradation may also be diagnosed 

(Bhowmik et al., 2013). 

2.5 Failure Prediction Methods or Techniques 

According to Vieira et al. (2009), online failure prediction aims to identify situations that 

will evolve into a failure. Classification of failure prediction methods are usually based on 

the type of input data used, namely data from failure tracking, symptom monitoring, 

detected error reporting and undetected error auditing. System monitoring, however, is 

mostly used as it is effective and offers reliable data based on analysis of time series and/or 

type of symptoms. In order to build high availability systems based on failure prediction, 

methods are developed not only to capture, select, or interpret essential data and predict 

future system states but also to provide proactive recovery and failure avoidance schemes 

which build on these predictions and help to self-manage the system. 
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Thus, it has become necessary to diagnose motor faults for effective maintenance plans by 

management so as to avoid complete failure of systems or machines in the future. Using 

baseline characteristics of a healthy motor as a reference data, any deviation in motor 

operating characteristics obtained from system monitoring may be used to perform fault 

detection and diagnosis irrespective of unavoidable manufacturing defects in the system. 

Depending on the region of fault occurrence, five main categories of faults, namely stator 

faults, eccentricity faults, rotor faults, bearing faults and vibration faults are diagnosed based 

on various failure prediction methods discussed in this section (Bhowmik et al., 2013). 

2.5.1 Vibration Spectrum Analysis 

This technique is used to detect bearing faults. High frequency components of vibration are 

created due to friction or forces occurring in the rolling element bearing in electrical 

machines under normal conditions. In case of a defect in bearings or breaks in lubrication 

layer between the friction surfaces, shock pulses are produced. 

The method analyses the vibration spectrum of an induction machine using piezoelectric 

accelerometer which works on Fast Fourier Transform to extract from a time domain signal, 

the frequency domain representation. In diagnosing bearing fault, the harmonic vibration 

spectrum of the healthy motor and that with defective bearing is analysed individually. Upon 

comparison, it is realized that the vibration amplitude for faulty motor is larger than that of 

a healthy motor. Dynamic simulation of motor running with bearing fault to analyse 

frequency spectrum of electromagnetic torque produced by the faulty motor may provide 

similar result when compared with its vibration spectrum. 

2.5.2 Park Vector Approach and Complex Wavelets 

Park vector transformation approach is used to diagnose stator faults on the three-phase 

induction motor due to the impact of fault on the machine current. This technique uses 

Park’s Transform to derive a two-dimensional Park’s current vector components which are 

expressed as functions of the phase currents of the three-phase induction motor. Thus, the 

locus of instantaneous spatial vector sum of the measured three phase stator currents forms 

the basis for Park’s vector. 

This maps a circle which has its centre at the origin of the coordinates. This locus is distorted 

by stator winding faults and thus provides easy fault diagnosis. In other words, a graphical 
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representation of the Park’s current vector for a faulty motor gives an elliptical shape which 

is a distortion of the circularly shaped Park’s current vector representation of a healthy 

motor. The amount of distortion of the circular shape depends on the level of stator fault of 

the motor. Simulation and experimental results are finally analysed using complex wavelets. 

2.5.3 Motor Current Signature Analysis (MCSA) 

This technique can be used to detect rotor faults and eccentricity. In case of a fault, Current 

harmonics in the stator current, caused by a backward rotating field in the air gap, are 

analysed by MCSA. This requires only one current sensor whose function is based on signal 

processing techniques like Fast Fourier Transform (FFT).  

An equipment set-up which comprises current transformer, signal conditioning unit, data 

collector/analyser and computer, is used for measuring the motor current. Data is acquired 

by performing FFT on the stator current. The data obtained, is analysed after FFT is 

normalized as a function of the first harmonic amplitude. Conversely, harmonic contents or 

percentage amplitude for harmonics increase with increase in the level of faults like number 

of broken rotor bars and eccentricity. 

2.5.4 Intelligent Techniques 

Several intelligent techniques like Fuzzy logic systems, Artificial Neural Networks and 

Neuro-Fuzzy Systems usually have three prime steps for induction motor condition 

monitoring. These are: 

i. Signature extraction; 

ii. Fault detection; and 

iii. Fault severity estimation. 

 

Apart from the above-mentioned techniques, some other methods for incipient fault 

detection of induction motors are the finite element method, vibration testing and analysis, 

Concordia transform, external magnetic field analysis, multiple reference frames theory, 

power decomposition technique, KU transformation theory, zero crossing time method and 

modal analysis method. This work, however, makes use of the artificial neural network for 

failure prediction of induction motors. 
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2.6 Artificial Neural Network  

According to Jha (2013), Artificial Neural Network (ANN) is a non-linear mapping 

structure inspired by observed process in natural network of neurons in the human brain. It 

consists of highly interconnected simple computational units called neurons. It imitates the 

learning process of the human brain and can process problems which involve complex, non-

linear, imprecise and noisy data. It is ideally suited for modelling and predicting the outcome 

of new independent input data after training.   

ANNs are parallel computational models consisting of densely interconnected adaptive 

processing units. They are used for a wide variety of applications where statistical methods 

are traditionally employed. ANN is therefore being recognised as a powerful tool for data 

analysis. By their adaptive nature, “learning by example” replaces “programming” in 

solving problems. This feature makes such computational models very appealing especially 

in application domains where a problem to be solved is not understood fully but training 

data is readily available. Backpropagation algorithm is the most widely used learning 

algorithm in an ANN. Various types of ANN include Multilayered Perceptron, Radial Basis 

Function and Kohonen networks. In fact majority of the networks are more closely related 

to traditional mathematical and/or statistical models such as non-parametric pattern 

classifiers, clustering algorithms, non-linear filters, and statistical regression models than 

they are to neurobiology models. 

ANNs are constructed with layers of units. All units in a particular layer perform similar 

tasks. The first and last layers of a multilayer ANN consist of input units (independent 

variables) and output units (dependent or response variables) respectively. All other units 

(hidden units) make up the hidden layer. The behaviour of a unit is governed by an input 

function and an output or activation function. These functions are normally the same for all 

units within the whole ANN. Input into a node is a weighted sum of outputs from nodes 

connected to it. There exists a threshold term which is a baseline input to a node in the 

absence of any other inputs. A weight is termed inhibitory if it is negative as it decreases 

net input, otherwise it is called excitatory. 

Each unit takes its net input and applies an activation function to it. In instances where the 

inputs and outputs are binary encoded, the threshold function becomes very useful. The 

activation function mainly maps the outlying values of the obtained neural input back to a 
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bounded interval. The activation function shows a great variety. However, most common 

choice is the sigmoid function since it maps a wide domain of values into the interval. 

2.6.1 Development of an ANN Model 

A neural network forecasting model is developed by the following steps: 

i. Variable selection; 

ii. Formation of training, testing and validation sets; 

iii. Neural network architecture; and 

iv. Model building. 

Suitable variable selection procedures are used to select the input variables important for 

modelling or forecasting variable(s) under study in the first step. This is followed by the 

formation of three distinct data sets called training, testing and validation sets. These data 

sets are used by the neural network not only to learn current data patterns (training set) and 

evaluate the overall ability of the supposedly trained network (testing set) but also to check 

the performance of the trained network using the validation set. The third step defines the 

network structure which includes number of hidden layers and hidden nodes as well as the 

number of output nodes and the activation function. The next step involves model building.  

The model of a very popular and frequently used multilayer feed forward neural network or 

multilayer perceptron (MLP) learned by back propagation algorithm is constructed based 

on supervised procedure or on examples of data with known output. The examples presented 

are assumed to implicitly contain the information necessary to establish the relation for 

building the model. An MLP allows prediction of an output object for a given input object. 

Its non-linear elements or neurons are arranged in successive layers with a unidirectional 

flow of information from input layer to output layer through hidden layer(s). With adequate 

data, only one hidden layer is always sufficient for an MLP as it can learn to approximate 

virtually any function to any degree of accuracy. MLPs are therefore also known as universal 

approximates. Generally, learning methods in neural networks are classified into three basic 

types, namely, supervised learning, unsupervised learning or reinforced learning. A neural 

network learns off-line if the learning phase and the operation phase are distinct. On-line 

learning occurs when it learns and operates at the same time. Supervised learning is usually 

performed off-line based on training data, whereas unsupervised learning is performed on-
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line based on given data. In reinforced learning, data is usually not given, but generated by 

interactions with the environment. 

2.6.2 Architecture of Neural Networks 

The two most widely used ANN architecture are the feed-forward networks and the 

feedback or recurrent networks. Other types of ANN architecture include stochastic 

network, physical network, bi-directional network, Elman and Jordan network, Hopfield 

network, self-organising map and long short-term memory networks. Feed-forward 

networks have no feedback loops and are extensively used in pattern recognition. Thus, 

signals are allowed to travel one way only; from input to output. In feedback networks 

however, signals do not travel in one way only due to the presence of a feedback loop. In 

addition, their state changes continuously (dynamic) until an equilibrium point is reached. 

They remain at this point until the input changes and a new equilibrium needs to be found. 

The MLP network is trained using a supervised learning algorithm like the backpropagation 

algorithm. The backpropagation algorithm uses data to adjust the network’s weights and 

thresholds so as to reduce the error in its prediction on the training set. It computes how fast 

the error, which is the difference between the actual and the desired activity, changes due to 

an alteration in: 

i. The activity of an output unit; 

ii. The total input received by an output unit; 

iii. Weight on the connection into an output unit; and 

iv. The activity of a unit in the previous layer. 

2.6.3 Uses and Applications of Neural Networks 

According to (Anon, 2018c), Artificial neural networks can be used for; 

i. Classification: The aim is to predict the class of an input vector; 

ii. Pattern matching: The aim is to produce a pattern best associated with a given 

input vector; 

iii. Pattern completion: The aim is to complete the missing parts of a given input 

vector; 
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iv. Optimisation: The aim is to find the optimal values of parameters in an 

optimisation problem; 

v. Control: An appropriate action is suggested based on given input vectors; 

vi. Function approximation/times series modelling: The aim is to learn the 

functional relationships between input and desired output vectors; and  

vii. Data mining: With the aim of discovering hidden patterns from data (knowledge 

discovery). 

A 1988 Defense Advanced Research Project Agent (DARPA) Neural Network Study, 

(DARP88) lists various neural network applications, beginning with the adaptive channel 

equalizer in about 1984. This device, which is an outstanding commercial success, is a 

single-neuron network used in long distance telephone systems to stabilize voice signals. 

The DARPA report goes on to list other commercial applications, including a small word 

recognizer, a process monitor, a sonar classifier and a risk analysis system (Hagan et al., 

2014). 

Thousands of neural networks have been applied in hundreds of fields in the many years 

since the DARPA report was written. A list of some of those applications follows: 

i. Aerospace: High performance aircraft autopilots, flight path simulations, aircraft 

control systems, autopilot enhancements, aircraft component simulations, 

aircraft component fault detectors; 

ii. Automotive: Automobile automatic guidance systems, fuel injector control, 

automatic braking systems, misfire detection, virtual emission sensors, warranty 

activity analyzers; 

iii. Banking: Check and other document readers, credit application evaluators, cash 

forecasting, firm classification, exchange rate forecasting, predicting loan 

recovery rates, measuring credit risk; 

iv. Defense: Weapon steering, target tracking, object discrimination, facial 

recognition, new kinds of sensors, sonar, radar and image signal processing 

including data compression, feature extraction and noise suppression, 

signal/image identification; 

v. Electronics: Code sequence prediction, integrated circuit chip layout, process 

control, chip failure analysis, machine vision, voice synthesis, nonlinear 

modelling; 
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vi. Entertainment: Animation, special effects, market forecasting; 

vii. Financial: Real estate appraisal, loan advisor, mortgage screening, corporate 

bond rating, credit line use analysis, portfolio trading program, corporate 

financial analysis, and currency price prediction; 

viii. Insurance: Policy application evaluation, product optimization; 

ix. Manufacturing: Manufacturing process control, product design and analysis, 

process and machine diagnosis, real-time particle identification, visual quality 

inspection systems, beer testing, welding quality analysis, paper quality 

prediction, computer chip quality analysis, analysis of grinding operations, 

chemical product design analysis, machine maintenance analysis, project 

bidding, planning and management, dynamic modelling of chemical process 

systems; 

x. Medical: Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, 

optimization of transplant times, hospital expense reduction, hospital quality 

improvement, emergency room test advisement; 

xi. Oil and Gas: Exploration, smart sensors, reservoir modelling, well treatment 

decisions, seismic interpretation; 

xii. Robotics: Trajectory control, forklift robot, manipulator controllers, vision 

systems, autonomous vehicles; 

xiii. Speech: Speech recognition, speech compression, vowel classification, text 

to speech synthesis; 

xiv. Securities: Market analysis, automatic bond rating, stock trading advisory 

systems; 

xv. Telecommunications: Image and data compression, automated information 

services, real-time translation of spoken language, customer payment processing 

systems; and 

xvi. Transportation: Truck brake diagnosis systems, vehicle scheduling, routing 

systems; In conclusion, the number of neural network applications, the money 

that has been invested in neural network software and hardware, and the depth 

and breadth of interest in these devices is enormous (Hagan et al., 2014). 
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2.7 Related Works 

Bhowmik et al. (2013) reviewed methods of diagnosing and monitoring fault in induction 

motors. Various techniques, models and algorithms in detecting different types of motor 

faults were analysed briefly. This paper however suggested the enhancement of monitoring 

systems for diagnosis by the combination of Artificial Neural Networks and expert 

knowledge. 

Eltabach et al. (2004) presented a paper that looked at failure predictions in three-phase line-

operated induction machines through spectral analysis of electric and electromagnetic 

signals. Fault characteristics frequencies generated in the estimated and the measured signal 

spectrum, as a result of broken rotor bar which is a mechanical abnormality, were analysed. 

Thus, external and internal methods of diagnosis based respectively on spectral analysis of 

stator current or instantaneous electric powers and electromagnetic torque computed by 

stator or rotor flux estimation, were compared for broken rotor bar detection in induction 

motors. 

Han et al. (2006) proposed an online fault diagnosis system for induction motors through 

the combination of Discrete Wavelet Transforms (DWT), feature extraction, genetic 

algorithm (GA), and Artificial Neural Networks (ANN) techniques. The combination of 

advanced techniques reduces the learning times and increases the diagnosis accuracy. ANN 

has gained popularity over other techniques, as it is efficient in discovering similarities 

among large bodies of data and can represent any nonlinear model without knowledge of its 

actual structure and can give results in a short time during the recall phase. 

Bachir et al. (2006) proposed a diagnosis procedure based on parameter estimation of the 

stator and rotor faults occurring in a squirrel-cage induction motor. First, a study of an 

original model of the machine was made taking into account the effects of inter-turn faults 

resulting in the shorting of one or more circuits of stator-phase winding. Thus, additional 

parameters were introduced to explain the fault in the three stator phases. A new faulty 

model dedicated to broken rotor bars detection was then proposed using the estimation 

technique which was performed by taking into account prior information available on the 

safe system operating in nominal conditions. On the whole, a special three-phase induction 

machine was designed and constructed in order to simulate true faulty experiments. 
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Experimental test results showed good agreement and demonstrated the possibility of 

detection and localisation of previous failures. 

Kadir et al. (2006) proposed an algorithm for the control of AC induction motors and the 

power inverter with embedded systems fault prediction and diagnosis. This algorithm was 

implemented using a dual core digital signal processor. It employed various techniques for 

detecting and predicting different faults of the AC drive system. 

Antonino-Daviu et al. (2006) proposed a method for the diagnosis of rotor bar failures in 

induction machines, based on the analysis of the stator current during the start up using the 

discrete wavelet transform. The result of this approach was compared with those obtained 

from classical Fourier analysis of the stator current in steady state. The reliability of the 

proposed method for the diagnosis of bar breakages was similar to that of the classical 

approach in the case of loaded motors, but, in addition, the method could detect faults in an 

unloaded condition. The method also allowed a correct diagnosis of a healthy machine in 

some particular cases where Fourier analysis led to an incorrect fault diagnosis.  

Ballal et al. (2007) combined positive features of neural networks and fuzzy logic together 

for the detection of stator inter-turn insulation and bearing wear faults in single-phase 

induction motor. Thus, adaptive neural fuzzy inference systems were developed for the 

detection of these two faults. Motor intakes current, speed, winding temperature, bearing 

temperature, and the noise of the machine were the measurable input parameters used to 

generate experimental data. Simulation results revealed that the five input parameter system 

predicted more accurate results. 

Rangel-Magdaleno et al. (2009) presented a novel methodology for online half-broken-rotor 

detection on induction motors. They combined current and vibration analysis correlating the 

signal spectra to enhance detectability for mechanically loaded and unloaded operating 

conditions of the motor, which the other isolated techniques are unable to detect. The 

proposed methodology was implemented in a low-cost Field-Programmable Gate Array 

(FPGA), giving a special purpose System-On-a-Chip (SOC) solution for online operation, 

with the development of a complex post processing decision making unit. 

Ghate and Dudul (2011) developed the radial-basis-function-multilayer-perceptron cascade 

connection neural-network based fault detection scheme for the small and medium sizes of 

three-phase induction motors. Simple statistical parameters of stator current were 
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considered as input features and experimental results showed ability of the proposed 

classifier for detecting faults such as stator winding inter-turn short and/or rotor eccentricity. 

The network was tested for good classification accuracy with enough robustness to noises. 

The classifier was then found to be suitable for real world applications. 

Hu et al. (2011) proposed a novel transform demodulation algorithm as a means of 

extracting signature frequency components of faults and easily detect incipient fault of 

induction motors which otherwise, was a key problem in motor current signature analysis 

technique. With both simulated and experimental data of broken rotor bars, the ability of the 

proposed algorithm to extract more detailed fault signature frequency components and 

realize the incipient fault detection of induction motors was shown. 

Suwatthikul and Sornmuang (2011) presented an application of an adaptive network based 

fuzzy inference system for diagnosing faults in the bearing shield of a single-phase induction 

motor. The experimental results showed that the vibration parameters can efficiently 

indicate the occurrence of the faults which can be detected by the system. 

Kraleti et al. (2012) presented a paper on model based diagnostics and prognostics of three-

phase induction motor for vapour compressor applications. Faults under consideration were 

incipient electrical faults: insulation degradation and broken rotor bars. Two online 

approximators were used to discover the system parameter degradation and facilitate fault 

isolation, or root-cause analysis, and a Time To Failure (TTF) prediction before the 

occurrence of a failure.  

Yu et al. (2014) developed a model-based Remaining Useful Life (RUL) prediction method 

for induction motor with stator winding short circuit fault. The induction motor model with 

stator winding short circuit fault is introduced based on reference frame transformation 

theory. A particle filter method is used to realize unknown parameter estimation and RUL 

prediction. Simulation results were provided to validate the proposed method. 

Morsalin et al. (2014) proposed an innovative idea to detect induction motor stator's inter-

turn short circuit fault using non-invasive heuristic approach by Artificial Neural Network 

(ANN). In this fault detection research, a 0.5 hp, single phase 50 Hz induction motor at no 

load condition is used as an experimental prototype. Generalized Feed forward neural 

network is used as NN with Levenberg Marquardt gradient descend algorithm for training. 
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Araujo et al. (2015) provided an analysis about early incipient and recurring failures in 

three-phase induction motor bearings when driven by pulse width modulation inverters, 

focusing on a real industrial process. Over the investigation, it was concluded, that the 

presence of common-mode currents at the verified levels could cause damages to the motor 

bearings, which was confirmed when the machine stopped working due to another bearing 

failure. 

Mahmoud et al. (2016) proposed an inverse approach for inter-turn fault detection in 

asynchronous machines using magnetic pendulous oscillation technique. The machine 

behaviour was simulated under healthy and faulty cases in both transient and steady state 

conditions. The proposed inverse problem was validated numerically and experimentally. 

Results showed the robustness of the proposed scheme against the measurement noise. 

Kayri (2016) did a comparative study on the predictive ability of Bayesian regularization 

with levenberg-marquardt artificial neural networks. Analysis were done by Sum Squared 

Error (SSE), Sum Squared Weight (SSW) and correlation of regression and concluded that 

the Bayesian regularization training algorithm shows better performance than the levenberg-

marquardt algorithm. 

Lizarraga-Morales et al. (2017) proposed a novel FPGA-based methodology for early 

broken rotor bar (BRB) detection and classification through homogeneity estimation. 

Obtained results demonstrated the high efficiency of the proposed methodology as a 

deterministic technique for incipient BRB diagnosis in induction motors, which can detect 

and differentiate among half, one, or two BRBs with very high accuracy. 

The use of ANN’s in predicting failure of 5.8 MW 11kV motor on nominal load provides a 

new area of research. The network is a generalised feed-forward network and the input data 

samples are current, winding temperatures and power all in the time domain. 

2.8 Summary  

In this chapter, construction and working of three phase induction motors as well as various 

faults associated with their operation have been discussed. In addition, several research 

works which employ various techniques in failure prediction of induction motors have been 

reviewed. This work however employs the use of artificial neural networks for failure 

prediction of three phase induction motors in the industry. Subsequent chapters reveal how 

this methodology is carried out and its validation by means of simulation results.  
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CHAPTER 3 

SAG MILL MOTOR 

3.1 Introduction 

The SAG Mill motor is a three phase, slipring induction motor of the type CSLGH 900/6-

214, manufactured by ABB, Australia and supplied by Polysius to Goldfields, Damang mine 

in 1997. The motor has a vertical drive shaft and drives a SAG Mill of size 8M×5.1M which 

is the first stage of grinding at the milling circuit of the carbon in leach (CIL) plant. The 

motor has a starting torque of at least 1.3×rated load torque and a maximum of 2.0×rated 

load torque. The motor has an installed flanged-on tachogenerator. It has slip energy 

recovery system and a constant load torque over the speed range with single-quadrant 

operation sufficing. The winding, bearing and air circulation temperatures are monitored 

using PT100 transducers (three-wire system). Measuring transducers with galvanic isolation 

are installed in the service cabinet for remote indication of motor current and motor speed 

(measuring signal 4-20 MA) with feedback converter transformer. The motor is connected 

to the mill through coupling and mounted on foundation blocks by machine/bag bolts. It is 

started by liquid starters and has installed fans for cooling. The motor also has oil supply 

unit for motor bearing lubrication. Fig. 3.1, 3.2 and 3.3 shows the photograph of the non-

drive, drive and side view of the SAG Mill Motor respectively. 

 

Fig. 3.1 Non-drive Side of the SAG Mill Motor 
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3.1.1 The SAG Mill Motor Rating 

Table 3.1 below highlights the SAG Mill motor rating from the manufacturer; 

Table 3.1 SAG Mill Motor Rating 

TYPE CSLGH 900/6-214 

MANUFACTURER ABB 

NECESSARY MOTOR RATING P = 5 650 kW 

TYPE RATING ACC. TO CATALOGUE P = 6 350 kW 

MOTOR RATING (REDUCED/INCREASED) P = 5 800 kW 

SPEED RANGE N = 788-970  per min. 

VOLTAGE /FREQUENCY U = 11 000 V / F = 50 Hz. 

RATED CURRENT I = 353 A 

TYPE OF PROTECTION IP 56/65 

TYPE OF CONSTRUCTION IM B3 

FRAME SIZE  (IEC-PUBL.);  

EFFICIENCY ;  COS PHI 97% / 0.89 

STANDSTILL VOLTAGE OF ROTOR U2 = 2 640 V 

ROTOR CURRENT I2 = 1 305 A 

DIRECTION OF ROTATION (FACING DRIVE END) ANTICLOCKWISE 

WEIGHT 33 700 kg. 

(Source: Anon, 1997) 
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Fig. 3.2 Drive Side of the SAG Mill Motor 

 

Fig. 3.3 Side View of the SAG Mill Motor 
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3.2 Main Components of SAG Mill Motor  

3.2.1 Cooling Fans 

The SAG Mill Motor is fitted with cooling fans at different locations on the motor for the 

air circuit. One fan is located at the slipring compartment for cooling, two separate fans are 

located inside the motor for the internal air circuit and three fans are also mounted on top of 

the motor for external air circuit. 

Table 3.2, 3.3 and 3.4 below shows the ratings of the motors for external air circuit, internal 

air circuit and slipring compartment respectively; 

i. External Air Circuit 

Table 3.2 SAG Mill External Air Circuit Motor Rating 

TYPE DX 100L 

MANUFACTURER SIEMENS 

NECESSARY MOTOR RATING P = 3 kW 

TYPE RATING ACCORDING TO CAT. P = 3 kW 

SPEED RANGE N = 2 900 per min. 

VOLTAGE / FREQUENCY U = 415 V / F = 50 Hz 

RATED CURRENT I = 5.7 A 

TYPE OF PROTECTION IP 55 

TYPE OF CONSTRUCTION IM B5 

EFFICIENCY / COS PHI    80% / 0.92    

WEIGHT 30 kg. 

(Source: Anon, 1997) 
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ii. Internal Air Circuit 

Table 3.3 SAG Mill Internal Air Circuit Motor Rating 

TYPE  D132S – 4 

MANUFACTURER SIEMENS 

NECESSARY MOTOR RATING P = 5.5 kW 

TYPE RATING ACCORDING TO CAT. P = 5.5 kW 

SPEED RANGE N = 1 450 per min. 

VOLTAGE / FREQUENCY U = 415 V / F = 50 Hz 

RATED CURRENT I = 11.1 A 

TYPE OF PROTECTION IP 55 

TYPE OF CONSTRUCTION IM VI 

FRAME SIZE (IEC – PUBL)  132 S 

EFFICIENCY / COS PHI 80% / 0.81    

WEIGHT 60  kg 

(Source: Anon, 1997) 

3.2.2 Carbon Brush and Sliprings 

The sliprings are the current link between the rotor winding and the stationary brushes. 

Asynchronous and Synchronous machines with fixed brushes are fitted with steel or bronze 

sliprings. The slipring contact surface is machined with a spiral type grooving. After being 

in operation for some time a patina will form on the slipring contacts surface. 

A carbon brush is a sliding contact used to transmit electrical current from a static to a 

rotating part in a motor or generator, and as regards DC machines, ensures a spark-free 

commutation. A carbon brush can be made of one or more carbon blocks or equipped with 

one or more shorts/terminals (Anon, 2019b). 
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iii. Slipring Compartment 

Table 3.4 SAG Mill Slipring Compartment Motor Rating 

TYPE D 100L – 4 

MANUFACTURER SIEMENS 

NECESSARY MOTOR RATING P = 3 kW 

TYPE RATING ACCORDING TO CAT. P = 3 kW 

SPEED RANGE N = 1 430 per min. 

VOLTAGE / FREQUENCY U = 415 V / F = 50 Hz 

RATED CURRENT I = 6.3 A 

TYPE OF PROTECTION IP 55 

TYPE OF CONSTRUCTION IM VI 

FRAME SIZE (IEC – PUBL)  100 L 

EFFICIENCY / COS PHI 80% / 0.83     

WEIGHT 30 kg. 

(Source: Anon, 1997) 

Commissioning 

When a wound rotor induction motor is put into service for the first time, the patina on the 

sliprings is usually not sufficiently developed to produce the minimum brush wear. If then, 

the machine is run at no-load for several hours e.g. as in cascade drive systems, a 

considerably higher than normal brush wear must be reckoned with. This can result in 

leakage paths being quickly converted by a layer of carbon dust thus creating an increased 

risk of flash-over. 

In order to prevent damage, the following checks are to be carried out during the 

commissioning period. 

i. Record length of brushes: After approximately 10 hours of operation, measure and 

record the overall length of one brush per track on each slipring as shown in Fig. 3.4 

(Anon, 1997). 
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                        Fig. 3.4 Measurement of the Carbon brush 

ii. Determine brush wear: Measure length of brushes at intervals of 30 hours and 

evaluate brush wear. When a brush wear of 4-5 mm has been recorded since the first 

check then clean the insulating paths on the sliprings and on the brush gear. When 

the brush wear is less, the intervals between checks can be increased to 60 hours, 

whereby cleaning should be done every 4-5 mm of brush wear as shown in Fig. 3.5 

(Anon, 1997). 

iii. Normal operational condition: The brushes may be considered as being run-in when 

the wear is less than 6 mm/1000 hours. The brush gear is then to be maintained as 

indicated in the maintenance plan. The responsibility for ensuring that this 

instruction is followed lies with the commissioning personnel. 

 

 

               Fig. 3.5 Carbon Brush wear measurement  
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Inspection work during normal operation of brushes 

Check the brushes at intervals indicated in the maintenance plan for wear and freedom of 

movement in the brush-holders. Every brush should rest on the slipring with its whole 

contact surface which should be smooth and free of scores and grooves. 

Cleaning work on the brush 

The brush-holders, carrier bolt insulation, the insulation between the sliprings, and the shaft 

lead bolts are all to be cleaned every time the brushes are chaged. 

The brush gear and the slipring compartment are to be checked for degree of dirt deposit 

every month and are to be cleaned every three months. It is recommended that this work be 

planned for inclusion in general machine maintenance or periods of shut-down. 

The brush gear must never be cleaned with solvents. Brushes, brush-holders and sliprings 

are best cleaned of carbon dust with a vacuum cleaner, then blown down with a strong blast 

of compressed air and finally rubbed down with clean dry cloths. Only small cloths should 

be used, and they should be changed frequently. This ensures that the carbon dust will be 

properly removed and not distributed or rubbed into the surface being cleaned. During 

operation, an oxide film containing graphite forms on the sliprings. When complete (> 1000 

service hours), this film (patina) should have a smooth surface with an appearance giving a 

reflection between mat and a silky gloss. The film hue may be light grey to black, depending 

on the brush grade, the current density, atmospheric humidity and temperature. The most 

important criterion for satisfactory service is the uniformity of the film over the width and 

circumference of the sliprings, i.e. it should not be streaky, stained or broken. 

It is important to note that the oxide film must not be destroyed by unnecessary grinding or 

handstoning, not even when replacing the brushes. Only in the case of firmly adhered 

deposits of oil and carbon dust is wet cleaning with Sangajol (white spirit) permitted, in 

which case all brushes are to be removed before starting. After cleaning, blow the brush 

gear down with compressed air and dry down using clean oil-free cloths. The brushes may 

only be refitted approximately 24 hours afterwards by which time possible residual solvent 

will have completely evaporated. In order to ensure that the brushes are refitted into their 

original brush-holders, it is recommended that all be labelled with matching numbers before 

brush removal. 

The brushes of other machines in the same room, whether stationary or running, will also 

be endangered by the solvent vapour. However, they can be protected by providing a 
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generous flow of fresh air at their locations. Preference is to be given to those solvents with 

the lowest possible aromatic content. 

Changing the brushes 

Changing the brushes while the machine is running is extremely dangerous for both 

personnel and machine. Therefore brushes should only be changed when the machine is 

switched off and at rest. One side face of each slipring is provided with a notch to indicate 

the limit of wear. When worn to this notch, brushes must be replaced with new ones of 

identical quality. To check the brushes, they must be pulled from the brush-holders when 

the machine is shut-down. When not more than 1/3 of the brushes per slipring are to be 

changed, they need not be ground in. They will run in naturally within 1-2 weeks. 

Subsequently to this running-in period, further brushes can be changed on the same slipring 

if necessary. It is only necessary to grind the brushes in when a larger number or all of the 

brushes are to be changed simultaneously. 

Machines with brush-wear supervision 

If the machine is provided with brush-wear supervision, then the following points must 

also be observed; 

 

i. One brush with a signal contact is provided for each track. When the brush wear 

reaches a certain limit these monitoring brushes give a signal to initiate alarm. 

ii. After alarm annunciation, the brushes must be changed within the next 200 hours of 

operation. All the brushes of the same track should have the same amount of wear 

as the monitoring brush i.e. all should be changed simultaneously. 

 

   

             Fig. 3.6 Carbon Brush and Holders 

 

Brush holders for motors 

Carbon brush 

Position of limit 

mark on new brush 
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Grinding in the brushes  

For this operation, a long strip of emery cloth is inserted underneath the brushes and each 

brush in turn lapped (in the direction of rotation) by pulling the strip to and fro (the brush 

must be lifted off the emery cloth at each “return” stroke, i.e. against direction of rotation). 

Satisfactory lapping is indicated by a complete circular arc on the contact surface of the 

brushes, showing a slightly greater curvature than the contact surface of the sliprings. This 

difference is caused by the thickness of the emery cloth, and disappears after the first few 

hours of operation. The sliprings, brushes and brush-holders are thoroughly cleaned after 

the grinding process. Fig. 3.6 shows the carbon brush and brush-holders (Anon, 1997). 

Trueing the sliprings 

Sliprings which are out-of-round, heavily scored, or rough, should be carefully skimmed 

true on a lathe or ground with a fine oil stone. The surface roughness condition (Ra denotes 

‘Center Line Average value CLA’ for England or ‘Arithmetrical Average AA’ for USA) 

must be N7 (0.0016 mm). After reworking, chamfer the edges of the spiral grooving as 

shown in Fig. 3.7 (Anon, 1997). 

 

Fig. 3.7 Spiral Grooving of Carbon Brush 

Brush-holders 

There should be a gap of about 2 mm between the slipring and the brush-holder frames. The 

brush-holders should always be reset for this clearance after trueing the slings. 

Number of brushes 

The number of brushes per slipring is based on a nominal loading of 100 A/brush. The 

original brush arrangement may not be changed without first consulting the machine 

manufacturer. 

Brush pressure 

The correct average brush pressure is approximately 2 N/cm2. The brush-holder spring force 

is 16 N. Fig. 3.8 shows the position of carbon brushes on the sliprings (Anon, 1997).         
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Fig. 3.8 Positioning of Carbon Brushes on Sliprings 

3.2.3 Windings 

The SAG Mill Motor uses Micadur-Compact (MC ®) windings. Full impregnation of all 

winding components with a curable resin under vacuum is the characteristic feature of the 

Micadur-Compact winding insulation system used for medium-sized and large high-voltage 

machines. Subsequent curing of the resin results in a completely rigid winding bonded to 

the walls of the slots, having excellent mechanical and electrical properties. There has been 

no evidence so far of any of the dielectric or thermal ageing effects which indicate basically 

vulnerable parts of the insulation. Any repair procedure specifically drawn up for MC 

windings must therefore be able to meet the following essential requirements.  

i. The method of repair must primarily be suitable for the replacement of parts of 

windings which have suffered mechanical damage, and to a lesser extent dielectric 

or thermal damage. The parts of the overhang (or end-coils) prone to damage are 

those nearest the air-gap, or the winding head (coil ends). 

ii. The method of repair must be applicable to the facilities available at the site (ovens, 

vacuum tank, tools, personnel, etc.), due allowance being made for the particular 

needs of a curable resin. 

iii. Adequate stocks of spare materials must be kept in order that the time for delivery 

may be as short as possible. 

iv. Spare materials not suitable for storage must be obtainable at short notice. 
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The windings are fitted with resistance temperature detectors (RTD’s) with alarm and trip 

settings of 145°C and 150°C respectively (Anon, 1997). 

3.2.4 Bearings 

The SAG Mill Motor is fixed with oil lubricated sleeve bearings supporting the drive and 

non-drive ends of the main rotor and shaft. Sleeve bearings operate with a thin film of oil 

between the shaft and journal, and thus theoretically with continuous non-stopping operation 

are non-wearing and do not have a limited life. Therefore selection criteria do not depend 

on a life calculation, but it rather relates to loading, which for these motors is advised as 

follows; 

i. Drive end bearing: Specific bearing loading (excluding UMP) = 1.11 N/mm2. 

ii. Non-Drive end bearing: Specific bearing loading (excluding UMP) = 0.56 N/mm2.  

The life calculation referred to is only applicable to antifriction (i.e. grease lubricated ball 

& roller type bearings), which are not fitted to the main motor shaft. 

Fig. 3.9 shows a picture of the bearing lubrication plate (Anon, 1997). The bearing is also 

fitted with temperature detectors (RTD’s) with an alarm and trip settings of 85°C and 95°C 

respectively.  

  

Fig. 3.9 Bearing Lubrication Plate 

Oil change 

Oil changing is largely dependent upon the operating time, the number of switching 

operations, the operating temperatures and the amount of oil contamination. An oil change 
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can also be necessitated by strong turbidity or by a sudden increase in temperature without 

any external influence. 

Maintenance 

Table 3.5 shows the maintenance plan for the bearings. 

  Table 3.5 Maintenance Plan for Bearings 

Part of Machine Maintenance or Inspection Work Time Interval 

 

 

 

 

 

 

 

 

Plain bearings and oil 

supply system for flood 

or jacking oil 

 

Check physical, chemical and 

mechanical properties of the oil. 

Before first 

commissioning 

After 6 months   1) 

After 18 months 1) 

Check condition of oil through sight 

window (discolouring, contamination), 

possibly clean and re-use. 

After 6 months   1) 

After 18 months 1) 

Measure and record temperature at 

measuring points provided, by hand 

checks or by thermometer if fitted. 

 

Weekly 2) 

Measure machine vibration using either 

the vibration sensors if provided or a 

transportable measuring instrument. 

Measuring points: middle of bearing 

housing, horizontal and vertical. 

 

 

Monthly 2) 

Check oil rings for smooth, uniform 

running and oil transport. This can be 

done through openings in bearing 

housings. Only applicable for horizontal 

machines. 

 

 

Monthly 2) 

Check bearing seals for oil leakage and 

clean if dirty. 
Monthly 2) 

 

 

Oil supply unit for flood 

or jacking oil 

Check oil supply unit with regard to 

following:  

Proper operation 

Oil level, leakage incl. bolted 

connections, seals on bearing oil piping, 

Clean filters. 

 

Monthly 2) 

After indication 

from filter monitor 

(optical/electrical) 

Plain bearings with 

insulated shells (only 

horizontal machines) 

 

Check bearing shell insulation. 

 

Before first 

commissioning 

Quarterly 1) 

 

 

 

 

Plain bearings 

Visually inspect sliding faces of bearing 

components for edge pressure, scoring, 

pressure marks, and eliminate same if 

present. 

The bearing components must be 

dismantled for this inspection. In the 

case of strong turbidity, immediately 

change oil and determine and eliminate 

cause. 

 

 

6 months after first 

commissioning, 

18 months after first 

commissioning 
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Table 3.5 Maintenance Plan for Bearings Cont’d 

 

Part of Machine 

 

Maintenance or Inspection Work 

 

Time Interval 

 

 

Plain bearings and oil 

supply unit for flood or 

jacking oil 

Change oil. 

Wash and flush off bearings 
Annually 2) 3) 

Replace worn parts (If bearing parts are 

changed, change oil after 3 hours 

running time to remove metal particles 

rubbed off during running in). 

After evaluation of 

above-mentioned 

periodical 

inspection. 

Check for rust At Overhaul 4) 

Oil-water cooler (If 

provided) 
Check water piping for leakage. Weekly 1) 

 Check inner surfaces of cooler tubes for 

deposits and possible signs of corrosion. 
Every 2 years 1) 

1) Compare with earlier measurements and observations. 

2) Valid when no special measures taken to extend oil change interval. 

3) After 4000 hours of operation or 1 year at the latest. This also applies to machines 

often stationary. 

4) Remove possible rust by using a fine oil stone. Where painting is not possible, 

coat bare surfaces with an anti-corrosion covering. 

   (Source: Anon, 1997) 

3.3 The Liquid Starter 

The SAG Mill Motor uses EPM liquid rotor starter to control its starting and the starting 

current is generally limited to a maximum of 250% full load current (FLC). Optimal starting 

torque for each application is normally selected by the choice of the initial value of 

resistance. The principle of the EPM starter is that, the resistance automatically varies during 

the stating period. This type of starter is designed to provide the optimum starting 

characteristics, which results in smooth progressive acceleration to full load speed. It can 

also be used for speed variation and torque control. Plug braking can also be implemented 

with this system. The variation in the resistance is achieved by displacement of the 

electrodes in the electrolyte. At the end of the acceleration, the electrodes are shorted out. 

3.3.1 Electrodes 

The three electrodes are arranged in a line and each comprises of a fixed and a moving 

electrode. Polypropylene compartmentalisation ensures isolation between the phases. The 

electrodes, cast in GS or bronze consist of concentric cylinders which merge with each other 

in the minimum resistance position. The fixed electrodes, situated at the lower end of the 

isolated compartments, are fed from an insulated copper bar. Since this bar does not pass 

though the wall of the tank, it is impossible for the electrolyte to leak. Fig. 3.10 shows the 



65 

electrode arrangement (Anon, 1997). The moving electrodes travel vertically inside an 

isolated compartment guided by a nylon slide. The assembly is supported by two story brass 

rods mounted on the moving electrode system. This assembly, common to all three 

electrodes, constitutes the neutral point. The low current density in the order of 1A per cm2, 

ensures an extremely long electrode life.  

 

 

Fig. 3.10 Electrolytic Resistance (Electrodes) 

3.3.2 Control 

Displacement of the moving electrode assembly is controlled by a motor driven worm screw 

assembly (geared motor, motor together with an electronic speed controller, servo motor). 

A hand wheel is used for commissioning and emergency operation. The standard starting or 

regulation time is approximately 20 seconds. It has two auxiliary limit switches (1×Start and 

1×Final position of starter) which eliminates the residual resistance at the end of starting. 

The overload relay will trip the electrode control motor if an accidental blockage occurs. An 

electrical interlock prevents a new start if the moving electrodes are not at the start position. 

The return to the start position is automatically effected after the shorting contactor is closed. 

If a power failure occurs during starting, the electrodes return automatically to the start 

position. When the supply is restored, a new start cycle is possible. It has a temperature 
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monitor and filling level limit switch. Fig. 3.11 and Fig.3.12 shows the electrode control 

system and EPM starter with heat exchanger respectively (Anon, 1997).  

The number of consecutive starts from cold condition is Z = 3 and frequency of starts from 

warm condition of starter is H = 0.5× Per Hour. 

Table 3.6 details the rating of the starter motor; 

Table 3.6 Liquid Starter Motor Rating 

TYPE  EPM 3/2 – EB 600 47 C9 

MANUFACTURER AOIP 

NECESSARY MOTOR RATING P = 0.45 kW 

TYPE RATING ACCORDING TO CAT. P = 0.45 kW 

SPEED RANGE N = 279 per min. 

VOLTAGE / FREQUENCY U = 415 V /  F = 50 Hz 

RATED CURRENT I = 1.2 A 

TYPE OF PROTECTION IP 54 

TYPE OF CONSTRUCTION IM 

WEIGHT 4 080 kg. 

(Source: Anon, 1997) 

3.3.3 Electrolyte 

The electrolyte generally comprises a solution of sodium carbonate or sodium borate. The 

cooling of the electrolyte is effected by natural convection and forced circulation (via the 

agitator) but in this application, heat exchanger is employed to augment the heat dissipation. 

Table 3.7 below details the rating of the starter agitator motor; 
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Fig. 3.11 Electrode Control System 

 

Table 3.7 Liquid Starter Agitator Motor Rating  

TYPE  MU71814 – EPM 3/2 

MANUFACTURER AOIP 

NECESSARY MOTOR RATING P = 0.37 kW 

TYPE RATING ACCORDING TO CAT. P = 0.37 kW 

SPEED RANGE N = 1 400 per min. 

VOLTAGE / FREQUENCY U = 415V / F = 50 Hz 

RATED CURRENT I = 1.2 A 

TYPE OF PROTECTION IP 54 

TYPE OF CONSTRUCTION IM 

EFFICIENCY / COS PHI  % / 0.60 

(Source: Anon, 1997) 
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Fig. 3.12 EPM with Heat Exchanger 

 

3.3.4 Enclosures 

The starter comprises 1 medium voltage (MV) enclosure which contains the shorting 

contactor and 1 low voltage (LV) enclosure containing the controls. Dimensions of the MV 

enclosures depends on the shorting contactor rating. Power cables entry is carried out at the 

base. The cable guide plate of the enclosure should be drilled during installation. Cables 

come on the terminal outputs mounted on front of the enclosure as shown in Fig. 3.13 (Anon, 

1997). 
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Fig. 3.13 EPM MV Enclosure 

The controls are built – in the LV enclosure. This enclosure lies on the right part of the 

MV enclosure. Connecting the control cables is performed at the base through the back 

plate. Control cables come on the screw terminals as shown in Fig. 3.14 (Anon, 1997). 

Enclosure protection is IP 54 

3.3.5 Maintenance 

The electrode level must be checked and topped up with drinking water once a year. The 

electrode worm screw should also be greased at the same time. 
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Fig. 3.14 EPM LV Enclosure 

3.4 Oil Supply Unit for Motor Bearings 

The oil supply system is manufactured by Rickmeier GmbH and is designed to supply the 

SAG Mill motor bearing with sufficient oil. The most important requirement to ensure 

proper functioning, high reliability and long running life is a constantly clean pumping 

conveying product, which does not corrode the gear pump materials and contains no wear 

promoting activities. The fitting position of the oil supplying system is horizontal. 

3.4.1 Assembly Design of the Oil Supplying System 

The system design as well as the scope of the design are discussed below; 
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Oil tank  

All components are mounted on a common oil tank. The oil tank is steel welded. The oil 

level can be checked in the minimum and maximum condition by means of an oil gauge. 

The tank is filled with oil through the filling and air filter. 

 

Pump unit  

Two gear pump units are mounted on the oil tank for low pressure circuit. They each 

comprise the motor, bracket, coupling and gear pump. For the security of the pump 

aggregates, non – return valves has been built – in in the pressure line downstream from the 

pump. For the security of the system, pressure relief valves are built into the circuits. They 

open if the set operating pressure is exceeded and allow the oil to flow, without pressure, 

back into the tank. Additionally, a pressure reducing valve is built into the inlet pipe of the 

radial piston pumps to protect against high pressure. The maximum permissible operating 

pressure for pump is 300 bars. 

Pressure gauge  

They are filled with glycerine and used to optically check the pressure. The vibration - free 

glycerine pressure gauge is designed such that the mechanical works including dial face and 

pointer are flushed with colourless, neutral glycerine. Slight leakage of glycerine does not 

affect the pressure gauge operation. 

Filter  

Contaminated oil is prevented from reaching the motor bearing by means of a built – in filter 

in the pressure line. When the filter element becomes dirty, this is then shown both optically 

with the contamination display and electrically. 

Oil-water-heat exchanger 

An oil-water-heat exchanger is built into the pressure line to draw off excess heat. 

Electrical monitoring 

Temperature: The adjustment from oil temperature is achieved by a resistance thermometer 

built in the oil tank. This one switch on the magnetic valve of the heater exchanger if 

required. For the security of the maximum temperature contact-thermometer has been built 

in the pressure line after the heat exchanger. Additional maximum oil temperature can be 

checked optically by a thermometer, built-in the oil tank. 
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Pressure switches: The pressure is controlled at the unit ends with the pressure switches.  

Flow-meter: The flow-meter indicates optical and electrically the oil flow of the low 

pressure circuit. 

Level switch: The level switch controls the minimum oil level to protect against running the 

pump and the consumer without oil. 

3.4.2 Maintenance and Repairs 

Oil change 

A new system requires that the oil must be drained off and renewed after approximately 200 

operating hours. Further oil changes are necessary depending upon the operating conditions, 

generally every 1500 operating hours, but never less than once a year. It is sensible to change 

the oil when it is at operating at heated environment. If for organisational reasons, the oil 

must be changed in a cold environment, then it should be slowly warmed up to 50°C to 

reduce its viscosity. 

Cleaning the filter  

The filter should be cleaned as often as the operating conditions require, generally shown 

by means of the filter’s built-in contamination display optically and /or electrically. 

Otherwise it should be cleaned at least every 2000 operating hours (=approximately 1 year 

with single-shift working) and every time the oil is changed. The cleaning method can be 

found in the respective technical data sheet of the filter. 

Checking the oil level 

The oil level should also be checked, provided no leaks have been found, at least once a 

month. The oil level should be checked daily for a while in a newly installed system. If you 

discover an oil loss, top up with the same type of oil. 

Choosing the oil  

Only by using carefully selected oils can the performance, operating reliability and life 

expectancy of the pumps be guaranteed. Some recommended lubricating oil by motor 

manufacturers (ABB) are; 

i. Shell Tellus OI C 22, 32, 46, 58 & 100. 

ii. Aral Alur E 22, Aral Motanol GM 32, Aral Motanol HK 32, 68 & 100 and  
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iii. Mobil Velocite Oil No. 10, Mobil Vactra Oil Heavy, Mobil DTE Oil Light, Medium 

& Heavy Medium. 

Bearing oil examination is only of practical value if it is intended to extend the oil change 

interval or if carried out prior to changing a relatively large volume of oil. The properties of 

the bearing oil to be checked and recorded are kinetic viscosity at 20°C & 40°C (mm2/s), 

Neutralisation numbers (mg/g), Air release capability at 50°C (min.), Foaming tendency 

(foaming per unit volume), Inhibitor content (mass %), IR – Aging bands at 1710 cm-1   

and impurities in oil (particle count test) (number of particles per 100ml oil). 

3.4.3 Operating Faults 

Table 3.8 can be used for solving faults that may occur during operation. It must be noted 

that the list is not conclusive. 

Table 3.8 Troubleshooting Operating Faults of Oil Supply Unit 

Obstruction Responsible Check 
 

 

 

No, or too little oil 

System 
Oil Level 

Bleeding Pump 

Electric Motor 
Supply 

Rotational direction 

Gear Pump Gear teeth (wear) 

Pressure Relief Valve Piston function (movability) 

Filter Dirt (Filter element) 
 

 

 

Noise 

System 
Oil Level 

Suction line (clogged, leaking) 

Electric Motor 
Bearing (wear) 

Fan 

Coupling Gear ring 

Gear Pump Gear teeth (wear) 

Pressure Relief Valve Piston Function (movability) 

(Source: Anon., 1997) 

3.5 Start – Up, Operation, Shutdown 

3.5.1 Start-Up Frequency 

The SAG Mill Motor is subjected to increased thermal and mechanical stresses during the 

start-up phase. Therefore, the start-up frequency agreed at the order stage should be 

observed in order to avoid damage. Table 3.9 is a step-by-step procedure in start-up, 

operation and shutdown of the SAG Mill Motor. 
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Table 3.9 Start-Up, Operation and Shutdown of SAG Mill Motor 

Type of Machine Start-Up/Operation Shutdown 

 

 

 

 

 

 

 

 

 

 

 

 

SAG Mill Motor 

(Slipring/Wound rotor) 

Switch standstill heating off. 
Switch standstill heating 

on. 

Switch plain bearing cooling 

system on. 

Switch plain bearing 

cooling system off. 

Admit air-water heat exchanger 

water supply. 

Stop air-water heat 

exchanger water supply. 

Switch fan motor on. Switch fan motor off. 

Close stator switch to start 

motor. 
Open stator switch. 

Switch rotor stator gradually 

from starting to operating 

setting, then the short-circuit 

and brush-lifting system 

likewise. 

Switch short-circuit and 

brush-lifting system, then 

rotor starter from operating 

to starting setting. 

Important note: 

Re-switching a running motor 

causes current and torque 

fluctuations. Re-closure at an 

instant when the system is in 

phase-opposition to the residual 

stator voltage will subject the 

motor and the driven machine 

and gear to high forces. 

Therefore the whole shaft train 

must be dimensioned to accept 

these forces or suitable 

protective equipment provided 

to avoid them. 

 

(Source: Anon, 1997) 

3.6 Maintenance of SAG Mill Motor 

Conscientious and thorough maintenance of a machine and plant is the best protection 

against faults and operation failures. The more critical operational interruptions are for the 

process, then the greater is the worth of the maintenance investment. As a basic rule for all 

maintenance work performed on site, the applicable safety regulations must be obeyed and 

the necessary protective measures taken for heavy-current installations. 

It is recommended that a time schedule be set up for each individual machine and that 

maintenance cards be employed. These maintenance cards can either be kept in a card-

register or hung in plastic envelopes at a vantage point on the machine, so that the state of 

maintenance can be checked at any time. 
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Maintenance includes daily patrols by the operating personnel through the whole plant to 

inspect the operating conditions and to observe and note down important operating 

quantities. During these daily patrols, special attention is to be paid to possible deviations 

from the usual state of operation, especially with regard to instruments (limit values, lines 

or marks), short-circuit monitoring, liquid levels, temperatures, vibration or odours. 

If daily patrols are not feasible due to the location of the plant (e.g. inaccessible, too remote 

etc.), the machines must be fitted with suitable monitoring equipment. Ideally, the periodic 

inspections should not be carried out simply by a suitably trained engineer, but always the 

same man. This is the only way to ensure that deviations from the normal operational 

behaviour are noticed. 

Any special observations are to be entered in the log book. Should a fault condition arise, 

carefully kept log books help to determine the cause of the fault and give information to aid 

remedying and eliminating the same. The actual maintenance work, most of which is 

performed during planned periods of shut-down, can be distinguished as follows: 

i. Continuous repetitive inspections and exchanging components subject to wear, and 

remedying any faults or defects recognised. 

ii. Making-up or replacing consumables. 

iii. Cleaning 

Table 3.10 contains recommendations based on many years of experience. The time 

intervals are based on an eight hour operating day under normal conditions. The actual 

circumstances under which the machines operate are often quite different so that for each 

particular case certain time intervals may need to be adapted to the prevailing site conditions 

such as dirt deposits, loading and switching frequency.  

The recommended maintenance intervals also assume fault-free operation. After each 

serious fault (shut-down) an extra non-scheduled inspection of the machine or plant 

component in question is necessary. The cause of each shut-down is to be clarified prior to 

restarting. When any changes in appearance or operational behaviour are noticed it must be 

carefully considered whether and when intervention is necessary or whether initially a 

thorough inspection would be sufficient. Similarly, in the case of extraordinary operating 

conditions (short-circuit, overload etc.) which represent either electrical or mechanical 
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overloading of the machine, the maintenance or inspection work is to be immediately carried 

out (Anon, 1997). 

The SAG Mill Motor shut-down is planned together with relining of the SAG Mill. This 

happens once every month ending and is tied to the planned maintenance of majority of the 

CIL plant machinery.  

Table 3.10 shows the maintenance plan for the SAG Mill motor. 

Early identification of abnormal operation symptoms and rapid remedial action are essential 

as a means of preventing a minor fault from developing into really serious trouble later on. 

Table 3.11 may help you to trace and remedy possible faults. Always disconnect the motor 

from the mains before you attempt to trace a fault or attend to the stator switch. 

3.7 Storage 

If the machines are to be installed in their operating locations but will not be commissioned 

for a longer period of time then the following instructions for protection and maintenance 

are to be observed. If the machine is fitted with an air-water heat exchanger i.e. enclosure 

IP 44, then neither foreign matter nor moisture can enter into the machine. However, for 

wound rotor induction motors the slipring compartments are to be protected against the 

ingress of dust and moisture.   

3.7.1 Plain Bearings 

Apply a coating of TECTYL502 C (supplier: VALVOLINE) to the bearing journals, bearing 

shells, oil rings, and other bare surfaces inside the bearing housings. 

TECTYL502 C is soluble in oil at approximately 50°C and therefore need to be removed 

when preparing the machine for operation. Abnormal heavy foaming of the bearing lube oil 

during the test runs indicates that it has been highly contaminated by the TECTYL502 C. In 

such cases the oil must be changed before final commissioning. 

The shaft must not be turned during the conservation period because the actual bearing 

surfaces will be dry i.e. the weight of the rotor will have pressed the oil film out from 

between the journal and the shell. Pour oil through the opening in the top bearing cover unto 

the bearing journal before putting the machine back into service.  
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  Table 3.10 Maintenance Plan for SAG Mill Motor 

Part of Machine Maintenance or Inspection Work Time Interval 

Stator winding 

Cooling air 

Rotor winding 

Measure temperature at provided 

measuring points (e.g. built-in RTD’s). 
Weekly 1) 

Stator winding 

Rotor winding 
Measure insulation resistance Quarterly 1) 

Bearing insulation 

(bearing endshield or 

pedestal) when 

provided 

Measure insulation resistance between 

the insulated parts of bearing 

endshields or bearing pedestals and the 

steel foundation, using a megger rated 

at 500 V or maximum 625 V. 

Quarterly 1) 

Rotor, inside and 

outside of machine 

Visually inspect all accessible places 

for rust. 
Every 3 years 4) 

 

 

 

 

Whole machine 

Measure vibration using fitted vibration 

sensors when provided or portable 

measuring equipment. Measuring 

points: middle of bearing housing, 

horizontal and vertical. 

Monthly 1) 3) 

Listen for unusual machine noise or 

change in noise (e.g. rubbing or 

knocking sounds etc.) 

Weekly 1) 

Visually inspect interior of machine for 

degree of dirt deposit 
Quarterly 

Power Supply, 

instrumentation and 

control connections 

Check condition and fastening of all 

cables and connections. 
Monthly 

Check for degree of dirt deposit Quarterly 

 

Earthing brushes 

(when provided) 

Visually inspect for wear and free 

movement in holders. Clean contact 

surfaces of brushes and shaft with a 

fine polishing cloth. 

Monthly 1) 2) 

Ensure there is brush pressure Quarterly 

 

Rotor 

Check degree of dirt deposit on 

sliprings and lead bolts, and clean when 

necessary. 

Monthly 1) 

Slipring compartment 

Check dirt deposit on the insulating 

parts of the brush gear. Clean when 

dirty. 

Monthly 1) 

1) Compare with earlier measurements and observations. 

2) Determine rate of wear in mm per 1000 hours of operation and compare with 

earlier figures to obtain information on the functioning of the earth brushes. 

3) For set values and evaluation of vibration measurement. 

 

(Source: Anon, 1997) 
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Table 3.11 Troubleshooting Fault of SAG Mill Motor 

Fault Possible Cause Remedy 

Motor will not 

start, is completely 

dead. 

At least two supply leads open-

circuited. 

Check fuses, supply 

leads and terminals. 

No voltage. 
Check mains supply 

leads. 

Motor hums but 

will not start. 

One stator or rotor phase open-

circuited. 

Check supply leads and 

repair break. 

 

 

Motor will not 

start under load 

but emits normal 

magnetic noise. 

Excessive torque resistance. 

Remedy drive faults. 

Uncouple motor and 

check no-load operation. 

(Be careful because of 

run-up time and axial 

guidance) 

Mains voltage too low. Measure mains voltage. 

Open-circuited rotor circuit (starter and 

supply leads). 
Check rotor circuit. 

 

 

Motor idles but 

will not take on 

load. 

One mains supply lead open-circuited 

after starting. 

Check mains supply 

lead(s). 

Open-circuited rotor circuit, fault in 

rotor supply (brushes not seated 

properly, faulty short-circuited 

contacts). 

Check rotor circuit for 

breaks, brushes for 

jamming and wear, 

short-circuited contacts 

for burning. 

 

Motor overheats 

when idling. 

Wrong stator winding connection (e.g. 

delta instead of star). 

Restore correct 

connections as per 

diagram. 

Mains voltage too high. 
Check mains voltage 

and no-load current. 
 

Motor overheats 

when idling. 

Loss of cooling due to blocked air 

passages. 
Clean air passages. 

Wrong direction of fan rotation (motors 

with inclined fan blades designed for a 

single direction of rotation). 

Check fan and direction 

of rotation. 

 

Motor overheats 

under load. 

Motor overloaded. Check current flow. 

Voltage too high or too low. Check voltage. 

Motor single-phasing. 
Trace break in supply 

lead. 

 (Source: Anon, 1997) 

3.7.2 Rolling Contact Bearings 

No special measures are necessary for or during the conservation period, however fresh 

grease must be injected into both bearings before putting the machine back into service. 

Remove grease chamber cover and inject fresh grease until the old grease has been expelled. 

Should a bearing need changing consult the equipment manual for instructions. 
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3.7.3 Bare Surfaces 

Apply a protective covering of TECTYL 502 (Supplier: VALVOINE) to all bare parts of 

the shaft outside of the enclosure e.g. coupling, shaft surfaces, etc. 

Surfaces on the bedplate not covered by the motor feet or shims, and the edges of the shims 

themselves, are to be protected with paint as called for in project specifications. 

3.7.4 Coolers, Piping 

The coolers and the associated piping within the scope of the motor supply were cleaned, 

and dried by blowing through with warm air before packing. It must be ensured that they 

are still clean and dry before the machines are conserved. 

3.7.5 Space Heaters 

Space heaters can remain switched on in order to avoid condensation within the machine. 

Periodically check that they are operating. 

3.7.6 Filters 

Temporarily seal up cooling air inlet and outlet filter frames on the slipring compartment. 

3.7.7 Brushes 

Raise the brushes from the surface of the sliprings and jam at an angle in top of brush-

holders by means of spring pressure. 

3.7.8 Openings 

If there are any openings where cables are not connected up to terminal boxes, or piping 

flanges, etc. these are to be temporarily sealed up. 

3.7.9 Inspections, Records 

The conservation measures are to be given a final check and recorded together with the date 

of the date of the beginning of the conservation period. Thereafter carry out regular 

inspections, the first after six months and record results. Renew conservation measures when 

and where necessary (Anon, 1997). 

3.8 Summary  

In this chapter, main components and working of three phase CSLGH 900/6-214 induction 

motor (SAG Mill Motor) have been discussed. In addition, some auxiliary equipment of the 

SAG Mill motor have been reviewed. The operation, maintenance and storage of the SAG 

Mill Motor was looked at.  
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CHAPTER 4 

METHODS USED 

4.1 Introduction 

In designing a model for failure prediction of three phase 5.8 MW, 11 kV slip ring SAG 

Mill induction motor at Goldfields Ghana Limited, Damang mine, Artificial Neural 

Networks was employed in modelling and simulations on data collected (Power, Current 

and Winding Temperatures) from the company. 

4.2 Designing and Programming of ANN Models 

Fig. 4.1 (Ghate and Dudul, 2011) shows a generalized flow chart of ANN – based fault 

classification of induction motors. Designing ANN models follows a number of systemic 

procedures. In general, there are five basics steps as follows:  

i. Collecting data; 

ii. Pre-processing data;  

iii. Building the network;  

iv. Train; and  

v. Validate and test performance of model as shown in Fig. 4.2.  
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Fig. 4.1 General Flow of ANN – Based Fault Classification of Induction Motors 

Data Acquisition  

Feature Extraction 

Selection of Optimal values of various parameters 

Design of the Neural Network 

Training/Retraining of Neural Network 

Evaluation of Learning Rule and Initialization of weights 

Computation of error via Backpropagation 

Error minimisation via weight updates 

Evaluation of termination condition 

Saving of weights and termination 

Three-Phase Supply 

Is global minimum attained? No 

Yes 

End 
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Fig. 4.2 Basic Block Diagram for Designing Artificial Neural Network Model 

4.3 Data Collection 

Collecting and preparing sample data is the first step in designing ANN models. As it is 

outlined in Fig. 4.2, measurement data of SAG Mill motor winding temperatures (°C), motor 

current (A) and motor power (MW) and corresponding motor condition i.e. Motor healthy 

or Motor faulty (MH/MF) for Damang mine for 93-day period from 6th January, 2019 to 

8th April, 2019 was collected through the Citect as shown in Fig. 4.3. Fig. 4.4 and Fig. 4.5 

shows graphical representation of SAG Mill motor winding temperatures, current and power 

before normalisation. A total of 5×879 data samples were collected. 

Data 
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Data Pre-

processing 

Build 

Network 
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Network 

Validate & 
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Network 
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Fig. 4.3 Trends of SAG Mill Motor Current, Power and Winding Temperatures 

 

Fig. 4.4 Graph Showing Trends of SAG Mill Motor Current and Power 
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Fig. 4.5 Graph Showing Trends of SAG Mill Motor Winding Temperatures  

4.4 Data Pre-Processing 

After data collection, data pre-processing procedures are conducted to train the ANNs more 

efficiently. The procedure is normalization of data. Normalization procedure before 

presenting the input data to the network is generally a good practice, since mixing variables 

with large magnitudes and small magnitudes will confuse the learning algorithm on the 

importance of each variable and may force it to finally reject the variable with the smaller 

magnitude (Tymvios et al., 2008). Fig. 4.6 and Fig. 4.7 are graphs showing SAG Mill motor 

current, power and temperatures after normalisation. A total of 5×837 data samples were 

considered healthy after normalisation. 

Data samples that were out of range after normalisation were taken to be faulty data samples. 

These faulty data samples totalling 5×42 are shown in Fig. 4.8.  
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Fig. 4.6 Graph Showing Trends of SAG Mill Motor Current and Power after 

Normalisation 

 
 

Fig. 4.7 Graph Showing Trends of SAG Mill Motor Winding Temperatures after 

Normalisation 
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Fig. 4.8 Graph Showing Trends of Faulty SAG Mill Motor Current and Power 

4.5       Building the Network 

At this stage, the number of hidden layers, neurons in each layer, transfer function in each 

layer, training function, weight/bias learning function, and performance function are 

specified. In this work, generalized feed-forward neural networks was used.  

4.5.1 Feed-Forward Neural Network with Backpropagation Algorithm 

In feed-forward neural networks, otherwise known as multilayer perceptrons, the input 

vector of independent variables Pi is related to the target ti (SAG Mill motor condition) using 

the architecture depicted in Fig. 4.9. This figure shows one of the commonly used networks, 

namely, the layered feed-forward neural network with one hidden layer. Here each single 

neuron is connected to those of a previous layer through adaptable synaptic weights. 

Knowledge is usually stored as a set of connection weights, and then, the weights are 

adjusted so that the network attempts to produce the desired output. The weights after 

training contain meaningful information, whereas before training they are random and have 

no meaning. 
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Fig. 4.9 Architecture of Feed-Forward Network 

The architecture of the network examined in the study was such that p′i= (pi1, pi2 ,. . .,pi5) 

contained values for 5 input (independent) variables from individual i. The input variables 

are associated with each of N neurons in a hidden layer by using weights (wkj, k= 1, 2, .,N) 

which are specific to each independent variable (j) to neuron (k) connection. Following 

Kayri (2016), the mapping has two forms for the relationship between output t and 

independent variables: 

      1 1 1R 1
level-onekk k kj =1Hidden Layer =  pj +  ;  = b  an f n  

          2 2,1 2 2 21
level-twok 1k k k kj=1

ˆOutput Layer  =  +  ; t =  =w a b an f n  

In the case of N neurons in the neural network, the biases are b1
(1) , b2

(1) , …., bN
(1) . 

 

Prior to activation, the input value for neuron k is; 
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  5
1

kjk j
j=1

+ pb w . 

 

Then an activation function f (.) (Linear or nonlinear) is applied to the input in each neuron 

and v is transformed as; 

 

 
5

1 1
k k kk kj j

j=1

+  = , k=1, 2,......., N.pb wf  f n
 

 
 

 

 

After applying activation, the activated quantity is then transferred to the output layer and 

gathered as;  

 

   

     

N 5
1l 2

kk kjk j
ki=1 j=1

k 1 2

+  + , pw b w bf

where k=1,2......,N  are  and w  b b

 
  

   

 

Bias parameters in the hidden and output layers. At the end of the process, this activated 

quantity is carried out again with function g (.) as; 

 

      
N

21 2
k kk k

k=1

g .  +  = w bf f n
 

  

, 

 

Which then becomes the estimated target variable (motor condition) value of t1 in the 

training data set: 

   N R1
k kjk=1 j=11

j

1 2 ; j =ˆ = f( 1,2.....R, k=1,2,.....,Nw wt p+ ) +b  bk
   

4.6       Training the Network 

Training is the process of modifying the network using a learning mode in which an input 

is presented to the network along with the desired output. During the training process, the 

weights are adjusted in order to make the actual outputs (predicated) close to the target 

(measured) outputs of the network. In this study, 70% of the data was used for training. Two 

different types of training algorithms were investigated for developing the feed-forward 

network. These are Levenberg-Marquardt algorithm and Bayesian Regularisation 

algorithm. 

(4.7) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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MATLAB provides built-in transfer functions which are used in this study; linear (purelin), 

Hyperbolic Tangent Sigmoid (tansig) and Logistic Sigmoid (logsig). The graphical 

illustration and mathematical form of such functions are shown in Table 4.1. 

  Table 4.1 MATLAB Built-in Transfer Function 

Functional 

Name 
Graphical Illustration Mathematical Form 

Linear 

 

 f x x  

Hyperbolic 

Tangent Sigmoid 

 

 
x x

x x

e e
f x

e e









 

Logistic Sigmoid 

 

  x

1
f x

1 e



 

   (Source: Shamisi et al., 2011) 

4.7       Validating and Testing the Network 

The next step is to validate and test the performance of the developed model. At this stage 

unseen data are fed to the model. For this case study, 15% of SAG Mill motor data was used 

for validating and another 15% used for testing the ANN models. Validation data generalize 

the network validation and stops training before overfitting which occurs when a network 

memorizes the training data but not learn to generalize new inputs. 

In order to evaluate the performance of the developed ANN models quantitatively and verify 

whether there is any underlying trend in performance of ANN models, statistical analysis 

involving mean squared error were conducted. MSE provides information on the short-term 
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performance which is a measure of the variation of predicated values around the measured 

data. The lower the MSE, the more accurate is the estimation. The expressions for the 

aforementioned statistical parameter is:  

 
n 2

p i
i=1

1
MSE= I -I

n
  

where Ipdenotes the predicted power of SAG Mill motor in MW, 

Ii denotes the measured power of SAG Mill motor in MW, and  

n denotes the number of observations.  

On the other hand, regression is a statistical analysis assessing the correlation between two 

variables. The regression line equation can be written as  

y a bx   

Slope:  

  

 
2

2

N XY X Y
b

N X X

  


 
 

Intercept: 

 Y-b X

N
a

 
  

where N = Number of data samples 

X = first group   

Y = second group and regression coefficient, 

 

   
2 2

X Y
XY

NR = 

X Y
X Y

N N

 


   
   
  
  

 

 

R=1 represents close relationship and R=0 represents random relationship 

 

 

 

4.8     Programming the Neural Network Model 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.8) 
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MATLAB is a numerical computing environment and also a programming language. It 

allows easy matrix manipulation, plotting of functions and data, implementation of 

algorithms, creating user interfaces and interfacing with programs in other languages. The 

Deep Learning Toolbox (formerly Neural Network Toolbox) provides a framework for 

designing and implementing deep neural networks with algorithms, pretrained models, and 

apps. Apps and plots help you visualize activations, edit network architectures, and monitor 

training progress (The MathWorks, 2019). 

In this work MATLAB software (R2017a) is used to write script files for developing feed-

forward ANN models and performance functions for calculating the model performance 

error statistics such as MSE. Fig. 4.11 shows the procedural steps to develop the ANN 

models. The FFNN program starts by reading data from an Excel file (Training1.xlsx). 

“xlsread” function is used to read the data specified in the Excel file.  

Data_Inputs = xlsread('Training1.xlsx'); 

MATLAB helps devise the FFNN model by using the built-in function “newff” which 

creates a feed-forward back-propagation network. The designer can specify the number of 

hidden layers, the neurons in each layer, the transfer function in each layer, the training 

function, the weights/bias learning function, and the performance function. Moreover, this 

command will automatically initialize the weights and biases, it also divides the input data 

into 70% for training, 15% for validation and 15% for testing. The function is called as 

follows: 

net = newff(P,T,S); 

where P is RxQ1 matrix of Q1 representative R-element input vectors,  

T is SNxQ2 matrix of Q2 representative SN-element target vectors, and  

S is sizes of N-1 hidden layers, S1 to S(N-1), default =0.  

 

The network is next configured as follows: 

net.trainparam.min_grad = 0.00000001; 

net.trainParam.epochs = 1000; 

net.trainParam.lr = 0.6; 

net.trainParam.max_fail =50; 

net.trainFcn='trainlm'; 
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net.performFcn = 'mse' 

 
where “trainParam.min_grad”: denotes the minimum performance gradient 

“trainParam.Ir”: denotes the learning rate 

“trainParam.epoch”: denotes the maximum number of epochs to train 

“trainParam.max_fail”: denotes the maximum validation failures 

“trainFcn”: denotes the function used to train the network. It can be set to the name 

of any training function (LM=’trainlm’; Levemberg-Marquardt back-propagation)  

“performFcn”: denotes network performance function. It can be set to the name of 

any performance function (Mean Square Error (MSE). MSE is the average squared 

error between network outputs, O and target outputs). 

The FFNN network is trained using the “trainFcn” and “trainParam” train functions. The 

trained network is then saved in MATLAB by calling the function 

net1 = train(net,P,T) 

“net1” is a variable name which can be changed according to the network train function and 

configuration in order to yield a meaningful name.  

When the training is complete, the network performance should be checked. Therefore, 

unseen data (testing1) will be exposed to the network. The testing simulation process is 

called with the statement:  

a = sim(net1, P); % simulate network 

Fig. 4.10 shows screen captions of the FFNN ANN training window obtained using the 

“nntraintool” GUI toolbox in MATLAB.  
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Fig. 4.10 FFNN Network Training Window 

 

 

 

 

 

 

 

Fig. 4.11 shows flowchart for developing Feed – Forward networks using MATLAB.  
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Fig. 4.11 Flowchart for Developing Feed – Forward Networks Using MATLAB 
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4.9     Implementation of Proposed Methodology 

The proposed methodology is implemented using a microprocessor to achieve online failure 

detection. In addition to the cost – effectiveness of microprocessor implementation, it is 

flexible and its re-configurability allows changes and refinements while in operation. 

Fig. 4.12 shows the block diagram of the proposed methodology implementation. The data 

acquisition system receives current, power and three winding temperature signals from the 

sensors connected to the power supply to the stator windings of the motor. Signal processing 

is performed by the microprocessor and the result further analyzed by a postprocessor 

decision-making block that simply states the motor condition in two possible values, i.e., 

MH (a healthy motor) and MF (a faulty motor), making the process online with no expert 

technician required for the diagnosis. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Overall Block Diagram of Implementation of Proposed Methodology 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Introduction 

The results of MATLAB simulations using Artificial Neural Network tool box of SAG Mill 

motor current, temperature and power data from Goldfields Damang Mine are presented 

here. 

5.2 Simulation Results using Feed-Forward Network 

In this section, results of using current and winding temperature readings representing three 

sides of the SAG Mill motor is used as the input to the network with Mill motor power as 

the target of the network. Two training algorithms i.e. Levenberg-Marquardt (LM) and 

Bayesian Regularization (BR) were used in training the network. Simulation results of 

Correlation coefficient for network performance (R), mean squared error (MSE) against 

epochs, Error Histograms and training state plot for model Validation are presented here. 

5.2.1 Simulation Results of FFNN Using Levenberg-Marquardt Training Algorithm 

 

Fig. 5.1 Correlation Coefficient for Network Performance, R (LM) 
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Fig. 5.2 Mean Squared Error (MSE) against Epochs (LM) 

Fig. 5.3 Error Histogram (LM) 
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Fig. 5.4 Training State Plot for Model Validation (LM) 

5.2.2 Simulation Results of FFNN Using Bayesian Regularization Training Algorithm 

 

Fig. 5.5 Correlation Coefficient for Network Performance, R (BR) 
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Fig. 5.6 Mean Squared Error (MSE) against Epochs (BR) 

 

Fig. 5.7 Error Histogram (BR) 
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Fig. 5.8 Training State Plot for Model Validation 

5.3 Discussion of Simulation Results  

This section presents discussions of the MATLAB simulated results using FFNN presented 

in Section 5.2. Table 5.1 shows the computed values of mean squared error (mse) and 

correlation coefficient of network performance, R. It shows values of mse and R values for 

different number of data samples for training, validation and testing of the generated FFNN. 

The data samples range from 100, 200, 300, 400 and 500. 

Table 5.1 Statistical Error Parameters of Developed FFNN Models for Different Data 

     Sample Size 

Number 

of Data 

Samples 

Levenberg - Marquardt Algorithm Bayesian Regularisation Algorithm 

A/F – LOGSIG A/F – TANSIG A/F - LOGSIG A/F - TANSIG 

MSE R MSE R MSE R MSE R 

100 1.48E-04 0.99724 2.48E-04 0.99842 2.55E-04 0.99702 2.32E-04 0.99668 

200 1.03E-04 0.99894 2.76E-04 0.99751 1.87E-04 0.99812 1.67E-04 0.99843 

300 1.33E-04 0.99904 1.74E-04 0.99911 3.70E-04 0.99831 3.03E-04 0.99701 

400 8.93E-04 0.99565 4.46E-04 0.99685 5.50E-03 0.9755 5.41E-04 0.99738 

500 0.0064 0.96889 6.40E-03 0.96977 6.50E-03 0.96807 6.40E-03 0.96863 
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In this study, the network was decided to consist of one hidden layer with 10 neurons. The 

criterion R and MSE were selected to evaluate the networks to find the optimum solution. 

The complexity and size of the network was also an important consideration and therefore 

smaller ANN’s had to be selected. A regression analysis between the network response and 

the corresponding targets was performed to investigate the network response in more detail. 

Thus Levenberg – Marquardt (LM) and Bayesian Regularisation (BR) were selected. The 

R-values in Table 5.1 represent the correlation coefficient between the outputs and targets. 

The R-values did not increase beyond 10 neurons in the hidden layer. Consequently, the 

network with 10 neurons in the hidden layer would be considered satisfactory. From all the 

networks trained, few ones could provide the low error condition, from which the simplest 

network was chosen. The results showed that the training algorithm of Levenberg-

Marquardt was sufficient for predicting SAG Mill motor failures. There is a high correlation 

between the predicted values by the ANN model and the measured values collected from 

normal real time running of 5.8 MW, 11 kV SAG Mill motor, which imply that the model 

succeeded in prediction of SAG Mill motor failures. 

It is also observed in Fig. 5.1 and Fig. 5.5 that the ANN provided the best accuracy in 

modelling induction motor failures with correlation coefficients of 0.999 and 0.998 for 

Levenberg-Marquardt and Bayesian Regularisation respectively. Generally, the artificial 

neural network offers the advantage of being fast, accurate and reliable in the prediction or 

approximation affairs, especially when numerical and mathematical methods fail. There is 

also a significant simplicity in using ANN due to its power to deal with multivariate and 

complicated problems. 

The measured values collected from the real time, on load running of the 5.8 MW, 11 kV 

SAG Mill motor showed some linearity between the current, temperatures and the power. 

The power of the SAG Mill motor at nominal load ranges from 4 MW – 5.6 MW with the 

current and temperatures reading 300 A – 349 A and 80ºC - 109ºC respectively. 

From Table 5.1, it can be seen that the artificial neural network showed good R and MSE 

values when data samples of 300 was used. This was the same for Levenberg-Marquardt 

and Bayesian Regularisation, while using Log-sigmoid and tan-sigmoid as transfer 

functions for the hidden layer. The results for R-values for data samples of 300 were 

0.99904, 0.99911, 0.99831 and 0.99701 respectively, while MSE values were 1.33E-04, 

1.74E-04, 3.70E-04 and 3.03E-04 respectively. This simulation was repeated for data 
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samples of 100, 200, 400 and 500. It was observed that increasing the number of data 

samples resulted in bad R-values. Data samples of 100 gave better results than 200, 200 

gave better results than 400 and 400 than 500 in that order.  

Training stops after 251 iterations. At this position, performance of network, 150×10-4, 

gradient decrease into 3.55×10-4 and also value of mu 10-7 is shown in Fig.5.4. Validation 

performance reach minimum at epoch 201. Training continues for more 51 iterations and 

stops at epoch 251. Gradient and mu increases gradually as shown in Fig. 5.4 

From error histogram shown in Fig. 5.3, most error occurs between -0.04 to +0.05. Errors 

also occur at 0.065, 0.087 and 0.094 of training data on histogram also represents the point 

for which output 4.5 and target value 4.6, output 4.8 – target 4.9 and output 5.1- target 5.2 

on training correlation coefficient for network performance plot shown in Fig. 5.1 

5.4 Discussions on Using the Network for Prediction 

Two matrices of 5×669 and 5×31 constructed by power, current and three winding 

temperature values normalized sample data of SAG Mill motor at healthy and faulty on load 

condition respectively as input are used to analyze network performance. Among them, 

70%, 15% and rest data are used as training, cross validation and testing data. The target of 

the network is 1 or 0, with 1 indicating healthy motor condition and 0 indicating faulty motor 

condition. For any output value between 1 and 0 represents the probability of fault condition, 

in training the network, there was 1 hidden layer with 10 neurons and tansigmoid as the 

transfer function. The output layer had 1 neuron and the transfer function was logsigmoid.  

Fresh data samples consisting of 5×169 and 5×10 healthy and faulty on load power, current 

and three winding temperatures of the SAG Mill motor were fed into the network to detect 

health. Table 5.2, Fig. 5.9 and Fig. 5.10 show detection efficiency and confusion plot of 

network using Levenberg-Marquardt and Bayesian Regularization algorithm respectively. 

Out of the 169 healthy data samples, using Levenberg-Marquardt training algorithm could 

rightly predict them as true detection (TD) and false detection (FD) of 0. The network could 

also predict a TD of 10 out of 10 faulty data fed into it. This shows the network with 

Levenberg-Marquardt training algorithm can detect healthy and faulty conditions of the 

SAG Mill motor with 100% accuracy. Bayesian Regularization training algorithm could 

detect 169 healthy samples as TD and 9 out of 10 faulty data samples as TD and 1 FD, 
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therefore network with Bayesian Regularization could detect healthy and faulty conditions 

of the SAG Mill motor with 99.4% efficiency. 

  

Fig. 5.9 Plot of Confusion Matrix Using Levenberg-marquardt Algorithm 

 

Table 5.2 Detection Accuracy 

Total Number Data 

Samples 

Healthy Faulty 
Accuracy 

TD FD TD FD 

Levenberg-Marquardt 169/169 0/169 10/10 0/10 100% 

Bayesian Regularization  169/169 0/169 9/10 1/10 99.4% 
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Fig. 5.10 Plot of Confusion Matrix Using Bayesian Regularization Algorithm 

5.5 Summary of Findings 

The findings as regards simulations of data samples measured on 5.8 MW, 11 kV SAG Mill 

motor at the Goldfields Ghana Ltd, Damang Mine from 6th January, 2019 to 8th April, 2019 

are be summarised as follows: 

i. A smaller Feed-Forward neural network size of 4-10-1 provides optimum 

performance for prediction of SAG Mill motor failures; 

ii. Though Bayesian Regularisation training algorithm has not been extensively 

used in failure prediction of three phase slip ring induction motor as compared 

to Levenberg-Marquardt, yet it gives acceptable results in terms of accuracy but 

at a relatively low efficiency; 
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iii. Data samples of 100, 200, 300, 400 and 500 were used in this work. Data samples 

of 300 with Levenberg-Marquardt training algorithm and tansigmoid activation 

function of the hidden layer provided the best results for R-Values and MSE; 

iv. Morsalin et al (2014), used similar network (2-10-1) on 0.5 hp, 220 – 240 V, 50 

Hz single phase induction motor on no load to predict inter-turn failure and 

achieved R-value of 0.9994 but this work used a network (4-10-1) and achieved 

R-value of 0.99911; 

v. The network stopped training at 251 iteration, network performance of 150×10-

4 at this position. Gradient decreases into 3.55×10-4 and mu 10-7. Validation 

performance reaches minimum at epoch 201; and 

vi. The network with Levenberg-Marquardt training algorithm can detect healthy 

and faulty conditions of the SAG Mill motor with 100% accuracy and 99.4% 

using Bayesian Regularization as the training algorithm. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

From the results and discussions, the following conclusions can be drawn: 

i. The proposed Feed – Forward Neural Network with Levenberg-Marquardt 

training algorithm is capable of predicting imminent faults of on load 5.8 MW, 

11 kV SAG Mill three phase slip ring induction motor at Goldfields Ghana Ltd., 

Damang mine with 100% accuracy; 

ii. Correlation coefficient of network performance, R and Mean squared error, MSE 

proved to be very good statistical tools for artificial neural network model 

analysis; and 

iii. Bayesian Regularisation training algorithm proved to be a good alternative to 

Levenberg-Marquardt algorithm in failure prediction networks. 

6.2 Recommendations 

It is recommended that: 

i. With relevant data on speed and vibration of SAG Mill Motor, fault detection 

range and accuracy of detection of network can be increased. 

ii. Calculated increase in hidden layer size beyond the applied size of 10 will 

increase the power of the network but care must be taken to prevent overfitting ; 

iii. MATLAB/SIMULINK and Finite Element Method Magnetics (FEMM) could 

be considered in generating signals for this research since it will be very difficult 

to set up a prototype of three phase 5.8 MW, 11 kV slip ring induction motor 

taking into consideration size and cost,; and 

iv. Wavelet techniques and Fuzzy logic could be used to find exact location of fault, 

and identification and evaluation of fault severity. 

6.3 Research Contributions 

i. Bayesian Regularisation training algorithm showed to be a good alternative to 

Levenberg-Marquardt algorithm in failure prediction networks. 
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APPENDICES 

APPENDIX A 

RAW DATA OF SAG MILL MOTOR 

Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

6/1/2019 10:26:29 AM 5.324 337.125 92.355 94.208 91.888 

6/1/2019 12:57:22 PM 4.436 280.121 93.648 95.184 92.999 

6/1/2019 3:28:15 PM 5.246 331.270 95.820 97.483 95.320 

6/1/2019 5:59:08 PM 5.058 321.761 100.747 102.679 100.297 

6/1/2019 8:30:01 PM 5.272 332.942 97.556 99.639 97.172 

6/1/2019 11:00:54 PM 5.395 339.629 95.430 97.512 95.064 

7/1/2019 1:31:47 AM 5.386 339.323 94.343 96.431 94.003 

7/1/2019 4:02:40 AM 5.454 342.538 95.026 97.065 94.640 

7/1/2019 6:33:33 AM 5.472 343.427 95.728 97.772 95.362 

7/1/2019 9:04:26 AM 5.246 331.535 94.016 96.081 93.758 

7/1/2019 11:35:19 AM 5.331 336.167 97.145 99.088 96.728 

7/1/2019 2:06:12 PM 5.135 326.394 97.921 99.836 97.554 

7/1/2019 4:37:05 PM 5.381 339.135 100.630 102.554 100.072 

7/1/2019 7:07:58 PM 5.288 334.742 98.671 100.715 98.217 

7/1/2019 9:38:51 PM 5.398 340.527 96.553 98.580 96.145 

8/1/2019 12:09:44 AM 5.445 342.527 95.485 97.540 95.109 

8/1/2019 2:40:37 AM 5.255 332.831 92.630 94.704 92.383 

8/1/2019 5:11:30 AM 5.415 340.715 92.727 94.763 92.419 

8/1/2019 7:42:23 AM 5.365 338.574 91.274 93.301 91.005 

7/1/2019 9:04:26 AM 5.612 353.611 94.436 96.670 94.224 

9/1/2019 11:22:06 AM 5.495 344.908 97.572 99.534 97.108 

9/1/2019 1:52:59 PM 5.470 343.515 102.447 104.367 101.882 

9/1/2019 4:23:52 PM 5.354 337.338 104.434 106.312 103.858 

9/1/2019 6:54:45 PM 5.573 348.572 105.745 107.680 105.146 

9/1/2019 9:25:38 PM 5.563 348.210 102.703 104.819 102.211 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

9/1/2019 11:56:31 PM 5.504 345.392 98.818 100.958 98.395 

10/1/2019 2:27:24 AM 5.382 339.273 95.519 97.588 95.205 

10/1/2019 4:58:17 AM 4.577 289.705 86.487 88.096 85.938 

10/1/2019 7:29:10 AM 5.324 335.837 89.512 91.432 89.202 

10/1/2019 10:00:03 AM 5.168 327.747 91.957 93.835 91.665 

10/1/2019 12:30:56 PM 5.094 324.025 96.367 98.235 96.007 

10/1/2019 3:01:49 PM 5.412 341.031 102.322 104.082 101.724 

10/1/2019 5:32:42 PM 5.396 340.403 104.988 106.861 104.373 

10/1/2019 8:03:35 PM 5.421 341.390 102.711 104.725 102.191 

10/1/2019 10:34:28 PM 5.295 335.216 97.654 99.688 97.283 

11/1/2019 1:05:21 AM 5.395 340.210 95.816 97.834 95.473 

11/1/2019 3:36:14 AM 5.390 340.247 95.261 97.351 94.916 

11/1/2019 6:07:07 AM 5.291 334.604 93.591 95.623 93.342 

11/1/2019 8:38:00 AM 5.255 332.731 92.659 94.645 92.464 

11/1/2019 11:08:53 AM 5.302 333.652 95.351 97.206 95.001 

11/1/2019 1:39:46 PM 4.388 277.199 93.437 94.967 92.984 

11/1/2019 4:10:39 PM 5.160 325.423 100.456 102.329 100.186 

11/1/2019 6:41:32 PM 5.128 323.820 100.167 102.194 99.892 

11/1/2019 9:12:25 PM 5.252 330.693 98.484 100.536 98.294 

11/1/2019 11:43:18 PM 5.311 333.773 97.616 99.622 97.430 

12/1/2019 2:14:11 AM 5.292 332.758 95.651 97.685 95.472 

12/1/2019 4:45:04 AM 5.383 337.912 96.465 98.531 96.219 

12/1/2019 7:15:57 AM 5.458 341.772 96.351 98.342 96.110 

12/1/2019 9:46:50 AM 5.174 326.857 95.030 97.094 94.901 

12/1/2019 12:17:43 PM 5.276 332.244 96.230 98.173 95.994 

12/1/2019 2:48:36 PM 5.200 328.273 98.631 100.602 98.424 

12/1/2019 5:19:29 PM 5.314 333.787 100.244 102.185 99.935 

12/1/2019 7:50:22 PM 5.337 335.122 99.272 101.323 99.043 

12/1/2019 10:21:15 PM 5.294 332.527 96.855 98.895 96.705 

13/1/2019 12:52:08 AM 5.301 332.832 95.618 97.670 95.475 

13/1/2019 3:23:01 AM 5.239 329.831 93.518 95.608 93.433 

13/1/2019 5:53:54 AM 5.326 334.356 93.604 95.683 93.473 

13/1/2019 8:24:47 AM 5.393 337.734 93.624 95.688 93.475 

13/1/2019 10:55:40 AM 5.358 336.123 97.014 98.958 96.766 

13/1/2019 1:26:33 PM 5.293 333.057 100.740 102.653 100.408 

13/1/2019 3:57:26 PM 5.309 333.537 103.840 105.700 103.433 

13/1/2019 6:28:19 PM 5.314 333.635 104.212 106.152 103.842 

13/1/2019 8:59:12 PM 5.397 337.998 100.826 102.918 100.558 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

13/1/2019 11:30:05 PM 5.235 329.565 96.776 98.866 96.616 

14/1/2019 2:00:58 AM 5.290 332.406 95.724 97.778 95.547 

14/1/2019 4:31:51 AM 5.231 329.331 94.153 96.224 94.050 

14/1/2019 7:02:44 AM 5.293 332.787 94.041 96.117 93.909 

14/1/2019 9:33:37 AM 5.263 331.366 94.779 96.813 94.651 

14/1/2019 12:04:30 PM 5.484 342.780 99.019 100.945 98.692 

14/1/2019 2:35:23 PM 5.229 329.737 100.777 102.712 100.441 

14/1/2019 5:06:16 PM 5.287 332.514 104.131 105.959 103.691 

14/1/2019 7:37:09 PM 4.944 314.751 98.999 101.066 98.870 

14/1/2019 10:08:02 PM 5.306 334.430 96.665 98.693 96.471 

15/1/2019 12:38:55 AM 5.384 338.315 96.357 98.374 96.146 

15/1/2019 3:09:48 AM 5.430 340.831 96.589 98.607 96.347 

15/1/2019 5:40:41 AM 5.056 321.311 93.571 95.617 93.511 

15/1/2019 8:11:34 AM 5.370 337.653 94.787 96.790 94.582 

15/1/2019 10:42:27 AM 5.335 335.170 97.039 99.003 96.818 

15/1/2019 1:13:20 PM 5.396 338.847 101.113 103.023 100.743 

15/1/2019 3:44:13 PM 5.263 332.005 102.679 104.558 102.340 

15/1/2019 6:15:06 PM 5.314 334.699 102.681 104.639 102.378 

15/1/2019 8:45:59 PM 5.264 332.091 98.957 101.046 98.728 

15/1/2019 11:16:52 PM 5.289 333.384 96.907 98.937 96.720 

16/1/2019 1:47:45 AM 5.303 334.246 95.399 97.423 95.239 

16/1/2019 4:18:38 AM 5.329 335.534 95.076 97.117 94.904 

16/1/2019 6:49:31 AM 5.460 342.470 96.823 98.869 96.562 

16/1/2019 9:20:24 AM 4.760 298.247 96.113 97.846 95.680 

16/1/2019 11:51:17 AM 5.121 319.788 93.732 95.440 93.355 

16/1/2019 2:22:10 PM 5.347 336.404 101.815 103.691 101.398 

16/1/2019 4:53:03 PM 5.280 333.112 104.479 106.382 104.047 

16/1/2019 7:23:56 PM 5.408 340.045 101.916 103.901 101.539 

16/1/2019 9:54:49 PM 5.450 341.934 97.708 99.845 97.492 

17/1/2019 12:25:42 AM 5.522 345.572 95.041 97.166 94.791 

17/1/2019 2:56:35 AM 4.763 299.713 89.432 91.193 88.989 

17/1/2019 5:27:28 AM 5.439 341.179 90.533 92.476 90.314 

17/1/2019 7:58:21 AM 5.485 343.572 92.917 94.902 92.698 

17/1/2019 10:29:14 AM 5.559 347.468 96.808 98.718 96.434 

17/1/2019 1:00:07 PM 5.614 350.690 102.866 104.743 102.397 

17/1/2019 3:31:00 PM 5.395 339.057 104.792 106.708 104.394 

 

 



114 

Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

17/1/2019 6:01:53 PM 5.504 344.635 105.423 107.390 105.037 

17/1/2019 8:32:46 PM 5.485 343.151 101.330 103.420 101.017 

17/1/2019 11:03:39 PM 5.494 343.270 99.048 101.122 98.785 

18/1/2019 1:34:32 AM 5.460 341.449 97.424 99.528 97.191 

18/1/2019 4:05:25 AM 5.481 342.719 95.999 98.056 95.767 

18/1/2019 6:36:18 AM 5.484 342.864 95.564 97.585 95.351 

18/1/2019 9:07:11 AM 5.344 335.599 94.565 96.640 94.371 

18/1/2019 11:38:04 AM 5.449 340.944 97.338 99.289 97.040 

18/1/2019 2:08:57 PM 5.528 345.020 102.001 103.901 101.565 

18/1/2019 4:39:50 PM 5.326 334.506 103.796 105.738 103.366 

18/1/2019 7:10:43 PM 5.453 341.541 101.456 103.551 101.127 

18/1/2019 9:41:36 PM 5.398 338.798 99.620 101.708 99.332 

19/1/2019 12:12:29 AM 5.517 345.083 97.993 100.066 97.696 

19/1/2019 2:43:22 AM 5.391 338.277 95.740 97.837 95.531 

19/1/2019 5:14:15 AM 5.120 324.146 93.320 95.413 93.227 

19/1/2019 7:45:08 AM 5.300 333.522 92.928 94.974 92.779 

19/1/2019 10:16:01 AM 4.270 270.893 87.487 89.009 86.965 

19/1/2019 12:46:54 PM 5.638 350.346 97.372 99.052 96.923 

19/1/2019 3:17:47 PM 5.518 344.053 105.452 107.232 104.932 

19/1/2019 5:48:40 PM 5.532 345.849 107.034 108.935 106.548 

19/1/2019 8:19:33 PM 5.520 345.108 102.926 104.939 102.614 

19/1/2019 10:50:26 PM 5.449 341.133 98.154 100.203 97.903 

20/1/2019 1:21:19 AM 5.491 343.635 97.764 99.799 97.507 

20/1/2019 3:52:12 AM 5.439 340.736 96.143 98.141 95.911 

20/1/2019 6:23:05 AM 5.519 344.969 97.338 99.360 97.077 

20/1/2019 8:53:58 AM 5.440 340.924 97.589 99.598 97.352 

20/1/2019 11:24:51 AM 5.374 337.667 98.885 100.839 98.591 

20/1/2019 1:55:44 PM 5.451 342.079 102.074 103.924 101.654 

20/1/2019 4:26:37 PM 5.388 338.774 104.114 105.982 103.697 

20/1/2019 6:57:30 PM 5.480 343.624 104.240 106.126 103.773 

20/1/2019 9:28:23 PM 5.459 342.632 100.782 102.828 100.473 

20/1/2019 11:59:16 PM 5.590 349.375 98.954 100.955 98.648 

21/1/2019 2:30:09 AM 5.607 350.249 98.317 100.353 98.055 

21/1/2019 5:01:02 AM 5.522 345.502 96.521 98.534 96.281 

21/1/2019 7:31:55 AM 5.570 348.152 96.577 98.574 96.315 

21/1/2019 10:02:48 AM 5.437 341.189 96.536 98.524 96.277 

21/1/2019 12:33:41 PM 5.555 347.419 100.411 102.267 99.983 

21/1/2019 3:04:34 PM 5.495 343.977 104.626 106.432 104.131 

21/1/2019 5:35:27 PM 5.455 342.203 106.627 108.359 106.078 

21/1/2019 8:06:20 PM 5.445 341.816 103.983 105.996 103.603 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

21/1/2019 10:37:13 PM 5.360 337.603 97.735 99.810 97.486 

22/1/2019 1:08:06 AM 5.401 339.662 95.933 97.978 95.749 

22/1/2019 3:38:59 AM 4.123 261.343 92.424 94.095 91.764 

22/1/2019 6:09:52 AM 4.511 281.711 68.380 69.368 67.941 

22/1/2019 8:40:45 AM 5.381 337.332 91.038 92.862 90.830 

22/1/2019 11:11:38 AM 5.458 341.905 97.197 99.064 96.864 

22/1/2019 1:42:31 PM 5.535 346.048 102.307 104.152 101.837 

22/1/2019 4:13:24 PM 5.573 348.065 107.261 109.028 106.677 

22/1/2019 6:44:17 PM 5.350 336.271 105.609 107.584 105.206 

22/1/2019 9:15:10 PM 5.343 336.075 99.488 101.547 99.256 

22/1/2019 11:46:03 PM 5.533 346.261 98.394 100.444 98.112 

23/1/2019 2:16:56 AM 5.594 349.453 98.367 100.434 98.080 

23/1/2019 4:47:49 AM 5.592 349.258 98.653 100.724 98.301 

23/1/2019 7:18:42 AM 5.380 338.352 96.659 98.731 96.508 

23/1/2019 9:49:35 AM 5.436 341.318 96.971 98.960 96.722 

23/1/2019 12:20:28 PM 5.518 345.013 100.992 102.920 100.613 

23/1/2019 2:51:21 PM 5.371 337.257 103.742 105.587 103.339 

23/1/2019 5:22:14 PM 5.482 343.570 106.883 108.732 106.354 

23/1/2019 7:53:07 PM 5.508 344.968 104.726 106.710 104.336 

23/1/2019 10:24:00 PM 5.479 343.293 100.909 102.990 100.598 

24/1/2019 12:54:53 AM 5.551 346.933 99.118 101.228 98.862 

24/1/2019 3:25:46 AM 5.582 348.691 98.960 101.036 98.657 

24/1/2019 5:56:39 AM 5.507 345.169 98.221 100.278 97.959 

24/1/2019 8:27:32 AM 5.464 342.995 97.290 99.350 97.019 

24/1/2019 10:58:25 AM 1.747 119.284 90.106 91.183 89.420 

24/1/2019 1:29:18 PM -0.065 8.884 75.351 76.529 75.462 

24/1/2019 4:00:11 PM -0.065 8.962 67.131 68.522 68.141 

24/1/2019 6:31:04 PM -0.065 8.902 61.383 62.842 62.803 

24/1/2019 9:01:57 PM -0.065 8.981 56.445 57.736 57.677 

24/1/2019 11:32:50 PM -0.065 8.592 52.889 54.045 53.992 

25/1/2019 2:03:43 AM -0.065 8.464 49.909 51.051 50.884 

25/1/2019 4:34:36 AM -0.065 8.751 47.195 48.416 48.091 

25/1/2019 7:05:29 AM 0.517 37.170 44.843 46.103 45.628 

25/1/2019 9:36:22 AM -0.065 8.016 42.762 44.036 43.487 

25/1/2019 12:07:15 PM -0.065 8.225 40.544 41.751 41.261 

25/1/2019 2:38:08 PM 0.530 42.103 37.779 38.787 38.810 

25/1/2019 5:09:01 PM 5.409 338.865 81.157 82.532 80.939 

25/1/2019 7:39:54 PM 5.516 344.753 91.810 94.063 91.710 

25/1/2019 10:10:47 PM 5.390 337.968 88.536 90.699 88.493 

26/1/2019 12:41:40 AM 5.426 339.917 88.854 90.965 88.793 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

26/1/2019 3:12:33 AM 5.538 345.806 90.156 92.280 90.028 

26/1/2019 5:43:26 AM 5.494 343.474 89.801 91.915 89.698 

26/1/2019 8:14:19 AM 5.467 342.098 90.309 92.395 90.239 

26/1/2019 10:45:12 AM 5.408 338.806 92.777 94.889 92.653 

26/1/2019 1:16:05 PM 5.310 334.061 95.470 97.501 95.265 

26/1/2019 3:46:58 PM 5.464 342.334 100.755 102.678 100.353 

26/1/2019 6:17:51 PM 5.484 343.378 103.716 105.725 103.301 

26/1/2019 8:48:44 PM 5.411 339.824 96.960 99.176 96.792 

26/1/2019 11:19:37 PM 5.490 343.874 94.870 97.097 94.744 

27/1/2019 1:50:30 AM 5.433 340.808 92.962 95.183 92.938 

27/1/2019 4:21:23 AM 5.513 344.965 93.405 95.672 93.300 

27/1/2019 6:52:16 AM 5.576 348.248 93.816 96.071 93.709 

27/1/2019 9:23:09 AM 5.531 345.620 93.365 95.533 93.252 

27/1/2019 11:54:02 AM 5.465 342.374 95.368 97.482 95.189 

27/1/2019 2:24:55 PM 5.519 345.330 100.171 102.171 99.810 

27/1/2019 4:55:48 PM 5.493 343.839 102.271 104.223 101.872 

27/1/2019 7:26:41 PM 5.559 346.992 100.666 102.806 100.339 

27/1/2019 9:57:34 PM 5.589 349.173 96.881 99.079 96.712 

28/1/2019 12:28:27 AM 5.558 347.694 94.334 96.614 94.225 

28/1/2019 2:59:20 AM 5.466 342.884 92.703 94.867 92.623 

28/1/2019 5:30:13 AM 5.532 346.171 92.428 94.641 92.306 

28/1/2019 8:01:06 AM 5.483 343.028 92.724 94.911 92.671 

28/1/2019 10:31:59 AM 5.522 345.064 93.108 95.263 93.009 

28/1/2019 1:02:52 PM 5.536 346.022 97.293 99.362 97.039 

28/1/2019 3:33:45 PM 5.282 332.883 99.314 101.401 99.131 

28/1/2019 6:04:38 PM 5.516 345.552 100.003 102.056 99.680 

28/1/2019 8:35:31 PM 5.350 336.950 96.435 98.648 96.337 

28/1/2019 11:06:24 PM 5.341 336.150 92.746 94.975 92.703 

29/1/2019 1:37:17 AM 5.371 337.839 91.048 93.241 91.034 

29/1/2019 4:08:10 AM 5.396 339.341 90.376 92.583 90.356 

29/1/2019 6:39:03 AM 5.471 342.813 90.406 92.572 90.414 

29/1/2019 9:09:56 AM 5.434 340.548 90.682 92.866 90.682 

29/1/2019 11:40:49 AM 5.523 345.485 93.367 95.478 93.231 

29/1/2019 2:11:42 PM 5.467 342.400 98.090 100.132 97.830 

29/1/2019 4:42:35 PM 5.515 344.945 101.895 103.883 101.498 

29/1/2019 7:13:28 PM 5.486 343.688 101.096 103.229 100.784 

29/1/2019 9:44:21 PM 5.532 345.928 95.405 97.567 95.238 

30/1/2019 12:15:14 AM 5.548 347.136 94.052 96.220 93.899 

30/1/2019 2:46:07 AM 5.558 347.684 93.494 95.712 93.376 

30/1/2019 5:17:00 AM 5.556 347.351 93.270 95.424 93.142 

30/1/2019 7:47:53 AM 5.528 345.861 93.290 95.548 93.203 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

30/1/2019 10:18:46 AM 5.431 340.974 93.960 96.132 93.880 

30/1/2019 12:49:39 PM 5.538 346.271 98.024 100.040 97.761 

30/1/2019 3:20:32 PM 5.519 345.138 102.191 104.174 101.801 

30/1/2019 5:51:25 PM 5.548 347.121 103.978 106.045 103.571 

30/1/2019 8:22:18 PM 5.442 341.618 97.625 99.886 97.489 

30/1/2019 10:53:11 PM 5.468 343.168 94.748 96.950 94.668 

31/1/2019 1:24:04 AM 5.541 346.649 94.257 96.496 94.163 

31/1/2019 3:54:57 AM 5.533 346.410 93.341 95.588 93.283 

31/1/2019 6:25:50 AM 5.496 344.605 92.625 94.893 92.528 

31/1/2019 8:56:43 AM 5.501 344.850 91.666 93.852 91.618 

31/1/2019 11:27:36 AM 5.240 330.611 93.187 95.335 93.178 

31/1/2019 1:58:29 PM 5.513 345.318 98.016 100.042 97.736 

31/1/2019 4:29:22 PM 5.477 343.519 102.711 104.686 102.324 

31/1/2019 7:00:15 PM 5.132 320.134 100.460 102.415 100.092 

31/1/2019 9:31:08 PM 4.934 308.113 86.770 88.832 86.656 

1/2/2019 12:02:01 AM 5.330 333.116 87.955 90.184 87.992 

1/2/2019 2:32:54 AM 5.409 337.062 88.442 90.666 88.422 

1/2/2019 5:03:47 AM 5.359 334.579 87.729 89.971 87.785 

1/2/2019 7:34:40 AM 5.217 327.456 86.827 89.096 86.926 

1/2/2019 10:05:33 AM 5.308 331.909 88.085 90.210 88.104 

1/2/2019 12:36:26 PM 5.571 345.385 95.443 97.567 95.251 

1/2/2019 3:07:19 PM 5.410 337.165 98.509 100.613 98.333 

1/2/2019 5:38:12 PM 5.435 338.412 98.092 100.359 97.980 

1/2/2019 8:09:05 PM 5.449 339.490 95.016 97.330 95.009 

1/2/2019 10:39:58 PM 5.469 340.793 93.380 95.690 93.402 

2/2/2019 1:10:51 AM 5.355 335.381 92.543 94.855 92.589 

2/2/2019 3:41:44 AM 5.223 328.245 90.113 92.399 90.260 

2/2/2019 6:12:37 AM 5.375 336.341 90.770 93.028 90.856 

2/2/2019 8:43:30 AM 5.408 337.806 91.028 93.242 91.080 

2/2/2019 11:14:23 AM 5.041 318.952 92.065 94.304 92.187 

2/2/2019 1:45:16 PM 4.812 307.185 91.258 93.403 91.376 

2/2/2019 4:16:09 PM 4.787 305.757 88.799 91.104 89.061 

2/2/2019 6:47:02 PM 4.810 306.815 83.368 85.689 83.678 

2/2/2019 9:17:55 PM 4.750 303.413 82.919 85.246 83.276 

2/2/2019 11:48:48 PM 4.951 314.020 83.461 85.812 83.792 

3/2/2019 2:19:41 AM 5.062 319.612 84.334 86.684 84.597 

3/2/2019 4:50:34 AM 5.214 327.139 85.773 88.007 85.938 

3/2/2019 7:21:27 AM 5.457 339.449 88.514 90.790 88.606 

3/2/2019 9:52:20 AM 5.280 330.949 89.711 91.940 89.756 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

3/2/2019 12:23:13 PM 4.740 303.034 88.013 90.150 88.234 

3/2/2019 2:54:06 PM 4.758 304.409 90.871 92.909 90.985 

3/2/2019 5:24:59 PM 4.868 310.103 94.242 96.341 94.272 

3/2/2019 7:55:52 PM 4.856 309.542 92.250 94.478 92.390 

3/2/2019 10:26:45 PM 4.849 309.255 88.715 90.954 88.939 

4/2/2019 12:57:38 AM 4.987 316.042 87.314 89.537 87.511 

4/2/2019 3:28:31 AM 5.167 325.535 87.779 90.047 87.901 

4/2/2019 5:59:24 AM 5.171 325.746 88.140 90.433 88.341 

4/2/2019 8:30:17 AM 5.186 326.652 88.462 90.649 88.595 

4/2/2019 11:01:10 AM 4.954 314.622 88.420 90.626 88.637 

4/2/2019 1:32:03 PM 4.805 306.785 90.898 92.998 91.043 

4/2/2019 4:02:56 PM 4.757 304.219 93.020 95.112 93.098 

4/2/2019 6:33:49 PM 4.624 297.343 90.559 92.752 90.765 

4/2/2019 9:04:42 PM 4.778 305.633 88.304 90.489 88.548 

4/2/2019 11:35:35 PM 4.716 302.106 86.528 88.849 86.868 

5/2/2019 2:06:28 AM 4.822 307.879 85.537 87.762 85.853 

5/2/2019 4:37:21 AM 4.820 307.764 85.095 87.337 85.442 

5/2/2019 7:08:14 AM 4.865 309.799 85.961 88.222 86.255 

5/2/2019 9:39:07 AM 4.915 312.640 86.235 88.427 86.468 

5/2/2019 12:10:00 PM 4.915 312.177 88.205 90.441 88.443 

5/2/2019 2:40:53 PM 5.359 334.805 94.137 96.260 94.071 

5/2/2019 5:11:46 PM 5.375 335.951 98.082 100.214 97.900 

5/2/2019 7:42:39 PM 4.922 312.839 94.011 96.309 94.092 

5/2/2019 10:13:32 PM 4.871 310.021 88.685 90.933 88.913 

6/2/2019 12:44:25 AM 4.850 308.892 86.710 88.991 86.995 

6/2/2019 3:15:18 AM 4.919 312.523 85.821 88.131 86.141 

6/2/2019 5:46:11 AM 4.979 315.443 86.212 88.479 86.500 

6/2/2019 8:17:04 AM 5.056 319.424 86.328 88.598 86.602 

6/2/2019 10:47:57 AM 4.836 307.858 86.655 88.868 86.908 

6/2/2019 1:18:50 PM 4.664 299.147 87.948 90.053 88.181 

6/2/2019 3:49:43 PM 5.013 317.202 93.856 95.914 93.868 

6/2/2019 6:20:36 PM 4.974 315.411 94.136 96.396 94.195 

6/2/2019 8:51:29 PM 5.041 318.733 92.230 94.511 92.381 

6/2/2019 11:22:22 PM 4.866 310.028 88.711 91.052 89.016 

7/2/2019 1:53:15 AM 4.866 309.988 87.056 89.342 87.356 

7/2/2019 4:24:08 AM 4.867 310.360 86.639 88.848 86.965 

7/2/2019 6:55:01 AM 4.932 313.055 86.927 89.200 87.205 

7/2/2019 9:25:54 AM 4.816 307.546 85.941 88.176 86.243 

7/2/2019 11:56:47 AM 4.755 304.017 88.000 90.168 88.250 

7/2/2019 2:27:40 PM 4.900 311.441 92.599 94.705 92.714 

7/2/2019 4:58:33 PM 5.234 328.814 96.990 99.071 96.886 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

7/2/2019 7:29:26 PM 4.854 309.431 94.951 97.198 95.047 

7/2/2019 10:00:19 PM 4.966 315.355 89.713 91.975 89.950 

8/2/2019 12:31:12 AM 4.911 312.650 87.286 89.588 87.577 

8/2/2019 3:02:05 AM 5.157 324.970 89.062 91.297 89.225 

8/2/2019 5:32:58 AM 4.936 313.635 86.923 89.225 87.227 

8/2/2019 8:03:51 AM 5.174 325.787 88.087 90.329 88.279 

8/2/2019 10:34:44 AM 5.061 319.778 90.291 92.484 90.414 

8/2/2019 1:05:37 PM 5.368 335.575 96.083 98.150 95.972 

8/2/2019 3:36:30 PM 5.061 319.716 97.929 100.038 97.920 

8/2/2019 6:07:23 PM 5.596 347.469 102.844 104.943 102.540 

8/2/2019 8:38:16 PM 4.791 306.168 94.453 96.757 94.617 

8/2/2019 11:09:09 PM 4.923 312.958 90.546 92.837 90.796 

9/2/2019 1:40:02 AM 4.901 311.819 87.683 89.941 87.947 

9/2/2019 4:10:55 AM 4.839 308.720 86.273 88.539 86.566 

9/2/2019 6:41:48 AM 4.867 310.103 85.602 87.879 85.916 

9/2/2019 9:12:41 AM 4.971 314.739 86.752 88.946 86.972 

9/2/2019 11:43:34 AM 4.993 316.799 91.241 93.326 91.327 

9/2/2019 2:14:27 PM 4.996 316.390 95.589 97.647 95.573 

9/2/2019 4:45:20 PM 5.082 320.881 96.303 98.460 96.298 

9/2/2019 7:16:13 PM 5.035 318.383 89.321 91.675 89.541 

9/2/2019 9:47:06 PM 5.060 319.636 86.905 89.125 87.073 

10/2/2019 12:17:59 AM 4.881 310.553 86.052 88.351 86.337 

10/2/2019 2:48:52 AM 4.853 309.448 84.557 86.866 84.895 

10/2/2019 5:19:45 AM 4.980 315.649 84.993 87.292 85.295 

10/2/2019 7:50:38 AM 5.140 324.051 87.431 89.701 87.632 

10/2/2019 10:21:31 AM 4.919 312.753 87.610 89.810 87.854 

10/2/2019 12:52:24 PM 4.813 307.548 90.633 92.707 90.779 

10/2/2019 3:23:17 PM 4.705 301.496 93.833 95.913 93.926 

10/2/2019 5:54:10 PM 4.963 314.779 97.044 99.109 97.001 

10/2/2019 8:25:03 PM 4.799 306.698 92.565 94.825 92.710 

10/2/2019 10:55:56 PM 4.911 312.400 90.036 92.273 90.245 

11/2/2019 1:26:49 AM 4.927 313.307 87.897 90.113 88.111 

11/2/2019 3:57:42 AM 4.931 313.634 86.949 89.197 87.194 

11/2/2019 6:28:35 AM 4.968 315.297 86.918 89.183 87.187 

11/2/2019 8:59:28 AM 4.910 312.399 87.080 89.371 87.359 

11/2/2019 11:30:21 AM 5.296 332.167 91.647 93.767 91.674 

11/2/2019 2:01:14 PM 4.693 301.278 92.889 95.028 93.006 

11/2/2019 4:32:07 PM 3.996 257.018 79.211 80.629 79.190 

11/2/2019 7:03:00 PM 4.758 304.559 91.260 93.331 91.417 

11/2/2019 9:33:53 PM 4.802 306.521 88.849 91.119 89.093 

12/2/2019 12:04:46 AM 4.940 314.111 86.678 88.830 86.905 

12/2/2019 2:35:39 AM 4.973 315.632 86.246 88.533 86.525 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

12/2/2019 5:06:32 AM 5.087 321.369 85.972 88.299 86.242 

12/2/2019 7:37:25 AM 5.051 319.135 86.024 88.434 86.345 

12/2/2019 10:08:18 AM 4.953 314.304 86.210 88.422 86.452 

12/2/2019 12:39:11 PM 4.907 311.902 89.710 91.778 89.830 

12/2/2019 3:10:04 PM 4.769 304.984 91.885 93.926 92.021 

12/2/2019 5:40:57 PM 4.712 302.035 93.988 96.071 94.052 

12/2/2019 8:11:50 PM 4.909 312.459 91.970 94.184 92.084 

12/2/2019 10:42:43 PM 4.766 305.234 86.487 88.761 86.759 

13/2/2019 1:13:36 AM 4.890 311.181 84.069 86.351 84.396 

13/2/2019 3:44:29 AM 4.871 310.502 84.315 86.596 84.633 

13/2/2019 6:15:22 AM 5.040 318.609 84.523 86.795 84.821 

13/2/2019 8:46:15 AM 5.054 318.986 85.976 88.179 86.195 

13/2/2019 11:17:08 AM 4.876 309.821 88.670 90.767 88.865 

13/2/2019 1:48:01 PM 4.558 293.612 89.611 91.710 89.858 

13/2/2019 4:18:54 PM 4.737 303.025 92.640 94.737 92.765 

13/2/2019 6:49:47 PM 4.796 306.308 93.363 95.537 93.504 

13/2/2019 9:20:40 PM 4.603 295.718 89.352 91.623 89.676 

13/2/2019 11:51:33 PM 4.719 302.360 86.812 89.019 87.126 

14/2/2019 2:22:26 AM 4.648 298.509 85.332 87.621 85.732 

14/2/2019 4:53:19 AM 4.767 304.924 84.515 86.748 84.882 

14/2/2019 7:24:12 AM 4.746 303.707 84.528 86.806 84.889 

14/2/2019 9:55:05 AM 4.611 296.028 83.900 86.194 84.324 

14/2/2019 12:25:58 PM 4.983 314.496 90.292 92.475 90.510 

14/2/2019 2:56:51 PM 4.946 310.330 93.921 96.134 94.114 

14/2/2019 5:27:44 PM 4.911 309.188 97.350 99.611 97.466 

14/2/2019 7:58:37 PM 3.606 229.620 86.479 88.002 86.124 

14/2/2019 10:29:30 PM 5.136 323.234 88.055 90.120 88.141 

15/2/2019 1:00:23 AM 5.145 327.949 90.080 92.136 89.978 

15/2/2019 3:31:16 AM 4.684 302.732 86.437 88.562 86.598 

15/2/2019 6:02:09 AM 4.790 308.236 85.994 88.111 86.134 

15/2/2019 8:33:02 AM 5.139 326.452 87.434 89.536 87.459 

15/2/2019 11:03:55 AM 4.692 303.080 87.990 90.114 88.139 

15/2/2019 1:34:48 PM 4.763 306.528 91.329 93.261 91.287 

15/2/2019 4:05:41 PM 4.491 292.084 92.050 94.005 92.103 

15/2/2019 6:36:34 PM 4.686 302.811 93.124 95.139 93.134 

15/2/2019 9:07:27 PM 4.877 312.645 92.327 94.391 92.329 

15/2/2019 11:38:20 PM 4.852 311.621 90.117 92.249 90.197 

16/2/2019 2:09:13 AM 4.702 303.894 86.268 88.379 86.489 

16/2/2019 4:40:06 AM 4.654 301.090 84.840 86.969 85.048 

16/2/2019 7:10:59 AM 4.821 309.460 84.926 87.046 85.129 

16/2/2019 9:41:52 AM 5.342 337.171 90.541 92.585 90.424 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

16/2/2019 12:12:45 PM 4.726 304.862 92.632 94.695 92.613 

16/2/2019 2:43:38 PM 4.756 306.651 93.403 95.311 93.332 

16/2/2019 5:14:31 PM 4.837 311.139 97.098 99.049 96.969 

16/2/2019 7:45:24 PM 5.073 323.753 97.750 99.809 97.612 

16/2/2019 10:16:17 PM 4.572 297.199 90.373 92.589 90.577 

17/2/2019 12:47:10 AM 4.741 306.343 87.078 89.199 87.252 

17/2/2019 3:18:03 AM 4.681 302.815 85.288 87.480 85.526 

17/2/2019 5:48:56 AM 4.663 301.834 84.978 87.146 85.199 

17/2/2019 8:19:49 AM 4.641 300.719 83.853 86.064 84.129 

17/2/2019 10:50:42 AM 4.587 297.919 86.130 88.174 86.352 

17/2/2019 1:21:35 PM 4.624 299.666 90.126 92.123 90.214 

17/2/2019 3:52:28 PM 5.386 339.616 98.904 100.845 98.552 

17/2/2019 6:23:21 PM 5.398 340.013 101.994 104.010 101.656 

17/2/2019 8:54:14 PM 5.139 326.836 97.604 99.828 97.496 

17/2/2019 11:25:07 PM 4.797 309.177 90.081 92.269 90.180 

18/2/2019 1:56:00 AM 4.623 299.608 85.827 88.018 86.050 

18/2/2019 4:26:53 AM 4.658 301.642 84.307 86.479 84.566 

18/2/2019 6:57:46 AM 4.669 302.070 83.777 85.945 84.042 

18/2/2019 9:28:39 AM 4.997 319.715 87.085 89.191 87.182 

18/2/2019 11:59:32 AM 4.903 314.673 90.582 92.581 90.587 

18/2/2019 2:30:25 PM 4.778 308.002 93.670 95.742 93.652 

18/2/2019 5:01:18 PM 4.953 317.166 95.947 97.978 95.810 

18/2/2019 7:32:11 PM 4.779 308.256 90.735 92.938 90.814 

18/2/2019 10:03:04 PM 4.730 304.983 84.483 86.709 84.690 

19/2/2019 12:33:57 AM 4.888 313.648 82.661 84.796 82.813 

19/2/2019 3:04:50 AM 5.069 322.755 84.505 86.646 84.601 

19/2/2019 5:35:43 AM 5.338 336.865 87.029 89.168 87.021 

19/2/2019 8:06:36 AM 5.139 326.624 86.962 89.125 86.995 

19/2/2019 10:37:29 AM 4.946 316.674 86.438 88.511 86.483 

19/2/2019 1:08:22 PM 4.831 310.753 89.103 91.098 89.126 

19/2/2019 3:39:15 PM 4.729 304.889 90.236 92.295 90.248 

19/2/2019 6:10:08 PM 2.873 190.348 78.882 80.310 78.341 

19/2/2019 8:41:01 PM 4.840 310.505 73.199 74.965 73.335 

19/2/2019 11:11:54 PM 4.885 313.129 81.457 83.568 81.634 

20/2/2019 1:42:47 AM 4.894 313.870 82.727 84.940 82.920 

20/2/2019 4:13:40 AM 4.877 313.009 82.616 84.785 82.783 

20/2/2019 6:44:33 AM 4.855 311.989 82.054 84.257 82.277 

20/2/2019 9:15:26 AM 4.820 310.505 82.522 84.640 82.699 

20/2/2019 11:46:19 AM 4.816 309.819 86.554 88.564 86.627 

20/2/2019 2:17:12 PM 4.965 317.082 92.042 93.982 91.911 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

20/2/2019 4:48:05 PM 4.897 314.250 94.754 96.727 94.656 

20/2/2019 7:18:58 PM 4.882 313.863 94.195 96.290 94.107 

20/2/2019 9:49:51 PM 5.041 321.684 90.693 92.827 90.674 

21/2/2019 12:20:44 AM 5.130 326.404 89.328 91.461 89.341 

21/2/2019 2:51:37 AM 5.121 325.888 89.001 91.118 89.048 

21/2/2019 5:22:30 AM 5.177 328.820 88.606 90.735 88.651 

21/2/2019 7:53:23 AM 5.243 332.422 89.387 91.537 89.375 

21/2/2019 10:24:16 AM 4.428 283.619 88.172 90.041 87.957 

21/2/2019 12:55:09 PM -0.065 8.810 59.574 60.208 59.189 

21/2/2019 3:26:02 PM -0.065 8.717 53.722 54.426 53.986 

21/2/2019 5:56:55 PM -0.065 8.774 50.639 51.196 51.099 

21/2/2019 8:27:48 PM 0.202 21.698 48.066 48.809 48.661 

21/2/2019 10:58:41 PM -0.065 8.329 45.833 46.731 46.409 

22/2/2019 1:29:34 AM -0.065 8.237 43.928 44.836 44.433 

22/2/2019 4:00:27 AM -0.065 8.353 42.261 43.103 42.664 

22/2/2019 6:31:20 AM -0.065 8.297 40.769 41.548 41.061 

22/2/2019 9:02:13 AM -0.065 8.215 39.463 40.264 39.738 

22/2/2019 11:33:06 AM -0.065 8.238 38.575 39.409 38.921 

22/2/2019 2:03:59 PM -0.065 8.445 38.007 39.000 38.526 

22/2/2019 4:34:52 PM -0.065 8.261 37.888 39.000 38.997 

22/2/2019 7:05:45 PM -0.065 8.201 37.500 38.727 38.828 

22/2/2019 9:36:38 PM -0.065 8.255 36.951 38.068 37.998 

23/2/2019 12:07:31 AM -0.065 8.182 36.219 37.348 37.114 

23/2/2019 2:38:24 AM -0.065 8.299 35.515 36.680 36.240 

23/2/2019 5:09:17 AM -0.065 8.313 34.744 35.884 35.412 

23/2/2019 7:40:10 AM -0.065 8.356 34.148 35.240 34.704 

23/2/2019 10:11:03 AM 1.269 90.723 37.643 38.698 38.072 

23/2/2019 12:41:56 PM 3.503 226.964 66.914 68.095 66.783 

23/2/2019 3:12:49 PM 5.118 324.472 92.413 94.310 92.308 

23/2/2019 5:43:42 PM 5.092 322.924 96.727 98.844 96.597 

23/2/2019 8:14:35 PM 5.084 322.706 93.031 95.183 93.000 

23/2/2019 10:45:28 PM 5.148 326.521 90.960 93.048 90.967 

24/2/2019 1:16:21 AM 5.176 328.066 90.241 92.431 90.282 

24/2/2019 3:47:14 AM 5.191 328.762 89.813 92.002 89.868 

24/2/2019 6:18:07 AM 5.189 328.819 90.219 92.316 90.217 

24/2/2019 8:49:00 AM 5.169 327.783 90.068 92.168 90.061 

24/2/2019 11:19:53 AM 5.192 328.914 91.984 94.042 91.917 

24/2/2019 1:50:46 PM 5.138 326.380 95.716 97.744 95.539 

24/2/2019 4:21:39 PM 5.128 325.288 94.895 97.102 94.777 

24/2/2019 6:52:32 PM 5.236 331.106 92.937 95.112 92.833 

24/2/2019 9:23:25 PM 5.212 329.949 92.212 94.391 92.169 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

24/2/2019 11:54:18 PM 5.230 330.987 91.175 93.334 91.184 

25/2/2019 2:25:11 AM 5.193 329.173 90.232 92.447 90.218 

25/2/2019 4:56:04 AM 5.162 327.705 89.535 91.693 89.583 

25/2/2019 7:26:57 AM 5.268 333.081 90.276 92.445 90.235 

25/2/2019 9:57:50 AM 5.230 330.887 91.170 93.262 91.135 

25/2/2019 12:28:43 PM 5.166 327.690 92.562 94.707 92.481 

25/2/2019 2:59:36 PM 5.227 330.642 92.964 95.049 92.851 

25/2/2019 5:30:29 PM 5.266 332.832 92.509 94.726 92.464 

25/2/2019 8:01:22 PM 5.279 333.162 88.379 90.520 88.398 

25/2/2019 10:32:15 PM 5.271 332.758 87.956 90.064 87.980 

26/2/2019 1:03:08 AM 5.239 331.113 87.993 90.196 88.050 

26/2/2019 3:34:01 AM 5.312 334.727 88.378 90.486 88.439 

26/2/2019 6:04:54 AM 5.273 333.031 88.024 90.260 88.030 

26/2/2019 8:35:47 AM 5.233 330.663 87.694 89.881 87.722 

26/2/2019 11:06:40 AM 5.157 326.792 90.368 92.408 90.324 

26/2/2019 1:37:33 PM 5.184 328.238 94.470 96.525 94.304 

26/2/2019 4:08:26 PM 5.272 333.015 98.623 100.659 98.326 

26/2/2019 6:39:19 PM 5.282 333.545 99.444 101.558 99.153 

26/2/2019 9:10:12 PM 5.252 331.812 95.260 97.463 95.138 

26/2/2019 11:41:05 PM 5.213 329.869 91.786 93.975 91.766 

27/2/2019 2:11:58 AM 5.208 329.810 90.326 92.525 90.340 

27/2/2019 4:42:51 AM 5.189 328.992 89.656 91.848 89.695 

27/2/2019 7:13:44 AM 5.133 326.067 88.450 90.647 88.524 

27/2/2019 9:44:37 AM 5.111 324.990 88.609 90.724 88.676 

27/2/2019 12:15:30 PM 5.203 329.691 91.472 93.540 91.393 

27/2/2019 2:46:23 PM 5.244 331.701 94.583 96.680 94.413 

27/2/2019 5:17:16 PM 5.199 329.017 94.355 96.515 94.232 

27/2/2019 7:48:09 PM 5.230 331.056 92.835 94.987 92.729 

27/2/2019 10:19:02 PM 5.149 327.119 90.797 92.981 90.817 

28/2/2019 12:49:55 AM 5.121 325.886 89.568 91.762 89.629 

28/2/2019 3:20:48 AM 5.125 326.146 89.067 91.268 89.144 

28/2/2019 5:51:41 AM 5.060 322.780 87.250 89.484 87.380 

28/2/2019 8:22:34 AM 5.158 327.341 86.589 88.814 86.725 

28/2/2019 10:53:27 AM 5.319 335.457 91.369 93.455 91.278 

28/2/2019 1:24:20 PM 5.151 326.448 94.750 96.818 94.619 

28/2/2019 3:55:13 PM 5.019 319.607 96.457 98.494 96.328 

28/2/2019 6:26:06 PM 5.117 324.810 97.371 99.412 97.224 

28/2/2019 8:56:59 PM 5.017 319.675 94.210 96.419 94.193 

28/2/2019 11:27:52 PM 5.176 328.106 91.296 93.431 91.315 

1/3/2019 1:58:45 AM 5.301 335.305 90.852 93.012 90.799 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

1/3/2019 4:29:38 AM 5.154 327.850 89.471 91.625 89.487 

1/3/2019 7:00:31 AM 5.080 324.200 88.037 90.184 88.140 

1/3/2019 9:31:24 AM 5.082 323.656 87.967 90.174 88.064 

1/3/2019 12:02:17 PM 4.992 319.129 86.009 88.234 86.180 

1/3/2019 2:33:10 PM 4.977 318.276 87.939 90.039 88.040 

1/3/2019 5:04:03 PM 5.004 319.524 90.667 92.745 90.677 

1/3/2019 7:34:56 PM 4.902 314.492 88.848 91.027 88.936 

1/3/2019 10:05:49 PM 4.885 313.802 86.140 88.377 86.349 

2/3/2019 12:36:42 AM 4.823 311.078 84.737 87.006 84.994 

2/3/2019 3:07:35 AM 4.862 312.452 83.998 86.253 84.270 

2/3/2019 5:38:28 AM 4.950 316.747 84.183 86.435 84.402 

2/3/2019 8:09:21 AM 4.936 316.174 84.184 86.488 84.450 

2/3/2019 10:40:14 AM 4.918 315.408 85.863 88.024 86.043 

2/3/2019 1:11:07 PM 5.050 322.037 91.507 93.537 91.440 

2/3/2019 3:42:00 PM 4.965 317.608 93.343 95.415 93.258 

2/3/2019 6:12:53 PM 4.989 318.646 92.526 94.628 92.456 

2/3/2019 8:43:46 PM 4.957 317.122 90.349 92.518 90.407 

2/3/2019 11:14:39 PM 4.946 316.757 86.200 88.454 86.382 

3/3/2019 1:45:32 AM 5.010 320.152 84.425 86.700 84.641 

3/3/2019 4:16:25 AM 5.017 320.119 83.936 86.238 84.152 

3/3/2019 6:47:18 AM 4.963 317.205 82.156 84.412 82.421 

3/3/2019 9:18:11 AM 5.099 324.116 83.595 85.873 83.795 

3/3/2019 11:49:04 AM 5.148 326.925 87.919 89.969 87.924 

3/3/2019 2:19:57 PM 5.323 336.297 96.078 98.052 95.831 

3/3/2019 4:50:50 PM 5.292 334.800 100.361 102.415 100.034 

3/3/2019 7:21:43 PM 5.173 328.329 99.480 101.654 99.299 

3/3/2019 9:52:36 PM 5.148 327.087 93.794 96.016 93.773 

4/3/2019 12:23:29 AM 5.173 328.808 90.543 92.775 90.586 

4/3/2019 2:54:22 AM 5.159 327.809 89.140 91.353 89.183 

4/3/2019 5:25:15 AM 5.095 324.217 87.433 89.686 87.535 

4/3/2019 7:56:08 AM 5.140 326.659 87.104 89.328 87.212 

4/3/2019 10:27:01 AM 5.038 321.058 88.720 90.811 88.770 

4/3/2019 12:57:54 PM 5.144 327.068 92.920 94.955 92.819 

4/3/2019 3:28:47 PM 5.221 331.149 98.063 100.109 97.826 

4/3/2019 5:59:40 PM 4.341 271.937 93.631 95.185 93.137 

4/3/2019 8:30:33 PM 5.302 334.147 93.865 96.136 93.742 

4/3/2019 11:01:26 PM 5.338 336.256 92.689 94.915 92.563 

5/3/2019 1:32:19 AM 5.287 333.383 90.797 92.986 90.757 

5/3/2019 4:03:12 AM 5.230 330.598 89.833 92.065 89.853 

5/3/2019 6:34:05 AM 5.157 326.931 87.986 90.224 88.050 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

5/3/2019 9:04:58 AM 5.149 326.376 87.834 90.030 87.901 

5/3/2019 11:35:51 AM 5.151 326.862 91.427 93.506 91.378 

5/3/2019 2:06:44 PM 5.053 321.595 94.844 96.900 94.701 

5/3/2019 4:37:37 PM 5.108 324.510 97.550 99.564 97.327 

5/3/2019 7:08:30 PM 5.261 332.696 98.980 101.121 98.735 

5/3/2019 9:39:23 PM 5.263 332.694 94.703 96.952 94.584 

6/3/2019 12:10:16 AM 5.185 328.767 91.201 93.431 91.201 

6/3/2019 2:41:09 AM 5.247 332.069 90.805 93.000 90.826 

6/3/2019 5:12:02 AM 5.208 330.145 90.314 92.557 90.356 

6/3/2019 7:42:55 AM 5.226 330.693 90.204 92.489 90.235 

6/3/2019 10:13:48 AM 5.433 341.530 92.748 94.881 92.645 

6/3/2019 12:44:41 PM 5.427 341.096 97.133 99.228 96.900 

6/3/2019 3:15:34 PM 5.328 335.899 100.142 102.211 99.865 

6/3/2019 5:46:27 PM 5.289 333.754 100.741 102.877 100.452 

6/3/2019 8:17:20 PM 5.391 338.742 98.730 100.978 98.561 

6/3/2019 10:48:13 PM 5.454 342.661 95.567 97.842 95.459 

7/3/2019 1:19:06 AM 5.397 339.749 93.906 96.151 93.858 

7/3/2019 3:49:59 AM 5.095 323.835 90.305 92.640 90.425 

7/3/2019 6:20:52 AM 5.100 323.869 85.703 87.983 85.877 

7/3/2019 8:51:45 AM 5.391 339.234 88.611 90.774 88.618 

7/3/2019 11:22:38 AM 5.220 330.096 90.474 92.559 90.440 

7/3/2019 1:53:31 PM 4.799 303.979 91.071 92.898 90.851 

7/3/2019 4:24:24 PM 5.126 324.979 94.973 97.083 94.864 

7/3/2019 6:55:17 PM 5.174 327.819 96.191 98.378 96.100 

7/3/2019 9:26:10 PM 5.165 327.380 93.211 95.436 93.221 

7/3/2019 11:57:03 PM 5.118 325.093 90.470 92.689 90.537 

8/3/2019 2:27:56 AM 5.088 323.533 88.263 90.482 88.375 

8/3/2019 4:58:49 AM 5.046 320.940 86.944 89.266 87.121 

8/3/2019 7:29:42 AM 5.053 321.376 86.526 88.802 86.753 

8/3/2019 10:00:35 AM 5.122 325.111 88.187 90.326 88.271 

8/3/2019 12:31:28 PM 5.180 327.827 93.605 95.695 93.503 

8/3/2019 3:02:21 PM 5.109 324.339 97.138 99.184 96.974 

8/3/2019 5:33:14 PM 5.266 332.592 96.177 98.482 96.093 

8/3/2019 8:04:07 PM 5.386 338.946 90.617 92.862 90.575 

8/3/2019 10:35:00 PM 5.307 334.849 89.422 91.687 89.419 

9/3/2019 1:05:53 AM 5.276 333.057 88.611 90.859 88.674 

9/3/2019 3:36:46 AM 5.285 333.394 87.975 90.249 88.013 

9/3/2019 6:07:39 AM 5.263 332.566 87.221 89.465 87.279 

9/3/2019 8:38:32 AM 5.442 341.991 88.772 90.992 88.731 

9/3/2019 11:09:25 AM 5.412 340.627 92.577 94.690 92.419 

9/3/2019 1:40:18 PM 5.327 335.868 95.905 97.986 95.663 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

9/3/2019 4:11:11 PM 5.310 334.944 97.399 99.421 97.159 

9/3/2019 6:42:04 PM 5.238 331.307 95.807 98.022 95.655 

9/3/2019 9:12:57 PM 5.183 328.437 89.799 91.989 89.807 

9/3/2019 11:43:50 PM 5.230 330.754 88.626 90.843 88.670 

10/3/2019 2:14:43 AM 5.238 330.897 87.713 89.984 87.765 

10/3/2019 4:45:36 AM 5.247 331.566 87.243 89.423 87.285 

10/3/2019 7:16:29 AM 5.266 332.380 87.090 89.353 87.166 

10/3/2019 9:47:22 AM 5.241 331.174 88.630 90.746 88.622 

10/3/2019 12:18:15 PM 5.208 329.609 93.076 95.128 92.923 

10/3/2019 2:49:08 PM 5.131 325.645 96.496 98.506 96.285 

10/3/2019 5:20:01 PM 5.121 325.294 96.312 98.421 96.202 

10/3/2019 7:50:54 PM 5.240 331.417 91.581 93.831 91.543 

10/3/2019 10:21:47 PM 5.251 332.041 88.977 91.174 89.002 

11/3/2019 12:52:40 AM 5.228 330.953 88.062 90.268 88.087 

11/3/2019 3:23:33 AM 5.222 330.746 87.744 89.971 87.803 

11/3/2019 5:54:26 AM 5.190 329.018 87.197 89.477 87.280 

11/3/2019 8:25:19 AM 5.245 331.489 86.597 88.808 86.702 

11/3/2019 10:56:12 AM 5.155 327.240 89.274 91.368 89.248 

11/3/2019 1:27:05 PM 5.058 322.044 93.795 95.819 93.654 

11/3/2019 3:57:58 PM 5.102 324.471 98.199 100.199 97.943 

11/3/2019 6:28:51 PM 5.075 322.769 98.157 100.275 98.000 

11/3/2019 8:59:44 PM 5.069 322.462 93.723 95.939 93.706 

11/3/2019 11:30:37 PM 5.197 329.473 90.788 93.004 90.790 

12/3/2019 2:01:30 AM 5.222 330.846 89.230 91.387 89.265 

12/3/2019 4:32:23 AM 5.183 328.748 88.359 90.597 88.441 

12/3/2019 7:03:16 AM 5.192 329.252 88.186 90.457 88.244 

12/3/2019 9:34:09 AM 5.140 326.329 88.835 90.925 88.847 

12/3/2019 12:05:02 PM 5.116 325.334 92.420 94.484 92.313 

12/3/2019 2:35:55 PM 5.131 325.635 97.293 99.275 97.051 

12/3/2019 5:06:48 PM 5.251 331.638 102.860 104.815 102.472 

12/3/2019 7:37:41 PM 5.300 334.653 102.263 104.413 101.974 

12/3/2019 10:08:34 PM 5.300 334.859 95.707 97.969 95.582 

13/3/2019 12:39:27 AM 5.286 334.196 92.469 94.672 92.410 

13/3/2019 3:10:20 AM 5.256 332.632 90.970 93.131 90.963 

13/3/2019 5:41:13 AM 5.199 329.707 89.743 91.901 89.751 

13/3/2019 8:12:06 AM 5.214 330.168 89.990 92.130 89.978 

13/3/2019 10:42:59 AM 5.315 335.056 92.242 94.360 92.144 

13/3/2019 1:13:52 PM 5.441 341.452 97.803 99.834 97.528 

13/3/2019 3:44:45 PM 5.293 333.974 101.737 103.761 101.404 

13/3/2019 6:15:38 PM 5.354 336.836 103.091 105.108 102.742 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

13/3/2019 8:46:31 PM 5.514 345.506 99.764 101.952 99.486 

13/3/2019 11:17:24 PM 5.562 348.234 96.397 98.561 96.138 

14/3/2019 1:48:17 AM 5.453 342.651 94.351 96.566 94.197 

14/3/2019 4:19:10 AM 5.129 325.800 89.942 92.153 89.956 

14/3/2019 6:50:03 AM 5.161 327.507 88.785 90.919 88.830 

14/3/2019 9:20:56 AM 5.198 329.267 89.412 91.488 89.389 

14/3/2019 11:51:49 AM 5.238 331.539 93.691 95.704 93.502 

14/3/2019 2:22:42 PM 5.166 327.585 97.147 99.178 96.886 

14/3/2019 4:53:35 PM 5.299 334.468 95.644 97.902 95.516 

14/3/2019 7:24:28 PM 5.197 329.012 88.600 90.841 88.648 

14/3/2019 9:55:21 PM 5.162 327.642 87.401 89.630 87.513 

15/3/2019 12:26:14 AM 5.089 323.864 86.251 88.438 86.378 

15/3/2019 2:57:07 AM 5.288 334.210 87.410 89.602 87.451 

15/3/2019 5:28:00 AM 5.313 335.621 88.146 90.372 88.144 

15/3/2019 7:58:53 AM 5.266 332.992 87.853 89.979 87.877 

15/3/2019 10:29:46 AM 5.186 328.878 88.561 90.629 88.552 

15/3/2019 1:00:39 PM 5.266 332.993 91.953 93.992 91.793 

15/3/2019 3:31:32 PM 5.281 333.660 94.928 96.948 94.772 

15/3/2019 6:02:25 PM 5.249 332.307 95.548 97.635 95.349 

15/3/2019 8:33:18 PM 4.642 291.939 88.220 89.837 87.921 

15/3/2019 11:04:11 PM 5.287 333.139 91.040 93.136 90.951 

16/3/2019 1:35:04 AM 5.239 330.598 90.602 92.737 90.574 

16/3/2019 4:05:57 AM 5.288 333.256 90.042 92.204 89.979 

16/3/2019 6:36:50 AM 5.319 334.862 89.708 91.932 89.665 

16/3/2019 9:07:43 AM 5.315 334.517 89.614 91.710 89.542 

16/3/2019 11:38:36 AM 5.425 340.576 95.008 97.038 94.774 

16/3/2019 2:09:29 PM 5.357 336.654 99.178 101.215 98.854 

16/3/2019 4:40:22 PM 5.266 331.703 100.103 102.185 99.861 

16/3/2019 7:11:15 PM 5.323 335.231 98.059 100.189 97.848 

16/3/2019 9:42:08 PM 5.280 332.866 93.677 95.891 93.570 

17/3/2019 12:13:01 AM 5.311 334.624 90.894 93.020 90.823 

17/3/2019 2:43:54 AM 5.300 334.064 89.803 91.922 89.756 

17/3/2019 5:14:47 AM 5.269 332.615 88.588 90.742 88.604 

17/3/2019 7:45:40 AM 5.212 329.308 87.718 89.871 87.773 

17/3/2019 10:16:33 AM 5.282 332.885 86.798 88.928 86.834 

17/3/2019 12:47:26 PM 5.411 339.445 91.712 93.785 91.557 

17/3/2019 3:18:19 PM 5.390 338.817 94.283 96.360 94.018 

17/3/2019 5:49:12 PM 5.348 336.699 96.016 98.044 95.718 

17/3/2019 8:20:05 PM 5.337 336.236 94.671 96.811 94.458 

17/3/2019 10:50:58 PM 5.283 333.582 92.067 94.238 91.962 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

18/3/2019 1:21:51 AM 5.258 332.457 89.496 91.635 89.471 

18/3/2019 3:52:44 AM 5.226 330.448 87.854 90.024 87.855 

18/3/2019 6:23:37 AM 5.213 329.811 87.131 89.454 87.132 

18/3/2019 8:54:30 AM 5.332 336.219 88.376 90.514 88.339 

18/3/2019 11:25:23 AM 5.395 339.436 92.819 94.831 92.619 

18/3/2019 1:56:16 PM 5.465 342.902 98.837 100.847 98.493 

18/3/2019 4:27:09 PM 5.369 337.732 101.335 103.378 100.995 

18/3/2019 6:58:02 PM 5.334 336.123 99.644 101.768 99.347 

18/3/2019 9:28:55 PM 5.375 338.368 95.800 97.981 95.631 

18/3/2019 11:59:48 PM 5.320 335.334 92.607 94.755 92.472 

19/3/2019 2:30:41 AM 5.377 338.404 91.948 94.055 91.857 

19/3/2019 5:01:34 AM 5.427 341.024 92.007 94.138 91.902 

19/3/2019 7:32:27 AM 5.428 341.078 91.665 93.877 91.506 

19/3/2019 10:03:20 AM 5.410 340.320 93.059 95.143 92.872 

19/3/2019 12:34:13 PM 5.466 342.757 96.937 99.001 96.664 

19/3/2019 3:05:06 PM 5.254 331.645 99.178 101.208 98.903 

19/3/2019 5:35:59 PM 5.312 334.899 98.955 101.079 98.659 

19/3/2019 8:06:52 PM 5.407 339.916 95.958 98.199 95.774 

19/3/2019 10:37:45 PM 5.472 343.024 90.211 92.481 90.132 

20/3/2019 1:08:38 AM 5.432 340.805 89.232 91.410 89.105 

20/3/2019 3:39:31 AM 5.426 340.636 88.876 90.991 88.820 

20/3/2019 6:10:24 AM 5.400 339.271 88.321 90.556 88.296 

20/3/2019 8:41:17 AM 5.393 338.783 89.000 91.139 88.941 

20/3/2019 11:12:10 AM 5.343 336.403 92.596 94.659 92.439 

20/3/2019 1:43:03 PM 5.365 337.595 96.755 98.780 96.472 

20/3/2019 4:13:56 PM 5.334 336.027 99.682 101.681 99.318 

20/3/2019 6:44:49 PM 5.317 335.260 97.667 99.808 97.407 

20/3/2019 9:15:42 PM 5.385 339.105 95.356 97.462 95.152 

20/3/2019 11:46:35 PM 5.405 340.169 93.880 96.047 93.696 

21/3/2019 2:17:28 AM 5.476 343.791 93.267 95.472 93.075 

21/3/2019 4:48:21 AM 5.413 340.539 92.690 94.811 92.511 

21/3/2019 7:19:14 AM 4.955 312.871 89.064 91.025 88.802 

21/3/2019 9:50:07 AM 5.352 337.049 92.122 94.199 91.970 

21/3/2019 12:21:00 PM 5.509 345.724 96.503 98.534 96.154 

21/3/2019 2:51:53 PM 5.443 341.868 99.951 102.003 99.539 

21/3/2019 5:22:46 PM 5.337 336.050 99.318 101.478 98.996 

21/3/2019 7:53:39 PM 5.362 337.364 94.324 96.585 94.160 

21/3/2019 10:24:32 PM 5.471 342.849 90.281 92.481 90.178 

22/3/2019 12:55:25 AM 5.550 346.511 89.809 92.006 89.669 

22/3/2019 3:26:18 AM 5.581 348.050 90.177 92.349 90.008 

22/3/2019 5:57:11 AM 5.512 344.866 89.445 91.537 89.362 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

22/3/2019 8:28:04 AM 5.404 339.259 88.434 90.661 88.368 

22/3/2019 10:58:57 AM 5.413 339.729 89.685 91.889 89.569 

22/3/2019 1:29:50 PM 4.531 285.651 84.236 85.971 83.872 

22/3/2019 4:00:43 PM 5.517 345.419 89.966 91.931 89.764 

22/3/2019 6:31:36 PM 5.280 333.058 93.155 95.212 93.004 

22/3/2019 9:02:29 PM 5.262 332.108 91.444 93.619 91.367 

22/3/2019 11:33:22 PM 5.282 333.387 88.754 90.954 88.695 

23/3/2019 2:04:15 AM 5.321 335.312 88.114 90.209 88.105 

23/3/2019 4:35:08 AM 5.349 336.722 88.099 90.301 88.044 

23/3/2019 7:06:01 AM 5.309 334.754 88.136 90.259 88.096 

23/3/2019 9:36:54 AM 5.375 338.491 90.123 92.207 90.026 

23/3/2019 12:07:47 PM 5.306 334.744 93.531 95.618 93.355 

23/3/2019 2:38:40 PM 5.193 329.077 95.127 97.142 94.900 

23/3/2019 5:09:33 PM 5.273 332.749 98.618 100.613 98.313 

23/3/2019 7:40:26 PM 5.307 334.835 96.475 98.653 96.291 

23/3/2019 10:11:19 PM 5.343 337.310 92.921 95.044 92.802 

24/3/2019 12:42:12 AM 5.368 338.144 92.055 94.255 91.936 

24/3/2019 3:13:05 AM 5.347 337.208 91.283 93.471 91.236 

24/3/2019 5:43:58 AM 5.367 338.149 91.113 93.297 91.005 

24/3/2019 8:14:51 AM 5.296 334.666 91.197 93.303 91.120 

24/3/2019 10:45:44 AM 5.361 338.039 92.820 94.844 92.672 

24/3/2019 1:16:37 PM 5.472 343.967 97.924 99.949 97.606 

24/3/2019 3:47:30 PM 5.460 343.074 101.385 103.363 100.985 

24/3/2019 6:18:23 PM 5.455 342.307 99.629 101.825 99.359 

24/3/2019 8:49:16 PM 5.478 344.343 94.680 96.874 94.493 

24/3/2019 11:20:09 PM 5.349 337.513 92.100 94.159 92.053 

25/3/2019 1:51:02 AM 5.476 344.378 91.599 93.796 91.490 

25/3/2019 4:21:55 AM 5.427 341.752 89.364 91.495 89.327 

25/3/2019 6:52:48 AM 5.511 346.048 89.890 92.074 89.834 

25/3/2019 9:23:41 AM 5.528 346.569 91.399 93.524 91.283 

25/3/2019 11:54:34 AM 5.579 348.775 94.901 96.976 94.677 

25/3/2019 2:25:27 PM 5.585 349.425 99.237 101.299 98.865 

25/3/2019 4:56:20 PM 5.554 347.961 100.626 102.753 100.270 

25/3/2019 7:27:13 PM 5.563 348.653 99.408 101.530 99.036 

25/3/2019 9:58:06 PM 5.518 346.620 96.169 98.281 95.878 

26/3/2019 12:28:59 AM 5.490 345.245 94.143 96.232 93.907 

26/3/2019 2:59:52 AM 5.451 343.290 92.282 94.363 92.117 

26/3/2019 5:30:45 AM 5.404 340.816 90.624 92.715 90.492 

26/3/2019 8:01:38 AM 5.307 335.487 89.226 91.308 89.124 

26/3/2019 10:32:31 AM 5.303 335.232 91.662 93.589 91.451 

26/3/2019 1:03:24 PM 5.328 336.526 97.587 99.481 97.243 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

26/3/2019 3:34:17 PM 5.293 334.857 100.832 102.746 100.433 

26/3/2019 6:05:10 PM 5.303 335.192 101.235 103.260 100.860 

26/3/2019 8:36:03 PM 5.353 337.961 96.414 98.511 96.179 

26/3/2019 11:06:56 PM 5.342 337.548 93.783 95.922 93.586 

27/3/2019 1:37:49 AM 5.244 332.257 91.032 93.119 90.903 

27/3/2019 4:08:42 AM 5.313 336.054 89.524 91.534 89.388 

27/3/2019 6:39:35 AM 5.367 338.796 89.826 91.864 89.670 

27/3/2019 9:10:28 AM 3.700 238.687 83.098 84.827 82.745 

27/3/2019 11:41:21 AM -0.065 9.014 49.743 50.394 49.185 

27/3/2019 2:12:14 PM -0.065 8.977 47.234 48.137 46.998 

27/3/2019 4:43:07 PM -0.065 8.895 45.586 46.773 46.051 

27/3/2019 7:14:00 PM -0.065 8.972 44.118 45.281 44.807 

27/3/2019 9:44:53 PM -0.065 9.027 42.424 43.327 42.873 

28/3/2019 12:15:46 AM -0.065 8.995 40.827 41.727 41.137 

28/3/2019 2:46:39 AM -0.065 8.960 39.430 40.486 39.767 

28/3/2019 5:17:32 AM -0.065 8.909 38.131 39.314 38.547 

28/3/2019 7:48:25 AM -0.065 8.940 36.981 38.198 37.445 

28/3/2019 10:19:18 AM 2.266 150.140 46.695 47.807 46.988 

28/3/2019 12:50:11 PM 5.333 335.061 88.240 90.015 88.080 

28/3/2019 3:21:04 PM 5.442 341.443 98.813 100.819 98.465 

28/3/2019 5:51:57 PM 5.565 347.463 102.252 104.383 101.859 

28/3/2019 8:22:50 PM 5.436 340.962 95.467 97.775 95.272 

28/3/2019 10:53:43 PM 5.476 343.114 93.764 95.993 93.562 

29/3/2019 1:24:36 AM 5.497 344.709 90.402 92.579 90.257 

29/3/2019 3:55:29 AM 5.489 344.609 89.302 91.392 89.171 

29/3/2019 6:26:22 AM 5.514 345.647 89.682 91.895 89.509 

29/3/2019 8:57:15 AM 5.562 348.127 90.962 93.072 90.745 

29/3/2019 11:28:08 AM 5.569 348.479 96.292 98.319 95.937 

29/3/2019 1:59:01 PM 5.562 347.747 99.842 101.916 99.429 

29/3/2019 4:29:54 PM 5.620 351.104 98.806 101.082 98.484 

29/3/2019 7:00:47 PM 5.624 351.217 92.819 94.957 92.550 

29/3/2019 9:31:40 PM 5.527 346.199 92.352 94.526 92.120 

30/3/2019 12:02:33 AM 5.503 345.251 91.645 93.761 91.405 

30/3/2019 2:33:26 AM 5.441 341.943 91.277 93.430 91.052 

30/3/2019 5:04:19 AM 5.403 339.960 90.655 92.798 90.472 

30/3/2019 7:35:12 AM 5.489 344.567 91.829 93.934 91.634 

30/3/2019 10:06:05 AM 5.494 344.739 93.609 95.722 93.338 

30/3/2019 12:36:58 PM 5.482 343.851 96.842 98.894 96.483 

30/3/2019 3:07:51 PM 5.451 342.297 99.771 101.834 99.421 

30/3/2019 5:38:44 PM 5.533 346.389 95.684 97.976 95.456 

30/3/2019 8:09:37 PM 5.525 346.070 93.883 96.142 93.662 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

30/3/2019 10:40:30 PM 5.547 347.009 93.453 95.729 93.260 

31/3/2019 1:11:23 AM 5.552 347.456 93.222 95.429 92.995 

31/3/2019 3:42:16 AM 5.479 343.792 92.330 94.498 92.078 

31/3/2019 6:13:09 AM 5.437 341.719 91.835 93.934 91.708 

31/3/2019 8:44:02 AM 5.443 341.394 92.301 94.476 92.120 

31/3/2019 11:14:55 AM 5.470 343.225 94.413 96.509 94.140 

31/3/2019 1:45:48 PM 5.346 336.667 96.991 99.026 96.714 

31/3/2019 4:16:41 PM 5.443 342.024 100.205 102.250 99.800 

31/3/2019 6:47:34 PM 5.443 342.302 98.293 100.461 97.985 

31/3/2019 9:18:27 PM 5.418 340.557 95.804 97.973 95.557 

31/3/2019 11:49:20 PM 5.432 341.533 94.019 96.175 93.803 

1/4/2019 2:20:13 AM 5.429 341.508 93.466 95.672 93.312 

1/4/2019 4:51:06 AM 5.411 340.349 91.976 94.135 91.814 

1/4/2019 7:21:59 AM 3.385 217.987 75.310 76.619 74.887 

1/4/2019 9:52:52 AM 5.372 337.435 87.407 89.322 87.299 

1/4/2019 12:23:45 PM 5.527 346.026 96.994 98.995 96.697 

1/4/2019 2:54:38 PM 5.439 341.924 100.987 103.012 100.611 

1/4/2019 5:25:31 PM 5.373 338.311 101.555 103.643 101.222 

1/4/2019 7:56:24 PM 5.336 336.425 98.406 100.568 98.244 

1/4/2019 10:27:17 PM 5.489 344.662 96.304 98.450 96.121 

2/4/2019 12:58:10 AM 5.425 341.013 93.800 95.995 93.662 

2/4/2019 3:29:03 AM 5.379 338.768 92.115 94.285 92.007 

2/4/2019 5:59:56 AM 5.439 342.111 92.151 94.365 91.988 

2/4/2019 8:30:49 AM 5.378 338.778 91.445 93.592 91.324 

2/4/2019 11:01:42 AM 5.406 339.666 94.270 96.294 94.064 

2/4/2019 1:32:35 PM 5.515 345.579 99.978 101.974 99.605 

2/4/2019 4:03:28 PM 5.520 346.203 102.460 104.455 102.069 

2/4/2019 6:34:21 PM 5.612 350.853 102.582 104.715 102.227 

2/4/2019 9:05:14 PM 5.494 345.029 98.882 101.077 98.654 

2/4/2019 11:36:07 PM 5.518 346.196 95.618 97.782 95.436 

3/4/2019 2:07:00 AM 5.549 347.761 94.724 96.989 94.516 

3/4/2019 4:37:53 AM 5.558 348.163 94.242 96.396 94.066 

3/4/2019 7:08:46 AM 5.544 347.742 93.373 95.608 93.175 

3/4/2019 9:39:39 AM 5.611 350.342 95.203 97.295 94.965 

3/4/2019 12:10:32 PM 4.727 299.753 95.232 97.156 94.831 

3/4/2019 2:41:25 PM 3.811 242.440 76.701 77.792 76.059 

3/4/2019 5:12:18 PM 5.557 347.365 92.946 95.141 92.829 

3/4/2019 7:43:11 PM 5.562 347.829 91.167 93.305 91.008 

3/4/2019 10:14:04 PM 5.523 346.081 90.889 93.035 90.713 

4/4/2019 12:44:57 AM 5.475 343.302 90.314 92.429 90.204 

4/4/2019 3:15:50 AM 5.108 324.073 87.929 90.085 87.944 
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Table A1. Raw Data of SAG Mill Motor from 6th January, 2019 to 8th April, 2019 

Cont’d 

DATE         TIME             
SAG 

MOTOR 
POWER         

SAG MOTOR 
CURRENT        

SAG MILL 
MOTOR 

WINDING 
TEMP. 1         

SAG MILL 
MOTOR 

WINDING 
TEMP. 2          

SAG MILL 
MOTOR 

WINDING 
TEMP. 3          

4/4/2019 5:46:43 AM 5.392 338.922 88.845 90.949 88.766 

4/4/2019 8:17:36 AM 5.442 341.443 90.489 92.548 90.352 

4/4/2019 10:48:29 AM 5.003 311.846 92.040 93.797 91.530 

4/4/2019 1:19:22 PM 3.537 224.623 82.419 83.702 81.759 

4/4/2019 3:50:15 PM 5.350 335.271 94.019 95.811 93.762 

4/4/2019 6:21:08 PM 5.530 344.616 97.195 99.499 97.063 

4/4/2019 8:52:01 PM 5.299 333.000 92.205 94.437 92.167 

4/4/2019 11:22:54 PM 5.416 339.708 90.458 92.596 90.407 

5/4/2019 1:53:47 AM 5.300 333.899 90.299 92.457 90.286 

5/4/2019 4:24:40 AM 5.257 331.640 89.167 91.316 89.141 

5/4/2019 6:55:33 AM 5.253 331.429 88.629 90.789 88.638 

5/4/2019 9:26:26 AM 5.157 322.006 91.072 92.989 90.688 

5/4/2019 11:57:19 AM 5.671 352.859 93.186 95.165 92.850 

5/4/2019 2:28:12 PM 5.816 361.110 98.499 100.611 98.053 

5/4/2019 4:59:05 PM 5.946 368.598 102.785 104.909 102.226 

5/4/2019 7:29:58 PM 5.611 350.514 100.224 102.526 99.901 

5/4/2019 10:00:51 PM 5.374 337.846 94.671 96.989 94.509 

6/4/2019 12:31:44 AM 5.630 350.873 94.516 96.687 94.249 

6/4/2019 3:02:37 AM 5.711 355.756 95.075 97.358 94.842 

6/4/2019 5:33:30 AM 5.638 351.729 94.601 96.856 94.380 

6/4/2019 8:04:23 AM 5.561 347.815 93.556 95.725 93.334 

6/4/2019 10:35:16 AM 5.648 352.025 96.802 98.926 96.470 

6/4/2019 1:06:09 PM 5.568 347.703 98.365 100.430 97.986 

6/4/2019 3:37:02 PM 5.635 351.458 101.901 103.982 101.428 

6/4/2019 6:07:55 PM 5.625 351.098 101.170 103.308 100.762 

6/4/2019 8:38:48 PM 5.542 346.759 97.371 99.641 97.127 

6/4/2019 11:09:41 PM 5.462 342.623 94.649 96.922 94.476 

7/4/2019 1:40:34 AM 5.642 351.970 94.728 96.928 94.470 

7/4/2019 4:11:27 AM 5.555 347.376 94.091 96.319 93.896 

7/4/2019 6:42:20 AM 5.450 342.046 92.674 94.875 92.523 

7/4/2019 9:13:13 AM 5.504 344.710 93.693 95.881 93.490 

7/4/2019 11:44:06 AM 5.447 341.685 95.997 98.120 95.762 

7/4/2019 2:14:59 PM 5.425 340.582 98.863 100.946 98.536 

7/4/2019 4:45:52 PM 5.409 339.810 100.420 102.585 100.087 

7/4/2019 7:16:45 PM 5.370 337.683 95.129 97.500 95.017 

7/4/2019 9:47:38 PM 5.472 343.027 91.923 94.051 91.785 

8/4/2019 12:18:31 AM 5.351 336.772 90.998 93.196 90.920 

8/4/2019 2:49:24 AM 5.423 340.515 88.394 90.603 88.319 

8/4/2019 5:20:17 AM 5.491 343.942 88.908 91.076 88.764 

8/4/2019 7:51:10 AM 5.572 347.975 89.798 91.983 89.609 

8/4/2019 10:22:03 AM 5.407 339.508 90.921 93.050 90.768 
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APPENDIX B 

RAW DATA OF MOTOR CHANGE - OUT 

Table B1. Raw Data of Motor Change - Out at Damang Mine from January, 2012 to June, 2017 

Material 
Amount 
in USD 

Document 
Date 

Material Description Reason for Changeout Functional Location 

20008701 744.88 9/21/2012 MOTOR,ENG STARTER,ELEC,CUMMINS 3636821     

20008866 917 9/26/2012 MOTOR,HYD,MILL LINER HANDLER TRACK WHEEL REPLACE FAULTY HYDRAULIC MOTOR ON CR007 1000SR Terex Pegson Mobile Crusher 

20008887 71,910.32 2/27/2017 MOTOR-G/B,TEST RUN 1ST OIL FILL CRATED,F CHANGE FE01 G/BOX DUE TO DAMAGED COUPLIN PRIMARY CRUSHER APRON FE001 GEARBOX 

20008887 71,910.32 2/4/2013 MOTOR-G/B,TEST RUN 1ST OIL FILL CRATED,F change gearbox on agitator 11 Eduction Water Tank Agitator 

20010078 5,164.04 4/19/2016 MOTOR,AC,TYPE KEE-60-6B,VIBR,3.7KW,415V REPLACE SN027 BURNT MOTOR Gravity Concentrated Feed Screen to GC03 

20010078 5,164.04 6/25/2015 MOTOR,AC,TYPE KEE-60-6B,VIBR,3.7KW,415V SN027-REPLACE SCREEN FAULTY MOTOR Gravity Concentrated Feed Screen to GC03 

20010227 913.97 8/7/2014 MOTOR,HYD,13.1,LINER HANDLER,WHITE,RE188 Change Defective motor SAG Mill Liner Handler 

20010227 913.97 3/17/2012 MOTOR,HYD,13.1,LINER HANDLER,WHITE,RE188     

20010438 1,379.78 4/8/2014 MOTOR,STEPPING,AIR COMPR,39823950     

20010678 951.61 4/24/2017 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 4/8/2017 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP- PROVIDE PUMP FOR TRANSFORMER OIL FILL Electrical Workshop 

20010678 951.61 4/6/2017 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 3/12/2017 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 1/8/2017 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP- SUPPLY ACID TRANSFER PUMP Plant Site Mills 

20010678 951.61 9/28/2016 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 8/17/2016 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 5/13/2016 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 4/25/2016 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 3/17/2016 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 2/10/2016 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 1/17/2016 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 12/30/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 11/28/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 10/5/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     
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Table B1. Raw Data of Motor Change - Out at Damang Mine from January, 2012 to June, 2017 Cont’d 

Material 
Amount 
in USD 

Document 
Date 

Material Description Reason for Changeout Functional Location 

20010678 951.61 9/23/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 8/10/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 8/3/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 7/23/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 7/23/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 5/8/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 5/1/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 4/7/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 3/24/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 3/24/2015 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 12/17/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 12/8/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 10/16/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 9/29/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 9/5/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 9/4/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 8/25/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 8/7/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 7/26/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 6/13/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP- PROVIDE PUMP FOR POWER STATION Main Power Station 

20010678 951.61 4/10/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 4/1/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 1/9/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 1/7/2014 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 12/10/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 12/2/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 11/29/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 10/21/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     
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Table B1. Raw Data of Motor Change - Out at Damang Mine from January, 2012 to June, 2017 Cont’d 

Material 
Amount 
in USD 

Document 
Date 

Material Description Reason for Changeout Functional Location 

20010678 951.61 10/3/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 9/5/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 7/18/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 6/21/2013 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 11/20/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 10/21/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 10/19/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 7/27/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 6/14/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 6/11/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP- Top up TX' 09 oil at the HV yard 33Kv Transformer To 11Kv 

20010678 951.61 5/15/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 4/12/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 4/2/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 3/20/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20010678 951.61 2/7/2012 MOTOR,UNIVERSAL,230V,ACID DR,M14,C/W PP-     

20012688 308.34 10/27/2014 MOTOR,AC,4KW,1420RPM,FT MTG,IP56,TOSHIBA CHECK AND FIX CYANIDE PUMP AT SGS Laboratory 

20012689 1,830.97 9/21/2012 MOTOR-G/B,12:1 R,1PH,230/250V,1400RPM I/     

20012690 249.12 1/6/2014 MOTOR,AC,2.2KW,1405RPM,FT MTG,IP56,TOSHI ME188-CHANGE GOLD ROOM RECIRCULATION MOTOR. Pp086-Goldroom Recirculation Pump Motor 

20012690 249.12 1/7/2013 MOTOR,AC,2.2KW,1405RPM,FT MTG,IP56,TOSHI CHANGE PP#001 MOTOR BEARING Pp001-Wet Scrubber Discharge Pump Motor 

20012692 461.44 5/11/2017 MOTOR,AC,INDUCT,3PH,5.5KW,4P,D132B FRM,H CHANGE BALL MILL MOTOR COOLER ML002-Ball Mill Motor 

20012692 461.44 3/3/2015 MOTOR,AC,INDUCT,3PH,5.5KW,4P,D132B FRM,H CHNAGE SAG MILL INTERNAL/EXTERNAL COOLING FAN 

MOTOR 

ML001-SAG Mill Motor 

20012692 461.44 7/23/2014 MOTOR,AC,INDUCT,3PH,5.5KW,4P,D132B FRM,H ME261 - REPLACE KILN DRIVE MOTOR Kn001-Kiln Drive Motor 

20012692 461.44 7/25/2013 MOTOR,AC,INDUCT,3PH,5.5KW,4P,D132B FRM,H ME002 - INSPECT BALL MILL MOTOR BRUSHES Ml002-Ball Mill Motor 

20012692 461.44 3/5/2012 MOTOR,AC,INDUCT,3PH,5.5KW,4P,D132B FRM,H Change Kiln burnt motor Custom Furnaces Carbon Regeneration Kiln 

20012693 858.06 11/15/2016 MOTOR,AC,11KW,4P,415V,D160MD FRM,FLG MTG INSTALL 11KW MOTOR FOR INTER-TANK SCREEN REBUILD Sn014-Cil Tank 06 Intertank Screen Motor 

20012693 858.06 9/21/2016 MOTOR,AC,11KW,4P,415V,D160MD FRM,FLG MTG Check & Change PP130 motor Primary Crusher Lube Oil Cooler Pump 

20012693 858.06 6/21/2016 MOTOR,AC,11KW,4P,415V,D160MD FRM,FLG MTG CHANGE INTERTANK SCREEN MOTOR Intertank Screen Cil Tank 01 

20012693 858.06 11/10/2015 MOTOR,AC,11KW,4P,415V,D160MD FRM,FLG MTG REPLACE MOTOR ON INTER TANK SCREEN NO.1 Lightnin Agitator - CIL Tank No. 8 
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Table B1. Raw Data of Motor Change - Out at Damang Mine from January, 2012 to June, 2017 Cont’d 

Material 
Amount 
in USD 

Document 
Date 

Material Description Reason for Changeout Functional Location 

20012693 858.06 6/15/2015 MOTOR,AC,11KW,4P,415V,D160MD FRM,FLG MTG ME017- CHANGE DEFECTIVE PUMP MOTOR Pp128-Prim Crusher Lube System Oil Pump 

20012693 858.06 2/27/2013 MOTOR,AC,11KW,4P,415V,D160MD FRM,FLG MTG Replace motor with low winding resistanc Intertank Screen Cil Tank 02 

20012693 858.06 8/9/2012 MOTOR,AC,11KW,4P,415V,D160MD FRM,FLG MTG PROVIDE MOTOR  FOR INTERTANK SCREEN 5 Intertank Screen Cil Tank 01 

20012695 500.00 9/16/2016 MOTOR,AC,INDUCT,3PH,7.5KW,4P,D132M FRM,H DAME-CHANGE PP130 MOTOR Primary Crusher Lube Oil Cooler Pump 

20012695 500.00 4/24/2012 MOTOR,AC,INDUCT,3PH,7.5KW,4P,D132M FRM,H Change out noisy motor on AG010 AG010-Electrolyte Tank Agitator Motor 

20012697 158.02 2/23/2015 MOTOR,AC,INDUCT,3PH,0.55KW,4P,D80D FRM,F CHANGE BURNT MAGNETIC MOTOR AT 

GOLDROOM 

Gt001-Gemini Table Motor 

20012697 158.02 10/22/2014 MOTOR,AC,INDUCT,3PH,0.55KW,4P,D80D FRM,F DAMG004 - REPLACE A DAMP MOTOR Drum Magnet Gemeni Table 

20012697 158.02 9/10/2012 MOTOR,AC,INDUCT,3PH,0.55KW,4P,D80D FRM,F REPLACE  THE FAULTY GOLD ROOM FAN MOTOR Gold Room 

20012700 140.08 4/14/2016 MOTOR,AC,INDUCT,1.1KW,2P,415V,D80 FRM REPLACE BURNT MOTOR Light Vehicle & Ancillary Equip Workshop 

20012700 140.08 4/27/2012 MOTOR,AC,INDUCT,1.1KW,2P,415V,D80 FRM Change PP126 burnt motor Pp126-Ball Mill Motor Hp Oil Pump No 01 

20012706 945.20 2/7/2014 MOTOR,AC,INDUCT,3PH,15KW,2P,415V,D160M F INSTALL MOTOR ON SUMP PUM FOR L.NITRATE Krupp 54X75- Primary Crusher 

20012706 945.20 6/4/2012 MOTOR,AC,INDUCT,3PH,15KW,2P,415V,D160M F CHANGE RAW WATER PUMP MOTOR PP048-Eduction Water Pump Motor 

20012706 945.20 1/20/2012 MOTOR,AC,INDUCT,3PH,15KW,2P,415V,D160M F PP083 burnt motor change-out Plant Potable Water Booster Pump 

20012707 1,007.49 6/11/2015 MOTOR,AC,INDUCT,3PH,15KW,4P,415V,D160L F REPLACE MOTOR FOR PP044A Pp044-Pretreatment Pump Motor 

20012707 1,007.49 5/7/2015 MOTOR,AC,INDUCT,3PH,15KW,4P,415V,D160L F ME174-INSTALL PP045B MOTOR Pp045-Elution Water Pump Motor 

20012707 1,007.49 2/6/2015 MOTOR,AC,INDUCT,3PH,15KW,4P,415V,D160L F ME137- CHANGE DEFECTIVE MOTOR Pp044-Pretreatment Pump Motor 

20012707 1,007.49 2/6/2015 MOTOR,AC,INDUCT,3PH,15KW,4P,415V,D160L F Provide PP052 standby motor to be installed Pp052-Elution Recirculation Pump Motor 

20012707 1,007.49 1/29/2013 MOTOR,AC,INDUCT,3PH,15KW,4P,415V,D160L F 15KW MOTOR FOR NEW THICKNER Ag007-Cyanide Mixing Agitator Motor 

20012707 1,007.49 1/17/2013 MOTOR,AC,INDUCT,3PH,15KW,4P,415V,D160L F REPLACE COMPRESSOR MOTOR Portable Air Compressor 

20012709 164.13 12/24/2013 MOTOR,AC,INDUCT,3PH,3KW,2P,D100L FRM,HF/ DAME085:REPLACE THE FAULTY FAN MOTOR ME002-Ball Mill Motor Exterior AirFan N2 

20012710 279.73 5/1/2017 MOTOR,AC,INDUCT,3PH,2.2KW,4P,D100L FRM,W UPGRADE PP025 MOTOR Caustic Dosing Pump 

20012710 279.73 4/7/2015 MOTOR,AC,INDUCT,3PH,2.2KW,4P,D100L FRM,W REPLACE PP018 BURNT MOTOR Pp018-Cyanide Transfer Pump Motor 

20012710 279.73 7/11/2014 MOTOR,AC,INDUCT,3PH,2.2KW,4P,D100L FRM,W ME188-REPLACE BURNT RECIRCULATION MOTOR 4277291 

20012710 279.73 5/4/2012 MOTOR,AC,INDUCT,3PH,2.2KW,4P,D100L FRM,W Change Chop Shop Grinding Machine A.G.L. Site Mess 

20012710 279.73 4/30/2012 MOTOR,AC,INDUCT,3PH,2.2KW,4P,D100L FRM,W change AC,INDUCT,3PH,2.2KW,4P,D100L FRM,W Ball Mill 

20012711 162.86 2/13/2016 MOTOR,AC,INDUCT,3PH,1.1KW,4P,415V,D90S F Change burnt elution column recirculation pump motor PP052-Elution Recirculation Pump Motor 

20012711 162.86 11/16/2015 MOTOR,AC,INDUCT,3PH,1.1KW,4P,415V,D90S F DAME175 - CHANGE PP046 MOTOR Pp046-Electrolyte Pump Motor 

20012711 162.86 7/9/2012 MOTOR,AC,INDUCT,3PH,1.1KW,4P,415V,D90S F REPLACE TANK 6 RECIRCULATION NOISY MOTOR PP168-Tank6 Agit GB Oil Cool Pump Motor 
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20012711 162.86 4/27/2012 MOTOR,AC,INDUCT,3PH,1.1KW,4P,415V,D90S F Change PP126 burnt motor Pp126-Ball Mill Motor Hp Oil Pump No 01 

20012713 680.00 9/25/2013 MOTOR,AC,INDUCT,5.5KW,6P,240/420V,ABB,QY REPLACE BALL MILL RECIRC. BURNT MOTOR Ball Mill Motor Lube System 

20012715 2,815.00 10/17/2015 MOTOR-G/B,HOIST CROSS TRAVEL,ABUS,GE1218 CHANGE PEBBLE CRUSHER TRAV. MOTOR Ht011-10 Tonne Hoist Motor 

20012715 2,815.00 4/9/2015 MOTOR-G/B,HOIST CROSS TRAVEL,ABUS,GE1218 REPLACE CIL CRANE HOIST TRAVELLING MOTOR 10t CIL Overhead Crane 

20012715 2,815.00 12/20/2013 MOTOR-G/B,HOIST CROSS TRAVEL,ABUS,GE1218 REPLACE PEBBLE CRUSHER MOTOR Cr002-Pebble Crusher Motor 

20012715 2,815.00 2/26/2013 MOTOR-G/B,HOIST CROSS TRAVEL,ABUS,GE1218 Replace worn out motor shaft gear on pebble crusher crane. Pebble Crusher Maint Hoist 

20012715 2,815.00 1/13/2012 MOTOR-G/B,HOIST CROSS TRAVEL,ABUS,GE1218     

20012720 18,142.08 9/30/2015 MOTOR,AC,AGITATOR,110KW,6P,315S/M FRM,FT REPLACE TK003 AGITATOR MOTOR CIL Tank 03 Agitator Motor 

20012720 18,142.08 1/26/2015 MOTOR,AC,AGITATOR,110KW,6P,315S/M FRM,FT ME111 - CHANGE TK03 AGITATOR MOTOR CIL Tank 03 Agitator Motor 

20012722 401.05 10/8/2015 MOTOR,AC,AGITATOR,1.5KW,6P,D100L FRM,FLG CHANGE AGITATOR 009 MOTOR FOR PRE-TREATMENT 

TANK 

AG009-Pretreatment Tank Agitator Motor 

20012722 401.05 4/29/2014 MOTOR,AC,AGITATOR,1.5KW,6P,D100L FRM,FLG DAME159-CHANGE FAULTY MOTOR AG008-Caustic Mixing Agitator Motor 

20012724 1,338.44 12/24/2013 MOTOR,AC,TYPE SDFT90L8/2/BN6/Z,TRAVEL,0. DACN002:REPLACE THE BURNT CIL CRANE MOTOR. CN002-Cross Travel Drive Motor No1(East) 

20012724 1,338.44 2/6/2012 MOTOR,AC,TYPE SDFT90L8/2/BN6/Z,TRAVEL,0. change burnt pump motor PP039-Tailings Pump No 03 Motor 

20012725 1,848.68 1/30/2015 MOTOR,AC,HOIST TRAVEL,12KW,415V,GE,1001/ HT009-REPLACE LINER HANDLER HOIST MOTOR Mill Liner Handler Hoist No 01 

20012725 1,848.68 1/31/2012 MOTOR,AC,HOIST TRAVEL,12KW,415V,GE,1001/ Check and repair Kiln O/H crane Custom Furnaces Carbon Regeneration Kiln 

20012727 1,978.94 7/14/2016 MOTOR,AC,30KW,4P,415V,D200LC FRM,FT/FLG INSTALL 30KW MOTOR AT TRASH SCREEN SN003-Trash Screen Motor 

20012727 1,978.94 7/2/2016 MOTOR,AC,30KW,4P,415V,D200LC FRM,FT/FLG REPLACE  BURNT PP011 MOTOR PP011-Carbon Transfer Pump Motor 

20012727 1,978.94 5/4/2016 MOTOR,AC,30KW,4P,415V,D200LC FRM,FT/FLG UPGRADE SAG MILL LUBE MOTOR Sag Mill Motor Lube System 

20012727 1,978.94 4/13/2016 MOTOR,AC,30KW,4P,415V,D200LC FRM,FT/FLG UPGRADE BALLMILL MOTOR LUBE MOTOR Ball Mill Motor Lube System 

20012727 1,978.94 7/6/2015 MOTOR,AC,30KW,4P,415V,D200LC FRM,FT/FLG DAME203 - REPLACE BURNT MOTOR PP008-Ball Mill Discharge Sump PumpMotor 

20012727 1,978.94 10/8/2014 MOTOR,AC,30KW,4P,415V,D200LC FRM,FT/FLG ME268-CHANGE FAULTY MOTOR AND PLUG LH001-Liner Handler Hydraulic Pump Motor 

20012728 1,064.34 3/14/2016 MOTOR,AC,7.5KW,6P,D160M FRM,FLG MTG,PEBB ME103-REPLACE BURNT MOTOR @ PEBBLE LUBE LU008-Pebble Crusher Lube Pump No1 Motor 

20012728 1,064.34 1/22/2015 MOTOR,AC,7.5KW,6P,D160M FRM,FLG MTG,PEBB ME214-CHANGE DEFECTIVE THICKENER MOTOR PP057-Tails Thickener Overflow PumpMotor 

30000057 9,273.15 10/27/2016 MOTOR,HYD,APRON FEEDER,CALZONI,MR300N4 FE002-CHANGE DEFECTIVE HYDRUALIC PUMP Stockpile Reclaim Apron Feeder 

30000057 9,273.15 11/5/2014 MOTOR,HYD,APRON FEEDER,CALZONI,MR300N4 CHANGE HYDRAULIC MOTOR. Stockpile Reclaim Apron Feeder 

30000057 9,273.15 12/24/2013 MOTOR,HYD,APRON FEEDER,CALZONI,MR300N4 FE002 - REPLACE APRON FEEDER HYD.  MOTOR Stockpile Reclaim Apron Feeder 

30000286 7,710.60 12/22/2015 MOTOR,AC,150KW,1500RPM,W-DF315HN FRM,FT REPLACE BURNT MOTOR @ BOOSTER STATION Krebs 12/10Tails Booster Pump No.2 Motor 
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30000286 7,710.60 11/5/2015 MOTOR,AC,150KW,1500RPM,W-DF315HN FRM,FT Replace New Motor On PP224 Krebs 12/10Tails Booster Pump No.1 Motor 

30000287 15,455.78 5/7/2016 MOTOR,AC,265KW,1500RPM,7-DS355SP FRM,CL Upgraded Motor From 260kw To 265kw Warman MCR 250 SAG Discharge Pump 
No. 1 

30000287 15,455.78 12/24/2013 MOTOR,AC,265KW,1500RPM,7-DS355SP FRM,CL Me149-Replace Filblast Motor PP068-Filblast Pump Motor 

30000287 15,455.78 6/7/2013 MOTOR,AC,265KW,1500RPM,7-DS355SP FRM,CL Change Out Filblast Burnt Motor PP068-Filblast Pump Motor 

30000288 1,413.32 8/5/2015 MOTOR,AC,SPRG CHARGE,BRKR,240V Gs018-Replace Gen-Set Breaker Motor Gen Set No. 018 Power Station 

30000288 1,413.32 8/5/2015 MOTOR,AC,SPRG CHARGE,BRKR,240V Replace Faulty Genset 013 Battery Gen Set No. 013 Power Station 

30000290 263.42 9/16/2015 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Me080-Replace Damped Electric Motor_Motor Got Damped 
Because Of Oil 

Ingress 

PP127-Ball Mill Motor HP Oil Pump No2 

30000290 263.42 9/9/2015 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Install Motor At Tk003 Radiator Fan CIL Tank 03 Agitator Motor 

30000290 263.42 7/16/2015 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Replace Ball Mill Motor Hp Pump No.1 Motor PP126-Ball Mill Motor HP Oil Pump No1 

30000290 263.42 6/18/2015 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Install 1.5kw Motor At Sag Mill Hp Pump PP123-SAG Mill Motor HP Oil Pump No2 

30000290 263.42 11/26/2014 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Me079-Replace High Pump Motor PP126-Ball Mill Motor HP Oil Pump No1 

30000290 263.42 2/6/2014 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Me052 - Replace Sag Mill Motor Lube Hp Pump No.1 Motor Due To 
Siezed 

        Bearing 

PP123-SAG Mill Motor HP Oil Pump No2 

30000290 263.42 11/25/2013 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Dame175 - Change Pump Motor PP046-Electrolyte Pump Motor 

30000290 263.42 6/5/2012 MOTOR,AC,TYPE QU90L4AT,INDUCT,3PH,1.5KW Change PP122 Motor And Service The Dump PP122-SAG Mill Motor HP Oil Pump No1 

30000291 7,074.65 4/13/2015 MOTOR,AC,INDUCT,3PH,150KW,4P,415V,50HZ,3 Replace Burnt Pp224 Motor Krebs 12/10Tails Booster Pump No.1 Motor 

30000291 7,074.65 11/12/2014 MOTOR,AC,INDUCT,3PH,150KW,4P,415V,50HZ,3 Upgrade Motor On Booster Station Pump 001 Krebs 12/10Tails Booster Pump No.1 Motor 

30000291 7,074.65 1/6/2014 MOTOR,AC,INDUCT,3PH,150KW,4P,415V,50HZ,3 Me085-Provide Motor For B/Mill Lube Fan ME002-Ball Mill Motor Exterior AirFan N2 

30000293 164.95 4/6/2016 MOTOR,AC,TYPE AEVB-UCB,AGITATOR,0.55KW,2 Replace Burnt Motor For Tyre Fixing Machine Light Vehicle Office & Ablution Block 

30000294 48,035.45 2/5/2014 MOTOR,AC,INDUCT,600KW,660V,1485RPM,50HZ Dame093  - Replace Faulty Pp006 Motor PP006-Cyclone Feed Pump Motor 

30000294 48,035.45 10/16/2012 MOTOR,AC,INDUCT,600KW,660V,1485RPM,50HZ Pp#06 Motor Change Out Warman MCR350 - Cyclone Feed Pump No. 

2 

30000295 4,384.93 9/17/2014 MOTOR,AC,PEBBLE CRUSHER 
FEEDER,YASKAWA,K 

Change Motor At Fuel Farm PP212 BRV to VT electric motor-Fuel Farm 

30000297 508.48 5/6/2013 MOTOR,AC,INDUCT,3PH,7.5KW,4P,415V,D132M Me049 - Install New Mill Lube Pump Motor PP120-SAG Mill Motor LP Oil Pump No1 

30000299 1,608.82 9/3/2013 MOTOR,AC,INDUCT,3PH,22KW,6P,D200L FRM,HF Me049-Replace Sag Mill Lp Lube Pump Motor PP120-SAG Mill Motor LP Oil Pump No1 

30000302 586.29 5/6/2016 MOTOR,AC,4KW,6P,415V,D132MD FRM,FLG MTG Lu002-Change Recirculation Pump SAG Mill Disch End Lube System (Fixed) 
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30000302 586.29 10/11/2013 MOTOR,AC,4KW,6P,415V,D132MD FRM,FLG 

MTG 

Me048-Change S/G Mill Flt Recir.  Motor PP104-S/Mill Float/B Rec Oil Pump Mot 

30000303 172.50 10/14/2013 MOTOR,AC,INDUCT,3PH,3KW,2P,415V,D100L 
FR 

Change Out Burnt Compressor Motor @ Hv Lube Bay-Hme Fuel 
Farm 

HME Technician Workshop 

30000306 248.60 11/23/2016 MOTOR,AC,INDUCT,3PH,0.55KW,2P,D71D 

FRM,F 

Replace Burnt Motor For Pp006b Cooling Fan PP006B Drive Gearbox Heat Exchanger 

Moto 

30000306 248.60 1/16/2012 MOTOR,AC,INDUCT,3PH,0.55KW,2P,D71D 
FRM,F 

0.55 KW Electrical  Motor Change Out Stockpile Reclaim Apron Feeder 

30000307 5,836.85 2/3/2017 MOTOR,AC,110KW,4P,415V,D280M FRM,C/W 

RTD 

Upgrade Pp027 Motor (From 90kw To 110kw) Tamang R Raw Water Sup Pump To Plant 

30000307 5,836.85 11/5/2014 MOTOR,AC,110KW,4P,415V,D280M FRM,C/W 
RTD 

Change Noisy Motor(Bearing Failure) Krebs 12/10Tails Booster Pump No.2 
Motor 

30000307 5,836.85 7/30/2014 MOTOR,AC,110KW,4P,415V,D280M FRM,C/W 

RTD 

Change Tk08 Agitator Drive Motor CIL Tank 07 Agitator Motor 

30000308 1,087.00 10/1/2015 MOTOR,AC,7.5KW (10HP),400/440V,50HZ,HEAT Me282-Replace Burnt Motor PP023-Acid Metering Pump Motor 

30000309 18,114.52 5/18/2017 MOTOR,AC,260KW,4P,415V,355M/L FRM,B3 

MTG 

Change Cv002 Drive Motor CV002-Drive Motor 

30000309 18,114.52 5/18/2017 MOTOR,AC,260KW,4P,415V,355M/L FRM,B3 

MTG 

Change Cv002 Drive Motor CV002-Drive Motor 

30000309 18,114.52 6/4/2015 MOTOR,AC,260KW,4P,415V,355M/L FRM,B3 

MTG 

Replace Pp260 Noisy Motor Pre_Leach Thickener U/F Pump Motor 

No. 1 

30000309 18,114.52 11/11/2012 MOTOR,AC,260KW,4P,415V,355M/L FRM,B3 

MTG 

Change PP68 Motor For Filblast Pp068-Filblast Pump Motor 

30000310 179.12 2/28/2016 MOTOR,AC,TYPE 

QY80M4B,INDUCT,0.75KW,4P,2 

Me043-Change Sag Mill Recirculation Motor SAG Mill Fixed Bearing Rec Oil 

PumpMotor 

30000310 179.12 7/17/2015 MOTOR,AC,TYPE 

QY80M4B,INDUCT,0.75KW,4P,2 

Install 1.5kw Motor At Sag Mill Hp Pump PP123-SAG Mill Motor HP Oil Pump 

No2 

30000311 969.83 3/8/2017 MOTOR,AC,15KW,415V,1455RPM,D160 

FRM,TECO 

Replace Burnt Scats Return Conv Motor CV008-Drive Motor 

30000311 969.83 5/31/2016 MOTOR,AC,15KW,415V,1455RPM,D160 

FRM,TECO 

Change Tailings Agitator Motor AG013 - Tailing Tank No.1 Agitator 

Motor 

30000311 969.83 2/13/2016 MOTOR,AC,15KW,415V,1455RPM,D160 

FRM,TECO 

15kw Motor For Tailings Agitator AG013 - Tailing Tank No.1 Agitator 

Motor 

30000311 969.83 8/15/2013 MOTOR,AC,15KW,415V,1455RPM,D160 

FRM,TECO 

Me107-Replace Cv007 Motor(Night Issue) CV007-Drive Motor 

30000311 969.83 5/20/2013 MOTOR,AC,15KW,415V,1455RPM,D160 

FRM,TECO 

Replace A Motor With Noisy Bearings PP047-Barren Electrolyte Pump Motor 

30000311 969.83 2/5/2013 MOTOR,AC,15KW,415V,1455RPM,D160 

FRM,TECO 

Change Out Burnt Pp041b Motor PP041-Tailings Area Sump Pump Motor 

30000312 1,428.90 5/1/2017 MOTOR,AC,22KW,D180 FRM,FT MTG Change Pp#41a Burnt  Motor PP041-Tailings Area Sump Pump Motor 
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30000312 1,428.90 1/9/2017 MOTOR,AC,22KW,D180 FRM,FT MTG REPLACE MALFUNTIONING DRIVE MOTOR CIL Area Sump Pump - Between TK06/TK07 

30000312 1,428.90 11/21/2016 MOTOR,AC,22KW,D180 FRM,FT MTG REPLACE PP010 MOTOR PP010-Carbon Transfer Pump Motor 

30000312 1,428.90 9/11/2016 MOTOR,AC,22KW,D180 FRM,FT MTG INSTALL 22KW MOTOR FOR SOS 2ND PROJECT SOS VIBRATING SCREEN 

30000312 1,428.90 8/17/2016 MOTOR,AC,22KW,D180 FRM,FT MTG CHANGE PP007 MOTOR -  30KW PP007-SAG Mill Discharge Sump Pump Motor 

30000312 1,428.90 11/30/2015 MOTOR,AC,22KW,D180 FRM,FT MTG UPGRADE PP023 MOTOR TO 22KW PP023-Acid Metering Pump Motor 

30000312 1,428.90 10/2/2015 MOTOR,AC,22KW,D180 FRM,FT MTG REPLACE FAULTY MOTOR ON PP016 PP016-CIL Area Sump Pump Motor 

30000312 1,428.90 7/10/2015 MOTOR,AC,22KW,D180 FRM,FT MTG change burnt 22kw motor for PP182 PP182-Carbon Transfer Pump Motor 

30000312 1,428.90 6/30/2015 MOTOR,AC,22KW,D180 FRM,FT MTG UPGRADE PP026 MOTOR Reagents Area Sump Pump 

30000312 1,428.90 3/21/2015 MOTOR,AC,22KW,D180 FRM,FT MTG PP002 - REPLACE BURNT MOTOR Mill Feed Sump Pump 

30000312 1,428.90 7/8/2014 MOTOR,AC,22KW,D180 FRM,FT MTG REPLACE PP010 ELECTRICAL MOTOR. CIL Carbon Transfer Pump - TK005 

30000312 1,428.90 6/23/2014 MOTOR,AC,22KW,D180 FRM,FT MTG CHANGE CV006 DRIVE MOTOR CV006-Drive Motor 

30000313 379.46 5/21/2014 MOTOR,AC,FAN,AIR COMPR,10HP,4P,215 FRM REPLACE AIR COMPRESSOR THREE 3 MOTOR AC003-Air Compressor No 03 Motor 

30000313 379.46 4/9/2014 MOTOR,AC,FAN,AIR COMPR,10HP,4P,215 FRM AC003 - CHANGE BURNT 7.5KW MOTOR AC003-Air Compressor No 03 Motor 

30000313 379.46 8/13/2013 MOTOR,AC,FAN,AIR COMPR,10HP,4P,215 FRM DAME255  REPLACE THE BURNT MOTOR AC003-Air Compressor No 03 Motor 

30000316 669.20 2/28/2017 MOTOR,DC,PERM MAG,1.5KW,24V,3000RPM,IP44 CHANGE PP025 CAUSTIC PUMP MOTOR - NIGHT 

ISSUE 

PP025-Caustic Dosing Pump Motor 
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APPENDIX C 

DRAWINGS 

RTD CONNECTION DIAGRAM 
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AIR CIRCUIT DIAGRAM 
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APPENDIX C 

DRAWINGS 

RTD CONNECTION DIAGRAM 

 

AIR CIRCUIT DIAGRAM 

 

 

 

 

POWER SUPPLY DIAGRAM (2) 

 

CONTROL CIRCUIT DIAGRAM (1) 

 

SLIPRING 

COMPARTMENT 
INTERNAL AIR INTERNAL AIR EXTERNAL AIR EXTERNAL AIR EXTERNAL AIR 

POWER SUPPLY DIAGRAM (1) 
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POWER SUPPLY DIAGRAM (2) 
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CONTROL CIRCUIT DIAGRAM (1) 
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CONTROL CIRCUIT DIAGRAM (2) 
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INTERFACE INDICATION DIAGRAM  
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APPENDIX D 

TEST REPORTS 

 

TEMPERATURE TEST REPORT 
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NOISE TEST REPORT 
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BEARING RUN TEST REPORT 
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POWER TEST REPORT 
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ASYNCHRONOUS MOTOR TEST REPORT 
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BALANCE AND OVERLOAD TEST REPORT 
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APPENDIX E 

MATLAB SCRIPTS 

MATLAB Scripts for Levenberg-Marquardt Using Logsig 

Data_Inputs = xlsread('Training1.xlsx'); 
Training_Set = Data_Inputs(1:4,1:300);%specify training set 
Target_Set = Data_Inputs(5,1:300);%specify target set 
P = Training_Set; 
T = Target_Set; 
net = newff(P,T,10,{'logsig'}); 
net.trainFcn = 'trainlm'; 
net.trainparam.min_grad = 0.00000001; 
net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.6; 
net.trainParam.max_fail =50;  
net.performFcn = 'mse';  % Mean Squared Error 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
'plotregression', 'plotfit'}; 
%Train network 
net1 = train(net, P, T);% Iterates gradient type of loop 
% Resulting network is strored in net1 
%Convergence curve is shown below. 
% Simulate how good a result is achieved: Input is the same input vector P. 
% Output is the output of the neural network, which should be compared with 

output data 
a= sim(net1,P); 
e= T-a; 
perf = perform(net1,T,a); 
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MATLAB Scripts for Levenberg-Marquardt Using Tansig 

Data_Inputs = xlsread('Training1.xlsx'); 
Training_Set = Data_Inputs(1:4,1:300);%specify training set 
Target_Set = Data_Inputs(5,1:300);%specify target set 
P = Training_Set; 
T = Target_Set; 
net = newff(P,T,10,{'tansig'}); 
net.trainFcn = 'trainlm'; 
net.trainparam.min_grad = 0.00000001; 
net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.6; 
net.trainParam.max_fail =50;  
net.performFcn = 'mse';  % Mean Squared Error 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
'plotregression', 'plotfit'}; 
%Train network 
net1 = train(net, P, T);% Iterates gradient type of loop 
% Resulting network is strored in net1 
%Convergence curve is shown below. 
% Simulate how good a result is achieved: Input is the same input vector P. 
% Output is the output of the neural network, which should be compared with 

output data 
a= sim(net1,P); 
e= T-a; 
perf = perform(net1,T,a); 
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MATLAB Scripts for Bayesian Regularisation Using Logsig 

Data_Inputs = xlsread('Training1.xlsx'); 
Training_Set = Data_Inputs(1:4,1:300);%specify training set 
Target_Set = Data_Inputs(5,1:300);%specify target set 
P = Training_Set; 
T = Target_Set; 
net = newff(P,T,10,{'logsig'}); 
net.trainFcn = 'trainbr'; 
net.trainparam.min_grad = 0.00000001; 
net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.6; 
net.trainParam.max_fail =50;  
net.performFcn = 'mse';  % Mean Squared Error 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
'plotregression', 'plotfit'}; 
%Train network 
net1 = train(net, P, T);% Iterates gradient type of loop 
% Resulting network is strored in net1 
%Convergence curve is shown below. 
% Simulate how good a result is achieved: Input is the same input vector P. 
% Output is the output of the neural network, which should be compared with 

output data 
a= sim(net1,P); 
e= T-a; 
perf = perform(net1,T,a); 
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MATLAB Scripts for Bayesian Regularisation Using Tansig 

Data_Inputs = xlsread('Training1.xlsx'); 
Training_Set = Data_Inputs(1:4,1:300);%specify training set 
Target_Set = Data_Inputs(5,1:300);%specify target set 
P = Training_Set; 
T = Target_Set; 
net = newff(P,T,10,{'Tansig'}); 
net.trainFcn = 'trainbr'; 
net.trainparam.min_grad = 0.00000001; 
net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.6; 
net.trainParam.max_fail =50;  
net.performFcn = 'mse';  % Mean Squared Error 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
'plotregression', 'plotfit'}; 
%Train network 
net1 = train(net, P, T);% Iterates gradient type of loop 
% Resulting network is strored in net1 
%Convergence curve is shown below. 
% Simulate how good a result is achieved: Input is the same input vector P. 
% Output is the output of the neural network, which should be compared with 

output data 
a= sim(net1,P); 
e= T-a; 
perf = perform(net1,T,a); 
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MATLAB Scripts for Prediction Using Levenberg-Marquardt Training Algorithm 

Data_Inputs = xlsread('Training2.xlsx'); 
Training_Set = Data_Inputs(1:5,1:700);%specify training set 
Target_Set = Data_Inputs(6,1:700);%specify target set 
P = Training_Set; 
T = Target_Set; 
net = newff(P,T,10,{'tansig'}); 
net.layers{1}.transferFcn='hardlim'; 
net.trainFcn = 'trainlm'; 
net.trainparam.min_grad = 0.00000001; 
net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.6; 
net.trainParam.max_fail =50;  
net.performFcn = 'mse';  % Mean Squared Error 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression', 'plotfit', 'plotconfusion'}; 
%Train network 
net1 = train(net, P, T);% Iterates gradient type of loop 
% Resulting network is strored in net1 
%Convergence curve is shown below. 
% Simulate how good a result is achieved: Input is the same input vector P. 
% Output is the output of the neural network, which should be compared with 

output data 
a= sim(net1,P); 
e= T-a; 
perf = perform(net1,T,a) 
xlswrite('Try.xlsx', perf) 
Training_Set = Data_Inputs(1:5,701:879);%specify training set 
Target_Set = Data_Inputs(6,701:879);%specify target set 
P1 = Training_Set; 
T1 = Target_Set; 
a1= sim(net1,P1) 
plotconfusion(T1,a1) 
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MATLAB Scripts for Prediction Using Bayesian Regularization Training Algorithm 

Data_Inputs = xlsread('Training2.xlsx'); 
Training_Set = Data_Inputs(1:5,1:700);%specify training set 
Target_Set = Data_Inputs(6,1:700);%specify target set 
P = Training_Set; 
T = Target_Set; 
net = newff(P,T,10,{'tansig'}); 
net.layers{1}.transferFcn='hardlim'; 
net.trainFcn = 'trainbr'; 
net.trainparam.min_grad = 0.00000001; 
net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.6; 
net.trainParam.max_fail =50;  
net.performFcn = 'mse';  % Mean Squared Error 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression', 'plotfit', 'plotconfusion'}; 
%Train network 
net1 = train(net, P, T);% Iterates gradient type of loop 
% Resulting network is strored in net1 
%Convergence curve is shown below. 
% Simulate how good a result is achieved: Input is the same input vector P. 
% Output is the output of the neural network, which should be compared with 

output data 
a= sim(net1,P); 
e= T-a; 
perf = perform(net1,T,a) 
xlswrite('Try.xlsx', perf) 
Training_Set = Data_Inputs(1:5,701:879);%specify training set 
Target_Set = Data_Inputs(6,701:879);%specify target set 
P1 = Training_Set; 
T1 = Target_Set; 
a1= sim(net1,P1) 
plotconfusion(T1,a1) 
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APPENDIX F 

MATLAB RESULTS 

MATLAB Results Using Levenberg-Marquardt/Logsigmoid 

 

Correlation Coefficient for Network Performance, R (100 Data Samples) 
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MATLAB Results Using Levenberg-Marquardt/Logsigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (200 Data Samples) 

 

Correlation Coefficient for Network Performance, R (300 Data Samples) 
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MATLAB Results Using Levenberg-Marquardt/Logsigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (400 Data Samples) 

 

Correlation Coefficient for Network Performance, R (500 Data Samples) 
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MATLAB Results Using Levenberg-Marquardt/Tansigmoid 

 

Correlation Coefficient for Network Performance, R (100 Data Samples) 

 

Correlation Coefficient for Network Performance, R (200 Data Samples) 
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MATLAB Results Using Levenberg-Marquardt/Tansigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (300 Data Samples) 

 

Correlation Coefficient for Network Performance, R (400 Data Samples) 
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MATLAB Results Using Levenberg-Marquardt/Tansigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (500 Data Samples) 

 

 

 



166 

MATLAB Results Using Bayesian Regularisation/Logsigmoid 

 

Correlation Coefficient for Network Performance, R (100 Data Samples) 

 

Correlation Coefficient for Network Performance, R (200 Data Samples) 
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MATLAB Results Using Bayesian Regularisation/Logsigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (300 Data Samples) 

 

Correlation Coefficient for Network Performance, R (400 Data Samples) 
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MATLAB Results Using Bayesian Regularisation/Logsigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (500 Data Samples) 
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MATLAB Results Using Bayesian Regularisation/Tansigmoid 

 

Correlation Coefficient for Network Performance, R (100 Data Samples) 

 

Correlation Coefficient for Network Performance, R (200 Data Samples) 
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MATLAB Results Using Bayesian Regularisation/Tansigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (300 Data Samples) 

 

Correlation Coefficient for Network Performance, R (400 Data Samples) 
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MATLAB Results Using Bayesian Regularisation/Tansigmoid Cont’d 

 

Correlation Coefficient for Network Performance, R (500 Data Samples) 
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Index 

 

 

A 
Abnormal heavy foaming, 76 

AC (Alternating Current), 6–7, 11, 23, 35, 

133, 135–40 

   smooth progressive, 64 

AC drive system, 48 

AC induction motors, 48 

action, breaking, 36 

activation, 88 

   applying, 88 

activities, desired, 44 

AC voltage controller, 20 

adaptive channel equalizer, 45 

adaptive nature, 42 

addition, 1, 44, 48, 50, 79, 95 

   non-symmetrical, 28, 30 

Advanced control techniques, 25 

agitator, 66, 133, 137–38 

air circuit, 54 

   external, 54 

   internal, 54–55 

   fundamental, 36 

air gap flux density, 31 

air gap length, 30–31 

Air release capability, 73 

alarm, 59, 62 

alarm annunciation, 59 

algorithms, 47–49, 91 

   backpropagation, 42, 44, 86 

   clustering, 42 

   levenbergmarquardt, 50 

   novel transform demodulation, 49 

   propagation, 43 

Alternating Current 

  . See AC 

   asynchronous, 6 

amplitude, 24, 41 

   first harmonic, 41 

   variable-frequency-fixed, 23 

analysis 

   artificial neural network model, 106 

   chemical product design, 46 

   chip failure, 45 

   computer chip quality, 46 

   corporate financial, 46 

   credit line use, 46 

   external magnetic field, 41 

   machine maintenance, 46 

   regression, 101 

   root-cause, 49 

   spectral, 47 

   statistical, 90 

   welding quality, 46 

anti-corrosion, 64 

antifriction, 62 

applications, 38, 42, 45, 49, 64, 66, 108, 

110 

   commercial, 6, 45 

   real world, 49 

   sensitive, 26 

   speed, 19 

   vapour compressor, 49 

applied size, 106 

applied voltage, 13, 17, 19–20, 22–24 

approximation affairs, 101 

arrangements, winding, 21 

asynchronous machines, 11, 50, 109 

atmospheric humidity, 58 

automated information services, 46 

automatic bond, 46 

autonomous vehicles, 46 

autopilot enhancements, 45 

autotransformer, 15, 18 

auto-transformer, 18 

   tapped, 18 

auxiliary limit switches, 65 

 

B 
balance, 22–23, 153 

balls, 31–32 

   dissected, 31 

   lubricated, 62 

   rotating, 31 

ball tracks, 32 

bar breakages, 48 

bars, 10, 27, 64, 71 

   aluminium, 9 

   broken, 27 

   insulated copper, 64 

   multiple, 27 

   short-circuited, 11 

   side, 27 

bearing components, 63 

bearing damage, 26 

bearing degradation, 39 

bearing endshields, 77 

bearing failure, 2, 31–32, 34, 50, 139 
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bearing faults, 2, 27, 31, 40 

bearing housings, 63, 76–77 

bearing insulation, 77 

bearing lubrication, 51 

bearing material, 31 

bearing oil, 73 

bearing parts, 64 

bearing pedestals, 77 

bearings, 26, 31–32, 40, 51, 62–64, 70–

71, 73, 76, 78, 138 

   roller type, 62 

bearing seals, 63 

bearing shells, 76 

bearing shield, 49, 110 

bearing temperature, 32, 48 

bearing wear, 26 

bearing wear faults, 48 

biases, 87, 91 

blast, strong, 58 

block, decision-making, 95 

blockage, accidental, 65 

blocked air passages, 78 

bolts, 58, 77 

   machine/bag, 51 

BR (Bayesian Regularization), 50, 96, 

98–99, 101–3, 105, 109 

Breast cancer cell analysis, 46 

broken rotor bar (BRBs), 26–27, 41, 47, 

49–50, 108–9 

broken rotor bars, 26–27, 41, 47, 49 

broken rotor bars detection, 47 

brush arrangement, 60 

brushes, 6, 10, 56–60, 77–79 

   earth, 77 

   fixed, 55 

   new, 59 

   slip-ring, 21 

brush gear, 57–58, 77 

brush grade, 58 

brush-holder frames, 60 

brush-holders, 58–60, 79 

brush pressure, 60 

   correct average, 60 

brush pressure Quarterly, 77 

brush removal, 58 

brush wear, 57, 59 

   normal, 56 

 

C 
cables, 68, 77, 79 

cage, 9, 27 

carbon blocks, 55 

carbon brush, 55, 57, 59–60 

carbon brush wear measurement, 57 

carbon dust, 56, 58 

Carbon in Leach. See CIL 

cash forecasting, 45 

cause damages, 34, 50 

cause noise, 28 

cause ripples, 28 

cause turn-to-turn, 34 

change, 1, 3, 10, 21, 37, 44, 72, 75, 77, 95, 

136, 139 

   air gap flux, 21 

   speed, 18 

   state, 44 

change AC, 136 

circuit breakers, 34 

circuit chip layout, integrated, 45 

circuits, 1, 13, 23, 47, 71 

   electronic, 23 

   elution, 1 

   low pressure, 71–72 

   milling, 1, 51 

   solid-state, 20 

   stator magnetic, 10 

   tailings, 1 

circular arc, complete, 60 

circumference, 58 

classes, main, 9 

classification, 29, 39, 44–45, 50, 109 

   based fault, 80 

   vowel, 46 

classifier, 49, 108 

   sonar, 45 

clean oil-free cloths, 58 

clean pumping, 70 

cloths, small, 58 

coil insulation, 34 

coil movement, 34 

coils, 7–8, 22–23, 33, 61 

   resulting, 34 

combination, 22, 30, 33, 47 

commercial success, 45 

common-mode currents, 50 

compartments, isolated, 64–65 

complex post processing decision, 48 

complex wavelets, 40–41 

complicated problems, 101 

components, 5, 7, 36, 39, 71 
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   current vector, 40 

   extracting signature frequency, 49 

   fault signature frequency, 49 

   main, 26, 79 

   winding, 61 

compressed air, 58 

computational models, 42 

   parallel, 42 

concentric cylinders, 64 

concomitant production losses, 6 

condensation, 79 

condition monitoring, 38–39 

   online, 39 

   on-line, 6 

Condition monitoring and fault detection, 

39 

condition monitoring devices, 4 

conditions, 11–12, 20, 24, 27, 35, 38, 63, 

77 

   dynamic, 25 

   faulty, 102–3, 105 

   loaded, 20, 37 

   low error, 101 

   nominal, 47 

   normal, 40, 75 

   normal running, 17 

   site, 75 

   steady state, 50 

   surface roughness, 60 

   unloaded, 48 

conductors, winding, 33 

configuration, 92 

confusion plot, 102 

connection changes result, 21 

connections, 10, 21, 23, 44, 77, 87 

   bolted, 63 

   constant horse-power, 23 

   constant torque, 23 

   constant-torque, 21 

   correct, 78 

   ron cascade, 48 

   series, 10 

   star, 17 

   terminal, 23 

   winding, 21, 78 

connections result, 22 

connection weights, 86 

conservation measures, 79 

constant, 7, 11, 18, 20–21, 24 

   maintained, 24 

constant amplitude, 11 

constant frequency source, 7 

constant-horsepower type, 21 

constant load torque, 51 

constant torque, 20 

constant torque type, 20 

construction, 7–9, 19, 50, 52, 54–56, 66–

67 

consumables, replacing, 75 

contamination, 32, 63 

contamination display, 71–72 

control cables, 69 

control connections, 77 

control scheme, 23 

cooler tubes, 64 

cooling, 51, 54, 66, 78 

cooling air inlet, 79 

cooling fan blades, 9 

cooling fans, 54 

copper, single, 9 

copper conductor, 34 

core, 8, 14 

   cylindrical iron, 8 

   dual, 48 

core temperature, 39 

corrosion, 32, 64 

corrosive fluids, 32 

Couple unbalance rotor, 29 

coupling unbalance, 30 

crawling, 26, 36–37 

crawling effect, 37 

credit application evaluators, 45 

criterion, 101 

   important, 58 

curable resin, 61 

current density, 58 

   low, 65 

curves, 18–19, 24 

   speed torque, 19 

 

D 
damage, 27–28, 56, 61, 73 

   critical, 36 

   mechanical, 61 

   physical, 31 

data division functions type, 154–59 

data mining, 45 

defects, 26, 40, 75 

   foundation, 26 

delta, 17–18, 78 
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desired output vectors, 45 

detectability, 48 

detection, 6, 48, 50, 106 

   false, 102 

   misfire, 45 

   online failure, 95 

   online half-broken-rotor, 48 

detection efficiency, 102 

deviations, 40, 75 

   possible, 75 

devices, 45–46 

   rotating, 6 

   semiconductor, 20 

diagnosis, 40, 47–48, 95, 108, 110 

   correct, 48 

   incipient BRB, 50 

diagnosis procedure, 47 

diagnostics, based, 49 

dielectric, 61 

   lesser extent, 61 

digital signal processor, 48 

direction, 11, 36, 78 

   current, 23 

   given, 22 

   opposite, 36 

   single, 78 

direct torque control (DTC), 25 

dirt, 32, 73 

dirt deposit, 58, 75, 77 

dirt deposit Quarterly, 77 

discolouring, 63 

disconnect, 34, 76 

discrete wavelet transform, 47–48 

displacement, 64–65 

dissipation, 20 

   heat, 35, 66 

dividerand, 154–59 

domain, wide, 43 

downed line, 35 

down important operating quantities, 75 

downtime, 38–39 

   long, 38 

   unscheduled, 38 

drive breakdown, total, 26 

duty cycles, heavy, 6 

 

E 
eccentricity, 29, 41 

   dynamic, 30 

eccentricity faults, 40 

edit network architectures, 91 

effectiveness, 95 

Effect of rotor mass unbalance, 30 

effects 

   ageing, 61 

   small, 26 

   special, 46 

electrical faults, 49, 107 

electrical induction motors, 4–5 

electrical interlock, 65 

electrical motors, 1, 38 

electric motor-Fuel Farm, 138 

electric powers, instantaneous, 47 

electrode arrangement, 65 

electrodes, 64–65 

   fixed, 64 

   moving, 64–65 

electrodes return, 65 

electrode worm screw, 69 

electrolyte, 64, 66 

electromagnetic pull, 28 

   unbalanced, 28 

electronic speed controller, 65 

emf, 10–11, 23 

enclosure, 68–69, 79 

enclosure IP, 76 

enclosure protection, 69 

encouragement, iv 

environment, 44 

   cold, 72 

   heated, 72 

   hostile, 35 

   industrial, 32 

   numerical computing, 91 

   working, 6 

equilibrium, new, 44 

equipment 

   auxiliary, 5, 79 

   portable measuring, 77 

   protective, 74 

   rotary, 6 

   special, 29 

equipment failure, 35 

equipment manual, 78 

equipment set-up, 41 

equivalent circuit, 13–14, 24 

   exact, 24 

error minimisation, 81 

estimation, 90, 110 

   fault severity, 41 
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   homogeneity, 50, 109 

   rotor flux, 47 

estimation technique, 47 

examination, bearing oil, 73 

excessive line, 37 

excitatory, 42 

experience, 28, 75 

explosion proof, 7 

 

F 
failure avoidance schemes, 39 

failure prediction, 3, 5, 39, 47, 80, 104 

   aided, 3 

   use of Artificial Neural Networks for, 5, 

50 

failure prediction methods, 39–40, 110 

failure prediction networks, 106 

failures, 2, 5, 27, 33, 38–39, 48–49 

   catastrophic, 4, 6 

   complete, 40 

   maximum validation, 92 

   premature, 38 

   recurring, 50 

   winding, 26 

failures.The conclusion, identifying, 5 

failure tracking, 39 

false detection (FD), 102 

fan rotation, 78 

fans, 9, 18–19, 54, 73, 78, 140 

   installed, 51 

fault conditions, 6, 39, 75, 102 

fault detection, 39–41 

   incipient, 26, 41, 49 

fault detection and diagnosis, 40, 110 

fault detection range, 106 

fault detection research, 49 

fault diagnosis, 38, 40, 109 

   incorrect, 48 

fault isolation, 49 

fault prediction, 6 

   embedded systems, 48 

faults, 2, 5–6, 25–26, 29–35, 37–41, 47–

50, 74–76, 78, 106 

   air-gap eccentricity, 28 

   broken bar, 28 

   coil, 33 

   detecting, 49 

   diagnosing, 49 

   drive, 78 

   earth, 26 

   electromechanical, 36 

   experience, 26 

   external, 25–26 

   ground, 33–34 

   incipient, 38, 49 

   inter-turn, 47 

   open-circuit, 33–34 

   possible, 76 

   short circuit, 49 

   short-circuit, 26, 33 

   solving, 73 

   turn-to-ground, 34 

   turn-to-turn, 33 

fault severity, 106 

fault shaft rotational axis, 29 

Faults in induction motors, 26 

Faults in laminations and frame of stator, 

32 

FD (false detection), 102 

feature, characteristic, 61 

feature extraction, 45, 47, 81 

feedback loops, 44 

field, 6, 11–12, 45 

   four-pole, 23 

   pole air-gap, 23 

   rotating, 7, 10–12, 41 

   rotating stator, 11 

filter, 71–73, 79 

   air, 71 

filter element, 71, 73 

filter monitor, 63 

flow 

   generous, 59 

   restricted, 32 

   unidirectional, 43 

flow-meter, 72 

flux, 10–11, 22–24, 36 

   fundamental, 36 

   leakage, 39 

   peak, 23 

   rotating, 11 

flux density, 11 

flux level, 20, 24 

flux lines, 22–23 

   emanating, 23 

foaming, 73 

forced circulation, 66 

forces, 11–12, 34, 40, 74, 84 

   abnormal magneto motive, 37 

   brush-holder spring, 60 
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   electromotive, 10 

   high, 74 

   induced electromotive, 23 

   large centrifugal, 27 

foreign matter, 76 

forklift robot, 46 

formation, 43 

foundation blocks, 51 

four-pole arrangement, 23 

four-pole structure, 23 

fracture, 27, 32 

   fault characteristics, 47 

   sideband, 28 

   switching, 75 

   variable, 34 

frequency spectrum, 40 

fresh air, 59 

friction, 12, 31–32, 40 

friction surfaces, 40 

full load current (FLC), 16, 64 

Functional Location, 133–40 

functional relationships, 45 

functions, 40–43, 88–89, 91–92 

   activation, 42–43, 88 

   network train, 92 

   sigmoid, 43 

   threshold, 42 

   trainParam train, 92 

   weight/bias learning, 86 

   weights/bias learning, 91 

 

G 
gear, motor shaft, 137 

gear pump, 71, 73 

gear teeth, 73 

generator, 55, 107 

genetic algorithm, 47, 108 

geometrical axis, 28 

glycerine, 71 

   neutral, 71 

good power dissipation capability, 21 

gradient, 102, 105 

   minimum performance, 92 

graphite forms, 58 

grease, 31–32, 62, 78 

   fresh, 78 

grease chamber, 78 

grinding, 51, 58, 60 

grinding process, 60 

ground, 59–60 

   axial, 78 

 

H 
handstoning, 58 

hardlim, 158–59 

harmonic content, high, 37 

harmonic contents, 41 

harmonic fluxes, 36 

harmonic fluxes rotate, 36 

harmonics, 36–37, 41 

   air gap flux density, 31 

   predominant, 36 

harmonic vibration spectrum, 40 

heat, 35 

   excess, 71 

heat exchanger, 66, 68, 71 

   air-water, 76 

hidden layer size, 106 

High frequency components of vibration, 

40 

High mechanical vibration, 34 

High performance aircraft autopilots, 45 

High vibration and wear, 32 

human brain, 42 

 

I 
Ic-core loss component, 14 

identification, 4, 106 

   real-time particle, 46 

   signal/image, 45 

idling, 78 

Im-magnetising component, 14 

impedances, 14 

implementation, 4, 91, 95 

implication, 5 

impregnation, 61 

Improvement, 39 

incipient, 49 

   early, 50 

inclined fan blades, 78 

independent variables Pi, 86 

induced emf, 11, 23–24 

   coiled, 22 

induction, 12, 108 

   electromagnetic, 6, 10 

induction machines, 14–15, 18–19, 21, 

23, 40, 48, 108 

   line-operated, 47 

   special three-phase, 47 

induction motor condition monitoring, 41 
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induction motor failures, 2–3, 25, 31, 38 

induction motor faults, 26 

induction motor model, 49 

induction motors, 1–2, 4–8, 10–18, 25–

28, 30–32, 35–38, 41, 47–50, 79, 95, 

104, 106–10 

   based fault classification of, 80–81 

   burnt, 1 

   failure prediction of, 41, 50 

   large, 10 

   large three-phase, 10 

   model based diagnostics and 

prognostics of three-phase, 49, 109 

   operating, 2 

   phase, 50 

   polyphase, 6 

   single phase, 105 

   single-phase, 48–49 

   slip-ring, 6, 9 

   squirrel-cage, 6, 9, 47 

   squirrel-cage type, 37 

   starting three-phase, 15 

   wound rotor, 56, 76 

induction motor stator, 49 

inductive reactance, 24 

industrial process, 38 

   real, 50 

Industrial processes, 26 

industry, 6, 38, 50 

inefficient proposition, 20 

Inhibitor content, 73 

inhibitory, 42 

Initialization of weights, 81 

inlet pipe, 71 

input changes, 44 

input data, 39, 84, 91 

   new independent, 42 

input excitation, 23 

input features, 49 

input function, 42 

input layer, 43 

input object, given, 43 

input parameters, 5 

   measurable, 48 

   baseline, 42 

   obtained neural, 42 

   rotor power, 14 

   total, 44 

input units, 42 

input value, 88 

input variables, 43, 87 

input vector, 44, 86, 154–59 

input vectors, given, 44–45 

inspection, 38, 63, 75, 79 

   extra non-scheduled, 75 

   periodical, 64 

inspections, regular, 26, 79 

installation, 6, 32, 68 

installation defect, 26 

installations, heavy-current, 74 

Install New Mill Lube Pump Motor, 138 

instructions, 57, 78 

   following, 76 

instrumentation devices, 5 

instruments, 75 

insulated shells, 63 

insulating paths, 57 

insulation, 33–35, 37, 58, 61 

   bearing shell, 63 

   best, 35 

   carrier bolt, 58 

   contaminate, 35 

   stator inter-turn, 48 

insulation breakdown, 26 

insulation defects, 39 

insulation degradation, 49 

insulation life, 35 

Intelligent systems for motor failure 

predictions, 5 

INTERNAL AIR, 143 

Internal Faults, 25 

Intertank Screen Cil Tank, 135–36 

Intertank Screen Motor, 135 

inter-turn, winding, 49 

inter-turn failure, 105 

inter-turn fault detection, 50, 109 

intervals, 43, 57–58 

   bounded, 43 

   recommended maintenance, 75 

intervention, 75 

Inverse Approach for Interturn Fault 

Detection in Asynchronous 

Machines, 109 

Inverter-Driven Induction Motor, 107 

inverters, 23 

   pulse width modulation, 50 

isolation, 64 

   galvanic, 51 

Iterates gradient type of loop, 154–59 

iterations, 102, 105 
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K 
knocking sounds, 77 

knowledge, 47, 86 

   expert, 47 

knowledge discovery, 45 

kV, 4, 80, 106 

kV SAG Mill, 106 

kW, 1, 52, 54–56, 66–67 

KW Electrical Motor Change, 139 

kW pebble crusher, 1 

 

L 
laminations, 32 

   punched, 8 

   stacked, 8 

language, spoken, 46 

Large currents flow, 11 

layers, 42–44, 56, 86, 91 

   hidden, 42–43, 86–87, 91, 101–2, 105 

   lubrication, 40 

leach, 1 

leakage, 64, 71 

leakage incl, 63 

leakage paths, 56 

leaks, 64, 72 

learning, reinforced, 43–44 

learning algorithm, 42, 84 

   supervised, 44 

learning by example, 42 

learning rate, 92 

Lenz’s law, 11 

level 

   bearing vibration, 39 

   electrode, 69 

level switch, 72 

Levemberg-Marquardt back-propagation, 

92 

Levenberg, 100–101, 109 

levenberg-marquardt, 50, 96, 101, 103–4, 

154–55 

Levenberg Marquardt, 49 

Levenberg-Marquardt (LM), 5, 50, 89, 92, 

96–98, 101–6, 154–55, 158, 160–65 

Levenberg Marquardt Algorithm, 109 

Levenberg-Marquardt Algorithm, 89, 

103, 106 

Levenberg-Marquardt and Bayesian 

Regularisation, 5, 101 

Levenberg-Marquardt and Bayesian 

Regularization algorithm, 102 

Levenberg-Marquardt/Logsigmoid, 160–

62 

Levenberg-Marquardt/Tansigmoid, 163–

65 

Levenberg-Marquardt Training 

Algorithm, 96, 101–2, 105–6, 158 

Levenberg-Marquardt training algorithm 

and tansigmoid activation function, 

105 

LH001-Liner Handler Hydraulic Pump 

Motor, 137 

life 

   limited, 62 

   long electrode, 65 

   long running, 70 

life calculation, 62 

life expectancy, 72 

line-to-ground, 34 

line-to-line, 34 

link, current, 55 

liquid levels, 75 

load, 12, 19–20, 31, 35, 64, 78, 101, 105–

6 

   nominal, 50, 101 

   variable resistance, 21 

load changes, 18 

load condition, 49, 102 

loading, nominal, 60 

load power, 102 

load torque, 16, 19–20 

   expected, 15 

   rated, 51 

loan advisor, 46 

localisation, 48 

locations, 27, 54, 59, 75 

   exact, 106 

locus, 40 

logsig, 89, 100, 154, 156 

loop, 154–59 

low-cost Field-Programmable Gate 

Array, 48 

low voltage (LV), 68 

lubricant, 31–32 

lubricant failure, 32 

lubricants deteriorate, 32 

LV enclosure, 69 

 

M 
machine, 6, 11, 17–20, 23–24, 26, 32, 38–

40, 47–48, 50, 56, 58–59, 64, 74–79 
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   cage rotor, 20 

   electrical, 40 

   healthy, 48 

   horizontal, 63 

   large high-voltage, 61 

   slip-ring, 20 

   speed, 18 

machine behaviour, 50 

machine diagnosis, 46 

machine health, 32 

machine maintenance, 58, 63, 77 

machine manufacturer, 60 

machine noise, 77 

machine vision, 45 

magnetic field, 11 

   revolving, 11 

magnetic flux, 11 

   total rotating, 11 

magnetic flux linking, rotating, 10 

magnetic pole structure, 22 

magnetic valve, 71 

magnetizing, 15, 20 

magnetizing branch, 20, 24 

magnetizing inductance, 24 

magnitude, 10, 12, 28, 36, 84 

   equal, 11 

magnitudes 

   large, 84 

   small, 84 

mains, 18, 76 

maintenance, 10, 32, 38, 63–64, 69, 72, 

74–76, 79 

   breakdown, 38 

   condition-based, 38 

   engineering, 1 

   fixed-time, 38 

   low, 25, 38 

   planned, 76 

   preventive, 39 

maintenance action, 38 

maintenance cards, 74 

maintenance cost, 38–39 

   current, 1 

   high, 5 

maintenance department, 1 

maintenance investment, 74 

maintenance plan, 57–58, 63, 76 

maintenance plans, effective, 40 

maintenance schedule, 39 

maintenance work, 74 

   actual, 75 

management, 40, 46 

manipulator controllers, 46 

manufacturing, 6, 46 

manufacturing defect, 27–28, 30 

   unavoidable, 40 

manufacturing factors, 6 

manufacturing process control, 46 

market forecasting, 46 

mass unbalance, 26, 29–30 

   induction motor rotor, 30 

matrix manipulation, 91 

maximum oil temperature, 71 

maximum temperature contact-

thermometer, 71 

maximum torque capability, 24 

measured signal spectrum, 47 

Measure length of brushes, 57 

measure mains voltage, 78 

measures, special, 64, 78 

Measuring transducers, 51 

mechanical abnormality, 47 

Mechanical Faults Diagnostic, 108 

mechanical load, 38 

   excessive, 38 

Mechanical-related faults, 26 

Medium & Heavy Medium, 73 

medium sizes, 48 

medium voltage (MV), 68 

method analyses, 40 

method of repair, 61 

microprocessor, 95 

microprocessor implementation, 95 

mode, 24 

   learning, 88 

   motoring, 18 

model, 4–5, 43, 47, 49, 80, 89, 101 

   developed, 89 

   neural network forecasting, 43 

   neurobiology, 42 

   new faulty, 47 

   nonlinear, 47 

   pretrained, 91 

   statistical, 42 

   statistical regression, 42 

model building, 43 

modelling 

   computer, 4 

   dynamic, 46 

   function approximation/times series, 45 
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   nonlinear, 45 

   reservoir, 46 

moisture, 76 

   external, 26 

money, 38, 46 

monitoring 

   short-circuit, 75 

   symptom, 39 

monitoring brushes, 59 

monitoring fault, 47 

monitor training progress, 91 

mortgage screening, 46 

   asynchronous, 26 

   burnt, 1, 136–37, 139–40 

   cage, 16 

   change burnt pump, 137 

   delta-connected, 35 

   electrode control, 65 

   faulty, 40–41, 95 

   geared, 65 

   healthy, 28, 40–41, 95 

   industrial, 6 

   noisy, 136 

   rotor-outer surface, 26 

   running, 74 

   servo, 65 

   slip-ring, 15 

   small, 16 

   squirrel-cage, 15 

   starter, 66 

   starter agitator, 66 

   switch fan, 74 

motor bearings, 50, 70 

   three-phase induction, 50 

motor condition, 82, 88, 95 

   faulty, 102 

   healthy, 102 

motor failure predictions, 5 

Motor failures, 26, 39 

   complete, 26 

   modelling induction, 101 

   predicting SAG Mill, 101 

   prediction of SAG Mill, 101, 104 

motor faults, 47 

   diagnose, 40 

motor hums, 78 

motor idles, 78 

motor intakes, 48 

motor manufacturers, 72 

motor operation, 26 

motor overheats, 78 

motor parts, 26 

motor performance, 14 

motor power, 82 

   mill, 96 

motors downtime, 39 

motor supply, 79 

Motor vibration and noise, 37 

movability, 73 

movement, 34, 58 

   free, 77 

   relative, 11 

multilayer perceptrons, 43, 86 

Multiple faults, 26 

multivariate, 101 

MV enclosures, 68–69 

 

N 
natural convection, 66 

negative sequence, 35 

network, 5, 42, 49–50, 80, 82, 84, 86–89, 

91–92, 96, 101–3, 105–6, 110 

   adaptive, 49 

   bi-directional, 44 

   feedback, 44 

   feed-forward back-propagation, 91 

   generalised feed-forward, 50 

   long short-term memory, 44 

   natural, 42 

   physical, 44 

   recurrent, 44 

   simulate, 92, 94 

   single-neuron, 45 

   stochastic, 44 

   train, 94, 154–59 

   trained, 43, 92 

network memorizes, 89 

network outputs, 92 

network performance function, 92 

network performance plot, 102 

network response, 101 

network structure, 43 

network validation, 89 

neural networks, 43–45, 48, 81, 87, 91, 

94, 108, 154–59 

   feed-forward, 86 

   forward, 43, 49, 106 

   generalized feed-forward, 86 

   layered feed-forward, 86 

   use of artificial, 5, 50 
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neural network software, 46 

neurons, 42–43, 86–88, 91, 101–2 

   single, 86 

Neutralisation numbers, 73 

new start cycle, 65 

nodes, 42 

   hidden, 43 

noise, 37, 48–49, 73, 77 

   measurement, 50 

   normal magnetic, 78 

noise level, 32 

noise suppression, 45 

non-linear elements, 43 

non-linear filters, 42 

non-linear mapping structure, 42 

non-parametric pattern classifiers, 42 

normalisation, 82, 84–85 

normalization, 84 

nylon slide, 65 

 

O 
object discrimination, 45 

obstructed ventilation, 34 

Occurrence of Faults, 40 

   probability of, 2 

oil, 31, 46, 58, 62–63, 70–73, 76, 133, 135 

   bearing lube, 76 

   jacking, 63–64 

   recommended lubricating, 72 

oil change, 62, 72 

oil change interval, 64, 73 

oil contamination, 62 

oil film, 76 

oil flow, 72 

oil gauge, 71 

Oil Ingress, 138 

oil leakage, 63 

oil level, 63, 71–73 

oil loss, 72 

oil rings, 63, 76 

oils, selected, 72 

oil stone, 60, 64 

oil supply system, 63, 70 

oil temperature, 71 

oil transport, 63 

Oil-water cooler, 64 

oil-water-heat exchanger, 71 

online approximators, 49 

On-line learning, 43 

Open-circuited rotor circuit, 78 

operating, 18, 20, 25, 38, 47, 72, 74–75, 

79 

operating characteristics, 40 

operating conditions, 38, 72, 75 

   extraordinary, 75 

   unloaded, 48 

operating hours, 72 

operating locations, 76 

operating personnel, 75 

operating pressure, 71 

   permissible, 71 

operating reliability, 72 

operating temperatures, 62 

operational behaviour, 75 

   normal, 75 

operational interruptions, critical, 74 

operation failures, 74 

operation phase, 43 

Operators and technicians of induction 

motors, 38 

operator/technician, 39 

optical/electrical, 63 

Optimal starting torque, 64 

optimization, 39, 46 

   product, 46 

order harmonics, 36 

oscillations, 26, 30–31 

outlet filter frames, 79 

out-of-round, 60 

output, 11, 14, 42, 44, 87–88, 101–2, 154–

59 

   ac, 23 

   actual, 88 

   desired, 86, 88 

   known, 43 

   terminal, 68 

output data, 154–59 

output layer, 43, 87–88, 102 

output nodes, 43 

output object, 43 

output parameter, 5 

output shaft, 7 

output unit, 42, 44 

output value, 102 

overfitting, 89, 106 

overheating, 15, 26–27, 32 

overload, 26, 37–38, 75 

   sustained, 34 

overloading, 76 

overload relay, 65 
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over/under voltage relays, 37 

oxide ore, 1 

 

P 
pair, 23 

parameter estimation, 47 

   unknown, 49 

parameters, 14, 45, 47, 81, 108 

   statistical, 48, 90 

particles, 73 

   foreign, 32 

   metal, 64 

   small discrete, 32 

parts, 7, 27, 61 

   bare, 79 

   faulty, 38 

   insulated, 77 

   insulating, 77 

   missing, 44 

   necessary spare, 39 

   vulnerable, 26, 61 

   worn, 64 

patent, initial, 6 

patina, 55–56, 58 

patrols, daily, 75 

pattern completion, 44 

pattern recognition, 44 

pebble crusher crane, 137 

performance, 26, 43, 50, 72, 89–90 

   optimum, 104 

   short-term, 90 

   steady state, 25 

performance function, 86, 91–92, 94 

performFcn, 92 

periodic inspections, 75 

phase currents, 17, 40 

phase fault, 33 

phase-opposition, 74 

phases, 4, 8, 10–11, 17, 23, 33–36, 51, 64, 

73, 80, 95, 104, 106 

   healthy, 35 

   learning, 43 

   recall, 47 

   single, 49 

phase stator currents forms, 40 

phase voltages, 17 

phasing, single, 26, 35 

Photograph, 27, 34, 51 

piezoelectric accelerometer, 40 

piping, 79 

   associated, 79 

   bearing oil, 63 

   water, 64 

piping flanges, 79 

Plain Bearings, 63, 76 

Plain bearings and oil supply unit for 

flood, 64 

plant, 1, 4, 51, 74–75, 139 

   metallurgical, 1 

   processing, 5 

plant component, 75 

plant machinery, 1 

plant operator, 38 

plate, 69 

   bearing lubrication, 62 

   cable guide, 68 

plotconfusion, 158–59 

ploterrhist, 154–59 

plotfit, 154–59 

plotperform, 154–59 

plotregression, 154–59 

plottrainstate, 154–59 

pointwise, 30, 39 

pole configurations, 23 

pole faces, 22 

pole numbers, 21, 23 

pole pairs, 21 

poles, 9, 11, 18, 22–23, 36 

   north, 23 

pole structures, 23 

Policy application evaluation, 46 

polishing cloth, 77 

Polypropylene compartmentalisation, 64 

Polysius, 51 

Portable Air Compressor, 136 

position 

   cracked, 27 

   fitting, 70 

   minimum resistance, 64 

   running, 17 

Position of limit mark on new brush, 59 

possible aromatic content, lowest, 59 

possible decision, best, 38 

possible signs, 64 

postprocessor, 95 

power, 4–6, 8, 14, 23, 50, 80, 82–87, 95, 

101–2, 106, 113–32 

   electric, 1 

   electrical, 6 

   measured, 90 
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   predicted, 90 

   total generated, 38 

power and temperatures, 84 

power cables entry, 68 

power factor, 20 

   high, 14 

power failure, 65 

power inverter, 48 

power outputs, 7 

power supply, 25, 35, 37–38, 77, 95 

predicting failure, 4, 50 

predicting faulty conditions, 5 

Predicting Global Solar Radiation, 107 

predicting loan recovery rates, 45 

prediction, 6, 39, 43–44, 49, 101–2, 158–

59 

   currency price, 46 

   paper quality, 46 

prediction method, 49 

Prediction of motor failure, 39 

pressure gauge, 71 

   free glycerine, 71 

pressure gauge operation, 71 

pressure line, 71 

pressure line downstream, 71 

pressure relief valves, 71 

pressure switches, 72 

proactive recovery, 39 

procedure 

   normalization, 84 

   step-by-step, 73 

   supervised, 43 

process, 1, 46, 74, 88 

   brazing, 27 

   learning, 42 

   observed, 42 

   testing simulation, 92 

process control, 45 

process monitor, 45 

process online, 95 

process problems, 42 

productivity, 38 

prognostics, 49, 109 

programme, common, 3 

project specifications, 79 

properties, 32, 73 

   electrical, 61 

   mechanical, 63 

protective measures, necessary, 74 

prototype, 106 

   experimental, 49 

pull, lower, 28 

pull direction, 28 

pump, 71–72, 133–34 

   radial piston, 71 

pump aggregates, 71 

pump applications, 18 

pump unit, 71 

purpose System-On-a-Chip, special, 48 

pyrolysed products, 39 

 

 

R 
races, 31–32 

   inner, 31 

races friction, 31 

rated flux levels, 20 

Real estate appraisal, 46 

real time, 101 

   normal, 101 

reason, 35–37 

   main, 34 

reduction, 20, 24, 26, 39 

   hospital expense, 46 

   resulting, 35 

   speed, 23 

reference frame transformation theory, 49 

refinements, 95 

regression, 50, 90 

regression coefficient, 90 

regression line equation, 90 

relay, current, 38 

reliability, 6, 39, 48 

   high, 6, 70 

repair break, 78 

representation, 41 

   current vector, 41 

   frequency domain, 40 

   graphical, 82 

representative R-element input vectors, 

91 

representative SN-element target vectors, 

91 

resin results, 61 

resistance, 16, 20, 64 

   chopper-controlled, 21 

   eternal, 16 

   measure insulation, 77 

   residual, 65 

   winding, 20 
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resistance/phase, winding, 13 

resistance temperature detectors, 62 

resistance thermometer, 71 

resistors, 21 

   external, 10 

   external variable, 20 

respective technical data sheet, 72 

responsibility, 57 

Re-switching, 74 

return stroke, 60 

return valves, 71 

reverse phase sequence, 26 

rheostats, based, 21 

rings, 9–10, 27 

risk, 6 

   increased, 56 

   measuring credit, 45 

robustness, 49–50 

Rocha, 107 

rotating magnetic field, 7, 10–11 

rotation, 11, 27–28, 30, 78 

   axis of, 28 

   centre of, 28 

   direction of, 52, 60, 78 

rotor, 2, 6, 8–13, 21, 23, 26–29, 31, 34–

36, 38, 52, 55, 76–77 

   blocked, 37–38 

   centre of rotation of, 28, 30 

   main, 62 

   physical, 11 

   result, 28 

   revolving, 7 

   secondary, 13 

   slip-ring, 9 

   squirrel cage, 9 

   squirrel-cage, 9–11 

   star-connected, 9 

   stator or/and, 38 

   unbalanced, 29 

   weight distribution axis of, 29–30 

   winding, 77 

   winding Cooling air, 77 

   wound, 9–10 

rotor bar failures, diagnosis of, 48, 107 

rotor bar metal fatigue, 28 

rotor bars, 9, 11–12, 26–27 

   early broken, 50 

rotor body, 28 

rotor circuit, 10–11, 13, 16, 78 

rotor conductors, 10–12 

rotor construction, 8 

rotor copper losses, 14 

rotor currents, 27 

rotor eccentricity, 28, 49 

rotor faults, 2, 28, 40–41, 47 

   bowed, 28 

rotor impedance, actual, 14 

rotor intersect, 29 

rotor mass unbalance, 28, 30 

rotor mass unbalance fault, 28 

rotor phase, 78 

rotor pullover, 28 

rotor resistance, 15–16, 20 

rotor resistance control, 20 

rotor result, 27 

rotor rubs, 28 

rotor side, 28 

rotor slots, 8–9, 37 

rotor starter, 74 

rotor supply, 78 

rotor terminals, 20 

rotor-to-stator misalignment, 34 

rotor type, 10 

   wrapped, 6 

rotor windings, 8, 10 

rust, 64, 77 

   possible, 64 

 

S 
safety, 4, 26 

safety regulations, applicable, 74 

SAG Mill External Air Circuit Motor 

Rating, 54 

SAG Mill Fixed Bearing Rec Oil 

PumpMotor, 139 

Sag Mill Hp Pump, 138–39 

SAG Mill induction motor, 4, 80 

SAG Mill Internal Air Circuit Motor 

Rating, 55 

SAG Mill Liner Handler, 133 

SAG Mill Motor, 3, 5, 51–54, 61–62, 64, 

70, 73–74, 76–79, 82, 84, 90, 96, 

101–3, 105–6, 111–32 

   healthy, 5 

   kV, 5, 101, 104 

SAG Mill motor availability, increasing, 4 

SAG Mill motor condition, 86 

SAG Mill Motor Current, 83, 85 

SAG Mill Motor Current Vrs, 83, 85–86 

SAG Mill motor failures, 101, 104 
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Sag Mill Motor Lube System, 137 

SAG Mill Motor Rating, 52 

SAG Mill Motor Winding Temperatures, 

84–85 

SAG Mill Slipring Compartment Motor 

Rating, 56 

SAG MOTOR, 111–32 

SAG MOTOR POWER, 111–12 

scheme, 20, 50 

   neural-network based fault detection, 48 

screen captions, 92 

script files, 91 

seals, 63, 79 

secondary windings, 13 

security, 26, 71 

selection, 37, 81 

self-organising map, 44 

sensor, current, 41 

sensors, 45, 95 

   smart, 46 

   virtual emission, 45 

series inductor/autotransformer, 20 

series resistors, 20 

service, 56, 58, 76, 78, 138 

service cabinet, 51 

service downtime, 26 

shaft, 9–10, 26, 28, 30–31, 58, 62, 76–77, 

79 

   main motor, 62 

   rotating, 31 

   vertical drive, 51 

shaft deflection, 34 

shaft rotational axis, 29–30 

shaft surfaces, 79 

shaft train, 74 

shims, 79 

shock pulses, 40 

Short circuit, 33, 35, 38 

short-circuited contacts, 78 

   faulty, 78 

Short-circuit winding fault, 33 

shorting contactor, 65, 68 

shorts/terminals, 55 

showed good agreement, 48 

sideband, lower, 28 

sight window, 63 

signal contact, 59 

signal processing, 95 

   image, 45 

signals, 39, 44, 59 

   electromagnetic, 47 

   generating, 106 

   measuring, 51 

   stabilize voice, 45 

   time domain, 40 

signal spectra, 48 

silky gloss, 58 

simulations, 4–5, 41, 80, 101, 104 

   aircraft component, 45 

   flight path, 45 

single-phase basis, 13 

single phasing fault, 35–36 

Single phasing fault motor windings, 35 

single-quadrant operation sufficing, 51 

Sleeve bearings, 62 

   lubricated, 62 

sliding contact, 55 

sliding faces, 63 

slip/phase, 13 

slipring compartment, 54, 56, 58, 76–77, 

79, 143 

Slipring Induction Motors, 51, 107 

sliprings, 55–61, 77, 79 

slip-rings, 6, 10 

sliprings, bronze, 55 

slip-rings, revolving, 10 

Slipring/Wound rotor, 74 

slots, 8–9, 61 

sodium borate, 66 

sodium carbonate, 66 

solid-state variable-frequency converter, 

7 

solvents, 58–59 

solvent vapour, 58 

Source, 3, 52, 54–56, 64, 66–67, 73–74, 

77–78, 89 

Sources of induction motor faults, 26 

spark-free commutation, 55 

spatial vector sum, instantaneous, 40 

specify target set, 154–59 

specify training set, 154–59 

speech compression, 46 

Speech recognition, 46 

speed control, 10, 21 

   continuous, 7 

speed control range, 20 

speed range, 19, 51–52, 54–56, 66–67 

   wide, 7 

speed requirements, 18 

speeds 
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   low, 15 

   lower, 20 

speed torque characteristics, 24 

spiral grooving, 60 

spiral type grooving, 55 

squared error, 90, 92, 96–97, 99–100, 106 

squirrel cage induction motor, 16, 27 

squirrel-cage induction motor type, 6 

squirrel cage type, 19 

star, 17–18, 78 

star-delta, 15, 17 

start, 19–20, 36, 48, 65, 73, 78, 94 

   new, 65 

starter, 64–66, 68, 78 

starting, 10, 15–18, 58, 64–65, 74, 78 

starting characteristics, 64 

starting currents, 15 

   large, 16 

starting methods, 20 

starting period, 16, 28 

starting torque, 15–17, 19–20, 51 

   generating high, 20 

   good, 25 

start motor, 74 

start position, 65 

states, steady, 48 

stationary, 58, 64 

stationary brushes, 9, 55 

   associated, 10 

stator, 2, 6, 8–15, 17, 21, 26, 28, 32–37, 

40–41, 47–49, 77–78 

   primary, 13 

   special, 21 

   stationary, 7 

   switch rotor, 74 

stator coil, 34 

stator construction, 8 

stator copper losses, 14 

stator core, 33 

stator current/phase R1, 13 

stator faults, 2, 32–33, 40–41 

   diagnose, 40 

stator frequency, 23 

stator laminations, 34 

stator magnetic field, 12 

stator magnetic flux, 11 

stator/phase, 13 

stator-phase, 47 

stator phases, 47 

stator switch, 76 

stator voltage, 24 

   residual, 74 

stator windings, 17, 33, 95 

steel, 55, 71 

steel foundation, 77 

steel frame, 8 

steps, first, 43, 82 

stock trading, 46 

storage, 61, 76, 79 

story brass rods, 65 

stresses, 32–33, 35, 37 

   extra, 27 

   mechanical, 27, 34, 73 

   non-uniform metallurgical, 27 

stresses stator faults, 32 

structure, actual, 47 

subject, 25, 74 

subtraction, 28, 30 

supplier, 76, 79 

supply, 7, 12, 15, 37, 65, 70, 73, 78 

   air-water heat exchanger water, 74 

   full-load, 36 

   mains, 78 

   stop air-water heat exchanger water, 74 

supply frequency, 11, 18, 36 

supply line, 36 

supply network, 15 

supply system, 35 

supply voltage, 16 

   excessive, 16 

   reduced, 16 

   unbalance, 26 

   unbalanced, 34 

supply voltage transient, 34 

surfaces, 28, 31–32, 58, 79, 110 

   actual bearing, 76 

   bare, 64, 76, 79 

   contact, 58, 60 

   gap, 8 

   inner, 28, 64 

   slipring contacts, 55 

   smooth, 58 

   stator-inner, 26 

switch, 17, 71, 74 

   level limit, 66 

switch standstill heating, 74 

symptoms, 32, 39 

synchronous, 11–12, 15, 18, 20–21, 23–

24, 36–37 

   new, 21 
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synchronous machines, 55 

Synchronous Speed, 21 

system, 5, 39–40, 45, 49, 64, 71, 73–74 

   adaptive neural fuzzy inference, 48 

   advisory, 46 

   aircraft control, 45 

   automatic guidance, 45 

   based fuzzy inference, 49 

   brush-lifting, 74 

   cascade drive, 56 

   chemical process, 46 

   connected, 13 

   customer payment processing, 46 

   data acquisition, 39, 95 

   electrode control, 66–67 

   energy recovery, 51 

   high availability, 39 

   input parameter, 48 

   installed, 72 

   long distance telephone, 45 

   moving electrode, 65 

   new, 72 

   online fault diagnosis, 47 

   plain bearing cooling, 74 

   risk analysis, 45 

   routing, 46 

   safe, 47 

   supplying, 70 

   utility, 35 

   vision, 46 

   visual quality inspection, 46 

   winding insulation, 61 

systemic procedures, 80 

system monitoring, 39–40, 47 

System-On-a-Chip (SOC), 48 

system parameter degradation, 49 

system states, 39 

 

T 
tachogenerator, 51 

tank, 64, 71 

tansig, 89, 100, 155, 157–59 

tansigmoid activation function, 105 

tapping, correct, 18 

target outputs, 92 

target tracking, 45 

target value, 102 

technicians, 38 

techniques, 39–41, 47–48, 50 

   advanced, 47 

   current signature analysis, 49 

   deterministic, 50 

   intelligent, 41 

   isolated, 48 

   magnetic pendulous oscillation, 50, 109 

   power decomposition, 41 

   signal processing, 41 

temperature detectors, 62 

temperatures, 32, 35, 58, 63, 65, 71, 75, 

84, 96, 101 

   air circulation, 51 

   ambient, 26, 34 

   current increasing, 37 

   excessive, 31–32 

   high, 1 

   measure, 77 

   power and winding, 4, 83 

   record, 63 

terminal boxes, 79 

terminals, 22, 78 

   screw, 69 

terminals T1, 23 

termination, 81 

test, 76, 82, 89, 94, 133 

   particle count, 73 

testing, 41, 43, 46, 89, 91–92, 100, 154–

59 

thermal, 27, 32, 61 

   increased, 73 

thermal damage, 61 

thermal overloading, 34 

thermal stresses, 27, 34 

thermometer, 63, 71 

three-phase, 17–18, 35, 47 

   insulated, 9 

three-phase currents, 11 

three-phase fault, 34 

three-phase induction motor, 11, 15–16, 

35, 40, 48–49, 108–9 

three-phase motors, 35–36 

three-phase supply lines, 35 

three-phase voltage, 10 

threshold term, 42 

thumb rule, 34–35 

time domain, 50 

time phase, 36 

time schedule, 74 

top sticks, 34 

torque, 7, 11–12, 14, 18–20, 26, 28, 35–

37 
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   electromagnetic, 40, 47 

   fundamental, 36 

   harmonic, 36 

   high, 16 

   maximum, 16, 19–21, 24 

   rated operating, 18 

   running, 19 

   stall, 18–19 

   total motor, 36 

   zero, 18 

torque control, 64 

   direct, 25 

torque equation, 19 

torque fluctuations, 74 

torque production, 20 

torque requirement, 19 

track, 56, 59 

train, 80, 82, 84, 92, 94, 154–59 

train ANN, 5 

trainbr, 156–57, 159 

training, 42–43, 49, 86, 88, 91–92, 96, 

100, 102, 105, 154–59 

   stops, 89, 102 

training algorithms, 5, 88, 96, 105 

training correlation coefficient, 102 

training data, 42–43, 89, 102 

training data set, 88 

training function, 86, 91–92 

training process, 88 

training set, 43–44 

trainlm, 92, 154–55, 158 

trainParam.epoch, 92 

trainParam.Ir, 92 

transferFcn, 158–59 

transfer function, 86, 89, 91, 101–2 

transformer, 6, 13, 135 

   current, 41 

   feedback converter, 51 

   rotating, 6, 13 

transient, 34, 50 

translation, real-time, 46 

transportable measuring instrument, 63 

transportation, 6, 46 

TTF (Time To Failure), 49 

turbidity, strong, 63 

two-pole arrangement, 23 

two-pole structure, 23 

 

U 
unbalance, static, 30 

unbalanced stator currents, 26 

undetected error auditing, 39 

units, 42, 44, 48, 72, 95 

   computational, 42 

   gear pump, 71 

   hidden, 42 

   interconnected adaptive processing, 42 

   signal conditioning, 41 

unit volume, 73 

user interfaces, 91 

 

V 
vacuum, 58, 61 

vacuum tank, 61 

validating, 89 

validation, 50, 91, 100, 102, 107, 110, 

154–59 

validation performance, 102, 105 

validation sets, 43 

values, 14, 17–20, 24, 36, 43, 73, 87–88, 

100, 102 

   computed, 100 

   direct-on-line, 17 

   initial, 64 

   large, 14 

   limit, 75 

   low, 14 

   measured, 101 

   optimal, 45, 81 

   outlying, 42 

   possible, 95 

   predicated, 90 

   predicted, 101 

   required, 18 

   small, 14 

valve, reducing, 71 

variable selection, 43 

variable selection procedures, 43 

variation, 19, 31, 64, 90 

   smooth, 23 

   speed, 18, 64 

   stepped, 21 

vector, current, 41 

vehicle scheduling, 46 

velocity, relative, 12 

vibration, 26, 28, 32, 40–41, 71, 75, 106 

   excessive, 26 

   measure, 77 

   measure machine, 63 

vibration amplitude, 40 
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vibration analysis, 48 

vibration faults, 40 

vibration measurement, 77 

vibration parameters, 49 

vibration sensors, 63 

   fitted, 77 

vibration spectrum, 40 

viscosity, 72 

   kinetic, 73 

visualize activations, 91 

voltage, 10–12, 18, 20, 23–24, 26, 37, 39, 

52, 54–56, 66–67, 78, 95 

   excessive, 15 

   induced, 12, 31 

   initial, 18 

   low, 68 

   lower, 19 

   mains, 78 

   medium, 68 

   rated, 28, 35 

   reduced, 18, 20 

   transient, 34 

voltage control, 20 

voltage level, 37 

   given, 19 

voltage unbalance, 34 

 

W 
warranty activity analyzers, 45 

Wavelet techniques, 106 

wear, 28, 32, 57–59, 70, 73, 75, 77–78 

   excessive, 32 

weights, 42, 44, 52, 54–56, 66, 76, 81, 86–

88, 91 

   network’s, 44 

   synaptic, 86 

weight updates, 81 

winding resistanc, low, 136 

winding resistance/phase X1, 13 

winding short circuit fault, 49 

winding temperature limit, 35 

winding temperature readings, 96 

winding temperatures, 4–5, 34–35, 48, 50, 

80, 82–83, 102 

winding temperature signals, 95 

winding temperature values, 102 

workhorse, main, 38 

wound, 6, 9–10, 22 

wound-rotor, 9 

  


