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ABSTRACT 

 

Blast-induced ground vibration and air overpressure are considered as the most important 

environmental hazards of mining and can damage structures such as buildings, dams and pit 

slopes. Review of previous studies has shown that some empirical and Artificial Intelligence 

(AI) models have been proposed to estimate blast-induced ground vibrations and air 

overpressure.  Notable AI techniques applied in prediction of blast-induced ground vibration 

include Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network 

(RBFNN), Generalised Regression Neural Network (GRNN), Group Method of Data 

Handling (GMDH), Support Vector Machine (SVM) and Extreme Learning Machine 

(ELM). In this study, five techniques, namely Wavelet Neural Network (WNN), 

Multivariate Adaptive Regression Splines (MARS), Least Square Support Vector Machine 

(LS-SVM), Relevance Vector Machines (RVM) and Gaussian Process Regression (GPR) 

are proposed to predict blast-induced ground vibration using 210 blast data sets from Ghana 

Manganese Company Limited (GMC). Out of the data sets, 130 blast data sets were used to 

train the models and the remaining 80 to test the developed models. For comparison purpose 

and ascertaining the suitability of the proposed methods, four empirical techniques (United 

State Bureau of Mines, Langefors and Kilhstrom, Ambrasey-Hendron and Indian Standard) 

were also employed. With regards to the air overpressure, BPNN, GMDH, GPR and SVM 

are the only AI methods applied and captured in the literature. This study therefore tested 

the capability and applicability of some AI methods, namely RBFNN, GRNN, LS-SVM, 

RVM, ELM, WNN and MARS, that are yet to be explored in the prediction of air 

overpressure. To accomplish this task, air overpressure data sets from Newmont Golden 

Ridge Limited, Akyem Mine was used. In all, 98 data sets were used for the model 

construction and 73 data sets were used to independently assess the performance of the 

models formulated. Two empirical predictors, the general predictor model and ‘Newmont 

Model’, were utilised for the purpose of comparison. In the blast-induced ground vibration 

interpretations, the statistical results revealed that, four out of the five newly tested AI 

techniques (LS-SVM, WNN, MARS and GPR) could produce good ground vibration 

predictions comparing to the AI benchmark methods of BPNN, RNFNN and GRNN. Hence, 

LS-SVM, WNN, MARS and GPR have been proposed to be used as suitable alternative 

tools to predict blast-induced ground vibration. In comparing all methods applied, the 

proposed LS-SVM was the most accurate on the basis of the statistical analyses carried out 
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in this study and thus the selected model for predicting blast-induced ground vibration at 

Ghana Manganese Company Limited. In the air overpressure prediction interpretations, it 

was found that four out of the seven methods (GRNN, RBFNN, RVM, and MARS) tested 

produced comparable and satisfactory results as the widely used BPNN, GPR and SVM and 

thus could serve as suitable alternatives to the prediction of air overpressure. However, it 

was found on the basis of the statistical analyses carried out that, the BPNN was the selected 

model for the prediction of air overpressure for Newmont Golden Ridge Limited, Akyem 

Mine. The overall analyses of the study showed that the AI techniques are superior in 

predicting both blast-induced ground vibration and air overpressure to the empirical 

predictors usually employed in most mining and civil engineering industries. To this end, a 

user-friendly AI-based software package was developed on the MATLAB platform and can 

be used in the industry for prior prediction of the blast-induced ground vibration and air 

overpressure based on the blast design in the mining industry. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

 

In hard rock mines, the in situ rock mass is broken down into fragments by the use of 

explosives placed into drill holes in a process termed as blasting. When the explosives 

detonate, the pressure generated shatters the rock near the hole and generates stress waves 

that travel outside at velocities of 3000 – 5000 m/s. The leading front of the stress which is 

compressive in nature is closely followed by tensile stresses that are responsible for the rock 

fragmentation (Bhandari, 1997). According to Elevli and Arpaz (2010), a well-designed 

blast system will efficiently utilise the explosive energy generated by the detonation of the 

explosive to result in optimum fragmentation and displacement of rock mass. They however 

stated that, no matter how well a blast is designed, only a small portion of the energy will 

be utilised for the fragmentation. That is, only 20 – 30% of explosive energy is utilised for 

fragmenting the rock and the rest wasted away in the form of ground vibration, air 

overpressure, noise, fly rock, back breaks, etc. (Rai and Singh, 2004; Mohamed, 2011; 

Ghasemi et al., 2013; Monjezi et al., 2010a; Hasanipanah et al., 2016a; Hasanipanah et al., 

2017a; Hasanipanah et al., 2017b). 

  

It is agreeable that the safety of workers, environment and surrounding communities of a 

mine are the primary concerns of the mining industry. Therefore, implementing a ground 

vibration and air overpressure system to monitor the emitted vibrations and air overpressure 

due to blasting operations is a rational approach to ensure that they are within safe limits as 

specified by the mining regulations of a country. This is because ground vibration and air 

overpressure are among the blasting outcomes that could lead to adverse environmental 

effects on surrounding structures and humans. With respect to structures, it can result in the 

creation of cracks and eventually lead to structural damages. With respect to humans, it may 

be a source of nuisance. In line with that, many research works have been done to develop 

prediction models to predict ground vibration and air overpressure over the years 

(Faradonbeh et al., 2016; Murmu et al., 2018 and Bui et al., 2019). The essence is to provide 

the blast designer a priori knowledge of ground vibration levels and air overpressure per 

blast design before the actual blasting operation is carried out. 
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Review of previous studies have shown that the prediction models range from empirical, 

statistical through to the use of artificial intelligence in recent years (Armaghani et al., 

2015a; Sheykhi et al., 2018; Murmu et al., 2018;). Moreover, the review identified that the 

artificial intelligence technology is a suitable computational tool for predicting ground 

vibration and air overpressure. It should be noted that in the Ghanaian mining industries, 

the empirical models are the most widely used to predict blasting outcomes of ground 

vibration and air overpressure. In view of that, the study considered two key mining 

companies namely, Ghana Manganese Company Limited and Newmont Golden Ridge 

Limited, Akyem in Ghana as study areas, for evaluating the suitability of the artificial 

intelligence techniques in predicting blast-induced ground vibration and air overpressure 

respectively.  

 

The Newmont Golden Ridge Limited, Akyem is an open pit mine located in the Birim North 

District of the Eastern Region of Ghana, the seventh biggest gold producing country in the 

world. The mine is wholly owned and operated by Newmont Mining Cooperation and 

commenced production in October 2013. It is Newmont’s second mining operation in Ghana 

after the Ahafo Gold mine in the Brong Ahafo Region. The Akyem mine site covers a total 

area of 1 903 ha, of which 74 ha is in the Ajenjua Bepo Forest Reserve. Newmont received 

mining lease for the project in 2010 and developed it with an estimated investment of $ 950 

million. Mining activities at the site started in August 2012. Newmont Golden Ridge 

Limited uses drill and blast to fragment the in situ rock mass (Anon., 2015).  

 

The Akyem mine has three monitoring stations in each of its neighbouring towns namely, 

Afosu, New Abirem and Aduasena. The Afosu station is the nearest to the East Pit of the 

mine and hence has the potential of recording occurrences of ground vibration and air 

overpressure levels beyond the threshold. Newmont uses JKSim Blast software which is 

based on a form of Ambraseys – Hendron model to predict air overpressure. The Mine has 

recorded variations in the predicted levels as against the real levels recorded at the station. 

Hence, the need for accurate prediction of air overpressure in order to control and minimise 

their occurrences. 

 

Ghana Manganese Company Limited is also an open pit mine located at Nsuta-Wassa, in 

the Tarkwa Nsuaem Municipality (TNM) of the Western Region of Ghana. The Mine is 
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about 304 km by road from Accra and about 63 km by road from the regional capital, 

Takoradi. The mine employs drill and blast techniques to fragment the in situ rock mass.  

  

Since ground vibration and air overpressure are adverse impacts of blasting outcomes on 

the neighbouring mining communities, the two understudied mines are keen on accurately 

predicting these levels in order to control and minimise their impact on the environment.  

 

1.2 Statement of Problem 

 

Blast-induced ground vibration and air overpressure are the most important and undesirable 

environmental impacts of blasting outcomes which may cause severe damage to nearby 

residents and structures. Modelling and prediction of such outcomes is important for 

controlling and eliminating associated environmental problems (Ghasemi et al., 2013 and 

Armaghani et al., 2015a). According to Ghasemi et al. (2013), different indicators have been 

proposed to measure and evaluate ground vibration. Among these indicators are the peak 

particle velocity (PPV) and peak particle displacement (PPD). The PPV has been used 

frequently in different standards and has been found to be a reliable indicator for the 

evaluation and prediction of ground vibration. 

 

Over the years, many studies have been carried out leading to the development of empirical 

models for the prediction of ground vibration (Duvall and Petkof, 1959, Langefors and 

Kihlstrom, 1963; Davies et al., 1964; Ambraseys and Hendron, 1968; Ghosh and Daemen, 

1983; Gupta et al., 1987; Roy, 1991; Rai and Singh, 2004). With respect to air overpressure, 

several empirical equations have also been used for prediction (Holmberg and Person, 1979; 

NAASRA, 1983; Olofsson, 1990; Persson et al., 1994). It is important to note that these 

empirical predictor models are basically based on two parameters, maximum charge per 

delay and distance from blast site to monitoring point, excluding other effective parameters 

(Ghasemi et al., 2013). This makes them fully not suitable to predict ground vibration and 

air overpressure since a large number of parameters influence the level of vibration or air 

overpressure with these parameters being complexly interrelated.  

 

In order to address these weaknesses of the empirical models, many researchers over recent 

years have tried to develop new models based on artificial intelligence techniques. The 

notable techniques captured in literature include: artificial neural networks (ANN), fuzzy 
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logic, adaptive neuro-fuzzy inference systems (ANFIS), classification and regression tree 

(CART) support vector machine (SVM), extreme learning machines (ELM), hybrid 

intelligent models, group method of data handling (GMDH) and genetic expression 

programming (GEP) (Akeil, 2004; Iphar et al., 2008; Khandelwal et al., 2011; Mohamed,  

2011; Khandelwal, 2011; Fişne et al., 2011; Mohamadnejad et al., 2012; Mohamad et al.,  

2012; Ghasemi et al., 2013; Monjezi et al., 2013; Armaghani et al., 2015a; Dindarloo, 2015; 

Tiile, 2016; Ghoraba et al., 2016; Hasanipanah et al., 2016b; Taheri et al., 2017; 

Hasanipanah et al., 2017c; Mokfi et al., 2018; Jiang et al., 2018; Mojtahedi et al., 2019). 

Information gathered from these studies indicate that artificial intelligence techniques are 

able to predict PPV and air overpressure at higher level of accuracy as compared to empirical 

and statistical techniques (Armaghani et al., 2015a; Ghoraba et al., 2016; Tiile 2016).  

  

There are however a number of artificial intelligence techniques which are yet to be explored 

in predicting blast-induced ground vibration and air overpressure. This thesis therefore 

seeks to introduce new artificial intelligence modelling tools for predicting blast-induced 

ground vibration and air overpressure in the Ghanaian mining industry.  

 

1.3 Research Questions 

 

The research sought to answer the following questions: 

i. Can the proposed novel artificial intelligence models be used as a supplementary 

tool for predicting ground vibration and air overpressure? 

ii. How do the proposed artificial intelligence methods compare to the popularly used 

empirical models? 

 

1.4 Objectives of the Thesis 

 

The objectives of this research are to: 

i. propose novel artificial intelligence models for both blast-induced ground vibration 

and air overpressure prediction; 

ii. develop empirical models for both blast-induced ground vibration and air 

overpressure prediction for comparison; 

iii. select an appropriate model for blast-induced ground vibration and air overpressure 

prediction in the study areas; and 
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iv. develop a blast-induced ground vibration and air overpressure artificial intelligence-

based software. 

 

1.5 Methods Used 

 

The following methods were used for the research:  

i. Review of relevant literature on blast-induced ground vibration and air overpressure 

ii. Field visits to Ghana Manganese Company Limited and the Newmont, Akyem Mine 

for data collection; 

iii. Development of the artificial intelligence models for both blast-induced ground 

vibration and air overpressure prediction using MATLAB program;  

iv. Development of the empirical models for both blast-induced ground vibration and 

air overpressure prediction using regression analysis; and 

v. Comparative analysis of the prediction results from the various models using various 

Statistical Performance Indicators. 

 

1.6 Contribution to Knowledge/Science 

 

The following contributions have been made to knowledge/science: 

i. This study has developed five novel artificial intelligence techniques for predicting 

blast-induced ground vibration. However, four out of these five techniques were 

capable of producing accurate predictions and hence have been proposed for 

predicting blast-induced ground vibration. The proposed methods include: Least 

Square Support Vector Machines (LSSVM), Wavelet Neural Network (WNN), 

Multivariate Adaptive Regression Splines (MARS), and Gaussian Process 

Regression (GPR).  

 

ii. This study has developed seven novel artificial intelligence techniques for predicting 

air overpressure. However, four out of these seven techniques were capable of 

producing accurate predictions and hence have been proposed for predicting air 

overpressure. The proposed approaches are Generalised Regression Neural Network 

(GRNN), Radial Basis Function Neural Network (RBFNN), Relevance Vector 

Machines (RVM) and Multivariate Adaptive Regression Splines (MARS).  
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iii. The study has introduced the application of artificial intelligence techniques in the 

prediction of ground vibration and air overpressure in some Ghanaian mines. 

 

iv. The study has developed a ground vibration and air overpressure artificial 

intelligence-based software for Ghana Manganese Company Limited and Newmont 

Golden Ridge Limited, Akyem Mine operations. 

 

1.7 Organisation of Thesis 

 

This thesis is organised into seven chapters. Chapter 1 contains the general introduction to 

the research. In Chapter 2, relevant information about the study areas is presented. Chapter 

3 contains relevant literature about the research topic. Chapter 4 is on materials and 

methods; In this chapter, the data collected for the thesis are presented, the various press 

models are developed using the data collected, ground vibration and air overpressure are 

predicted using the various models and the model performance are compared. Chapter 5 

contains the results and discussion on ground vibration prediction analysis. Chapter 6 also 

contains results and discussions on air overpressure prediction analysis. This thesis then 

concludes with Chapter 7, being on conclusions and recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

CHAPTER 2 

RELEVANT INFORMATION ABOUT THE STUDY AREAS 

 

2.1 Introduction 

 

This study was carried out at Ghana Manganese Company Limited (GMC), Nsuta and 

Newmont Golden Ridge Limited (NGRL), Akyem Mine and hence this Chapter gives 

relevant information of these mines, which includes: brief history, the locations, 

accessibility of the mines, geology, mineralogy of the ore deposits, production operations, 

mineral processing and environmental issues. 

 

2.2 Brief Information about Ghana Manganese Company Limited 

 

2.2.1 History and Ownership of Ghana Manganese Company Limited 

 

In 1914, the manganese deposits of Nsuta were discovered by Sir Albert Ernest Kitson 

during the construction of the Western Rail Line. The Fanti Consolidated Mines Limited, 

the concessionaire, formed the Wassaw Exploration Syndicate and started mining 

operations in 1916. The African Manganese Company Limited, a subsidiary of Union 

Carbide Corporation, USA, was established in 1923 to operate the mine (Kamara, 2014).  

 

In the early seventies, negotiations took place between the Government of Ghana and Union 

Carbide on the possibility of acquisition. In 1973, all assets and liabilities of the company 

were taken over by the Government of Ghana. The Ghana National Manganese Corporation 

(GNMC) was founded, which assumed responsibility for the running of the mine and sales 

of manganese ore on behalf of the Ghana Government for 22 years (Appianing, 2013). 

 

In line with the general policy of national economic recovery and privatisation of state 

owned enterprises, Ghana International Manganese Corporation (GIMC) acquired the mine 

in November, 1995 and Ghana Manganese Limited (GMC) was established to run the mine 

from 1996 to present (Apalangya, 2014).  
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2.2.2 The Location and Accessibility of Ghana Manganese Company Limited 

 

The Mine is located in Nsuta, in the Wassaw West Municipal Assembly of the Western 

Region of Ghana and is situated on latitude 5o 16ʺ North and longitude 1o 59ʺ West in the 

south-western Ghana. It is located about 89 km northwest from the port of Takoradi and 

about 6.5 km south from Tarkwa (Appianing, 2013). Figure 2.1 shows the location of Ghana 

Manganese Company Limited, the study area on the map of Ghana. 

 

 

Figure 2.1 Location of Study Mine on the Map of Ghana  

 

2.2.3 Climate of Ghana Manganese Company Limited 

 

The Mine site lies in the tropical humid rainforest zone in the Western Region. According 

to a study made by Amegbey et al. (2016) on the rainfall pattern from January 2009 to 

December 2013 on the Mine site, the rainfall pattern averaged 117.3 mm per month 

indicating a high rainfall zone.  

 

According to Amegbey et al. (2016), there are two main rainfall seasons on the mine site; 

the period May to July with rainfall values ranging from 179.2 mm to 195.9 mm and the 

period September to December with rainfall values ranging from 141.8 mm to 179.9 mm. 
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However, the maximum rainfall of 296.5 mm was recorded in June, followed by 195.9 mm 

in July and 210.7 mm in October respectively.  

 

The dry seasons on the mine site were noted in December and January with respective 

rainfall values 54.3 mm and 62.97 mm followed by August and February with rainfall values 

of 78.9 mm and 80.3 mm respectively (Amegbey et al., 2016). Temperature varies between 

18 oC during cold nights and 35 oC on hot days. 

 

2.2.4 Geological Setting of Ghana Manganese Company Limited 

 

According to Nyame (2011), the Nsuta manganese deposit occurs in Palaeoproterozoic 

Birimian Supergroup at the eastern portion of the West African craton. The manganese 

deposit occupies five hills designated A, B, C, D and E, which are oriented along two lines 

with bearing between N15oE and N20oE. These hills have been traced for about 4 km and 

are connected by saddles. Some of the hills are divided into two parts, namely the north and 

south crest. Hills A, B, C are along the eastern line and are 60 m – 90 m above the 

surrounding area, whilst Hills D and E form the western line (Appianing, 2013). These hills 

were formed from the weathering of volcanic tuff and argillite, which contains the 

manganese horizon, compared to the surrounding mass of greenstone (Kamara, 2014).  

 

2.2.5 Geology of Ghana Manganese Company Limited 

 

The manganese at the Nsuta Mine area are part of the belt which includes known manganese 

and gold mineralisation near the margin of the Tarkwaian geosynclines which are underlain 

by rocks of complex folded Upper Birimian (Kamara, 2014). Although the system as a 

whole consists of “green stones”, the Nsuta hills consist of a thick series of interbedded 

green tuffs and thin argillaceous horizon (Apalangya, 2014). 

 

The mine is characterised by three main types of rock formations which are Greenstones, 

Turbidites (Metatuffs) and the Manganiferous horizon. The greenstones and Meta tuffs are 

the host rocks whilst the Manganiferous horizon is the ore deposit. The manganese ore 

comes in different types based on the rate of weathering and alteration. These include: 

detrital ore, the oxide ore, carbonate-oxide ore (carbox) and the manganese carbonate ore 

(Appianing, 2013). Figure 2.2 shows the geological map of Ghana Manganese Company 
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Limited (study area). Stratigraphically, the rocks of the mine have been subdivided into 

units as shown in Table 2.1. 

 

 

Figure 2.2 Geological Map of the Study Area 
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Table 2.1 Major Stratigraphic Units of the Mine Area 

Age Unit Geology Thickness (m) 

Recent Detrital Rounded boulder; lateritic clays Variables 

Post 

Birimian 
Intrusive 

Metamorphosed gabbros, diorites 

and granite 
Variables 

Birimian 

Metavolcanic Rocks 

(Greenstones) 
Mafic and intermediate metalavas 460 – 660 

Upper Argillaceous 

Metatuffs 

Bedded sequence of grey lithic 

sediments, dark grey metatuffs 

and metalavas 

150 

Manganeferous 

Horizon 
Mn-oxide and carbonates 50 – 60 

Lower Argillaceous 

Metatuffs 

Lower sequence of bedded and 

interlayed lithics sediments, dark 

grey metatuffs and metalavas 

50 – 90 

Basal Lower 

Greenstones 

Metamorphosed volcanic flow 

rocks 
460 – 600 

(Source: Appianing, 2013) 

 

The main structure of the deposit is anticlinal with north-northeast (NNE) pitch and an axial 

plane declined to the east. Both limbs of the anticline dip eastwards and this isoclinal folding 

is a feature of the Upper Birimian in this area. Beds to the east of Hill D have moderate to 

steep dips to the east but beds in the western flanks of Hill D dip west (Apalangya, 2014). 

   

2.2.6 Production Operation at Ghana Manganese Company 

 

The mine has three open pits, namely: Pit A; Pit B and Pit C. The Pit C is where active 

mining is currently going on. The Pit C is subdivided into: C South West (CSW); C South 

East (CSE); C Central West (CCW); C Central East (CCE); and C North (CN). The major 

mining operations carried out by GMC are rock fragmentation by conventional drill and 

blast techniques and followed by loading and hauling of the fragmented rocks. These 

operations are planned ahead of production to provide the required tonnage at the lowest 
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cost. The consolidated manganese carbonate ore is what is currently being mined by GMC.  

(Kamara, 2014). 

 

Drilling operations 

 

The drilling operation at GMC has been contracted to Rock Sure International. The company 

currently has nine Sandvik Pantera DP1500i drill rigs on site with seven of them in operation 

at Pit C.  The operational rigs are: Rig 08, Rig 10, Rig 11, Rig 12, Rig 13, Rig 14 and Rig 

16. Drilled holes have diameters of 115 mm with average depth of 10 m. The drill pattern 

adopted by GMC is the staggered pattern (Apalangya, 2014). The drill pattern parameters 

are shown in Table 2.2.  

 

Table 2.2 Parameters of Drill Pattern  

Material Burden (m) Spacing (m) Depth (m) Sub-drill (m) 

Ore 3.5 3.5 10.0 1.0 

Waste (Hard) 3.5 3.5 10.0 1.0 

Waste (Semi-hard) 3.5 3.5 10.0 1.0 

(Source: Apalangya, 2014)  

 

The Planning Department provides the layout while the Survey Department marks the 

patterns on the ground. The depth of each drill hole is written on a cardboard and placed 

near the hole. The orange reflective cones are placed around the drilling area to prevent 

vehicles moving on the marked area. Sacks are placed on the collar of each hole to pluck 

the holes to prevent loose materials or rock fragments to enter and block the holes after they 

have been drilled. During drilling, the holes depths are measured by off-setters with 

measuring tapes having weights tied to their bottom to make sure the drill holes are drilled 

to the required depths (Apalangya, 2014). 

 

Blasting operations 

 

GMC conducts its own blasting operations with Maxam International supplying explosives 

and accessories. Before the charging process begins, the depths of the drill holes are 

measured by the blasting crew to ascertain the correct depth of the holes. Over drilled holes 
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are backfilled while short or blocked holes re-drilled to the right depths. Priming is done 

using a 250 g Pentolite booster and a 500 ms down the hole and either a 25 ms or 42 ms 

DDX non-electronic (NONEL) detonator for firing. The bulk explosives used for the 

column charge is the Emulsion EX 7000. A 3 m stemming height is applied at GMC with 

stemming material of 15 mm blended with 20 mm to ensure effective confinement. The 

NONEL MS firing method is used at GMC. The surface connectors used for the trunk line 

connections include 17 ms, 42 ms and 67 ms (Apalangya, 2014). 

 

Load and haul operations 

 

The mine practices selective mining in its ore extraction. Blasted ore above plant feed cut-

off grade is delineated on plan by the Geology Department as ore and marked out by 

surveyors in pit for mining. The load and haul operations of the mine have been contracted 

to Rocksure International and African Mining Services (AMS). The O & K excavators 

(RH30s, RH40s and RH90s) are used to load the ore into Volvo AD35, Komatsu HD 465 

and CAT 777F rear dump trucks. The O & K RH90 excavators are matched with CAT 777F 

trucks, the O & K RH40 excavators are matched with Komatsu HD 465 trucks while the O 

& K RH30 excavators are matched with Volvo AD35 trucks. An average of 4 to 5 passes of 

the excavator bucket fills the trucks. Loaded materials are then hauled either to the crusher 

or the waste dump (Apalangya, 2014). 

 

2.2.7 Mineral Processing at Ghana Manganese Company Limited 

 

Manganese carbonate ore, which is the main product produced by GMC, is processed by 

crushing to aggregates of 100 mm, 40 mm and 20 mm, which are designated as lumps, logs 

and fines respectively. The plant has a crushing capacity of 300 metric tons per hour.  The 

finished product from the plant is stockpiled and further conveyed to the port in Takoradi 

from where it is shipped overseas (Apalangya, 2014). 

 

2.2.8 Environmental Issues at Ghana Manganese Company Limited 

 

Over the years GMC has put in prudent measures to meet the environmental requirements 

and regulations of Ghana. The Management of GMC has adopted an environmental policy 

statement to clearly demonstrate the company’s commitment to environmental protection 
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and enlightened operational practice. Nevertheless, mining has impact on the environment 

in terms of air pollution, noise, ground vibration and air overpressure etc. The environmental 

policy has been adopted to minimise these environmental impact issues. 

 

Air pollution 

 

According to Apalangya (2014), the predominant air pollutants produced by GMC operation 

is dust emitted from loading and hauling, blasting, drilling, vehicular motion and crushing 

operations. Dust monitoring is carried out in certain areas of the mine and other 

neighbouring communities to the mine. The mitigating techniques employed by 

Management to minimise the production of dust are by: 

i. The use of water bowsers to suppress dust generated by haulage trucks and other 

vehicles along the haul roads; 

ii. The installation of dust collectors on drill rigs and where necessary, the use of water 

mixed with mud; 

iii. The processing plant is fitted with water sprinkling systems to suppress dust 

emanating from crushing; and 

iv. Monitoring of dust emission using dust emission equipment. 

 

Noise 

 

The main sources of noise are from the mining and processing operations. The sources of 

noise in the mining operations are from drilling, blasting, loading and hauling and vehicular 

motions. To mitigate the effects, drill rigs are fitted with silencers, where applicable, and 

drilling in pits during the night close to the communities is avoided. The processing plant is 

fitted with rubber rollers to reduce noise. Also, personnel in working areas where there is 

noise, are mandated to put on ear plucks (Apalangya, 2014). 

 

Ground vibration and air overpressure 

 

Blast-induced ground vibration and air overpressure are environment impacts and can cause 

damages to buildings and other man-made structures and can be a nuisance to people. blast-

induced ground vibration and air overpressure are monitored using 3000 EZ Plus portable 

seismograph as shown in Figure 2.3. If the monitored levels go beyond regulatory standard 
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of 2 mm/s for blast-induced ground vibration and 117 dB for air overpressure, measures are 

quickly taken to address the situation. This is done by conducting an investigation to 

ascertain the possible causes of these high levels so as to prevent future occurrences. The 

blast-induced ground vibration is constantly being monitored to enable further redesign of 

drilling parameters that will give maximum cost benefit (Apalangya, 2014). 

 

 

Figure 2.3 A 300 EZ Plus Portable Seismograph 

 

2.3 Brief Information about Newmont Golden Ridge Limited 

 

2.3.1 History and Ownership of Newmont Golden Ridge Limited 

 

The Newmont Golden Ridge Limited (NGRL), Akyem is an open pit mine located in the 

Birim North District of the Eastern Region of Ghana, the seventh biggest gold producing 

country in the world (Gupta, 2013). The mine is wholly owned and operated by Newmont 

Mining Cooperation and commenced production in October 2013. It is Newmont’s second 

mining operation in Ghana after the Ahafo Gold mine in the Brong Ahafo Region. Newmont 

received mining lease for the project in 2010 and developed it with an estimated investment 

of $ 950 million. Mining activities at the site started in August 2012. The mine employs 1 

300 workers and contractors drawn mostly from the communities within the mining area. 

The estimated mine life of the Akyem open pit is 16 years (Arthur, 2015). 
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2.3.2 The Location and Accessibility of Newmont Golden Ridge Limited 

 

The mine is located approximately 3 kilometres west of the district capital New Abirem, 

133 kilometres west of Koforidua the regional capital, and 180 kilometres northwest of 

Accra (Kaba, 2013).  

 

It is also accessed by the main Accra-Kumasi highway at Abepotia near Nkawkaw and 

travelling south via Inter-Regional Road 3 to New Abirem (approximately 40 km) (Arthur, 

2015). Figure 2.4 shows the location of NGRL on the map of Ghana. 

 

 

Figure 2.4 Map Showing the Location of NGRL, Akyem Mine (Source: Arthur, 2015) 
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2.3.3 Geological Setting of Newmont Golden Ridge Limited 

 

Northeast trending belts of folded, metamorphosed volcanic and sedimentary rocks of the 

early Proterozoic underlay the mining area. The southeast side of the mining area is 

underlain by rocks of the Birimian Supergroup. In this Region, Birimian terrain comprises 

northeast trending belts of volcanic and volcanoclastic material separated by broad turbidite-

dominated sedimentary basins. Tarkwaian sediments consisting of conglomerate, sandstone, 

and phyllite unconformably overlay Birimian volcanic belts in the north-western portion of 

the mining area as shown in Figure 2.5.  

 

2.3.4 Mineralisation of Newmont Golden Ridge Limited 

 

The Akyem deposit is developed at the northern end and along the southeast margin of the 

Ashanti Greenstone Belt. The Ashanti Greenstone Belt is one of five Palaeoproterozoic 

Birimian tholeiitic to acidic composition volcanic belts in Ghana located in Birimian rocks 

near the contact of metavolcanic (i.e., mafic volcanic) and overlying metasedimentary (i.e., 

greywacke) units. A stratigraphic section of the geological units associated with the Akyem 

deposit is shown on Figure 2.6. The Akyem deposit is localized in the hanging wall of a 

regional fault trending northeast 70 degrees parallel to regional structures, and dipping 60 

degrees to the southeast, parallel to the foliation developed in the Birimian host rock. The 

fault shows evidence of thrust, strike slip, and normal movement. The planar fault structure 

displays mylonitic to bracciated texture. Zones of graphitic rubble suggest the fault was 

likely reactivated over time.  

 

Associated joints around the fault are often filled with quartz veins. The graphite-bearing, 

mylonitic fault zone ranges from 1 to 15 meters thick. The fault structure defines a sharp 

base to the mineralisation of the deposit. Ore above the fault ranges from 10 to 100 m in 

thickness. The deposit is developed over approximately 2 500 m in strike length (along the 

fault) and the ore has been delineated to a depth of about 400 m down the fault structure 

(Anon., 2015). 
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Figure 2.5 Geological Setting of NGRL Akyem Mine 



19 

 

 

Figure 2.6 A Stratigraphic Section of the Geological Units Associated with the 

Akyem Deposit (Source: Kaba, 2013) 

 

2.3.5 Production Operations at Newmont Golden Ridge Limited 

 

The mine has two pits, namely: East Pit and the Main Pit. The major mining operations 

carried out at NGRL are ground fragmentation by conventional drill and blast techniques 

and loading and hauling of the fragmented rocks. These operations are planned ahead of 

production to provide the required tonnage at the lowest cost.  

 

Drilling 

 

The Mine has eight (8) Atlas Copco drill rigs, six of which utilise a drill bit diameter of 165 

mm for drilling production holes and while the other two (2) utilise a 115 mm diameter drill 

bit for drilling presplit holes. 
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The drill pattern employed by NGRL is the staggered drill pattern with burden and spacing 

in the ore of 4 m × 4 m and 4.5 m × 4.5 m for the waste. The drilled holes are normally of 

depth of 9 m with sub-drill of 1 m. Prior to drilling, the drill hole pattern is planned and 

printed out for the drill and blast supervisors whilst the holes data are exported from the 3D 

Minesight into the Leica jigsaw software to be used by the drill rigs. This is to enable the 

drill rig operators to navigate and drill the patterns on the working bench without the need 

of a surveyor to mark out the drill patterns. 

 

Blasting 

 

Blasting of hard rock involves the use of explosives for the disintegration of in situ rocks. 

The explosives used in blasting are supplied by Orica Mining Service, a contractor of 

Newmont, Akyem. The main explosive used is emulsion, which is prepared by Orica and 

supplied to the pit to be discharged into the blast hole by the use of a Mobile Manufacturing 

Unit (MMU). Other explosives used in blasting include, booster-410 g; surface connectors, 

shock tube lead in line; 15 m Unitronics (UT 500); 4.2 m × 500 ms in hole detonators; 12 

m × 500 ms in hole detonators and harness Wire (UT 600).  

 

Load and haul operations 

 

The mine has four Liebherr 994B excavators of which two are backhoe and two shovels for 

loading. The mine has nineteen 785 Caterpillar rear dump trucks, each of which has a 

capacity of 134 tonnes, for hauling waste to the waste dump or ore to the crusher or 

stockpile.  

 

2.3.6 Mineral Processing at Newmont Golden Ridge Limited 

 

The Akyem gold processing plant has the capacity to treat 8.8 million tonnes of ore a year, 

including both run-of-mine (ROM) primary ore and oxide ore. The processing facilities at 

the plant include primary and secondary crushers, a semi- autogenous grinding (SAG) mill, 

hydrocyclones, a ball mill, leach-feed thickening tanks, a Carbon-in-Leach (CIL) circuit, a 

cyanide recovery circuit, carbon recovery systems and a refining facility to produce gold 

(Anon., 2017a). 
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The essential chemicals and reagents used by the processing facility include: lime; sodium 

cyanide; caustic; hydrochloric acid; activated carbon; hydrogen peroxide and flocculants. 

Tailings from the processing plant are transported to the nearby tailings storage facility via 

an above ground pipe placed in a high-density polythene lined trench (Anon., 2017a). 

 

2.3.7 Environmental Issues at Newmont Golden Ridge Limited 

 

The Management of NGRL has adopted environmental programmes to clearly demonstrate 

the company’s commitment to environmental protection and enlightened operational 

practice to meet the environment requirements and regulations in Ghana. 

 

Ambient air quality monitoring 

 

Air quality monitoring programme has been instituted by NGRL to ensure compliance with 

Ghana standards and verify adequacy of mitigation measures in accordance with the Site-

Wide Air Quality Monitoring Plan. The programme continues to monitor particulate matter 

10 micrometres (PM10), total suspended particle (TSP), nitrogen oxides (NOx) and sulphur 

oxides (SOx) in the mine area and surrounding communities.  

 

The mine continues to operate dust minimisation and collection systems at ore transfer 

points, conveyor systems, and ore crushing circuits. The mine controls fugitive dust 

emissions through daily direct water application on the roads in the mine area during dry 

conditions. It also continues to enforce vehicle speed limits to reduce dust generation 

associated with vehicular traffic as prescribed in the Akyem Mine Traffic Management Plan.  

 

Noise, ground vibration and air overpressure monitoring 

 

The mine has instituted the noise monitoring programme to ensure compliance with 

Environmental Protection Agency (EPA) standards. It also maintains the vibration and air 

overpressure monitoring programme to ensure values do not exceed the standard set by the 

Ghanaian Mineral and Mining (Explosives) Regulation, 2012 (L.I. 2177), Sub section 199 

of 2.0 millimetres per second and 117 decibels (dB), respectively. The mine conducts 

weekly blast process review meetings to assess noise and vibration impacts of blasting 

events from the preceding week to better manage blasting activities planned for the 
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proceeding week. The review focuses on what went well with the blast(s) and what went 

wrong, and if appropriate changes may be recommended to improve on any lapses. 

 

The mine has three monitoring stations in each of its neighbouring towns namely, Afosu, 

New Abirem and Aduasena. Figure 2.7 shows the monitoring instrument at the New Abirem 

monitoring station. 

 

 

Figure 2.7 An Instantel Minimate Plus Seismic Monitor 
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CHAPTER 3 

LITERATURE REVIEW 

 

3.1 Blast-Induced Ground Vibration 

 

When an explosive is blasted in a blasthole, the chemical reaction evolves a huge quantity 

of gas which generate energy. This energy starts propagating away in a radial direction. 

Initially the intensity of the energy is so high that matter near the walls of the blastholes are 

crushed and displaced radially. When the intensity of energy decreases, the energy continues 

to travel through the rock as an elastic ground vibration (Gokhale, 2011). 

 

Olofsson (1990), therefore defined blast-induced ground vibration as seismic movements in 

the ground. According to him, blast-induced ground vibrations are complicated type of 

seismic waves and consist of the P-wave, which is also called the primary wave or 

compression wave as shown in Figure 3.1. This wave is the fastest wave through the ground. 

The particles in the wave move in the same direction as the propagation of the wave. The 

density of the material will change when the wave passes. The second kind of wave is the 

S-wave, which is also called the secondary or shear wave as shown in Figure 3.1. It moves 

through the medium at right angle to the wave propagation but slower than the P-wave. The 

S-wave changes the shape of the material but not the density. The last kind is the R-wave 

which stands for Rayleigh wave as shown in Figure 3.2. It is a surface wave that fades fast 

with depth. It propagates more slowly than the P and S waves and the particles move 

elliptically in the vertical plane and in the same direction as the propagation.  

 

3.1.1 Measurement of Blast-Induced Ground Vibration 

 

The measurement of blast-induced ground vibration is done by use of blasting 

seismographs. The seismograph consists of a transducer or a geophone connected to a 

processor to collect and analyse the signals. The displacement, particle velocity, particle 

acceleration and frequency of blast-induced ground vibration can be measured. According 

to Nicholson (2005), the peak particle velocity correlates with damage more closely than 

peak displacement or peak acceleration. Hence Peak Particle Velocity is used in assessing 

blast-induced ground vibration.  
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Figure 3.1 P Wave and S Wave (Source: Anon., 2017b) 

 

 

Figure 3.2 Rayleigh Wave (Source: Anon., 2014) 

 

The triaxial geophone of the blasting seismograph contains three mutually perpendicular 

transducers, each consisting of a spring-loaded moving mass system located within a 

moving coil to record the three mutually perpendicular components of the motion of the 

ground particles due to the passage of blasting vibration. These components are: 

longitudinal (radial) (x); transverse (y), and vertical (z).  

 

The particle velocity at a point is the vector sum of the three components at the same instant 

of time as shown in Equation (3.1). 

 

2 2 2

x y zParticle Velocity v v v= + +            (3.1) 
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The peak value, known as the Peak Vector Sum (PVS) or Peak Particle Velocity (PPV), is 

the highest value of the vector sums. The Peak Particle Velocity is the velocity of motion of 

a particle on or in the ground induced by the passing of the blast vibration waves and is not 

the velocity of the waves through the ground (Richards and Moore, 2012). 

 

3.1.2 Factors Affecting Blast-induced Ground Vibration 

 

The intensity of blast-induced ground vibration depends on two main groups of parameters, 

namely controllable and uncontrollable parameters as given in Table 3.1 (Khandelwal and 

Singh, 2009; Ghasemi et al., 2013; Hasanipanah et al., 2015; Amiri et al., 2016; Fouladgar 

et al., 2017; Hasanipanah et al., 2018). The controllable parameters are those that can be 

changed by the blasting engineers whereas the uncontrollable parameters cannot be changed 

by the blast engineers (Hasanipanah et al., 2018). 

 

Table 3.1 Factors that Affect Blast-Induced Ground Vibration 

Controllable Parameters Uncontrollable Parameters 

Blast Design 

Parameters 
Explosive Parameters 

Geotechnical and 

Geomechanical Parameters 

Hole depth Explosive type Rock mass strength 

Hole diameter Maximum charge per delay  Ground water condition 

Bench height Total charge Discontinuity frequency 

Burden Powder factor Bedding plane 

Spacing Velocity of detonation (VOD) Discontinuities (Faults) 

Stemming Delay time   

sub-drilling Direction of initiation   

No. of holes and rows     

Hole Inclination     

(Source: Murmu et al., 2018) 

 

3.1.3 Prediction of Blast-Induced Ground Vibration  

 

Over the years, attempts have been made to relate the contributing factors of blast-induced 

ground vibration particle motion to the measured PPV. This led to the development of many 
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empirical models presented in Table 3.2. As these methods have been extensively applied 

throughout the scientific literature, Table 3.2 provides only a summary of the modelling 

method and a description of terms in the related equations. 

 

Table 3.2 Summary of Various PPV Empirical Predictors 

Modelling 

Method 
Reference Equation Description 

USBM Duvall and Petkof (1959) ( )PPV k D Q
−

=  
PPV is the peak 

particle velocity, D 

is the distance from 

the blast face to the 

monitoring station 

(m), Q is the 

cooperating charge 

(kg), k, β, A, α and n 

are the site specific 

constants to be 

determined. 

 

Langefor-

Kihlstrom 

Langefors and Kihlstrom 

(1963) 
( )1 2 3 4PPV k Q D



=  

General 

Predictor 
Davies et al. (1964) 

APPV k.D .Q−=  

Ambrasey-

Hendron 

Ambraseys and Hendron 

(1968) 
( )3PPV k D Q

−

=  

Indian Standard 
Indian Standard Institute 

(1973) 
( )2 3PPV k Q D



=  

Ghosh-Daemen 

1 

Ghosh and Daemen 

(1983) 
( ) .DPPV k D Q .e

−
−=  

Ghosh-Daemen 

2 

Ghosh and Daemen 

(1983) 
( ) .D3PPV k D Q .e

−
−=  

Gupta et al. Gupta et al. (1987) ( ) ( ). D Q
PPV k D Q .e

−
−

=  

CMRI Predictor Roy (1991) ( )
1

PPV n k D Q
−

= +  

Rai-Singh Rai and Singh (2004) 
A .DPPV k.D .Q .e− −=  

 

These empirical models have been applied to predict blast-induced ground vibration in 

Ghana (Amegbey and Afum, 2015; Bansah et al., 2016). The empirical models employed 

in this thesis are: The USBM model, the Langefors-Kihlstrom model, the Ambreseys-

Hedron model and the Indian Standard model. These empirical equations were selected 

because most studies (Khandelwal and Singh, 2006; Mohamadnejad et al., 2012; Saadat et 

al., 2014; Armaghani et al., 2014; Tiile, 2016; Ragam and Nimaje, 2018) conducted in the 

area of the application of artificial intelligence techniques in the prediction of blast–induced 
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ground vibration have compared the developed methods to these four empirical equations, 

making them the most widely used empirical equation. They are consequently also the 

empirical equations adopted by the Ghanaian mining industry for blast-induced ground 

vibration prediction. 

 

3.1.4 Ways of Minimising Blast-Induced Ground Vibration 

 

Thomas and Goldfarb (2005) listed out various factors to be considered in minimising the 

intensity of blast-induced ground vibrations. They stated that using a computer software 

such as Alpha-blast to analyse the effect of different timing sequence can help change the 

intensity of ground vibrations and shift the frequency of the vibrations to a higher range. 

Another way they stated was to minimise the charge weight per delay. They explained that 

small charges will generate vibrations with higher frequencies and smaller amplitudes while 

large charges will generate vibrations with low frequencies and large amplitudes, hence the 

need to use a smaller charge. They also stated that a longer blast will produce a longer period 

of ground vibrations hence the duration of the vibration is another factor to be considered 

in minimising blast-induced ground vibration. Other factors stated by them include: 

i. Using appropriate burden and spacing. 

ii. Selection of the appropriate powder factor. A powder factor which is too low can 

result in lower vibrations than predicted and a too large powder factor will result in 

high levels of ground vibration due to the volume of explosives. 

 

3.2 Air Overpressure 

 

Air overpressure on the other hand are pressure waves that are created in the atmosphere 

after blasting. These waves are compressed in nature and travel through the air in a similar 

fashion to blast waves travelling through the ground (Thomas and Goldfarb, 2005).  

According to Olofsson (1990), the intensity of the pressure depends on the size of the charge 

and on the degree of confinement. The maximum pressure is known as the peak air 

overpressure. The air shock waves are within a wide range of frequencies typically between 

0.1 Hz and 200 Hz. When the frequencies range from 20 Hz and above, they are audible and 

termed as noise but when the frequencies are under 20 Hz, they become inaudible and are 

termed as concussion. The lower, inaudible frequencies are damped more slowly than the 

higher, audible and cause overpressure over greater distances. These low frequencies can 
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occasionally cause direct damage of structures but can more commonly induce higher 

frequency vibrations which are noticed as noise on windows, doors, crockery. Under such 

circumstances, it is impossible to determine whether the ground vibration or air shock wave 

is being perceived without monitoring the blast.  

 

3.2.1 Sources of Air Overpressure 

 

During blasting operations, air overpressure waves are generally generated from four main 

sources, namely (Armaghani et al., 2015b): 

i. Air pressure pulse (APP): the rock displacement at bench face as the blast 

progresses. 

ii. Gas release pulse (GRP): generated by the gas escapes through rock fractures. 

iii. Rock pressure pulse (RPP): caused by vibration of ground. 

iv. Stemming release pulse (SRP): produced by the gas escapes from blast-hole once 

the stemming is ejected 

 

3.2.2 Factors Affecting Air Overpressure 

 

According to Sawmliana et al. (2007), there are both controllable and uncontrollable factors 

that affect the intensity of the air overpressure. The controllable factors include: 

i. Maximum charge weight per delay; 

ii. Depth of burial of the charges; 

iii. Exposure of detonating materials on the ground surface; 

iv. Volume of displaced rock; and 

v. Delay interval and orientation. 

 

The uncontrollable factors also include: 

i. Atmospheric condition; and 

ii. Topography. 

 

They also stated that among the controllable factors, the maximum charge per delay is the 

most predominating factor followed by depth of burial of charge. 
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3.2.3 Measurement of Air Overpressure 

 

Air overpressure is measured as units of pressure in millibar (mbar). The units, decibel (dB) 

and kiloPascal (kPa) are also used. The decibel unit is expressed in Equation (3.2) as:  

 

oP

P
log20dB =                   (3.2) 

 

where, P is the measured pressure; Po is the reference pressure of 0.00002 Pa. 

 

Popularly used air overpressure prediction models 

 

The most widely used form of prediction equation of air overpressure is Equation (3.3) 

(Gokhale, 2011; Armaghani et al., 2015b): 

 

3

D
AOp H

Q

−

 
=   

 

                  (3.3) 

 

where AOp is air overpressure in decibel; D is distance in meters; Q is the weight of 

explosive in kilogram; H and β are site constants. 

 

However, air overpressure predictive models have been developed over the years 

(Holmberg and Person, 1979; NAASRA, 1983; Olofsson, 1990; Persson et al., 1994).  

 

3.2.4 Ways of Minimising Air Overpressure 

 

In order to minimise air overpressure, the following must be done (Anon., 2018a) 

i. Use sufficient stem length (at least 0.7 times the burden). 

ii. Use an angular, crushed-rock product of the correct size distribution appropriate for 

the hole diameter. 

iii. Check the free faces for excessive fracturing from back break and the presence of 

mud seams or voids and load the front row of holes accordingly.  
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iv. Conduct blasting in the afternoon when temperature inversions are least likely to 

persist. Contact a local airport to find out the elevation of the cloud ceiling. 

v. Blast when wind conditions are favourable (e.g., either in directions away from 

structures or at low velocities). 

vi. Use non-electric, shock-tube initiation systems instead of detonating cord. 

 

3.3 Artificial Intelligence Techniques 

 

The artificial intelligence (AI) is a new technique with a flexible mathematical structure that 

is capable of identifying complex non-linear relationships between input and output data 

when compared with other classical modelling techniques (Najah et al., 2011). The AI 

techniques found in literature for prediction modelling include: support vector regression 

(SVR), support vector machines (SVM), least square support vector machines (LSSVM), 

classification and regression tree (CART), extreme learning machines, Gaussian process 

regression (GPR), multivariate adaptive regression splines (MARS), fuzzy logic, artificial 

neural networks (ANN), generalised regression neural network (GRNN), radial basis 

function neural network (RBFNN), wavelet neural network (WNN), functional network, 

adaptive neuro-fuzzy inference systems (ANFIS), genetic algorithm (GA), particle swarm 

optimisation (PSO), ant colony algorithm (ACA), gene expression programming (GEP), bee 

colony algorithm (BCA), cuckoo search algorithm (CSA), imperialist competitive algorithm 

(ICA) etc.  

 

3.3.1 Essence of Prediction Using Artificial Intelligence Techniques 

 

In recent years, many researches have tried to develop new models using AI techniques for 

the prediction of blast-induced ground vibration and air overpressure. The introduction of 

these AI techniques as an alternative predictor for ground and air vibration is due to the 

empirical predictor models not being fully suitable to predict these vibrations (Ghasemi et 

al., 2013). The reason being, the empirical predictor models are basically based on two 

parameters, maximum charge per delay and distance from blast site to monitoring point, 

excluding other effective parameters (Table 3.1) which influence the intensity of ground 

vibration vibrations (Ghasemi et al., 2013). Besides, blast-induced ground vibration is a 

complex phenomenon with highly nonlinear variable interactions which cannot be 

adequately modelled using closed-form mathematical equations (Table 3.2) (Dehghani and 
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Ataee-Pour, 2011; Dindarloo, 2015). Additionally, Dindarloo (2015) is of the view that lack 

of generalisability is a common phenomenon inherent in the empirical prediction models 

(Table 3.2) because of the number of input parameters considered. 

 

Generally, the obtained results by previous researchers show that AI techniques are able to 

predict PPV and air overpressure with higher level of accuracy compared to empirical and 

statistical techniques (Armaghani et al., 2015a; Armaghani et al., 2015b; Ghoraba et al., 

2016; Tiile, 2016). These techniques have been found to outperform the empirical predictors 

due to their ability to learn, adapt and generalise well to the data set introduced to them 

without a priori knowledge of the mathematical association between input and output 

parameters. Thus, they have the ability to model correctly the complex nonlinear and 

dynamic system interactions of the blast design, explosive, geotechnical and geomechanical 

parameters. The soft computing techniques also have the capability to tolerate imprecision, 

uncertainty, approximate reasoning and partial truth to achieve tractability and robustness 

on simulating human thinking to match up with reality (Zadeh, 1994). 

 

3.3.2 Review of Application of Artificial Intelligence in Blast-Induced Ground Vibration 

Prediction  

 

It is noteworthy that literature is replete with the application of the various AI techniques in 

the prediction of blast-induced ground vibration. For example, authors such as: Singh (2004) 

applied ANN to predict blast-induced ground vibration. To check the accuracy of the ANN 

model, a multivariate regression analysis (MVRA) model was also developed. In 

constructing the various models, input parameters of hole depth, number of holes, burden, 

spacing, stemming column height, mass of charge per delay, and horizontal and radial 

distance from the blast location were considered whereas frequency of blast vibration was 

the output parameter. The results obtained revealed that the ANN predictions of ground 

vibrations agreed adequately with actual data and gave significantly lower errors relative to 

the predictions from a MVRA model.   

  

Singh and Singh (2005) applied ANN to predict blast-induced ground vibration. To provide 

an inspection of the reliability and accuracy of the ANN model, a multivariate regression 

analysis (MVRA) model was also developed. In constructing the various models, hole 

diameter, number of holes, depth, burden, spacing, stemming, charge per delay, horizontal 
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distance and radial distance were considered as the input parameters, whereas the frequency 

of the blast-induced ground vibration was the output parameter. The prediction results 

obtained revealed that, the ANN provided a better correlation between the observed and 

predicted frequency. Moreover, the ANN model, had a lower error range of 0.6 – 19% 

whereas the MVRA model had an error range of 0.5 – 47%.  

  

Khandelwal and Singh (2006) applied ANN to predict blast-induced ground vibration. To 

check the accuracy of the ANN model, a multivariate regression analysis (MVRA) mode 

was also developed. In that regard, authors used 150 and 20 blast data sets to develop and 

test the ANN and MVRA models respectively. In constructing the models, hole diameter, 

average hole depth, average burden, average spacing, average charge length, average 

explosive per hole, distance of monitoring point from blasting face, blastability index, 

Young’s modulus, Poisson’s ratio, P-wave velocity, velocity of detonation of explosive and 

density of explosive were considered as input parameters whereas PPV was the output 

parameter. The prediction results obtained showed the superiority of ANN in predicting 

blast-induced ground vibration compare with the MVRA model. The reason being, the ANN 

had a correlation coefficient (R) value of 0.9994 and mean absolute percentage error 

(MAPE) value of 4.74 whereas the MVRA model had R value of 0.4971 and MAPE value 

of 343.98.   

  

Khandelwal and Singh (2007) developed a three-layer feed forward backpropagation neural 

network (BPNN) model to predict blast-induced ground vibration in Dharapani Magnesite 

Mine, India. To check the accuracy of the BPNN model, empirical equation models of 

USBM, Ambraseys–Hendron, Langefors–Kihlstrom and Indian Standard were also 

developed. In that regard, authors used 150 and 20 blast data sets to develop and test the 

various predictive models respectively. In constructing the models, maximum charge per 

delay and distance from the blast face to the monitoring point were the considered input 

parameters whereas PPV was the output parameter. The predicted PPV obtained on testing 

data sets in comparison with the measured showed the greater capability of the ANN model 

at predicting blast-induced ground vibration than the empirical models.   

 

Iphar et al. (2008) applied adaptive neuro-fuzzy inference system (ANFIS) to predict blast 

induced ground vibration using blasting events from Magnesite Incorporated Company 

(MAS), Turkey. To check the performance of the ANFIS model, a simple regression model 
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based on the USBM was also developed. In that regard, a total of 44 blasting dataset of 

which 35 blasting data sets (80%) were used in the model development and the remaining 

20% (9 records) were used to independently ascertain the performance of various developed 

models. In constructing the various predictive modes, authors considered, distance between 

the shot and the station and maximum charge per delay as the input parameters with PPV as 

the output parameter. Using variance accounted for (VAF), root mean square error (RMSE) 

and standard error of estimation and R as the performance indices, the obtained results on 

the testing dataset showed that, the ANFIS model with VAF value of 98.79, RMSE value 

of 0.78, standard error of estimation value of 0.80 and correlation value of 0.99 was more 

accurate at predicting blast-induced ground vibration than the regression model (VAF value 

of 80.57, RMSE value of 3.19, standard error of estimation value of 3.17 and correlation 

value of 0.90). 

 

Mohamed (2009) applied ANN to predict blast-induced ground vibration at Assiut Cement 

Company (ACC). Three ANN models based on the number of input parameters used were 

developed. These models are: one-single-input model, two-input model and large number 

of input model. To ascertain the performance of the ANN models, a conventional scaling 

law predictor was developed. In that regard a total of 124 data sets were used to develop the 

models whereas 25 new data sets were used to test and validate the developed models. In 

the case of one-single-input model, the author used scaled distance as the only input, 

whereas the two-input model had distance and the maximum explosives/delay as the input 

parameters. The large number of input model consisted of 15 input parameters, namely: hole 

diameter, burden distance, spacing distance, bench height, hole inclination, maximum 

explosives/delay, total explosives/blast, explosive density, rock density, porosity, 

compressive strength, modulus of elasticity, measuring distance, velocity of detonation, 

propagation wave velocity. The prediction results obtained on the testing data sets showed 

that the large number of input ANN model gave better prediction than the two-input ANN 

model and one-single-input ANN model in that order. Also, the ANN models in general 

outperformed the conventional scaling law predictor.  

  

Khandelwal and Singh (2009) developed and applied a three-layer, feed-forward 

backpropagation neural network to predict blast-induced ground vibration at Jayant 

opencast mine of Northern Coalfields Limited (NCL), India. To check the performance of 

the ANN model, a multivariate regression analysis (MVRA) model and empirical models 
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of USBM, Langefors–Kihlstrom, General predictor, Ambraseys–Hendron, Bureau of Indian 

Standard, Ghosh–Daemen predictor and CMRI predictor were developed. In that regard, a 

total of 174 data sets were collected of which 154 data sets were used to develop the various 

models whereas the remaining 20 data sets were used to test and evaluate the developed 

models. In constructing the ANN and MVRA model, authors considered hole depth, burden, 

spacing, maximum charge per delay, distance of monitoring point from blasting face, 

compressive strength/tensile strength, young’s modulus, poisson’s ratio and p-wave velocity 

as input parameters with PPV as output parameter. Using coefficient of determination (R2) 

and mean absolute error (MAE) as statistical measure of performance indices, the obtained 

prediction on the testing dataset indicated that the ANN model was superior at predicting 

blast-induced ground vibration than the MVRA and empirical predictors. The reason is that 

it had the highest R2 of 0.9864 and lowest MAE of 0.196379.  

  

Khandelwal (2010) applied support vector machines (SVM) to predict blast-induced ground 

vibration at Jayant opencast mine of Northern Coalfields Limited (NCL), India. To check 

the performance of the ANN model, a multivariate regression analysis (MVRA) model and 

empirical models of USBM, Langefors–Kihlstrom, General predictor, Ambraseys– 

Hendron, Bureau of Indian Standard, Ghosh–Daemen predictor and CMRI predictor were 

developed. In that regard, a total of 174 data sets were collected of which 154 data sets were 

used to develop the various models and the remaining 20 data sets were used to test and 

evaluate the developed models. In constructing the various models, the author considered 

maximum charge per delay and distance of monitoring point from blasting face as input 

parameters with PPV as output parameter. Using R2 and MAE as statistical measure of 

performance indices, the prediction obtained on the testing dataset indicated that the SVM 

model was superior at predicting blast-induced ground vibration than the MVRA and 

empirical predictors. The reason is that it had the highest R2 of 0.960 and lowest MAE of 

0.257.  

 

Khandelwal et al. (2010) applied support vector machine (SVM) for the prediction of blast 

induced ground vibration at Magnesite mine of Pithoragarh, India. For comparison purposes 

and to investigate the suitability of the SVM model, conventional predictor equations of 

USBM, Langefors-Kihlstrom, Ambraseys-Hendron and Indian Standard were also 

developed. In that regard, a total of 170 blast vibrations data sets were recorded from the 

study area. Out of 170 data sets, 150 were used to develop (train) the various predictive 
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models, whereas 20 new randomly selected data sets were used to test the developed models. 

In constructing the SVM and empirical models, maximum charge per delay and distance 

between blast face to monitoring point were considered as input parameters with PPV being 

the output parameter. Statistical results based on R2 and MAE revealed that, SVM was more 

accurate in predicting PPV than the conventional predictor equations. The reason being it 

had the higest R2 values (0.955) and lowest MAE value (0.226)  

  

Amnieh et al. (2010) applied backpropagation neural network to predict blasting vibrations 

in Sarcheshmeh copper mine. In their study, the input parameters considered were: charge 

weight per delay, distance from blast point, the height of stemming column and the number 

of drill hole-rows. PPV was considered as the output parameter for the network. The 

network was trained using 4 hidden layers and 23 training data sets. The first hidden layer 

has 20 neurons with the three having 17, 15 and 10 neurons respectively. The Tan-sigmoid 

transfer function was employed for hidden layers and the linear transfer function was used 

for the output layer that generated PPV. Levenberg-Marquardt algorithm was used as the 

training function. Six additional data sets were used to test the trained neural network. The 

correlation coefficient of the predicted PPV and the actual PPV of the six-additional data 

sets was 0.99355. The average relative error obtained was 6.77%.  

  

In Monjezi et al. (2010b), multilayer perceptron neural network (MPNN), the radial basis 

function neural network (RBFNN) and the generalised regression neural network (GRNN) 

were applied to predict blast-induced ground vibration at Sarcheshmeh Copper Mine. The 

input parameters that were considered include: The distance from the blasting location (m); 

maximum charge per delay (kg); burden/spacing ratio; number of holes per delay (m); UCS 

(mpa); and delay per rows.  A total of 269 data sets were used in the development of these 

various type of ANN models. Out of these 269 data sets, 242 data sets were used for training, 

27 data sets were used for testing. They found out that the Multilayer Perceptron Neural 

Network was a better predictor than the other ANN models with a RMSE of 0.031 and R2 

of 0.954.  

  

Kamali and Ataei (2010) applied ANN to predict blast-induced ground vibration in Karoun 

III power plant and dam. To check the performance of the ANN model, a multivariate 

regression analysis (MVRA) model, empirical equation models of USBM, Langfors– 

Kihlstrom, General predictor, Ambrasey-Hendron, Bureau of Indian Standard, Ghosh– 
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Daemen, CMRI were also developed. A total of 28 data sets were collected from which 20 

datasets were used to develop (train) the various models whereas the additional 8 data sets 

were used to validate the developed models. In constructing the ANN and the MVRA model, 

authors considered maximum charge per delay, total charge per round, distance from blast, 

direction of blasting, blast hole length, number of blast holes, total delay in millisecond, 

number of delay intervals, average specific charge as input parameters with PPV being the 

output parameter. Using R2 and mean square error (MSE) as the statistical evaluator of the 

performance of the developed models, the obtained results based on the validation data sets 

revealed that, the ANN, MVRA model and CMRI (best empirical model) had the R2 values 

of 0.98, 0.94 and 0.92 respectively. Also, the ANN, MVRA model and CMRI (best 

empirical model) had the MSE values of 9.19, 5443.67 and 60.44 respectively. They thus, 

concluded that the ANN model was superior in predicting blast-induced ground vibration 

than the MVRA and empirical models.   

  

Khandelwal (2011) developed and applied support vector machine (SVM) approach to 

predict blast induced ground vibration at three different opencast coal mines namely, PK 

OCP-III, GDK OCP-II, and JVR OCP-I of Sinagreni Collieries Company Limited (SCCL), 

Andhra Pradesh, India. For comparison purposes and to investigate the suitability of the 

SVM model, conventional predictor equations of USBM, Langefors-Kihlstrom, 

Ambraseys-Hendron, Indian Standard and CMRI predictors were also developed. A total of 

150 blast vibrations data sets were recorded from the study area. Out of 150 data sets, 120 

were used to develop (train) the various predictive models, whereas 30 new randomly 

selected data sets were used to test the developed models. In constructing the SVM and 

empirical models, maximum charge per delay and distance between blast face to monitoring 

point were considered as input parameters with PPV being the output parameter. Statistical 

results based on R2 and MAE revealed that, SVM was more accurate in predicting PPV than 

the conventional predictor equations. The reason being it had the highest R2 values (0.9644) 

and lowest MAE value (0.227).  

 

In Khandelwal et al. (2011), a three-layer feed forward backpropagation neural network 

model with 2-5-1 architecture was developed to predict ground vibration due to blasting. 

The input parameters considered for this model were explosive charge per delay and 

distance from the blast face to the monitoring point. This model was trained and tested using 

130 experimental and monitored blast records. Twenty additional blast data were used to 
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validate the model and compare the model to conventional vibration predictors. The model 

comparison indices – coefficient of determination and root mean square error, indicated that 

the prediction performance of the ANN model was higher than the conventional vibration 

predictors.  

 

Monjezi et al. (2011) applied ANN to predict blast-induced ground vibration in the 

Siahbisheh project, Iran. To provide a comprehensive assessment of the reliability and 

accuracy of the developed model, empirical models of USBM, Langefors–Kihlstrom, 

Ambraseys–Hendron, Bureau of Indian Standard, CMRI predictor as well as a multivariate 

regression analysis (MVRA) model were developed. To achieve that aim, a total of 182 blast 

vibration records were monitored, from which 162 data sets were used construct the various 

models, whereas the remaining 20 data sets were used to test the developed models. In 

constructing the ANN and MVRA models, maximum charge per delay, distance of 

monitoring point from blasting face, stemming and hole depth were taken as input 

parameters, whereas PPV was considered as an output parameter. Their prediction results 

on the testing data sets revealed that, a four layered ANN model with structure 4-10-5-1 was 

more accurate and reliable at predicting blast-induced ground vibration than the MVRA and 

empirical models collectively.  

  

Fişne et al. (2011) applied fuzzy logic (FL) to predict blast-induced ground vibration using 

blast data from Akdaglar Quarry, Istanbul, Turkey. To check the performance of the fuzzy 

logic model, a statistical model based on the USBM was also developed. Using a total of 33 

blasting events for the validation of the various predictive models, authors found out that on 

the basis of computed VAF, RMSE, standard error of estimation and correlation, the fuzzy 

logic model with VAF value of 0.91, RMSE value of 5.31, standard error of estimation value 

of 5.07 and correlation value of 0.96 was more accurate at predicting blast-induced ground 

vibration than the statistical model (VAF value of 0.59, RMSE value of 11.32, standard 

error of estimation value of 11.54 and correlation value of 0.82).   

  

Mohamed (2011) applied ANN and fuzzy logic to predict blast-induced ground vibration in 

Assiut Cement Company. For comparison purposes, a traditional regression model was 

developed. In that regard, a total of 136 dataset were collected and used to develop (train) 

the predictor models. Twenty-six new dataset were collected to independently test the 

developed models. In constructing the models, charge weight per delay and distance from 
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blast-face to monitoring station were used by authors as input parameters. The authors used 

VAF and RMSE as statistical performance indicators for the various models. The results 

obtained based on the testing data sets revelated that, the fuzzy logic and ANN models were 

more accurate at predicting AOp than the traditional regression model. Also, the authors 

found out that, the fuzzy logic model performed slightly better than the ANN model. These 

assertions were made because, values of 87.00% and 0.17 were obtained for VAF and 

RMSE respectively by fuzzy logic model. Values of 78.39% and 0.21 were obtained for 

VAF and RMSE respectively by ANN model whereas values of 3.23% and 0.45 were 

obtained for VAF and RMSE respectively by traditional regression model.  

  

Dehghani and Ataee-Pour (2011) applied ANN to predict blast-induced ground vibration at 

Sarcheshmeh copper mine located in Iran. A total of 116 blasting events were collected to 

develop (train) the ANN model whereas 17 additional blasting events were used to test the 

developed ANN model. Authors used nine input parameters of burden, spacing. delay 

between rows, powder factor, number of rows in each blast, distance of monitoring point 

from blasting face, maximum hole per delay, charge per delay and point load index with 

PPV being the output parameter were used to construct the ANN model. The obtained 

prediction results demonstrated that, an ANN with 9-25-1 topology (9 inputs, 25 neurons in 

hidden layer and 1 output) was found to be optimum for prediction of PPV.   

  

Verma and Singh (2011) applied genetic algorithm (GA) optimisation technique to predict 

blast-induced ground vibration using dataset from Karusia mines. To ascertain the 

predictive capability of the GA model, a three-layer feed forward BPNN, empirical 

equations and a multivariate regression analysis model were also developed. To achieve that 

aim, a total of 127 blast data sets were used to develop the GA model and the other predictive 

models. Ten (10) additional data sets were used to independently test the performance of 

the various predictive models. The considered input parameters to the development of the 

models include: burden, spacing, hole depth, stemming, maximum charge per delay, total 

charge and distance from source. Using MAPE as the criteria for evaluating performance, 

the obtained prediction results revealed that the GA model was more effective and accurate 

at predicting blast-induced ground vibration than the conventional empirical equations and 

PBNN. That assertion was made because the GA model had the lowest MAPE of 0.088.  
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Shuran and Shujin (2011) developed a backpropagation neural network to predict blast-

induced ground vibration. In providing a better inspection of the reliability and accuracy of 

the BPNN model, a linear regression statistics (LRS) model was also developed. A total of 

134 dataset were used to develop (train) the BPNN and LRS models whereas 10 data sets 

were used independently to assess the performance of the developed models. Explosives 

weight per delay, largest horizontal distance and height were the input parameters that were 

considered in constructing the various predictive models. The obtained prediction results 

showed that the BPNN was more reliable and accurate at predicting blast-induced ground 

vibration as it had an average prediction error of 5.7%. The LRS model on the other hand, 

had an average prediction error of 20.7%.   

  

Álvarez-Vigil et al. (2012) applied ANN to predict blast-induced ground vibration. To 

inspect the accuracy and reliability of the ANN model, a multilinear regression model was 

also developed. In constructing the various models, input parameters of RMR, blast-control 

point relative arrangement, distance from blast to control point, blast hole diameter, blast 

hole length, spacing between blast holes, burden, instantaneous charge, total charge, number 

of blast holes, explosive detonation velocity were considered. The prediction results 

obtained showed that the ANN model had a lower mean relative error of 0.65 and higher 

correlation coefficient of 0.98 whereas, the MLR model had a mean relative error of 2.77 

and a correlation coefficient of 0.50. Thus, the ANN model was more accurate at predicting 

blast-induced ground vibration than the MLR model.  

  

Mohamad et al. (2012) applied ANN to predict blast-induced ground vibration. In checking 

the reliability and accuracy of the ANN model, empirical models of USBM, Ambrasey-

Hendron and Ground Empirical (General predictor) were also developed. The obtained 

prediction results showed that the ANN model was superior in predicting blast-induced 

ground vibration to the empirical equation models.   

  

Mohamadnejad et al. (2012) applied support vector machines (SVM) to predict blast-

induced ground vibration using blast data from two limestone quarries. The maximum 

charge per delay and the distance between the blast face and monitoring point were the input 

parameters used in the study with PPV being the output parameter. To ascertain the 

performance of SVM, empirical models of Thoenen and Windes, Langefors and Kilhstrom, 

Ambraseys and Hendron, Indian standard Institute, Roy and Rai et al were also developed. 
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Twenty-six (26) blast data was used in the development and testing of the various methods 

applied in the study. Based on the performance criterion of R2, it was found out that, the 

developed SVM model outperformed the empirical models by having a R2 value of 0.944.  

  

Mohammadnejad et al. (2012) applied general regression neural network (GRNN) and 

support vector machine (SVM) to predict blast-induced ground vibration at Masjed 

Soleiman dam, Iran. Empirical models of USBM, Langerfors-Kihlstrom, Ambrasey-

Hendron, Indian standard and Central Mining Research Institute (CMRI) models were also 

developed to provide a better inspection of the suitability and accuracy of the GRNN and 

SVM models at predicting blast-induced ground vibration. A random selection of 25 dataset 

were used to construct and train the various models whereas 12 data sets were also randomly 

selected to test the developed models. Input parameters of maximum charge per delay and 

distance were considered as input parameters and PPV was the output parameter. The 

obtained prediction results revealed that the SVM model was more accurate in predicting 

the blast-induced ground vibration than the GRNN model and empirical models in 

decreasing order of performance.   

  

Ghasemi et al. (2013) developed and applied a fuzzy logic (FL) model to predict blast-

induced ground vibration in Sarcheshmeh copper mine, Iran. To provide a better assessment 

of the accuracy of the FL model, empirical models of USBM, Langefors–Kihlstrom, 

General predictor, Ambraseys–Hendron, Indian Standard, Ghosh–Daemen 1, Ghosh– 

Daemen 2, Gupta et al., CMRI predictor, Rai–Singh as well as a multivariate regression 

(MVR) model were developed. To do that, a total of 120 blasting events were collected, 

from which 90 data sets representing 90% of the entire data sets and the remaining 30 data 

sets were used for developing the various models and testing the developed models 

respectively. In constructing the FL and MVR models, authors considered burden, spacing, 

stemming, number of holes per delay, maximum charge per delay, distance from blast 

location to monitoring point as input parameters whereas PPV was the output parameter. 

For the empirical models, input parameters of maximum charge per delay and distance from 

blast location to monitoring point were considered. Using R2, VAF (%), RMSE and MAPE 

as the statistical measures of model performance, the results obtained based on the testing 

dataset showed that the FL model was superior and most accurate at predicting blast-induced 

ground vibration among the list of models. The reason being that the FL model had the 
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highest R2 and VAF values of 94.59% and 94.59% respectively and lowest RMSE and 

MAPE values of 2.73 and 23.25 respectively.  

 

Ataei and Kamali (2013) applied adaptive neuro-fuzzy inference system (ANFIS) to predict 

blast-induced ground vibration in Karoun 3 power plant and dam, Iran.  To assess the 

reliability and accuracy of the ANFIS model, an empirical model of USBM was also 

developed. A total of 29 data sets were collected, from which 23 data sets representing 80% 

of the entire data sets were used to develop (train) the ANFIS and USBM models, whereas 

the remaining 6 data sets were used to test the developed models. In constructing the various 

models, maximum charge per delay and distance from blast site were used as the input 

parameters whereas PPV was the output parameter. The obtained results based on the testing 

dataset showed that the ANFIS model had better correlation between predicted and 

measured PPV than the USBM model and thus, the ANFIS model was superior at predicting 

blast-induced ground vibration than the USBM.  

  

Monjezi et al. (2013) applied artificial neutral network (ANN) to predict blast-induced 

ground vibration. To ascertain the predictive strength of the ANN model, empirical models 

of USBM, Ambraseys-Hendron, General predictor, Indian Standard and CMRI were also 

developed. For that reason, a total of 20 blast vibration record were monitored from which 

16 data sets were used for developing (training) the ANN model while the remaining 4 data 

sets were used for validating and comparing the ANN model and the results of the empirical 

models. In constructing the ANN model, input parameters of total charge, maximum charge 

per delay and distance between shot point and monitoring station were used with PPV 

serving as the output parameter. Using coefficient of determination, MAPE, VARE, 

MEDAE, VAF and RMSE as the statistical performance indices, the obtained prediction 

results showed the superiority of ANN model in predicting blast-induced ground vibration 

to the empirical models.   

  

Kostić et al. (2013) applied artificial neural network (ANN) to predict blast-induced ground 

vibration at the limestone quarry “Suva Vrelá” near Kosjerić, which is located in the western 

part of Serbia. To ascertain the predictive performance of the ANN model, empirical models 

of USBM, Langefors-Kihlstrom, General predictor, Ambraseys-Hendron and CMRI were 

also developed. A total of 33 blast data sets were collected, from which 22 data sets 

representing 65% of the total blast data sets were used for developing and training the 
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various predictive models whereas the remaining 11 data sets were used for testing and 

validating the developed models. In constructing the ANN models, authors used total 

charge, maximum charge per delay, distance from blasting source, average hole depth as 

input parameters with PPV serving as the output parameter. The prediction results obtained 

based on the testing data revealed that the ANN model was more accurate at predicting 

blast-induced ground vibration than the empirical predictor equations.  

  

Görgülü et al. (2013) applied ANN to predict blast-induced ground vibration at Tülü boron 

open pit mine. For comparison purposes, five empirical models based on different 

propagation direction were developed. In the development of the ANN model, distance, 

maximum charge per delay, number of holes, hole depth, stemming, spacing, burden, RMR, 

resistivity, and the P- and S-wave velocities were used as input parameters. Comparing the 

obtained prediction results using R2 showed that, the ANN was more accurate at predicting 

PPV than the five empirical models. This assertion was made because, the ANN had R2 

value of 0.94 whereas the five empirical equation models had R2 values between 0.43 and  

0.86.  

  

Saadat et al. (2014) applied artificial neural network to predict blast-induced ground 

vibration of the Gol-E-Gohar iron mine in Iran. The input parameters that were considered 

include: the maximum charge per delay, distance from blasting face to monitoring point, 

stemming height and hole depth. The output parameter was PPV. Sixty nine (69) data sets 

were used to train and test the ANN model developed. The performance indices selected to 

ascertain the performance of the developed model were R2 and MSE. From their work, a 

network with architecture 4-11-5-1 with R2 of 0.957 and MSE of 0.000722 was found to be 

optimum. This means that two hidden layers with neurons of 11 and 5 were used. A USBM 

model, Langerfors-Kihlstrom model, bureau of Indian standard model and a multiple linear 

regression model were developed to predict PPV using the same 69 data sets. They found 

out that the ANN gave the highest R2 and lowest RMSE of 0.957 and 8.796 respectively.  

  

Xue and Yang (2014) applied general regression neural network to predict blast-induced 

ground vibration. To provide an inspection of the accuracy and reliability of the GRNN 

model, an ANN model as well as a multivariate regression analysis model were also 

developed. In that regard, a total of 20 data sets were used for model development (15 data 

sets) and testing (5 data sets). In constructing the models, hole diameter, average hole depth, 
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average burden, average spacing, average charge length, average explosive per hole, 

distance of monitoring point from blasting face, blastability index, Young’s modulus, 

Poisson’s ratio, P-wave velocity, velocity of detonation of explosive and density of 

explosive. The obtained results based on the testing data set showed that, the GRNN was 

superior at predicting blast-induced ground vibration to the ANN and the MVRA models.  

  

Armaghani et al. (2014) developed and applied a PSO-based ANN for the prediction of 

blast-induced ground vibration as well as blast-induced flyrock at three granite quarry sites 

in Malaysia. Empirical models of USBM, General predictor, Indian Standard, Ghosh 

Daemen and CMRI for ground vibration prediction and Lundborg predictor for flyrock 

prediction were also developed for comparison. In that regard, 44 data sets were collected 

with hole diameter, hole depth, charge per delay. spacing, burden, stemming, powder factor, 

rock density, sub-drilling and number of rows serving as the input parameters and flyrock 

distance and PPV as the output parameters. 20% of the data sets (9 data sets) were used as 

the testing data sets. The prediction results based on the testing dataset showed that the 

proposed PSO-based ANN model was highly able to predict flyrock distance and blast-

induced ground vibration as it produced predicted values very close to the measured values 

that the empirical models applied in their study.  

  

Vasović et al. (2014) developed and applied a three-layer feed forward backpropagation 

neural network to predict blast-induced ground vibration. For comparison purposes, 

conventional empirical predictors of USBM, Langefors–Kihlstrom, general predictor, 

Ambraseys– Hendron, and CMRI were also developed. In constructing the ANN model, 

input parameters of total charge, maximum charge per delay and distance from the explosive 

charge to monitoring station were considered. Also, 16 data sets representing 50% of the 

whole data set were used to training the ANN model, 25% (8 data sets) for validation and 

25% (8 data sets) for testing. The developed ANN model had the structure [3-6-1], 

indicating three input, six neurons in the hidden layer and one output. Using the R as the 

statistical indicator of performance measure, the obtained results on testing data sets with R 

value of 0.89978 for the ANN model whereas the empirical predictors had R values in the 

range 0.87–0.88 with the exception of Ambraseys– Hendron (0.69).  

  

Lapčević et al. (2014) applied artificial neural network to predict blast-induced ground 

vibration. To check the performance of the ANN model, five empirical predictor models of 
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USBM, Langefors-Kihlstrom, General predictor, Ambraseys-Hendron and CMRI were 

developed. A total of 42 data sets were collected, 21 of which was used to train the ANN 

model, 7 for validation and 13 for testing the developed ANN model. In developing the 

ANN model, input parameters of total charge, maximum charge per delay, distance from 

blasting shot, charge per hole, delay time were considered with PPV values serving as the 

output parameter. Using MAPE, variance absolute relative error (VARE), median absolute 

error (MEDAE) and VAF, authors found out that ANN model outperformed the empirical 

model by having the lowest MAPE, VARE and MEDAE values of 16.38, 16.07, 110.885 

respectively and the highest VAF value of 91.17%.  

  

Parida and Mishra (2015) developed and applied ANN for the prediction of blast-induced 

ground vibration using blasting data from iron an ore mine in Indian. Multiple linear 

regression (MLR) and empirical models of USBM, Ambraseys-Hendron, Langefors-

Kihlstrom, Indian Standard and CMRI were also developed in their study to ascertain the 

predictive strength of the ANN model. A total of 9 blasting data sets were used to develop 

and test the developed models. The input parameters that were considered include: the 

maximum charge per delay and distance from blasting face to monitoring point with 

measured PPV being the output parameter. Using R2 and RMSE as the performance indices, 

their work revealed that a network with architecture 2-5-1 with R2 of 0.898 and RMSE of 

0.908 was found to be outperform the MLR and the empirical models.   

  

Armaghani et al. (2015a) applied ANFIS and ANN to predict blast-induced ground 

vibration in ISB granite quarry, Johor, Malaysia. To ascertain the suitability of these AI 

techniques, conventional empirical equation of USBM, Langefors–Kihlstrom, General 

predictor, Indian Standard, Ghosh–Daemen predictor and CMRI were also developed. To 

achieve that aim, a total of 109 blast data sets were collected. Maximum charge per delay 

and distance between monitoring point and blast-face were considered as inputs to the 

various models whereas, PPV served as the output parameter. Out of the 109 data sets, 87 

data sets representing 80% were used to adequately develop the various predictive models. 

The remaining 22 data sets were used to test the performance of the developed models. 

Using R2, RMSE and VAF as model performance indices, the prediction results showed that 

the ANFIS model had superior predictive capability to the ANN model which in turn was 

more accurate than the empirical models. This is because the ANFIS and ANN model had 

the high R2 values of 0.973 and 0.949 respectively, VAF values of 97.345 and 94.895 
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respectively and low RMSE values 0.987 and 1.372 respectively in comparison to the 

empirical models.   

  

Hasanipanah et al. (2015) developed and applied support vector machines (SVM) to predict 

blast-induced ground vibration using blasting data from Bakhtiari Dam, Iran. To investigate 

the applicability of the SVM model for blast-induced ground vibration, empirical models of 

USBM, Ambraseys-Hendron, Davies et al. and Indian Standard were also developed and 

utilised. In that regard, a total of 80 blasting dataset were collected from the study area. 

Authors also considered the maximum charge per delay and distance from blasting face to 

monitoring point as the input parameters and PPV as output parameter to the various 

predictive models. In the analysis procedure of their study, the authors used 60 data sets for 

the development of the various models whereas the remaining 20 data sets were used to test 

the developed models. They applied performance indices of VAF, VARE, RMSE, median 

absolute error (MEDAE), MAPE, Nash and Sutcliffe (NS) and R2. The obtained results 

based on the performance indices showed that the SVM model provided the highest 

performance capacity in predicting PPV in comparison with the applied empirical equations.  

  

In Hajihassani et al. (2015), a hybrid model of an ANN and a PSO was developed and 

applied to predict ground vibration induced by blasting at Hulu Langat granite quarry site, 

Malaysia. To check the performance of the PSO-based ANN, several conventional empirical 

equations were also developed. Eighty-eight (88) data sets collected from the mine site were 

used to develop the various models. Hole depth, maximum charge per delay, burden to 

spacing ratio, stemming length, sub-drilling, powder factor, RQD, distance between the free 

face and the monitoring point, and number of holes were used as input parameters, while 

PPV values were set as output parameters. The prediction results showed that the PSO-based 

ANN model was more accurate at predicting than the empirical approaches.  

  

Görgülü et al. (2015) conducted a study to investigate the effects of blasting design 

parameters and rock properties on blast-induced ground vibration and to develop estimation 

models with higher reliability for the evaluation of these vibrations. In that regard ANN and 

multiple regression analysis (MRA) models were developed. In developing these models, 

the authors used distance from blasting point, maximum charge per delay, number of drill 

holes, hole depth, burden, spacing, stemming, resistivity, P-wave and S wave velocities as 

input parameters whereas measured PPV values were used as the output parameter. The 
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obtained prediction results showed that the ANN model had a R2 value of 0.976 and thus 

had a higher reliability and prediction capability than the MRA model which had a poor R2 

value of 0.45.  

 

Ghoraba et al. (2016) applied empirical, ANN and ANFIS to predict blast-induced ground 

vibration in Gol-E-Gohar Iron mine, Iran. To achieve their aim, a total of 115 blasting 

dataset were monitored and collected from the mine, 80% (92 data sets) of which were used 

to develop the various predictive models whereas the remaining 20% (23 data sets) were 

independently used to assess the performance of the developed models. The various 

predictive models had distance from the blast-face and maximum charge per delay as their 

input parameters with peak particle velocity (PPV) as their output parameter. The authors 

then adopted RMSE, VAF and R2 to evaluate the accuracy of the various developed models. 

The obtained results on the testing data sets showed that, the ANFIS model was superior in 

predicting blast-induced ground vibration than the ANN and the empirical model. This was 

because, the ANFIS model had the highest R2 value of 0.952 while the R2 values of 0.888 

and 0.749 were obtained by the ANN and empirical models respectively.   

  

Tiile (2016) developed a three-layer feed forward back propagation neural network (BPNN) 

model to predict blast-induced ground vibration in a gold mine in Ghana. To check the 

accuracy of the BPNN model, empirical models of USBM, Ambraseys–Hendron, 

Langefors–Kihlstrom and Indian Standard as well as a multivariate regression analysis 

(MVRA) model, were developed. The author used a total of 180 data sets, from which 126 

representing 70% of the entire blasting data sets were used to develop (train) the various 

models. Twenty-seven (27) representing 15% of the entire blasting data sets were used as 

the validation data sets while the remaining 27 data sets were used to test the developed 

models. In constructing the BPNN model, maximum charge per delay, distance from blast 

to monitoring point, hole depth, stemming length, hole diameter, powder factor and spacing 

to burden ratio were the considered input parameters whereas PPV was the output 

parameter. The obtained predicted PPV on testing data sets in comparison with the measured 

showed the greater capability of the ANN model at predicting blast-induced ground 

vibration than the empirical models.   
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Monjezi et al. (2016) applied the gene expression programming (GEP) to predict blast-

induced ground vibration using blasting data sets from Chadormalu iron mine, Iran. To 

check the predictive capability of the GEP model, a modified USBM, USBM, Ambraseys- 

Hendron, Langefors-Kihlstrom and Indian Standard as well as Linear and non‑linear 

multiple regression models were developed. The authors used 35 blasting data sets for the 

training and testing of the developed models. Using model performance evaluation criteria 

of R2, RMSE and VAF, it was found out that the GEP model had the highest predictive 

capability relative to the other predictive models. This is because it had the highest R2 and 

VAF values of 0.918 and 90.879% respectively and the lowest RMSE value of 2.321.   

  

In Amiri et al. (2016), a novel combination of artificial neural network (ANN) and K-nearest 

neighbors (KNN) models was developed and applied to predict blast-induced ground 

vibration using 81 data sets from the Shur river dam, Iran. To check the performance of the 

ANN-KNN model, a pre-developed ANN as well as the empirical equation USBM, was 

developed to predict blast-induced ground vibration. In constructing the predictive models 

applied in their study, maximum charge per delay (MC) and distance between blast face and 

monitoring station (D) were used as input parameters, peak particle velocity (PPV), serving 

as the output parameter. Sixty-one (61) data sets out of the 75 were used as training data 

sets to develop and train the various predictive models whereas the remaining 20 data sets 

were used to test the performance of the developed models. Using R2, RMSE and VAF as 

the statistical performance measures of the various predictive models, the prediction results 

revealed that, the ANN-KNN had the highest R2 and VAF values and lowest RMSE values 

in blast-induced ground vibration prediction. The ANN-KNN model was then followed by 

the pre-developed ANN and then the USBM models in that order.   

  

Faradonbeh et al. (2016) developed and applied gene expression programming (GEP) model 

to predict blast-induced ground vibration using blast data from a quarry in Malaysia. To 

check the performance of the GEP model, a nonlinear multiple regression (NLMR) model 

was also developed. In that regard a total of 102 blast dataset were collected from the quarry 

site. Burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per 

delay and the distance from the blast face were considered as input parameters in the 

construction of the GEP model. The authors used 20 data sets representing 20% of the total 

data sets for testing and validation purposes whereas the remaining 80% (82 data sets) was 

used to GEP and NLMR models. Considering testing data sets, values of 0.874, 87.107,  
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0.851 and 0.963 were obtained for R2, VAF, MAE, and RMSE, respectively, by the GEP 

model, whereas values of 0.790, 69.261, 1.221 and 1.498 were obtained for R2, VAF, MAE, 

and RMSE, respectively, by the NLMR technique. This obtained results indicate higher 

degree of prediction accuracy by the GEP model.  

  

In Hasanipanah et al. (2017c), a classification and regression tree (CART) model was 

developed to predict blast induced ground vibration at Miduk copper mine, Iran. They also 

developed a multiple regression model and empirical models of USBM, Davies et al. (1964), 

Ghosh and Daemen (1983) and Gupta et al. (1987) to serve as comparators to the CART 

model. A total of 86 blasting events were used in the development and testing of the various 

models with distance between blast-face and monitoring station (m) and maximum charge 

used per delay (kg) being the input parameters. Sixty-nine (69) data sets, representing 80% 

of whole data sets were selected randomly to train the model and the remaining 17 data sets 

were used to evaluate the performance of the developed models. Using R2, NS, RMSE as 

the statistical performance measure, it was found out that the CART technique with a R2 of 

0.95, NS of 0.17 and RMSE of 0.17 outperformed the empirical and multiple regression 

models and hence was superior in predicting blast-induced ground vibration to the empirical 

and multiple regression models.   

  

Shahnazar et al. (2017) proposed a hybrid model of adaptive neuro-fuzzy inference system 

(ANFIS) optimised by particle swarm optimization (PSO) to predict blast-induced ground 

vibration in Pengerang granite quarry, Malaysia. To check the performance of the 

PSOANFIS model, ANFIS and USBM models were also developed. To achieve their aim, 

a total of 81 data sets were monitored and collected. Sixty-five (65) of which were used to 

construct the various predictive models. The remaining 16 data sets were used to test the 

performance of the developed models. Maximum charge per delay (kg) and distance 

between monitoring station and blasting-point were the input parameters considered for the 

development of the aforementioned models. Using VAF, mean absolute bias error (MABE) 

and median absolute error (MEDAE) as model performance indices, the prediction results 

showed that the PSO-ANFIS model had superior predictive capability in comparison to 

ANFIS and empirical models. This is because the PSO-ANFIS model had the highest VAF 

values of 98.35% and the lowest MABE and MEDAE of 0.78 and 0.58 respectively.  
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Taheri et al. (2017) proposed a combination of artificial bee colony (ABC) and artificial 

neural network (ANN) for the prediction of blast-induced ground vibration at Miduk copper 

mine, Iran. They also developed ANN and empirical models of USBM, Ambrasey-Hendron, 

Davies et al. (1964) and Indian Standard, to evaluate the accuracy of the proposed ABC-

ANN model. Maximum charge per delay (kg) and distance between monitoring station and 

blasting-point were the input parameters considered for the development of the 

aforementioned models. A total of 89 data events were used in the development (training) 

and testing the various models under consideration. Training was done using 71 of the 89 

data sets whereas the remaining 18 data sets were used to independently test the developed 

models. Based on the statistical assessment of the prediction results using RMSE, MAPE 

and R2, it was found out that the ABC-ANN model had the lowest RMSE and MAPE of  

0.22 and 4.36 respectively and the highest R2 value of 0.92. It was concluded that the 

ABCANN model is comparatively better at prediction of PPV than ANN and empirical 

models.  

  

Fouladgar et al. (2017) proposed a novel swarm intelligence algorithm based on cuckoo 

search (NSICS) to create a precise equation for predicting the blast-induced ground 

vibration in Miduk copper mine, Iran. To check the accuracy of the NSICS model, empirical 

models of USBM, Ambraseys–Hendron, Langefors–Kihlstrom, Davies et al., Roy, Gupta, 

and Rai-Singh were also developed. To develop the various predictive models, 85 blasting 

data sets were considered with maximum charge used per delay and distance between blast 

face and monitoring station being the input parameters. Using the R2 and RMSE as the 

performance indices for the various predictive models, the obtained results showed that the 

NSICS had the highest R2 value and lowest RMSE value followed by Rai-Singh, then Gupta, 

Roy, Davies et al., Langefors–Kihlstrom, Ambraseys–Hendron, USBM in that order.   

  

Chandar et al. (2017) applied ANN to predict blast-induced ground vibration in three 

different mines. For comparison purposes, a USBM based predictor, multilinear regression 

(MLR), nonlinear regression (NLR) models were developed for each mine. In that regard, 

a total of 168 data sets were collected from the three mines. In the development of the 

various models, maximum charge per delay, distance and scaled distance were used as input 

parameters whereas PPV was used as the output parameter. Using R2 as the statistical 

performance index, the obtained results showed that, in relation to the data from three mines, 

the ANN model was able to accurately predict blast-induced ground vibration better than 
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the predictor equation, multilinear regression (MLR), nonlinear regression (NLR) models 

as it had the highest R2 values.  

  

Xue et al. (2017) developed and applied ANFIS to predict blast-induced ground vibration. 

A total of 25 data sets were selected. The first 20 of which were used to train the ANFIS 

model whereas the remaining five (5) were used to test the developed ANFIS model. Hole 

depth, burden, spacing, stemming, maximum charge per delay, total charge and distance, 

were considered as the input parameters to the ANFIS model, whereas the PPV was used as 

the output parameter. Prediction results based on the testing dataset showed that the ANFIS 

model was 100% accurate at predicting the PPV. Indicating that, the ANFIS model is a good 

tool to predict blast-induced ground vibration.  

  

Hasanipanah et al. (2017d) developed and applied an AI model based on particle swarm 

optimization (PSO) approach to predict blast-ground vibration in Shur River dam region, 

Iran. In constructing the PSO model, two forms of PSO models which are PSO-linear and 

PSO-power were developed. A total of 80 data sets were collected for the model 

development and testing. In developing the PSO models, maximum charge weight per delay 

and distance between blast-point and monitoring station were used as the input parameters 

and peak particle velocity (PPV) as the output parameter. To ascertain the predictive 

strength of the PSO models, multiple linear regression model (MLR) and USBM equation 

were also developed. Using R2, RMSE, VARE and NS as the statistical measures of 

accuracy, the obtained prediction results revealed that the PSO power model was more 

accurate at predicting blast-induced ground vibration than the PSO linear, MLR and USBM 

models in that order. The reason being, the PSO linear had the highest R2 and NS values of 

0.934 and 0.94 respectively and lowest RMSE and VARE values of 0.24 and 0.13 

respectively.  

  

In Faradonbeh and Monjezi (2017), an optimised gene expression programming (GEP) 

model using cuckoo optimisation algorithm (COA) was developed to predict blast induced 

ground vibration with blast data from Gol-E-Gohar iron mine, Iran. In the first step of their 

work, a gene programming model was developed. Capacity of the GEP model was checked 

by developing non-linear multiple regression (NLMR) model and five conventional 

equations. To achieve that aim, a total of 115 blast data were used for the development and 

testing of the various predictive models, with burden, spacing, stemming, hole-depth, hole 
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diameter, powder factor, maximum charge per delay and distance from the blast face serving 

as the input parameters to the models while measured PPV was the output parameter. In 

analysing the performance of the developed models, authors applied the R2, RMSE, and 

MAE. The obtained results showed that, the superiority of the GEP in estimating blast-

induced ground vibration, as it had the highest R2 value of 0.874 and lowest RMSE and 

MAE values of 6.732 and 5.164 respectively. In the second step of their work, eight different 

strategies based on COA were proposed to optimize blasting patterns. This was aimed at 

optimising the GEP model in estimating blast-induced ground vibration. Their final results 

revealed that, introduction of the COA model greatly reduced the PPV values.  

  

Jiang et al. (2018) developed and applied ANFIS to predict blast-induced ground vibration 

in Shur River Dam area, Iran. In ascertaining the performance of the ANFIS model, a linear 

regression model was also developed. For their work, a total of 90 blast data sets were 

collected from the site for the development and testing of the predictive models with 

maximum charge weight per delay and distance between blast-point and monitoring station 

serving as the input parameters. Comparison of the prediction results using the R2, RMSE 

and VAF, revealed the higher prediction accuracy by ANFIS model than the linear 

regression model. The reason being the ANFIS model had R2, RMSE and VAF values of 

0.983, 0.241 and 98.3 respectively whereas the linear regression model had R2, RMSE and 

VAF values of 0.876, 0.0.577 and 87.6 respectively.  

  

In Hasanipanah et al. (2018), a new hybrid model of fuzzy system (FS) designed by 

imperialistic competitive algorithm (ICA) is proposed and applied for the prediction of 

blast-induced ground vibration resulting from blasting at Miduk copper mine, Iran. To check 

the predictive capability of the novel FS-ICA model, empirical models of USBM, 

Ambraseys-Hendron, Langefors-Kihlstrom and Indian Standards were also developed. To 

achieve their aim, a total of 50 data sets were monitored and collected. Forty (40) of which 

was used to construct FS-ICA and empirical models. The remaining 10 data sets were used 

to independently ascertain the performance of the various predictive models. Maximum 

charge per delay (kg) and distance between monitoring station and blasting-point were the 

input parameters considered for the development of the aforementioned models. Using R2, 

RMSE and VAF as model performance indices, the prediction results showed that the 

FSICA model had superior predictive capability in comparison to the empirical models. 
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This is because the FS-ICA model had the highest R2 and VAF values of 0.94 and 94.2% 

respectively and the lowest RMSE of 0.22.  

  

Armaghani, et al. (2018), investigated the potential of imperialist competitive algorithm 

(ICA) in predicting blast-induced ground vibration at three quarry sites, namely Ulu Tiram, 

Pengerang and Masai in Malaysia. In constructing the ICA model, two forms of ICA model 

which are ICA -power and ICA-quadratic were developed. To ascertain the predictive 

capability of the ICA models, empirical equations models of USBM, Langefors-Kihlstrom, 

Roy and Rai-Singh were also developed. To achieve that aim, a total of 73 data sets were 

used. In developing the various predictive models, maximum charge weight used per delay 

(W) and the distance between blasting sites and monitoring stations (D) were used as input 

parameters whereas measured PPV values were set as output parameters. Using R2 and 

RMSE as the statistical performance measures of the accuracy of the ICA and empirical 

models, the obtained results indicated that the ICA-quadratic model with R2 of 0.94 and 

RMSE of 0.37 was more accurate at predicting blast-induced ground vibration than the 

ICApower and empirical models.  

  

Sheykhi et al. (2018) proposed a novel hybrid model of support vector regression (SVR) 

and fuzzy C-means clustering (FCM) for the estimation of blast-induced ground vibration. 

To check the performance of the SVR-FCM model, comparator models of SVR (without 

data clustering) and USBM (with and without data clustering) were also developed. In that 

regard, a total of 120 data sets were collected from Sarcheshmeh copper mine, Iran. A 

traintest technique was adopted to develop and check the performance of the developed 

models. To that aim, 102 data sets representing 85% of the entire data sets were used to 

develop the models. The remaining 18 data sets served as an independent assessor of the 

developed models. The input parameters considered in the model development were 

maximum charge per delay and distance from blast location to monitoring point, even 

though 6 input parameters were collected. Using RMSE, VAF, and R2 as the statistical 

indicators of model performance, the obtained results showed that, the FCM-SVR 

outperformed the SVR, FCMUSBM and USBM in that order. The reason being that, it had 

the highest R2 and VAF (%) of 0.853 and 85.25 respectively and lowest RMSE of 1.80.   

  

Ragam and Nimaje (2018) developed a three-layer feed-forward back-propagation 

multilayer perception neural network to predict blast-induced ground vibration in an Iron 



53 

 

ore mine in India. To provide an inspection of the efficiency and accuracy of the developed 

ANN model, seven conventional predictor models of USBM, Ambraseys–Hendron, 

Langefors–Kihlstrom, general predictor, Ghosh–Daemen predictor, cardiac magnetic 

resonance imaging (CMRI) predictor, Bureau of Indian Standards, as well as multiple linear 

regression (MLR) model were also developed to predict blast-induced ground vibration. A 

total of 25 blasting data sets were collected, from which 20 data sets were used to develop 

(train) the various models. The remaining 5 data sets were used to test the performance of 

the developed models. In constructing the ANN and MLR models, the authors considered 

distance from blast face, maximum charge per delay, spacing, burden, hole depth and the 

number of holes as the input parameters with PPV as output. Using R2 and RMSE as the 

statistical measure of model’s performance, the obtained results based on the testing data 

sets revealed that the developed ANN model with structure 6-10-1 (6 inputs, 10 neurons in 

hidden layer and 1 output) can predict the PPV more efficiently and accurately than the 

empirical predictors and MLR model. The reason being, the ANN had the highest R2 value 

of 0.9971 and lowest RMSE value of 0.08133.  

  

Iramina et al. (2018) applied ANN to predict blast-induced ground vibration at a Brazilian 

mining site. For comparison purposes, empirical attenuation (AE) equation based on USBM 

approach was also developed. Also, empirical equations as based on the Geological Strength 

Index (GSI) and Rock Quality Designation (RQD) were applied to predict blast-induced 

ground vibration. In the development of the ANN model, three input parameters: maximum 

charge per delay, distance and total charge of explosives were considered. Using RMSE as 

the statistical performance indicator, the obtained results showed that, the ANN had the 

lowest RMSE of 3.25. This was followed by the AE equation with a RMSE of 3.63, then 

the GSI approach (4.36) and RQD approach (7.81). These obtained valued indicated that 

the ANN was best at predicting blast-induced ground vibration than the other predictive 

methods applied in their study.  

  

In Zhongya and Xiaoguang (2018), novel ANN methods optimised by dimensionality 

reduction of Factor Analysis and Mean Impact Value (FA-MIV) were proposed to predict 

blast-induced ground vibration. In their study, predictive models of BPNN (with and 

without FA-MIV), Extreme learning machine (ELM) (with and without FA-MIV) and 

multivariate regression analysis (MVRA) (with and without FA-MIV), were developed and 

applied. To achieve their aim, a total of 108 data sets were collected, 98 of which were used 
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to develop the various models and the remaining 10 data sets were used to test the developed 

models. To construct the various models, the authors considered maximum amount of 

charge at one time, total amount of charge, horizontal distance, elevation difference, front 

row resist line, presplit penetration ratio, integrity coefficient, angle of minimum resistance 

line to measured point and detonation velocity. Also using the FA-MIV approach, the 

dimensions of the input parameters were reduced to 6 factors of which 4 factors were used 

as new inputs to the models with FA-MIV. Using R2 and mean absolute error (MAE) as the 

statistical performance indicators for the various predictive models, the obtained results 

showed that the ELM with using FA-MIV had the highest R2 and MAE values of 0.9603 

and 0.2161 respectively. That was followed by the ELM without using FA-MIV, then BPNN 

with FA-MIV, BPNN without using FA-MIV, MVRA with FA-MIV and MVRA without 

using FA-MIV. This indicated that per their study, ELM with FA-MIV was most accurate 

at predicting blast-induced ground vibration than the other predictive models.  

  

Mokfi et al. (2018) applied group method of data handling (GMDH) as a novel approach to 

predict blast-induced ground vibration from a quarry in Penang, Malaysia. For comparison 

purpose, gene expression programming (GEP) and non-linear multiple regression (NLMR) 

models were also developed for blast-induced ground vibration prediction. A total of 102 

blasting events were monitored and collected from the quarry. Eighty-two (82) representing 

80% of the whole data sets were used to train the GMDH model whereas the remaining 20% 

(20 data sets) were used to test the trained model. In constructing the GMDH model, authors 

selected stemming length, powder factor, burden to spacing ratio, distance from the blast 

face, blast-hole depth and maximum charge per delay as the input parameters, with PPV 

values as the output parameter. Using R2, RMSE, MAE and VAF as statistical evaluator of 

model performance, the obtained results on testing dataset indicated that the GMDH model 

had superior predictive capability in comparison to the GEP and NLMR models. This is 

because the values of R2, RMSE, MAE and VAF by GMDH model were 0.911, 0.889, 0.68 

and 90.52 respectively. From the GEP model, the values of R2, RMSE, MAE and VAF were 

0.874, 0.963 and 0.851, 87.107 respectively. Finally, from the NLMR model, the values of 

R2, RMSE, MAE and VAF were 0.790, 1.498 and 1.221, 69.261 respectively.  

  

Shahri and Asheghi, (2018) developed and applied two different ANN-based models 

(multilayer perceptron (MLP) and generalized feed forward neural network (GFNN)) to 

predict blast-induced ground vibration at Masjed Soleyman Earth Dam, Iran. To check the 
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performance of the MLP and GFNN models, empirical models of Ambrasey-Hendron, 

Nicholas et al., Roy, Langefors-Kihlstrom, Davies et al. and Indian Standard were also 

developed. For that aim, a total of 37 data sets were used to develop the various models. 

Randomly selected data sets were used to independently test the performance of the 

developed models. In constructing MLP and GFNN models, maximum charge per delay, 

distance and total charge were used as input parameters whereas PPV was used as the output 

parameter. Using MAPE, VAF, RMSE, mean squared deviation (MSD), mean absolute 

deviation (MAD), R2, and absolute error (AE) as the statistical criteria for ascertaining the 

accuracy of the various developed models, the obtained results showed that the ANN-based 

models of MLP and GFNN were able to predict blast-induced ground vibration than the 

empirical models, with the GFNN being the most accurate.   

 

Table 3.3 shows a summary of AI techniques used for blast-induced ground vibration 

Prediction 

 

Table 3.3 Summary of some Research Works Conducted on Blast-Induced Ground 

Vibration Modelling and Prediction  

Researchers Techniques 

Singh, 2004; Singh and Singh, 2005; Khandelwal and 

Singh, 2006; Khandelwal and Singh, 2007; Mohamed, 

2009; Khandelwal and Singh, 2009; Amnieh et al., 2010; 

Kamali and Ataei, 2010; Monjezi et al., 2010b; Khandelwal 

et al., 2011; Verma and Singh, 2011; Monjezi et al., 2011; 

Dehghani and Ataee-pour, 2011; Shuran and Shujin, 2011; 

Álvarez-Vigil et al., 2012; Mohamad et al., 2012; Monjezi 

et al., 2013; Kostić et al., 2013; Görgülü et al., 2013; Saadat 

et al., 2014; Xue and Yang, 2014; Vasović et al., 2014; 

Lapčević et al., 2014; Parida and Mishra, 2015; Görgülü et 

al., 2015; Tiile, 2016; Chandar et al., 2017; Ragam and 

Nimaje, 2018; Iramina, et al., 2018; Shahri and Asheghi,  

2018; Mokfi et al., 2018 

ANN  

(BPNN, GRNN, RBFNN, 

GMDH) 

 

 



56 

 

Table 3.3 Continued 

Iphar et al., 2008; Mohammed, 2011; Fişne et al., 2011; 

Ghasemi et al., 2013; Ataei and Kamali, 2013; Armaghani 

et al., 2015a; Ghoraba et al., 2016; Xue et al., 2017; Jiang 

et al., 2018;   

FL, ANFIS 

Khandelwal, 2010; Khandelwal et al 2010; Khandelwal, 

2011; Mohamadnejad et al., 2012, Mohammadnejad et al.,  

2012; Hasanipanah et al., 2015; Sheykhi et al., 2018 

SVM, SVR 

Hasanipanah et al., 2017c Decision Tree: CART 

Monjezi et al., 2016; Faradonbeh et al., 2016; Faradonbeh 

and Monjezi, 2017; Fouladgar et al., 2017; Hasanipanah et 

al., 2017d; Armaghani, et al., 2018 

Optimisation: GEP, COA, 

ICA, PSO, CS 

Armaghani et al., 2014; Hajihassani et al., 2015; Amiri et 

al., 2016; Shahnazar et al., 2017; Taheri et al., 2017; 

Hasanipanah et al., 2018; Zhongya and Xiaoguang, 2018 

Hybrid Models: BPNN-FA-

MIV, ELM-FA-MIV, PSO-

ANN, FL-ICA, ANN-KNN, 

PSO-ANFIS, ABC-ANN 

NB: artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine 

(SVM), radial basis function neural network (RBFNN), generalised regression neural network (GRNN), fuzzy 

logic (FL), extreme learning machines (ELM), particle swarm optimisation (PSO), classification and 

regression tree (CART), group method of data handling (GMDH), support vector regression (SVR), genetic 

expression programming (GEP), imperialist competitive algorithm (ICA), cuckoo optimisation algorithm 

(COA), artificial bee colony (ABC), K-nearest neighbors (KNN), cuckoo search (CS). 

 

3.3.3 Review of Application of Artificial Intelligence in Air Overpressure Prediction 

 

Khandewal and Singh (2005) applied ANN to predict AOp using blasting data from three 

limestone mines, namely: Gujarat Ambuja Cement, Raipur, Dalla Limestone Mine, 

Mirzapur, and Magnesite Mine, Pithoragarh. For comparison purposes, a generalised 

predictor equation and multivariate regression analysis (MVRA) models were also 

developed. A total of 56 data sets were collected from the three mines, of which 41 data sets 

were used to construct the various models and the remaining 25 data sets were used to 

independently assess the performance of the dataset. In constructing the models, authors 

used maximum charge per delay and distance from blast face to monitoring point as the 

input parameters. Using R and MAPE as the statistical performance indicators for the 
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various predictive models, the obtained results indicated that the ANN model with R of 

0.9574 and MAPE of 2.7437 on testing data sets was most accurate at predicting AOp 

compared with generalised predictor equation and MVRA models.  

  

Sawmliana et al. (2007) applied ANN to predict blast induced air overpressure. The input 

parameters that were considered include: maximum charge weight per delay, distance of 

measurement, depth of burial of charge and total charge fired in a round of blast. A total of 

95 AOP data sets from these four mines were used in the ANN model. Out of these 95 data 

sets, 70 data sets, 25 data sets were used for training, validating the developed artificial 

network model respectively. The 70 data sets for training the ANN model were also used to 

develop a generalised predictor equation. 15 data sets were selected to test the developed 

ANN model and the generalised predictor equation. They found out that the air overpressure 

predicted by ANN was closer to the measured values than those predicted by the generalised 

equation with a percentage error of 2.05 for the ANN and 5.97 for the generalised equation.   

  

In Kandelwal and Kandar (2011), SVM was applied to predict air overpressure using blast 

events from three limestone mines in Iran. In their study, maximum charge per delay and 

distance from blast-face to monitoring station were the input parameters considered in the 

development of the SVM model. A total of 75 blast events were used for the training and 

validation of the SVM and a generalised predictor equation, which was used as a tool for 

comparison. The obtained results based on R2 and MAPE revealed the superiority of the 

SVM in predicting AOp as it had a higher R2 value of 0.855 and MAPE value of 2.10 

whereas the generalised predictor equation had an R2 value of 0.587 and MAPE value of  

4.15.  

  

Mohamed (2011) applied ANN and fuzzy logic (FL) to predict AOp in Assiut Cement 

Company. For comparison purposes, a traditional regression model was developed. In that 

regard, a total of 136 data sets were collected and used to develop (train) the predictor 

models. Twenty-six (26) new data sets were collected to independently test the developed 

models. In constructing the models, charge weight per delay and distance from blast-face to 

monitoring station were used by authors as input parameters. Authors used VAF and RMSE 

as statistical performance indicators for the various models. The obtained results based on 

the testing data sets revelated that, the FL and ANN models were more accurate at predicting 
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AOp than the traditional regression model. Also, the authors found out that, the fuzzy logic 

model performed slightly better than the ANN model. These assertions were made because, 

values of 99.95% and 2.71 were obtained for VAF and RMSE respectively by Fuzzy logic 

model. Values of 99.94% and 2.90 were obtained for VAF and RMSE respectively by ANN 

model whereas values of 99.83% and 4.92 were obtained for VAF and RMSE respectively 

by traditional regression model.  

  

In Hajihassani et al. (2014), a novel hybrid AI model of ANN and particle swarm 

optimisation (ANN-PSO) was developed to predict air overpressure using blast events from 

four granite quarry sites in Malaysia. For the development of this hybrid model, nine input 

parameters of hole depth, powder factor, maximum charge per delay, stemming length, 

burden, spacing, rock quality designation (RQD), number of holes and the distance between 

blast face and monitoring point with the measured AOp being the output parameter. A total 

of 62 blast events were used in the training and validation of the trained hybrid PSO-based 

ANN model. Several empirical formulas were also developed using the same data events to 

provide a comprehensive assessment of the performance of the hybrid PSO-based ANN 

model. Prediction results showed that the values of AOp predicted by PSO-based ANN 

model were much closer to the measured AOp relative to the empirical formulas. This 

indicates the superiority of the PSO-based ANN model in predicting AOp than the other 

predictive methods and hence, it was concluded that the PSO-based ANN model is an 

applicable tool to predict AOp with high degree of accuracy.  

  

In Hajihassani et al. (2015), a hybrid model of an ANN and a PSO algorithm was developed 

and applied to predict air overpressure induced by blasting at Hulu Langat granite quarry 

site, Malaysia. To check the performance of the PSO-based ANN, several conventional 

empirical equations were also developed. Eighty-eight (88) data sets collected from the mine 

site were used to develop the various models. Hole depth, maximum charge per delay, 

burden-to-spacing ratio, stemming length, sub-drilling, powder factor, RQD, distance 

between the free face and the monitoring point, and number of holes were used as input 

parameters, while AOp values were set as output parameter. The prediction results showed 

that the PSO-based ANN model was more accurate at predicting AOp that the empirical 

approaches.  
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Armaghani et al. (2015b) developed and applied adaptive neuro-fuzzy inference system 

(ANFIS) for the prediction of blast-induced air overpressure using blast data from three 

quarry sites in Malaysia. To check the performance of the ANFIS model, a pre-developed 

ANN and multiple regression models were also constructed for comparison. In that regard 

a total of 128 blasting events were monitored and collected from the sites for the 

development of the various predictive models, with maximum charge per delay, powder 

factor, burden to spacing ratio, stemming length, and distance between monitoring station 

and blast face serving as input parameters. Using R2, RMSE, VAF as the performance 

indices for all 128 data sets, the obtained results showed that the ANFIS model was superior 

at predicting AOp as it had the highest R2 and VAF values of 0.971 and 97.110 respectively 

and lowest RMSE value of 2.329 in comparison to the other predictive models.  

  

In Armaghani et al. (2015c), a novel model of artificial neural network (ANN) optimised 

by the imperialist competitive algorithm (ICA) was proposed and applied to predict AOp at 

Harapan Ramai granite quarry site, Malaysia. For comparison purposes, BPNN and 

generalised predictor equation (GPE) model were also developed. In that regard, 95 blasting 

data were collected from the site to develop and test the developed models. Input parameters 

of hole depth, burden, spacing, stemming, maximum charge per delay and distance from the 

blast-face were considered by the authors, in developing the various models. The obtained 

results showed that the hybrid ICA-ANN model was more accurate and reliable in predicting 

AOp than the BPNN and GPE models, as it had the highest R value of 0.984.  

  

Tiile (2016) developed a three-layer feed forward back propagation neural network (BPNN) 

model to predict AOp in a gold mine in Ghana. To check the accuracy of the BPNN model, 

empirical model of General predictor as well as a multivariate regression analysis (MVRA) 

model, were developed. The author used a total of 180 data sets, from which 126 

representing 70% of the entire blasting data sets were used to develop (train) the various 

models. Twenty-seven (27) representing 15% of the entire blasting data sets were used as 

the validation data sets while the remaining 27 data sets were used to test the developed 

models. In constructing the BPNN model, maximum charge per delay, distance from blast 

to monitoring point, hole depth, stemming length, hole diameter, powder factor and spacing 

to burden ratio were the considered input parameters whereas AOp was the output 

parameter. The obtained predicted AOp on testing data sets in comparison with the 
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measured showed the greater capability of the ANN model at predicting AOp than the 

empirical models.   

  

In Armaghani et al. (2016), three non-linear methods of ICA-ANN, ANN and empirical 

were applied to predict air overpressure in Shur river dam, Iran. A total of 70 data sets were 

monitored and collected to develop the various predictive models. Maximum charge per 

delay (kg) and distance between monitoring station and blasting-point were the input 

parameters considered for the development of the aforementioned models. Using R2, RMSE 

and VAF as model performance indices, the testing dataset prediction results indicated that 

the ICA-ANN model had superior predictive capability in comparison to the ANN and 

empirical models. This is because the ICA-ANN model had the highest R2 value of 0.961 

whereas R2 values of 0.886 and 0.882 were obtained for the ANN and empirical methods 

respectively.  

  

In Mohamad et al. (2016), three non-linear methods of empirical, ANN and a hybrid model 

of genetic algorithm (GA)–ANN were developed and applied to predict air overpressure in 

Hulu Langat granite quarry site, Malaysia. To achieve that aim, 76 blasting data sets with 

hole depth, maximum charge per delay, burden, spacing, stemming length, powder factor, 

and distance from the blast-face as inputs parameters were collected for the mine site. 

However, in their study, maximum charge per delay and distance from the blast-face were 

considered as input parameters to the developed models with measured AOp values serving 

as the output parameter. Fifteen 15 data sets representing 20% of entire data sets were 

selected randomly as testing data sets, whereas the remaining 61 data sets were used to 

develop 5 models of each non-linear method. Using R2, RMSE and VAF as statistical 

evaluator of model performance, the testing dataset prediction results indicated that the 

GAANN model had superior predictive capability in comparison to the ANN and empirical 

models. This is because the GA-ANN model had the highest R2 value of 0.974 whereas R2 

values of 0.902 and 0.782 were obtained for the ANN and empirical methods respectively.  

  

In Hasanipanah et al. (2016a), several non-linear models of ANN, fuzzy systems (FS), 

ANFIS, empirical models were developed and applied to predict air overpressure using 77 

blasting data sets from Miduk copper mine, Iran. The input parameters considered for the 

development of the various predictive models were the maximum charge per delay and 
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distance between blast face and monitoring point with the measured AOp values being the 

output parameter. Sixty-two (62) data sets representing 80% of the total blasting data sets 

were used to develop and train the various predictive models with remaining 15 (20%) data 

sets for testing the developed predictive models. During the modelling process, the authors 

chose 5 different data sets randomly from the total dataset to develop 5 different models for 

each non-linear model considered in their study. Using the testing data sets, the comparison 

results based on R2, VAF and RMSE revealed that, the ANFIS provided highest 

performance capacity in prediction of AOp. This was followed by the fuzzy systems, ANN 

and empirical models in that order.  

  

In Amiri et al. (2016), a novel combination of ANN and K-nearest neighbors (KNN) models 

was developed and applied to predict air overpressure using 81 data sets from the Shur river 

dam, Iran. To check the performance of the ANN-KNN model, a pre-developed ANN and 

an empirical equation presented by USBM, were developed to predict AOp. In constructing 

the predictive models applied in their study, maximum charge per delay (MC) and distance 

between blast face and monitoring station (D) were used as input parameters, with measured 

AOp values serving as the output parameter. Sixty-one (61) data sets out of the 75 were used 

as training data sets to develop and train the various predictive models whereas the 

remaining 20 data sets were used to test the performance of the developed models. Using 

R2, RMSE and VAF as the statistical performance measures of the various predictive 

models, the prediction results revealed that, the ANN-KNN had the highest R2 and VAF 

values and lowest RMSE values in air overpressure prediction. The ANN-KNN model was 

then followed by the pre-developed ANN and then the USBM model in that order. They 

therefore concluded that, that the acceptability, effectiveness and accuracy in predicting 

AOp of the ANN-KNN model was better in predicting AOp than ANN and USBM equation.  

  

Hasanipanah et al. (2017e) proposed a novel hybrid model of particle swarm optimization 

(PSO) and support vector regression (SVR) for AOp prediction. Various types of PSO-SVR 

models based on linear (L), quadratic (Q) and radial basis (RBF) kernel function were 

developed. In order to evaluate the suitability of the proposed PSO-SVR models, a multiple 

linear regression model was also developed. A total of 83 data sets were used to develop 

and test the various predictive models with maximum charge per delay and distance between 

blast face and monitoring point being the input parameters. Development of the various 
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models was done using 67 out 83 data sets whereas the remaining 16 were used to test the 

developed models. The prediction results revealed that all three types of PSO-SVR models 

outperformed the multiple linear regression model with the PSO-SVR-RBF producing more 

accurate prediction results than the other predictive results. The reason being that, it had the 

highest R value of 0.996 and lowest RMSE value of 0.45 which were the performance 

criteria utilised in their study.  

  

In AminShokravi et al. (2018), PSO and ANN models were developed and applied to predict 

AOp at Shur river dam area, Iran. In constructing the PSO model, three forms of PSO model 

which are PSO-linear, PSO-power and PSO-quadratic were developed. To check the 

performance of PSO and ANN models, an empirical model presented by USBM was also 

developed. To achieve that aim, a total of 80 data sets were utilised for the development and 

testing of the aforementioned predictive models. Sixty-four (64) data sets were employed in 

the model development process whereas the remaining 16 data sets were used to 

independently ascertain the prediction accuracy of the models. Maximum charge per delay, 

distance between blast face and monitoring point and rock mass rating (RMR) were 

employed as input parameters for the prediction of the AOp. Using VAF, R2, mean absolute 

bias error (MABE) and MSE as the statistical performance measure of the accuracy of the 

various predictive models, the obtained results indicated the PSO-linear model with R2 of 

0.960, MSE of 4.33, VAF of 95.05 and MABE of 1.67 was more accurate at predicting AOp 

than the PSO-power, PSO-quadratic, ANN and USBM models in that order. They concluded 

that, the PSO-based models, especially the PSO-linear model, can be confidently used to 

predict blast-induced AOp.  

  

Nguyen and Bui (2018) proposed a novel hybrid model of ANN and random forest (RF) to 

predict AOp using blast data from Nui Beo open-pit coal mine, Vietnam. For comparison 

purposes, an empirical technique, five ANN and RF models were also developed. To 

achieve their aim, a total of 114 dataset were collected from the mine site. The maximum 

explosive charge capacity, monitoring distance, vertical distance, powder factor, burden, 

spacing, and length of stemming were considered as the input parameters for predicting 

AOp. Approximately 94 data sets representing 80% of the whole data sets were considered 

as training dataset to develop the models whereas the remaining 20% (20 data sets) were 

used to independently assess the performance of the various predictive models. Using R2, 
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RMSE and MAE as statistical evaluators of model performance, the testing dataset 

prediction results indicated that the ANNs-RF model had superior predictive capability in 

comparison to the ANN and empirical models. This is because the ANNs-RF model had the 

highest R2 value of 0.985 and lowest RMSE and MAE values of 0.847 and 0.620 

respectively.  

  

Faradonbeh et al. (2018) developed and applied genetic programming (GP) and gene 

expression programming (GEP) to predict AOp due to blasting in Miduk copper mine, Iran. 

To check the accuracy and reliability of the GP and GEP models, a multiple linear regression 

(MLR) and three empirical models of National Association of Australian State, McKenzie 

and USBM were also applied to predict AOp. In that regard, a total of 74 data sets were 

used to develop (train) the various models whereas a total of 18 data sets were used to test 

the developed models. Furthermore, maximum charge per delay (MC), distance between 

the blasting point and monitoring station (D) were used as input parameters whereas AOp 

was the output parameter. Using R2, RMSE and MAE as statistical evaluator of model 

performance, the obtained results based on testing data sets revealed that the GEP was more 

accurate at predicting AOp than GP, USBM, MLR, National Association of Australian State 

and McKenzie respectively as it had the highest R2 (0.941) and VAF (94.12%) and the 

lowest RMSE (0.06).  

  

Nguyen et al. (2018) applied three types of ANN namely: multilayer perceptron neural 

network (MLP neural nets), Bayesian regularized neural networks (BRNN) and hybrid 

neural fuzzy inference system (HYFIS), to predict AOp at Deo Nai open-pit coal mine, 

Vietnam. To achieve that aim, a total of 146 blasting events were collected, of which 118 

blasting events representing 80% of the whole dataset were used in constructing the various 

models and the remaining 20% (28 blasting events) were used to test the developed models. 

In constructing the models, charge per delay, burden, spacing, length of stemming, powder 

factor, air humidity, and monitoring distance were selected as input parameters. Using R2 

and RMSE as the performance criteria for the accuracy of the various predictive models, the 

obtained results indicated the MLP neural nets model with R2 of 0.961 and RMSE of 2.319 

on testing data sets was most accurate at predicting AOp than BRNN and HYFIS models.  
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In Bui et al. (2019), seven AI techniques of random forest, support vector regression, 

Gaussian process, Bayesian additive regression trees, boosted regression trees, k-nearest 

neighbors, and artificial neural network (ANN) were developed and applied to predict AOp 

at Deo Nai open-pit coal mine, Vietnam. To provide an inspection of the accuracy of the AI 

techniques, an empirical technique was also applied to predict AOp. In that regard, a total 

of 113 data sets were collected from the study area, from which 97 data sets were used to 

train (develop) the various predictive models and the remaining 16 data sets were used to 

independently test the developed models. Using R2, MAE and RMSE as the performance 

criteria, the obtained results based on the testing data sets showed that AI techniques 

provided better performance than the empirical method. Moreover, of the seven AI models, 

ANN was the most dominant model and the most accurate in predicting AOp.  

  

Gao et al. (2019) developed and applied a hybrid model of group method of data handling 

(GMDH) and genetic algorithm (GA) to predict AOp due to blasting. To achieve this aim, 

the authors collected a total of 84 data points from the study area from which 67 data sets 

representing 80% of total data were used for training GMDH-GA. The remaining 17 data 

points were used to test the developed model. In developing the GMDH-GA models, authors 

considered maximum charge per delay (MC), distance between the blasting point and 

monitoring station (D), powder factor (PF) and rock mass rating (RMR) as input parameters 

whereas AOp value was considered as the output parameter. Using R2, RMSE and VAF to 

evaluate the performance of the developed GMDH-GA, it was found out that, the 

GMDHGA was able to accurately predict AOp as it had a very high R2 and VAF values of 

0.988 and 98.83% respectively and a low RMSE value of 0.915.  

 

Table 3.4 shows a summary of AI techniques used for air overpressure prediction. 

 

3.3.4 Artificial Intelligence Techniques Applied in this Study 

 

This thesis adopted the use of backpropagation neural network (BPNN), generalised 

regression neural network (GRNN), radial basis function neural network (RBFNN), group 

method of data handling (GMDH), support vector machines (SVM), and extreme learning 

machines (ELM), relevance vector machines (RVM), least square support vector machines 

(LS-SVM), wavelet neural network (WNN), multivariate adaptive regression splines 
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(MARS) and Gaussian process regression (GPR) for the prediction of blast-induced ground 

vibration and air overpressure with some techniques being novel as shown in Table  3.5 and 

Table 3.6. 

 

Table 3.4 Summary of Research Works on Air Overpressure Prediction  

Researchers Techniques 

Khandewal and Singh, 2005; Sawmliana et al., 2007;  

Tiile, 2016; Nguyen et al., 2018 

ANN 

(MLPNN, BRNN, 

HYFIS) 

Kandelwal and Kandar, 2011 SVM 

Mohammed, 2011; Armaghani et al., 2015b; Hasanipanah et 

al., 2016a 
FL, ANFIS 

Faradonbeh et al., 2018 Optimisation: GP, GEP 

Hajihassani et al., 2014; Hajihassani et al., 2015; Armaghani 

et al., 2015c; Armaghani et al., 2016; Mohamad et al., 2016; 

Amiri et al., 2016; Hasanipanah et al., 2017e; 

AminShokravi et al., 2018; Nguyen and Bui, 2018; Gao et 

al., 2019. 

Hybrid Models: ANN-

PSO, ICA-ANN, GA-

ANN, PSO-SVR; ANN-

KNN; ANN-RF, 

GMDH-GA  

Bui et al., 2019 
RF, SVR, GPR, BART, 

BRT, KNN, ANN 

NB: artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine 

(SVM), support vector regression (SVR), fuzzy logic (FL), genetic algorithm (GA), Gaussian process 

regression (GPR), particle swarm optimisation (PSO), group method of data handling (GMDH), genetic 

programming (GP), genetic expression programming (GEP), K-nearest neighbours (KNN), random forest 

(RF), imperialist competitive algorithm (ICA), Bayesian additive regression trees (BART) and boosted 

regression trees (BRT). 
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Table 3.5 Applied and Proposed AI Techniques for Blast-Induced Ground Vibration 

Prediction 

Applied AI Techniques Proposed AI Techniques 

Backpropagation Neural Network (BPNN) 
Least Square Support Vector Machine 

(LLSVM) 

Radial Basis Function Neural Network 

(RBFNN) 
Wavelet Neural Network (WNN) 

Generalised Regression Neural Network 

(GRNN) 

Multivariate Adaptive Regression 

Splines (MARS) 

Group Method of Data Handling (GMDH)  Gaussian Process Regression (GPR) 

Support Vector Machine (SVM) Relevance Vector Machine (RVM) 

Extreme Learning Machine (ELM)   

 

Table 3.6 Applied and Proposed AI Techniques for Air Overpressure Prediction 

Applied AI Techniques Proposed AI Techniques 

Backpropagation Neural Network (BPNN) 
Radial Basis Function Neural Network 

(RBFNN) 

Support Vector Machine (SVM) 
Generalised Regression Neural Network 

(GRNN) 

Gaussian Process Regression (GPR) 
Least Square Support Vector Machine 

(LLSVM) 

Group Method of Data Handling (GMDH)  Wavelet Neural Network (WNN) 

  
Multivariate Adaptive Regression Splines 

(MARS) 

  Extreme Learning Machine (ELM) 

  Relevance Vector Machine (RVM) 
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CHAPTER 4 

MATERIALS AND METHODS 

 

4.1 Materials 

 

4.1.1 Data Description  

 

The data sets applied in this research was secondary data. For the ground vibration 

prediction, the modelling was carried out with a total of 210 blast data set acquired from the 

Mining Department and the Environmental Department of Ghana Manganese Company 

Limited (GMC). This data set comprised of the following parameters: number of blast holes, 

cooperating charge (kg), distance from blasting point and monitoring station (m), hole depth 

(m), powder factor (kg/m3), burden (m), spacing (m) and peak particle velocity values (PPV) 

(mm/s). In the development of the various models for blast-induced ground vibration 

prediction presented in this study, six out of the eight parameters were used. These 

parameters are the number of blast holes, cooperating charge (kg), the distance from blasting 

point and monitoring station (m), hole depth (m), powder factor (kg/m3) and the PPV value 

for each blast. The burden and spacing were not considered in the modelling and prediction 

of the ground vibration. This is because the Mine uses the same values for each blast. Table 

4.1 outlines the statistical range of different input and output parameters used for the blast-

induced ground vibration prediction  

 

Table 4.1 Statistical Description of the Data Sets for Blast-induced Ground Vibration 

Prediction 

Parameters Unit Minimum Maximum Average 
Standard 

Deviation 

Number of blast holes - 19 355 122.50 52.37 

Cooperating charge kg 11.60 123.49 90.08 19.54 

Distance from blasting point 

to monitoring station 
m 573 1500 915.01 234.62 

Hole Depth m 3.73 12.58 10.45 1.14 

Powder factor kg/m3 0.10 0.97 0.69 0.15 

Peak Particle Velocity mm/s 0.13 1.65 0.79 0.32 
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The values for the powder factor (kg/m3), number of blast holes, hole depth (m) and 

cooperating charge(kg) were obtained from the designed blasting plans. The distance from 

blasting point to the monitoring station was found out by the use of Global Positioning 

System (GPS) measurements. Here, the GPS recorded coordinates between the monitoring 

station and that of the blasting point were used in calculating the distance. The PPV values 

were monitored and recorded by the help of a 3000 EZ Plus Portable seismograph which 

has a single geophone (Figure 2.3). The 3000 EZ Plus device is a one channel seismograph. 

It is worth noting that the monitoring of the ground vibration was done by spiking the 

geophone on a firm flat terrain near the closest house of the nearest community to the mining 

pit. The setup of the 3000 EZ Plus Portable seismograph was done at the same location with 

varying directions depending on the area of the blast. 

 

For the air overpressure prediction, modelling on the other hand, was undertaken using a 

total of 171 air overpressure records acquired from the Mining Department of Newmont 

Golden Ridge Limited (NGRL), Akyem Mine. The data set collected was made up of the 

following: burden (m), spacing (m), stemming length (m), powder factor (kg/m3), number 

of blast holes per blast, cooperating charge (kg); distance between blasting point and 

monitoring station (m) and air overpressure values for each blast (dB). It is worth 

mentioning that in the development of the various models for air overpressure prediction, 

five out of the eight parameters were used. The burden, spacing and powder factor were 

excluded. The reason being the same values are used for each blast by the Mine. Table 4.2 

outlines the statistical range of different input and output parameters used for the air 

overpressure prediction 

 

Table 4.2 Statistical Range of the Data Sets for Air Overpressure Prediction 

Parameters Unit Minimum Maximum Average 
Standard 

Deviation 

Number of Blast Hole -  35 432 236.71 66.70 

Stemming Length m 3.30 4 3.40 0.11 

Coorperating Charge  kg 51.09 188.95 143.78 22.99 

Distance m 1072.50 3062.33 2101.67 495.17 

AOp dB 98.80 108.80 104.39 1.97 
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It is worth mentioning that the number of blast holes, stemming length (m), cooperating 

charge (kg) and distance from blasting point to the monitoring station values were obtained 

from the Minesight software that is used by blast engineers for blast designs. The AOp 

values were monitored and recorded by the use of an Instantel Minimate Plus seismic 

monitor which has a single geophone and a microphone (see Figure 2.7).  

 

4.2 Methods 

 

4.2.1 Artificial Intelligence Techniques 

 

This research applied eleven (11) artificial intelligence (AI) techniques to develop 

prediction models for both ground vibration and air overpressure. The AI techniques 

considered are the Backpropagation Neural Network (BPNN), Radial Basis Function Neural 

Network (RBFNN), Generalised Regression Neural Network (GRNN), Wavelet Neural 

Network (WNN), Group Method of Data Handling (GMDH), Multivariate Adaptive 

Regression Splines (MARS), Support Vector Machines (SVM), Least Square Support 

Vector Machines (LS-SVM), Relevance Vector Machines (RVM), Extreme Learning 

Machines (ELM) and Gaussian Process Regression (GPR). All the models’ development 

based on these aforementioned techniques were carried out using MATLAB program. 

Methodological explanations of the applied AI techniques are presented as follows.  

 

Backpropagation neural network 

 

The Backpropagation Neural Network (BPNN) is one of the widely used AI techniques for 

ground vibration and overpressure prediction (Amnieh et al., 2010; Saadat et al. 2014; 

Sawmliana et al., 2007; Monjezi et al., 2010b, Khandelwal et al., 2011). The BPNN is a 

feed forward neural network with input, hidden and output layer as shown in Figure 4.1. 

However, the BPNN is designed to accommodate more than one hidden layer. Among the 

layers, the input layer receives external input vector ( )1 2 3, , ,...,


=j mX X X X X which are 

assigned to individual weights, ijw  with a constant bias term, ib . The weighted inputs are 

then transmitted to the hidden layer. The inputs to each neuron in the hidden layer is then 

transformed by a mathematical non-linear activation function. The activation function 

preferably used are the hyperbolic tangent sigmoid or the logarithmic sigmoid (Dorofki et 
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al., 2012). The output from the hidden layer, iY (Equation (4.1)) is then fed as input to the 

output layer. In the output layer, the input – output transformation is done by linear 

activation function to produce a final network output, ŷ (Equation (4.2)).  

 

( )
1=

 
= + 

 


m

i ij j i

j

Y f w X b             (4.1) 

 

where ijw is the weight connecting the input layer to the hidden layer, ib is the bias term 

and ( )f  denotes the transfer function used in the hidden layer.  

 

ˆ = iy Y                 (4.2) 

 

1X

2X

3X

mX

ŷ

ijw

Input Layer Hidden Layer Output Layer

 

Figure 4.1 BPNN Architecture 

 

The most critical task of designing a BPNN involves the selection of an appropriate training 

algorithm, transfer function, the number of hidden layers as well as the number of neurons 

in the hidden layers (Ziggah et al., 2016). It has been proven that a BPNN with one hidden 

layer is sufficient as a universal approximator of any complex problem (Hornik et al., 1989; 

Ziggah et al., 2016). Hence, one hidden layer was used in this research. 

 



71 

 

In this research, the transfer function utilised in the hidden layer for the BPNN model 

development was the hyperbolic tangent while the linear transfer function was used for the 

output layer. For the backpropagation training algorithms, Levenberg-Marquardt (Hagan et 

al., 1996), Bayesian regularization (Foresee and Hagan, 1997) and the scaled conjugate 

gradient (Møller, 1993) were considered. For each of the training functions, the optimum 

number of hidden neurons was selected based on an experimental process. That is, the 

number of hidden neurons that gave the best correlation coefficient as well as the lowest 

mean squared error (MSE) for both the training and test data set was selected as the 

optimum, for each training function. The selected architecture for each training function 

results was then compared to ascertain the best training function and architecture for the 

BPNN.  

 

It is difficult to know how many iterations will be required before training is stopped hence 

the maximum number of iterations (number of epoch) is generally set reasonably high 

(Hagan et al., 1996). If the learning rate is low, then training is more reliable. If the learning 

rate is high, training may not converge or even diverge. In such situations, the weight 

changes can be so big that the optimiser overshoots the minimum and makes the loss worse 

(Surmenok, 2017). A high momentum coefficient can help to increase the speed of 

convergence of the network. However, setting the momentum coefficient too high can create 

a risk of overshooting the minimum, which can cause the network to become unstable. A 

momentum coefficient that is too low cannot reliably avoid local minima, and also can slow 

the training of the network (Baughman and Liu, 2014). Hence, in this study, the network 

was trained for 8000 epochs with a learning rate of 0.03 and a momentum coefficient of 0.7 

for both the ground vibration and air overpressure modelling. Detailed mathematical 

treatment on the BPNN can be found in (Hagan et al., 1996; Yegnanarayana, 2005). 

 

Radial basis function neural network 

 

Radial Basis Function Neural Network (RBFNN) is a three-layer feed forward neural 

network consisting of input layer, a single hidden layer and an output layer. A typical 

RBFNN architecture of input vector ( )1 2 3, , ,...,i mX X X X X , radial basis functions

( )1 2 3φ ,φ ,φ ,...,φr , weights ( )1 2 3, , ,..., rw w w w and output ( ŷ ) is illustrated in Figure 4.2. 

The input layer serves to transmit inputs from the external environment to the hidden layer 



72 

 

without any weight connections. In each neuron of the hidden layer is a radial basis function 

which accounts as the non-linear processing element in the hidden layer. There are various 

types of radial basis functions (Shin and Park, 2000). However, the widely used is the 

gaussian function (Singla et al., 2007) making it the radial basis function adopted in this 

study. The Gaussian function responds only to a small input space region where the 

Gaussian is centred (Poulos et al., 2010). Each neuron then computes a Euclidean distance 

between each input object and the centre of the Gaussian function. Finding suitable centres 

for the Gaussian function is required to successfully implement the RBFNN. The Gaussian 

function is characterised by two parameters, i.e. centre, jc and width parameter j . The 

computed Euclidean norm is then inserted into the Gaussian function to output jnet  as 

shown in Equation (4.3). 

 

2

2
exp

2

 −
 = −
 
 

i j

j

j

X c
net


             (4.3) 

 

where −i jX c is the computed Euclidean distance between 
iX and 

jc . The input to the 

output layer is the weighted sum of the outputs of the hidden neurons. This is then processed 

by a linear function in the output layer to produce the final output, ˆ
ky  of the RBFNN as 

expressed in Equation (4.4). 

 

0

1

ˆ
=

= +
r

k jk j

j

y b w net             (4.4) 

 

where jkw is the connection weight between the hidden layer and the output layer, 0b is the 

bias term and r denotes the number of hidden neurons.  

 

The centres, width parameters and a set of weights are adjusted during the training process 

of RBFNN. This is done with objective function of minimising the mean square error 

(Equation (4.5)) between the desired output kd , and the predicted output, ky .  
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( ) ( )ˆ
N

2

k k

k=1

1
Min MSE = d -y

N
            (4.5) 

 

where N is the number of observations. 
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Figure 4.2 RBFNN Architecture 

 

The RBFNN ground vibration and air overpressure was trained using the gradient descent 

learning algorithm in which the weights are adapted in part to the deviation between the 

predicted and target outputs. The adjustable parameters that affect the training of the 

RBFNN are the width parameter and the maximum number of neurons in the hidden layer. 

Width parameter values of 0.1 to 2 with a step size of 0.1, were investigated for both ground 

vibration and air overpressure models. The maximum number of neurons of 1 to 20 were 

also investigated. These range of values for the width parameter and maximum neurons 

were chosen because the experimental process showed large prediction errors for values 

beyond them. Hence, the need to settle on the range stipulated for the model building. In 

choosing the optimum RBFNN architecture, the width value and the maximum number of 

neurons in the hidden layer that gave the least MSE and largest correlation coefficient in 

both training and testing data set was selected. 
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Generalised regression neural network 

 

The Generalised Regression Neural Network (GRNN) is a single pass learning network 

which consists of the input layer, the pattern layer, the summation layer and the output layer 

(Figure 4.3). These layers are connected to each other in a feedforward manner. The input 

layer receives input information and sends to the pattern layer. In the pattern layer, 

Euclidean distances between each input and stored patterns are calculated. These calculated 

distances are then fed into a nonlinear activation function. The resulting output is sent to the 

summation layer. The summation layer consists of the S-summation neuron and the D-

summation neuron. The S-summation neuron computes the sum of the weighted outputs of 

the pattern layer and the D-summation neuron calculates the unweighted outputs of the 

pattern neurons. Finally, the output layer gives the desired estimate, y(x) by dividing the 

output of the S-summation neuron by the output of the D-summation neuron as 

mathematically represented in Equation (4.6) (Specht, 1991). 
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Figure 4.3 GRNN Architecture 
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where Y(x) is the predicted value of input x, wi is the activation weight for the pattern layer 

neurons at i and k(x, xi) is the radial basis function kernel between input x and training 

samples, xi.  

 

In the case of a Gaussian kernel, k(x, xi) is given in Equation (4.7) as: 

 

( )
2

2
d

2
ik x, x e

−
=              (4.7) 

 

where = −i id x x is the Euclidean distance between the training samples xi and the input x 

and  is the spread/width parameter. Detailed mathematical description of the GRNN can 

be found in Specht (1991). 

 

In the GRNN, the adjustable parameters that affect the choice of selecting the optimum 

GRNN model for both ground vibration and air overpressure prediction is the width 

parameter. Width parameter values of 0.1 to 1 with a step size of 0.01 were investigated and 

the value that gave the best correlation coefficient and lowest MSE for both training and 

testing data sets was chosen as the optimum model. 

 

Wavelet neural network 

 

Wavelet Neural Network (WNN) as proposed by Zhang and Benvenite (1992) is a new class 

of neural network. It has three layers namely: input, hidden and output layer as shown in 

Figure 4.4.  
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Figure 4.4 WNN Architecture 

 

Its framework was constructed based on Backpropagation Neural Network (BPNN). It 

however differs from the BPNN in that, it uses wavelet function as the activation function 

in place of the classic sigmoid function (Wang et al., 2013). Given the structure of a WNN 

with output ( )ŷ x , input vector ( )1 2x= , ,..., ,...,i mx x x x  and n number of mother wavelets as 

shown in Figure 4.4. The inputs are sent to the hidden layer by weighted connections. In the 

hidden layer, the inputs are processed by a set of wavelet basis functions created by 

translating and dilating the mother wavelet  . According to Alexandridis and. Zapranis 

(2013), three mother wavelets namely Gaussian, Mexican Hat and the Morlet are usually 

recommended. The output of the hidden layer, ( ),a b u is given in Equation (4.8). 

 

( ),

1=

 −
 =  

 


n
i

a b

i i

u b
u

a
             (4.8) 

 

where u (Equation (4.9)) is the weighted inputs, a and b are the dilation and translation 

parameters of the mother wavelet,   respectively. 
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The output of the hidden layer is then multiplied by connection weights between the hidden 

and output layer. This serves as input to the output layer. The output of the WNN ( )ŷ x  is 

given in Equation (4.10). 

 

( )   ( )2

,

1

ŷ x
=

= 
n

j a b

j

w u           (4.10) 

 

It is worth noting that
 2

iw ,  2

jw , ia  and ib  are the parameters adjusted during the training 

phase of the WNN development. During the training process, each iteration aims to 

minimise the error between the actual output ( )f x  and predicted output ( )ŷ x . The 

algorithm widely employed to achieve this aim is the back-propagation algorithm (Equation 

(4.11)).  

 

( ) ( )( )
21

ˆ
2

= −e f x y x            (4.11) 

 

In the development of the WNN model, the Mexican hat wavelet function was used as the 

activation function in the hidden layer. This is because in comparison to the other mother 

wavelet functions, the Mexican hat is computationally more efficient and can be 

differentiated analytically (Jiang and Adeli, 2005). Five inputs and one output variables 

which were used in this study served as the input and output pattern to the WNN 

respectively. However, the optimum number of wavelons in the hidden layer was estimated 

by a sequential trial and error procedure. In view of that 1 to 20 wavelons were 

experimented. The optimum number of wavelons was selected based on the correlation 

coefficient and MSE criteria.  

 

Group method of data handling 

 

Group Method of Data Handling (GMDH) technique, developed by Ivakhnenko (1970) is a 

type of feed forward neural network for modelling non-linear, unstructured and complex 

systems (Mofki et al., 2018). The technique is a multilayer network comprised of a group 

of quadratic neurons that are arranged in a special structure to map a given set of input 

variables into their corresponding target variables. GMDH has the ability to automatically 
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learn the underlying, complex relations that dominate the system variables in other to select 

the optimal network structure. This makes the GMDH have a good generalisation ability 

and can fit the complexity of non-linear systems with a relatively simple and numerically 

stable network. The GMDH approach is characterised by inductive self-organising 

procedure used for obtaining multi-parametric model with the feasible variants. This allows 

the researcher to build models of complex systems without making assumptions about the 

internal workings. GMDH uses a multilayer network of second order of the Kolmogorov-

Gabor polynomial (Equation (4.12)) to define the complex nonlinear relationships among 

the considered inputs and outputs of a system (Assaleh et al., 2013). 

 

2 2

0 1 2 3 4 5
ˆ = + + + + +i j i j i jy a a x a x a x x a x a x         (4.12) 

 

where ŷ  is the predicted output, a is the vector of the coefficient of the polynomial 

function, xi and xj are the input variables.  

 

It is worth noting that, the number of neurons in a subsequent layer can be excessively large 

as the number of inputs to the preceding layer becomes large. Such, a neuron selection 

criterion per layer based on minimising the mean square error ɛ (Equation (4.13)) between 

the observed output ky  and predicted output ˆ
ky is used to keep the network complexity 

feasible (Assaleh et al., 2013).  

 

( )
2

1

1
ˆ min

=

 = − 
N

k k

k

y y
N

          (4.13) 

 

where N is the number of observations. 

 

A GMDH architecture with five inputs and three layers and selected and unselected neurons 

is shown in Figure 4.5. 
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Figure 4.5 GMDH Architecture 

 

Multivariate adaptive regression splines  

 

Multivariate adaptive regression splines (MARS) introduced by Friedman (1991) is a 

multivariate nonparametric technique. The MARS model does not require any a priori 

assumptions about the underlying functional relationship between input and output 

variables. That is, the MARS is capable of automatically mapping nonlinear relationship 

between input and output variables. This relation is uncovered from a set of coefficients and 

piecewise polynomials of degree q (basis functions) that are entirely derived from the 

regression data (x, y). Moreover, the MARS model has the ability to automatically determine 

both variable selection and functional form, resulting in an explanatory predictive model. 

The development of this approach has been mainly influenced by recursive partition and 

adaptive regression splines method. Mathematically, the MARS model can be expressed in 

Equation (4.14) as: 
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( )
M

o m m

m 1

ŷ c c B x
=

= +            (4.14) 

 

where ŷ is the dependent variable predicted by the MARS model, oc  is a constant, ( )mB x  

is the mth basis function, which may be a single spline basis functions and mc is the 

coefficient of the mth basis function. 

 

In the model construction phase, the MARS uses a two-step procedure, that is a forward-

stepwise regression selection and a backward-stepwise deletion strategy. In the forward 

process, the MARS starts with a constant in the initial model and iteratively adds pairs of 

basis functions that will result in the lowest training error to improve the model. This 

forward stepwise selection of basis function mostly leads to a very complex and overfitted 

model. Such a forward model, although fits the data well, has poor generalisation abilities 

when independent data set is introduced to it. To overcome such a problem, the least 

contributing basis functions are removed one at a time using a backward stepwise deletion 

strategy. The final MARS model is therefore obtained using the generalised cross-validation 

(GCV) criteria. The MARS model with the least GCV (Equation (4.15)) error is the 

optimum.  

 

( )
( )

( )

N 2

i B i

i 1

2

1 ˆy f x
N

GCV B
C B

1
N

=

 −
 

=
 
− 

 


         (4.15) 

 

where N is the total number of observations of the training data iy  and ( )ˆ
B if x are the 

observed and predicted training output values. C(B) given in Equation (4.16) is a complexity 

penalty that increases with the number of basis functions in the model. 

 

( ) ( )C B C 1 d.B= + +            (4.16) 

 

where B is the number of non-constant basis functions in the MARS model which is 

proportional to the number of nonlinear basis function parameters, d is a cost for each basis 
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function optimisation and it is regarded as a smoothing parameter of the process. Larger 

values of d will lead to fewer knots being placed resulting in smoother function estimates 

(Friedman, 1991). Detailed mathematical background and theory on MARS can be found in 

Friedman (1991). 

 

In this study, three different MARS models based on different order of interactions: zero 

order (no interaction between predictor variables), first order (possible interaction between 

predictor variables up to two linear members) and second order (interaction between 

predictor variables up to three linear members) were developed. This was done to determine 

the optimal MARS model that could accurately predict the ground vibration. In the forward 

phase of building the MARS model, 20 basis functions were applied. After the forward 

model was formed, the backward elimination procedure was carried out to remove needless 

basis functions. 

 

Support vector machine  

 

Similar to the other AI techniques, the Support Vector Machine (SVM) can be used for 

solving both classification and regression problems with the latter being the main focus of 

this study. According to Malakar et al. (2018), the structure of the SVM is not determined 

a priori. Input vectors supporting the model structure are selected through a model training 

process. Given a set of training data with input vector ( )1 2x = , ,..., Mx x x  with their 

corresponding target value f, an SVM estimator on regression f(x) is expressed in Equation 

(4.17) as: 

 

( ) ( )=  +f x w x b            (4.17) 

 

where ( )1 2, ,...,= Mw w w w  is a weight vector, ( ) ( ) ( )( )1 ,...,= kx x x    is the basis function 

vector denoting a set of non-linear transformations and b is the bias term. The nonlinear 

basis function ( )x  maps the M-dimensional input vector from a low-dimensional space 

into a higher dimensional feature space.  
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It is noteworthy that the objective of SVM is to determine the optimal separating hyperplane 

that maximises the margin of the training data. In order to obtain a solution to Equation 

(4.17) so as to find the optimal hyperplane, a quadratic optimisation problem (Equation 

(4.18)) subject to the constraints in Equation (4.19) with an ɛ-insensitivity loss function is 

introduced. 

 

*w,b, ,
min imise

 

 ( )
2 *

1

1

2 =

+ +
M

j j

j

w C            (4.18) 
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( )

( ) 1 2

0





 − −  +
 
 

+ −  + = 
 

  

j j j

*

j j j

*

j j

y w x b

w x b y j , ,...,M

,

  

  

 

       (4.19) 

 

where   and * are the slack variables that penalises the training errors by the loss function 

over the error tolerance,   and C is the positive trade-off parameter that determines the 

degree of the empirical error in the optimisation. Equation (4.18) subject to Equation (4.19) 

is usually solved in a dual form (Equation (4.21) subject to Equation (4.22)) using the 

Lagrangian function and Lagrangian multipliers as defined in Equation (4.20). 
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( )( ) ( )

2 * * *

1 1 1

* *
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m m m
T

j j j j j j

j j j

m m
T

j j j j j j j j

j j

L w C y w x b

w x b y

     

             (4.20) 

 

where L is the Lagrangian and 
* *

j j j j, , ,    are the Lagrange multipliers. It is noteworthy 

that, the solution of Equation (4.18) must satisfy the Karush-Kuhn-Tucker (KKT) 

conditions. The input vectors that have nonzero Lagrangian multipliers under the KKT 

condition support the structure of the estimator and are called support vectors. The 

architecture of SVM is shown in Figure 4.6. 

 

maximise ( )( ) ( ) ( )
1

2
− − − − − + −  

m m m
* * * *

j j k k jk j j j j j

j ,k j j

N y             (4.21) 
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subject 
( )

 

0

0

 
− = 

 
  


m

*

j j

j

*

j j, ,C

 

 

          (4.22) 

 

where ( ) ( ) ( )= =
T

jk j k j kN K x ,x x x   is the kernel trick (Mercer theorem). It is worth 

noting that the dual variables in Equation (4.20) must satisfy the positivity constraints that 

0* *

j j j j, , , .     The j  and 
*

j  are then computed and the optimum weight vector )(w  

of the function estimation model hyperplane is given by Equation (4.23) as: 

 

( ) ( )= −
m

*

j j j

j

w x             (4.23) 

 

Therefore, the SVM estimator on regression applied for this study can be expressed in 

Equation (4.24) as: 

 

( ) ( ) ( )= − +
m

*

j j j

j

f x K x,x b  .         (4.24) 

 

where ( )jK x,x is the kernel function. In general, the common kernel functions treated by 

the SVM are the functions with the polynomial, Gaussian radial basis, sigmoid radial basis, 

exponential radial basis, linear among others (Nanda et al., 2018).  

 

In view of that, the Gaussian kernel, polynomial kernel, sigmoid kernel and linear kernel 

were applied in this study on the dataset with the objective of selecting the kernel function 

that maps the training data patterns more effectively. The polynomial kernel function, after 

several trials, was found to accurately fit the pattern in the training data than the other 

kernels. The polynomial kernel function is mathematically expressed in Equation (4.25) as: 

 

( ) ( )1= +
q

T

j k j kK x ,x x x           (4.25) 

 

Furthermore, in the development of the SVM model, the ɛ and C values of 0.00000001 and 

50 respectively were used.  
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Figure 4.6 SVM Architecture 

 

Least square support vector machine 

 

Least square support vector machines (LS-SVM) proposed by Suyken and Vandewalle 

(1999) is an alternative formulation of the SVM for classification and regression related 

problem. In this study, the LS-SVM was formulated as regression technique for the 

prediction of blast-induced ground vibration and air overpressure. Given a set of N training 

data  
1

N

i i i
x , y

=
 with input data 

N

ix R  and corresponding target iy r , where NR  is the N-

dimensional vector space and r is the one-dimensional vector space. In feature space, the 

LS-SVM model takes the form of Equation (4.26) as: 

 

( ) ( )Ty x w x b= +            (4.26) 

 

where w is the adjustable weight vector, T is the transpose, ( )x  is the nonlinear mapping 

that maps the input data into a higher dimensional feature space and b is the scalar threshold. 

 

In line with the structural risk minimisation rule (Suyken et al., 2002), the risk bound is 

minimised by devising the optimisation problem in Equation (4.27). 
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minimise 
2

1

1 1

2 2

N
T

i

i

w w e
=

+            (4.27) 

 

with the equality constraints (Equation (4.28)) 

 

( ) ( )    1 2T

i iy x w x b e , i , ,...,N= + + =         (4.28) 

 

where   is the regularisation parameter that determines the trade off between the fitting 

function minimization and flatness, and ie  is the error variable.  

 

In solving Equation (4.27) subject to Equation (4.28), the Lagrangian function L (Equation 

(4.29)) is used. 

 

( ) ( )( )2

1 1

1 1

2 2

N N
T T

i i m i

i i

L w,b,e, w w e w x b e y   
= =

 = + − + + −
        (4.29) 

 

where i  values are the Lagrange multipliers. The condition of optimality of Equation 

(4.29) was met by finding the partial derivative of L with respect to each variable as provided 

by Equation (4.30). 
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       (4.30) 

 

Eliminating w and e parameters the linear Karush-Kuhn-Tucker (KKT) system given by 

Equation (4.31) is obtained instead of quadratic programming (Suyken et al., 2002). 
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N N
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YI  −
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          (4.31) 
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with  1

T

NY y ,..., y= ,  1 1 1
T

N ,...,=  and  1

T

N,...,  = . Here, 
NI  is an N N  identity 

matric and   is the kernel matrix defined by Equation (4.32) 

 

( ) ( ) ( )
T

ij i j i jx x K x ,x  = =          (4.32) 

 

The radial basis function has been used as the kernel function in this analysis. The radial 

basis function is given in Equation (4.33) as: 

 

( )
( )( )

2
   1

2

T

i j i j

i j

x x x x
K x ,x exp , i ,...,N



 − − 
= − = 

  

       (4.33) 

where σ is the width parameter of the radial basis function kernel. 

 

Equation (4.31) which is a linear equation set corresponding to an optimisation can provide 

the values of α and b. Thus, the predictive output for LS-SVM is defined in Equation (4.34) 

as: 

 

( ) ( )
1

N

i i j

i

y x K x ,x b
=

= +           (4.34) 

 

It is noteworthy that the design parameters that affect the development of the LS-SVM are 

the   (Equation (4.27)) and 2  (Equation 4.33). Hence in this study, the optimum values of 

these parameters were found iteratively. 

 

Relevance vector machine 

 

The Relevance Vector Machine (RVM) is a Bayesian sparse kernel model that introduces a 

prior distribution over the model weights that are governed by a set of hyper-parameters 

(Hu and Tse, 2013). The concept of RVM propagate from the concept of linear regression 

models where the value ( )* *y f x=  of a function ( )f x  needs to be predicted at some 

arbitrary point 
*x , given a set of typically noisy measurement (Hu and Tse, 2013). This 

linear regression model is denoted in Equation (4.35) as: 
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( )k k ky f x = +            (4.35) 

 

where k  is the noise component of the measurement. Under the linear model assumption, 

the function ( )f x  becomes a linear combination of some known basis function ( )k x  as 

expressed in Equation (4.36). 

 

( ) ( )
1

N

k k

k

f x w x
=

=            (4.36) 

 

where ( )1 2, ,..., Nw w w w=  is a weight vector. In a vector form, Equation (4.36) can be 

rewritten into Equation (4.37). 

 

y w =  +             (4.37) 

 

where   is ( )1N N +  design matrix, constructed with the thk  row vector which is denoted 

by Equation (4.38) and ɛ is an additional noise component of the measurement with mean 

zero and variance 2 .  

 

( ) ( ) ( ) ( )1 21, , , , ,..., ,k n n n n Nx K x x K x x K x x  =          (4.38) 

 

In this way, the likelihood of the training data set can be written as (Equation (4.39)): 

 

( ) ( )
2

2 2

2

1
, 2 exp

2

N

p y w y w 


−  
= − − 

 
       (4.39) 

 

In the RVM training process, the weight vector w is constrained by putting a zero mean 

Gaussian prior distribution on it. This is illustrated in Equation (4.40) as: 

 

( ) ( )1

1

0,
M

k k

k

p w N w  −

=

=           (4.40) 
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where ( )1 2, ,...,k M   =  is used as a descriptive measure of the inverse variance of each 

vector .kw   

 

By Bayes’s rule, the posterior probability over all of the unknown parameters can be 

expressed in Equation (4.41) as: 

 

( )
( ) ( )

( )

2 2

2
, , , ,

, ,
p y w p w

p w y
p y

   
  =         (4.41) 

 

where p(y) is expressed in Equation (4.42) as 

 

( ) ( ) ( )2 2 2, , , ,p y p y w p w dwd d     =         (4.42) 

 

However, since the normalising integral on Equation (4.42) cannot be executed, the solution 

of the posterior ( )2, ,p w    in Equation (4.41) cannot be computed directly. Instead, the 

posterior is decomposed as shown in Equation (4.43). 

 

( ) ( ) ( )2 2 2, , , , ,p w y p w y p y     =         (4.43) 

 

According to Bayes’ rule, the posterior distribution over weights can be expressed in 

Equation (4.44) as: 

 

( )
( ) ( )

( )
( )

2

2

2

,
, , ,

,

p y w p w
p w y N m

p y

 
 

 
=         (4.44) 

 

where m (Equation (4.45)) is the mean and   (Equation (4.46)) is the covariance. 

 

2 Tm y −=             (4.45) 

( )
1

2 T
−

− = +              (4.46) 
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Here, ( ) ( )0 1, ,..., Ndiag diag    = = . To obtain the marginal likelihood for the 

hyperparameters, the weights are integrated to obtain the probability distribution over the 

training targets as expressed in Equation (4.47). 

 

( ) ( ) ( ) ( )2 2, , 0,Cp y p y w p w dw N   =          (4.47) 

 

where C (Equation (4.48)) is the covariance matrix. 

 

2 1C T − −=  +             (4.48) 

 

The log probability distribution over the training targets then becomes (Equation (4.49)): 

 

( ) ( ) ( ) ( ) ( )2 2 2 1

0

1 1
ln , ln ln 2 ln

2 2 2 2

N
T T

k

k

N N
p y y y m m     − − −

=

= − −  − +  (4.49) 

 

Thus, the estimated value of the parameter weights w  is given by the mean of the posterior 

distribution in Equation (4.44), and the hyper-parameters   and 2  can be estimated by 

maximising Equation (4.45). For a new input newx , the probability distribution of the 

predictor newy  is given in Equation (4.50) by: 

 

( ) ( ) ( ) ( )2 2 2 2

new new new new new new
ˆ ˆˆ ˆ ˆp y x , , p y x ,w, p w y, , dw N m ,     =     (4.50) 

 

where the newm  (Equation (4.51)) and 
2

new  (Equation (4.52)) are the mean and variance of 

the predictors respectively. 

 

( )T

new newm m x=             (4.51) 

( ) ( )2 2 T

new new new
ˆ x x = +           (4.52) 

 

It is worth mentioning that the adjustable parameter that affects the development of the 

RVM model is the width parameter ( ) of the Gaussian kernel which was applied in this 
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study. In this research, the width of the Gaussian radial basis kernel function that gave the 

highest correlation coefficient value and lowest MSE was determined iteratively. 

 

Extreme learning machines 

 

The Extreme Learning Machine (ELM) is a new learning algorithm for single-hidden layer 

feedforward neural networks (SLFNs) developed by Huang et al. (2006). Unlike the 

traditional learning algorithms such as the back-propagation which are iteratively used to 

tune the parameters of the network, the ELM randomly chooses hidden neurons based on 

Gaussian Probability Distribution and analytically determines the output weights of the 

SLFNs using generalised inverse method known as Moore-Penrose generalised pseudo 

inverse (Singh et al., 2012).  

 

Given N arbitrary training samples ( )k kx , y  where input vector  1 2, ,..., n

k k k knx x x x R


=  ,  

target vector  1 2

m

k k k kny y , y ,..., y R=  , a SLFN with N  number of hidden neurons and 

activation function ( )g x  for the training samples is mathematically modelled using 

Equation (4.53). 

 

( )( )
1

1 2
N̂

i i k i k

i

g w x b o , k , ,...,N
=

 + =  = =         (4.53) 

 

where ( )1 2i k k knw w ,w ,...,w=  is a weight vector connecting the thi  hidden node and the input 

nodes, ( )1 2i k k kn, ,...,   =  is the output weight vector connecting the thi  hidden node and 

the output nodes and ib  is the threshold of the thi  hidden node. It is noteworthy that the 

weight vector iw  are randomly chosen.  

 

The equations formed based on the N number of training samples can however be written 

as (Equation (4.54)): 

 

H =Y             (4.54) 

 



91 

 

where H (Equation (4.55)) is the hidden layer output matrix.  

 

( ) ( )

( ) ( )

ˆ ˆ1 1 1 1

ˆ ˆ1 1 ˆ

H=

N N

N NN N N N

g w x b g w x b

g w x b g w x b


  +  +
 
 
 

 +  +  

       (4.55) 

 

According to Huang et al. (2006), if the number N  of hidden nodes is equal to the number 

N of distinct training samples that is N N= , then the matrix H becomes square and 

invertible when the input weight vectors 
iw  and the hidden biases ib  are randomly chosen. 

In such situations, SLFNs can approximate the training samples with zero error. In practical 

applications however, N  is usually much less than the number of N distinct training sample.  

 

To train an SLFN with fixed input weights iw  and the hidden layer biases ib  is to find a 

least square solution ̂  of the linear system (Equation (4.54). Applying the smallest norm 

least squares solution of Equation (4.54) the resulting ̂  becomes Equation (4.56). 

 

†ˆ=H Y             (4.56) 

 

where †H  is the Moore–Penrose generalized inverse of matrix H (Huang et al., 2006). 

 

It is worth noting that, the adjustable parameters in the development of the ELM model are 

the number of hidden layer neurons and the activation function of neurons in the hidden 

layer (Jayaweera and Aziz, 2018). For the activation function, sigmoid activation function 

and sine activation function were considered in this research. For each of the training 

functions, the optimum number of hidden neurons was selected based on an experimental 

process. In this research, 1 to 40 neurons were investigated to ascertain the optimum ELM 

structure. Thus, in choosing the optimum ELM architecture, the number of hidden layer 

neurons and the activation function of neurons in the hidden layer that gave the least MSE, 

largest R for testing dataset was selected.  
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Gaussian process regression 

 

A Gaussian process is a stochastic process (a collection of random variables), such that 

every finite collection of the random variables has a joint Gaussian distribution (Rasmussen 

and Williams, 2006). A Gaussian process t(x) is parameterised by a mean function m(x) and 

a covariance function (or kernel) ( ),k x x evaluated at points x and x . These functions are 

defined in Equations (4.57) and (4.58) as: 

 

( ) ( )( )m x E t x=            (4.57) 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( ), , ;Cov t x t x k x x E t x m x t x m x   = = − −      (4.58) 

 

where   denotes the set of hyperparameters. A gaussian process t(x) is hence expressed in 

Equation (4.59) as: 

 

( ) ( ) ( )( ), ,t x GP m x k x x           (4.59) 

 

where GP stands for Gaussian process. This means that the function t(x) is distributed as a 

Gaussian process with mean m(x) and covariance function ( ),k x x . 

 

Applying the Gaussian Process to solve regression problem is to model the dependence of 

a response variable y on some predictor variables xi. Each response variable y can be related 

to an underlying arbitrary regression function t(x) with an additive independent identically 

distributed Gaussian noise (ε) which represents the noise component from the data. This is 

expressed in Equation (4.60). 

 

( )y t x= +              (4.60) 

 

The noise ε has zero mean and variance 
2

n  that is ( )20 nN , .   The Gaussian process 

represented in Equation (4.59) becomes Equation (4.61) (Li et al., 2014). 

 

( ) ( ) ( )( )2, , nt x GP m x k x x I +          (4.61) 
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where I is the identity matrix. Based on the additive nature of the noise   and the 

marginalization property of GPs, the joint distribution of the training output y at locations X 

and test outputs f  at test points X  is given in Equation (4.62) (Li et al., 2014). 

 

( )

( )
( ) ( )

( ) ( )

2, ,
,

, ,

nk X X I k X Xm Xy
N

m Xf k X X k X X



   

  +   
    
        

      (4.62) 

 

Conditioning the joint Gaussian prior distribution based on X, y, and X , the predictive 

distribution is given in Equation (4.63). 

 

( ) ( )( ), , , varp y X y X N y y   
         (4.63) 

 

where y  (Equation (4.64)) is the predictive mean and ( )var y  (Equation (4.65)) is the 

predictive variance (Li et al., 2014).  

 

( ) ( ) ( ) ( )( )
1

2, , ny m X k X X k X X I y m X
−

  
 = + + −        (4.64) 

( ) ( ) ( ) ( )
1

2var , , ,ny k X X k X X I k X X
−

   
 = +         (4.65) 

 

 It is agreeable that covariance function is the central component in a Gaussian process 

regression model (GPR) (Rasmussen and Williams, 2006). Therefore, selecting the 

appropriate covariance function is crucial to the determination of the sample function being 

modelled. Given that the input points which are closely related are likely to have similar 

target values, likewise, test point near a training point should have a corresponding target 

value close to the training point. With this analogy, a test point’s target value can be 

predicted. This measure of similarity is expressed by the covariance function (Kang et al., 

2015). There are a number of common covariance functions available in literature. Some of 

these include: Constant covariance function, Linear covariance function, Gaussian noise 

covariance function, Ornstein-Uhlenbeck covariance function, Squared exponential 

covariance function, Gamma exponential covariance function, Matérn Class of covariance 

function, Periodic covariance function, Rational quadratic covariance function and others 
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(Rasmussen and Williams, 2006). However, it is notable in literature that the squared 

exponential is the commonly used covariance function (Snelson, 2007). 

 

Therefore, in the training of the GPR model, the parameters of the mean function and 

covariance (kernel) functions are called the hyperparameters of the Gaussian process (Kang 

et al., 2015). These hyperparameters define the behaviour of the GPR model. In order to 

train and formulate a GPR model, all the hyperparameters associated with the mean and 

covariance function must be learned. This can be done through either optimisation or 

sampling techniques. However, the widely used approach is to maximise the log marginal 

likelihood (Equation (4.66)) (Rasmussen and Williams, 2006).  

 

( ) ( )
1

2 21 1
log , log log 2

2 2 2
n n

n
p y X y K I y K I

−
= − + − + −         (4.66) 

 

where y is the transpose of vector y and   is a vector containing all the hyperparameters. 

 

To maximise the log marginal likelihood, the conjugate gradient method is an efficient 

gradient based optimisation algorithm that can be used (Moore et al., 2016). 

 

In this study, a simple mean function with constant, c was used. For selecting the optimum 

covariance function for the proposed GPR model in this study, the following covariance 

functions as expressed in Equations (4.67) to (4.71) (Rasmussen and Williams, 2006) were 

tried and tested. 

 

i. Squared Exponential Covariance Function 

( )
2

2

2
, exp

2
i j f

d
k x x

 −
=  

 
           (4.67) 

ii. Exponential Covariance Function 

( ) 2, expi j f

d
k x x

 
= − 

 
           (4.68) 

iii. Rational Quadratic covariance function 

( )
2

2

2
, exp 1

2
i j f

d
k x x

−

 
= + 

 






         (4.69) 
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iv. Matérn 3/2 Covariance Function 

( ) 2 3 3
, 1 expi j f

d d
k x x

   
= + −      

   
         (4.70) 

v. Matérn 5/2 Covariance Function 

( )
2

2

2

5 5 5
, 1 exp

3
i j f

d d d
k x x

   
= + + −      

   
        (4.71) 

 

where 
i jd x x= − is the Euclidean distance between point xi and xj, 

2

f  is the signal variance 

of function, α is the shape parameter for the rational quadratic covariance and  is the length 

scale. Due to the mean function, covariance function and the noisy observations in data, the 

hyperparameters   that were optimised in this study include: constant (c),
2

f , , α,
2

n . 
2

n  

is the noise variance. 

 

4.2.2 Model Development Processes 

 

Selection of input/ output parameters 

 

In the development of the various AI models applied in this study for the ground vibration 

prediction, five parameters were utilised as the input layer neurons having one output neuron 

for the AI training. With this in mind, the input layer data consisted of the number of blast 

holes, cooperating charge (kg), distance between blasting point and monitoring station (m), 

hole depth (m) and powder factor. The PPV values for each blast were used as the output 

layer neurons. The burden and spacing were not considered because they were constant for 

each blast and thus did not have any significant influence on the model prediction results. 

 

The input parameters that were selected for the air overpressure prediction modelling were 

the stemming length, the number of blast holes per blast, the cooperating charge and the 

distance between blasting point and monitoring station. The output parameter was the air 

overpressure values for each blast. Hence, four (4) inputs were used for the development of 

the AI models with the air overpressure as the output layer data. 
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Data normalisation 

 

Since the data sets parameters have different values with different units, there is a need to 

ensure constant variability in the data set by normalising it into the range [-1, 1], [0, 1] or 

other scaling criteria. This data normalisation improves convergence speed and doing so 

reduces the chances of getting stuck in local minima (Ziggah et al., 2016). In this study, the 

input variables were normalised into the interval [-1, 1] using Equation (4.72) 

 

( ) ( )
( )minmax

miniminmax

mini
xx

xxyy
yy

−

−−
+=          (4.72) 

 

where, 
iy is the normalised data, 

ix represents the measured blast data, maxx and minx

represents the maximum and minimum values of the measured blast data with maxy  and 

miny values set at  1 and -1, respectively. 

 

Network training and testing 

 

The supervised learning technique was applied to develop the various predictive models. 

Thus, the data sets were first partitioned into two sets: training and testing based on the 

widely and successfully used hold-out cross-validation technique. Despite the fact that there 

is no universally accepted ratio for splitting the data, it is important that the training dataset 

be more than the testing data set in order to generate good prediction results. However, if 

the training data is more than enough it will cause overfitting whereby the model cannot 

perform well with independent data. In that regard, 130 out of the 210 blast data points 

(representing 62% of the entire blasting data) acquired from Ghana Manganese Company 

Limited were used as training data set to develop and train the various models for predicting 

ground vibration in this study. The remaining 80 blast data points were used as testing data 

set to independently validate the performance of the various developed models. 

 

With regards to the air overpressure modelling, 98 data points out of the 171 (representing 

57%) acquired from Newmont Golden Ridge Limited served as the training dataset. The 

remaining 73 data points were used to test the performance of the developed models. 
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The partitioning of the entire data sets was done with the aim of avoiding under- and 

overfitting of the models. To overcome such situations, the training data set was selected 

according to the rule of being well distributed across the whole data sets in the study area 

whereas blasting data excluded as training data of the study area were used as testing data 

set. 

 

4.2.3 Empirical Methods 

  

Ground vibration prediction 

 

There are several empirical equations that are used in prediction of ground vibration (PPV) 

(Table 3.1). However, the empirical methods that were considered in this research to 

evaluate the performance of the AI techniques are the United State Bureau of Mines 

(USBM) model, Ambraseys-Hendron, model Langefors and Kilhstrom model and Indian 

Standard model (model (Duvall and Petkof, 1959; Langefors and Kihlstrom, 1963; 

Ambraseys and Hendron, 1968; Indian Standard Institute, 1973). These four empirical 

predictors were adopted because they have been found in literature (Khandelwal and Singh, 

2006, Saadat et al., 2014, Mohammadnejad et al., 2012, Armaghani et al., 2014, Tiile 2016, 

Ragam and Nimaje, 2018 and references there in) to serve as benchmark methods over the 

years, when comparisons are being made with artificial intelligence methods applied to 

predict blast-induced ground vibration. Hence in this research, these aforementioned 

empirical methods were applied and compared to the various AI techniques. In addition to 

that, these four empirical predictors were applied because they are the techniques currently 

used in the Ghanaian mining industry for the prediction of blast-induced ground vibration. 

The same number of data sets used to train the AI models were also used to determine the 

site-specific constants of the empirical models (Equations (4.73) to (4.76)). 

 

i. United State Bureau of Mines (USBM) 

β

2
1

Q

D
kPPV

−














=         (4.73) 

ii. Indian Standard 

β

3
2

D

Q
kPPV












=         (4.74) 
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iii. Ambrasey-Hendron 

β

3
1

Q

D
kPPV

−














=         (4.75) 

iv. Langefors and Kihlstrom 
















=

4
3

2
1

D

Q
kPPV         (4.76) 

 

In the above equations, D and Q denotes the distance between the blasting face and the 

monitoring point and cooperating charge respectively. The term in bracket in the above 

equations make up the scaled distance (SD). The site constant, k and β were obtained by 

linear regression analysis. This was done by plotting the PPV against the calculated scaled 

distance in an excel spreadsheet. The power trendline option was chosen to obtain the 

equation of the line in the form, ,axy b= where y is the PPV, x is the scaled distance and a 

and b as the site constants. 

 

Air overpressure 

 

The air overpressure empirical models that were considered are the general predictor 

equation and the model that is used by Newmont Golden Ridge Limited, Akyem Mine for 

their prediction of air overpressure. The general predictor equation is expressed in the form 

of Equation (3.3) as: 

 

−














=

3 Q

D
HAop  

 

where, D is distance in meters, Q is the maximum instantaneous charge per delay, H and β 

are site constants. 

 

The sites constants were obtained using the linear regression analysis procedure explained 

in the determination of the site constants of the ground vibration empirical models. The 

same data sets used to train the AI models for the air overpressure prediction were also used 

to determine the site constants of the General Predictor Equation. 
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The model used to predict air overpressure at Newmont Golden Ridge Limited is given in 

Equation (4.77) as: 

 








































=

−

00000002.0

Q

D
3.3

log20AOp

2.1

3
1

10          (4.77) 

 

where D is Distance in meters and Q is the Cooperating Charge in kg. 

 

4.2.4 Model Performance Criteria 

 

The prediction accuracies of each of the predictive models for ground vibration and air 

overpressure at Ghana Manganese Company and Newmont Golden Ridge Limited 

respectively, were assessed using statistical performance indicators of mean square error 

(MSE), root mean square error (RMSE), relative root mean square error (RRMSE), mean 

absolute error (MAE), coefficient of determination (R2), correlation coefficient (R), Nash-

Sutcliffe efficiency index (NASH) and variance accounted for (VAF). Equations (4.78) to 

(4.85) present their mathematical notations. 

 

( )
=

−=
n

1i

2

ii po
n

1
MSE           (4.78) 

( )
=

−==
n
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2
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n
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MSERMSE         (4.79) 
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( )

( )
i i

i

var o p
VAF 1 100

var o

 −
= −  
  

         (4.85) 

 

where n is the total number of test samples, oi are the observed values, p are the predicted 

values o  is the mean of the observed values and p  is the mean of the predicted values. 

 

Graphical comparison of the efficiency of the various models in predicting ground vibration 

was carried out. This was done by plotting the observed PPV against predicted PPV with a 

1:1 line, a 95% confidence interval (CI) (Equation (4.86)) and 95% prediction interval (PI) 

(Equation (4.87)).  

 

2CI p Z
n




=             (4.86) 

 

where p  is the mean of the predicted values,   is the population standard deviation, 2Z  

is the Z value for the desired confidence level   and n is the number of predicted values. 

At a 95% Confidence Interval, 2 1.96=Z . 

 

( )

( )

( )

2

i

i 2,n 2 2

i

o o1
PI p t SD 1

n o o
 −

−
=  + +

−
        (4.87) 

 

where n is the total number of samples, Oi are the observed PPV values, Pi are the predicted 

PPV values, O  is the mean of the observed PPV values, ( )2, 2−n
t
  is the α-level quantile of 
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a t-distribution with n – 2 degrees of freedom, SD is the standard deviation of the residuals 

(Equation (4.88)). 

 

( )
2

i iO P
s

n 2

−
=

−


           (4.88) 

 

4.2.5 Model Selection 

 

As a means of selecting the most viable blast-induced ground vibration and air overpressure 

prediction model among the candidate models developed, the Akaike Information criterion 

(AIC) (Burnham and Anderson, 2002) was applied. The AIC is based on the number of 

parameters used in a particular model, residual sum of squares and the number of 

observations used. The model with the lowest calculated AIC value is chosen as the best for 

predicting ground vibration and air overpressure. The generic form of the AIC is given in 

Equation (4.89). 

 

k2
n

RSS
lnnAIC +








=           (4.89) 

 

where n is the number of samples, k is the number of estimable parameters in the model, 

and RSS is the residual sum of squares. The residual sum of squares measures the overall 

difference between the observed values and the values predicted by the developed model. 

 

4.2.6 AI-Based Software Development 

 

After the selection of the most viable blast-induced ground vibration and air overpressure 

prediction model among the candidate models, a front-end, user-friendly, interactive 

application software was developed in the MATLAB environment to ask for and upload the 

data sets and generate the necessary results and graphs automatically. The essence of this 

AI-based software is to provide the mining engineer prior information about the efficiency 

of the blast design before blasting. That is, the blast design parameters can be fed into the 

software to estimate the ground vibration and air overpressure to be recorded if the current 
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blast is carried out per the design. Figure 4.7 shows the front-end diagram of the AI-based 

software. 

 

 

Figure 4.7 Front-end of AI-based Software 
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CHAPTER 5 

INTERPRETATIONS OF BLAST-INDUCED GROUND VIBRATION 

PREDICTION  

 

5.1 AI Models Developed for Blast-Induced Ground Vibration Prediction 

 

5.1.1 BPNN Model for Blast-Induced Ground Vibration Prediction  

 

Selection of the optimum number of hidden neurons and training function 

 

In this study, different training algorithms were used in the BPNN model formulation. This 

was necessary because the BPNN is highly dependent on the fine tuning of the training 

algorithm parameters used to learn the data. Therefore, it was logical to apply and test the 

capability of different training functions. The results obtained by training the BPNN with 

different training algorithms and the number of hidden neurons used in the process are 

presented in Tables 5.1, 5.2 and 5.3 respectively.  

 

Table 5.1 Results of Training and Testing with Levenberg-Marquardt Algorithm 

Number of 

Hidden Neuron 

Training Testing 

R MSE R MSE 

1 0.909001 0.020902 0.8537 0.021696 

2 0.911621 0.020328 0.8445 0.023054 

3 0.932809 0.015626 0.7927 0.029738 

4 0.950299 0.011663 0.8031 0.031615 

5 0.948547 0.012063 0.7753 0.034545 

6 0.959839 0.00947 0.7428 0.040207 

7 0.962816 0.008782 0.5732 0.101023 

8 0.968806 0.007389 0.2788 4.500762 

9 0.974224 0.006123 0.0934 1.107399 

10 0.982438 0.004189 -0.19 9.474425 

11 0.985522 0.003459 0.509 0.142711 

12 0.9880567 0.0028569 0.0118042 1.21E+03 
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Table 5.2 Results of Training and Testing with Bayesian Regularisation Algorithm  

Number of 

Hidden Neuron 

Training Testing 

R MSE R MSE 

1 0.908928 0.020923 0.852883 0.02182 

2 0.913343 0.019954 0.847394 0.02234 

3 0.919223 0.018657 0.82894 0.02477 

4 0.921331 0.018193 0.829543 0.02462 

5 0.921282 0.018203 0.829663 0.0246 

6 0.917295 0.019082 0.826446 0.02511 

7 0.917265 0.019088 0.827089 0.02502 

8 0.917236 0.019095 0.827613 0.02495 

9 0.91721 0.019101 0.828041 0.02489 

10 0.917187 0.019106 0.828394 0.0248 

11 0.917167 0.01911 0.828688 0.0248 

12 0.917163 0.019111 0.82867 0.0248 

 

Table 5.3 Results of Training and Testing with Scaled Conjugate Gradient Algorithm  

Number of 

Hidden Neuron 

Training Testing 

R MSE R MSE 

1 0.909001 0.020902 0.8537 0.021696 

2 0.922895 0.017839 0.8367 0.024232 

3 0.924848 0.017405 0.7761 0.031499 

4 0.943083 0.013307 0.8188 0.028453 

5 0.941094 0.013758 0.78 0.033936 

6 0.958204 0.009848 0.7842 0.033777 

7 0.969562 0.007213 0.7316 0.055351 

8 0.955671 0.010431 0.6154 0.071277 

9 0.965633 0.008128 0.5536 0.143387 

10 0.981101 0.004505 0.493 0.139806 

11 0.984083 0.0038 0.445 0.258246 

12 0.977391 0.005379 0.537 0.129354 
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In Table 5.1, it can be noticed that, for the Levenberg-Marquardt backpropagation 

algorithm, the optimum number of hidden neurons that gave the highest correlation 

coefficient (R) and the lowest mean squared error (MSE) for the testing data set was one. In 

the case of the Bayesian regularisation backpropagation algorithm (Table 5.2), the optimum 

number of hidden neurons was one. This is because it gave the largest R and the least MSE 

for the testing data set. From Table 5.3, it can be observed that the optimum neurons that 

produced the best testing results based on the MSE criterion and R for the scaled conjugate 

gradient backpropagation algorithm was also one. 

 

A compilation of the optimum BPNN architectures from the various training algorithms 

applied are presented in Table 5.4. This was necessary to aid in selecting the optimum 

training function suitable for predicting ground vibration in the area of study. From Table 

5.4, it can be noticed that, the Levenberg-Marquardt and the scaled conjugate 

backpropagation algorithms gave identical and best R and least MSE on the testing data set 

as compared with the Bayesian algorithm. The interpretation made here is that, the 

Levenberg-Marquardt and the scaled conjugate backpropagation algorithms were able to 

learn adequately on the training data and could generalise better on the testing data than the 

Bayesian technique. Hence, for ground vibration prediction both the Levenberg-Marquardt 

and scaled conjugate technique could be used. However, the Levenberg-Marquardt 

backpropagation algorithm was chosen for the study area because it has been used as a 

benchmark technique to train neural network system. 

 

Optimal BPNN structure 

 

The optimum BPNN structure consisted of three layers: input layer, hidden layer and output 

layer. The BPNN structure is made up of five inputs with a hyperbolic tangent hidden layer 

transfer function and a linear output layer transfer function. The network was trained for 

8000 epochs using the Levenberg-Marquardt backpropagation algorithm with a learning 

rate of 0.03 and a momentum coefficient of 0.7. The optimum structure of the BPNN was 

[5 – 1 – 1] that is five inputs, one hidden neuron and one output.  
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Table 5.4 Identification of the Best Training Functions for BPNN 

Training Function 

Optimum 

Hidden 

Neurons 

Training Testing 

R MSE R MSE 

Levenberg-Marquardt 

backpropagation 

algorithm 

1 0.909001 0.020902 0.8537 0.021696 

Bayesian Regularisation 

Backpropagation 

Algorithm 

1 0.908928 0.020923 0.852883 0.02182 

Scaled Conjugate 

Gradient 

Backpropagation 

Algorithm 

1 0.909001 0.020902 0.8537 0.021696 

 

5.1.2 RBFNN Model for Blast-Induced Ground Vibration Prediction 

 

For the developed RBFNN model for blast-induced ground vibration prediction, the width 

parameter value and the maximum number of neurons that gave the highest R and the lowest 

MSE was 1.7 and 9, respectively. Hence, the optimum RBFNN structure selected for 

predicting ground vibration has five inputs with one hidden layer of 9 neurons and one 

output layer, that is, [5–9–1]. Table 5.5 present the optimal training and testing results based 

on the R and MSE criteria. All the width parameters and maximum number of neurons in 

the hidden layer that were used to arrive at the optimal results are presented in Table A1 of 

Appendix A. 

 

Table 5.5 Optimal Training and Testing R and MSE Results for RBFNN 

Width Parameter Number of Neurons 
Training Testing 

R MSE R MSE 

1.7 9 0.910429 0.020589 0.84764 0.022266 
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5.1.3 GRNN Model for Blast-Induced Ground Vibration Prediction 

 

For the developed GRNN model for blast-induced ground vibration prediction, the width 

parameter value that gave the best R and the lowest MSE results is 0.40. Table 5.6 shows 

the optimal training and testing results. However, all the width parameters that were used to 

arrive at the optimal results are presented in Table B1 of Appendix B.  

 

Table 5.6 Optimal Training and Testing R and MSE Results for GRNN 

Width Parameter 
Training Testing 

R MSE R MSE 

0.4 0.909774 0.023033 0.801213 0.030064 

 

5.1.4 WNN Model for Blast-Induced Ground Vibration Prediction 

 

The experimentation results revealed that, the WNN gave the highest R and the lowest MSE 

on the testing data set when three wavelons were used in the hidden layer. Thus, the structure 

of the optimum WNN is [5 – 3 – 1], that is five inputs, three wavelons in the hidden layer 

and one output. Table 5.7 shows the optimal training and testing results for the WNN 

technique based on the R and MSE criteria. All the wavelons in the hidden layer that were 

used to arrive at the optimal results are presented in Table C1 of Appendix C. 

 

Table 5.7 Optimal Training and Testing R and MSE Results for WNN 

Number of 

Wavelons 

Training Testing 

R MSE R MSE 

3 0.9103 0.0206 0.8438 0.0227 

 

5.1.5 GMDH Model for Blast-Induced Ground Vibration Prediction 

 

The developed GMDH model with the lowest MSE and highest R value was found to have 

three parameters in input layer, one hidden layer with one neuron and a single value as 

model target at output layer. The corresponding polynomial equation representations of the 

developed GMDH for PPV prediction are shown in Equations (5.1) and (5.2). In fact, these 

equations revealed that the main contributing inputs among the entire inputs under 
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consideration are number of blast holes, the distance between blasting point and monitoring 

station (m) and the powder factor (kg/m3). Table 5.8 shows the optimal training and testing 

results for the GMDH technique based on the R and MSE criteria. 

 

Layer 1 

( ) ( ) ( )( )6 3 1 1 3x 0.8228 0.4542 x 0.361 x 0.06975 x x= − + −     (5.1) 

        ( ) ( )
2 2

3 10.005446 x 0.096 x+ −  

 

Output layer 

( ) ( ) ( )( )6 5 5 6PPV = 0.08641 + 0.731 x  - 0.06422 x + 0.6728 x x    (5.2) 

( ) ( )
2 2

6 50.07829 x 0.04503 x− −   

 

where 1x  is the number of blast holes, 3x is the distance between blasting point and 

monitoring station (m), 5x  is the powder factor (kg/m3), 6x  is the resultant of layer 1.  

 

Table 5.8 Optimal Training and Testing R and MSE Results for GMDH 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

1 0.9049 0.0218 0.8270 0.0249 

 

5.1.6 MARS Model for Blast-Induced Ground Vibration Prediction 

 

The training and testing results of the three MARS models developed based on their order 

of interactions are presented in Table 5.9.  

 

Table 5.9 Training and Testing Results for Each Order of Interaction 

Order of Interaction 
Training Testing 

R MSE R MSE 

Zero Order 0.91492 0.01960 0.84108 0.02330 

First Order 0.92210 0.01802 0.80888 0.02896 

Second Order 0.90360 0.02208 0.83008 0.02550 
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From Table 5.9, it can be observed that, the MARS model with zero order gave the lowest 

MSE and the highest R value for the testing phase. Hence, the final MARS model based on 

the zero order comprises of 5 out of the 20 basis functions used at the initial forward stage. 

Table 5.10 presents the corresponding equations for the selected basis functions. 

 

Table 5.10 The Basis Functions (BF) and their Related Equations for MARS 

Basis Function Equations 

BF2 max (0, 1100 - Distance from Blasting Point) 

BF4 max (0, 0.828853 - Powder Factor) 

BF5 max (0, Number of Blast Holes - 19) 

BF7  max (0, 11 - Hole Depth) 

BF8  max (0, Distance from Blasting Point - 1000) 

 

The developed MARS model for predicting blast-induced ground vibration is given in 

Equation (5.3). 

 

PPV = 0.577952 + 0.000764031 × BF2 - 0.731931 × BF4 + 0.00219317 × BF5           (5.3) 

           - 0.0486907 × BF7 - 0.000622675 × BF8 

 

5.1.7 SVM Model for Blast-Induced Ground Vibration Prediction 

 

In this study, the optimum design values of ɛ and C was set at 0.00000001 and 50 

respectively. The polynomial kernel of order one was the best kernel in this regard. Table 

5.11 shows the optimal training and testing results. 

 

Table 5.11 Optimal Training and Testing R and MSE Results for SVM 

Training Testing 

R MSE R MSE 

0.8931 0.0244 0.8441 0.023 

 

 

 

 



110 

 

5.1.8 LS-SVM Model for Blast-Induced Ground Vibration Prediction 

 

In the development of the LS-SVM, the optimum design values of   (Equation (4.27)) and 

2  (Equation 4.33) that defined the optimum LS-SVM model are 19601.0969 and 

25672.8908 respectively. Table 5.12 shows the optimal training and testing results. 

 

Table 5.12 Optimal Training and Testing R and MSE Results for LS-SVM 

Training Testing 

R MSE R MSE 

0.90663 0.0214 0.85415 0.0215 

 

5.1.9 RVM Model for Blast-Induced Ground Vibration Prediction 

 

For the developed RVM model for ground vibration prediction, the optimum width 

parameter was found to be 0.1489. Table 5.13 shows the optimal training and testing results. 

 

Table 5.13 Optimal Training and Testing R and MSE Results for RVM 

Width 

Parameter 

Training Testing 

R MSE R MSE 

0.1489 0.90627 0.08462 0.85312 0.09257 

 

5.1.10 ELM Model for Blast-Induced Ground Vibration Prediction 

 

Based on the experimental results, the optimum number of neurons for the developed ELM 

model was found to be 11 with a sigmoid activation function. Thus, the optimum ELM 

structure is [5 – 11 – 1] corresponding to five inputs with one hidden layer of 11 neurons 

and one output. Table 4 shows the optimal training and testing results for the ELM technique 

based on the R and MSE criteria. Table 5.14 shows the optimal training and testing results. 

All the neurons in the hidden layer that were used to arrive at the optimal results are 

presented in Table D1 of Appendix D. 
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Table 5.14 Optimal Training and Testing R and MSE Results for ELM 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

11 0.907295 0.021274 0.853454 0.021662 

 

5.1.11 GPR Model for Blast-Induced Ground Vibration Prediction 

 

Using the MSE and R criteria, the comparative results obtained by the various covariance 

functions of the GPR using the testing data sets are presented in Table 5.15.  

 

Table 5.15 Test Results of the Various Gaussian Process Regression Model 

GPR Model Formed Covariance Type R MSE 

GPR-Squared exponential Squared exponential 0.8300 0.0252 

GPR-exponential Exponential 0.8325 0.0245 

GPR- Matérn 3/2  Matérn 3/2 0.8339 0.0246 

GPR-Matérn 5/2 Matérn 5/2 0.8328 0.0248 

GPR-Rational quadratic Rational quadratic 0.8317 0.0250 

 

From Table 5.15, it can be observed that, the various GPR models had very close R values 

in the range, 0.8300 to 0.8339 and MSE values falling in the range 0.0245 to 0.0252. These 

results confirm that the various GPR models can accurately predict blast-induced ground 

vibration levels. This is because they all gave R values close to 1 and MSE values close to 

0, indicating good predictive capability. The results further indicated that the covariance 

functions (Table 5.15) utilised have similar predictive capabilities. However, in comparison, 

the GPR model with the Matérn 3/2 covariance function had the highest R value and the 

second least MSE to the exponential covariance function. The Matérn 3/2 was then selected 

as the optimum because from Table 5.15, it is noticeable that the MSE difference between 

the Matérn 3/2 and exponential covariance function is 0.0001 thus having very negligible 

influence on the GPR model outcome. By virtue of the results (Table 5.15), the selected 

proposed GPR model valid for blast-induced ground vibration prediction, has a constant 

mean function of 0.8812 and Matérn 3/2 covariance function with signal variance of 0.2760, 

a length scale of 0.33807 and a noise variance of 0.01568. 
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5.1.12 Empirical Models Developed for Blast-Induced Ground Vibration Prediction 

 

Determination of site constants, k and β 

 

The development of the empirical models for blast-induced ground vibration prediction 

involves the determination of site constants. The site constants (k and β) of the USBM, 

Indian Standard, Langefors-Kihlstrom and Ambrasey-Hendron equations were determined 

by plotting scaled distance against PPV values. The results are presented in Figures 5.1, 5.2, 

5.3 and 5.4, respectively. 

 

 

Figure 5.1 Resultant PPV Versus Scaled Distance Relationship for USBM Equation 
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Figure 5.2 Resultant PPV Versus Scaled Distance Relationship for Indian Standard 

Equation 

 

 

Figure 5.3 Resultant PPV Versus Scaled Distance Relationship for Langefors-

Kihlstrom Equation 
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Figure 5.4 Resultant PPV Versus Scaled Distance Relationship for Ambrasey-

Hendron Equation 

 

Table 5.16 presents the summary of the k and b values of the empirical equations used in 

this research. Table 5.17 presents the developed empirical predictor models. 

 

Table 5.16 Summary of the k and b Values of the Various Empirical Equation 

Equation k β 

USBM 300.7 -1.319 

Indian Standard 0.7676 0.938 

Ambrasey-Hendron 1724.4 -1.464 

Langefors-Kihlstrom 61.406 1.5475 

 

Table 5.17 Formulated Models of the Empirical Equations 

Empirical Methods Equations 

USBM   ( )  319.121
QD300.7 PPV 

−

=  

Indian Standard   0.93832DQ0.7676 PPV =  

Ambrasey-Hendron  ( )  464.131
QD1724.4 PPV 

−

=  

Langefors and Kihlstrom    5475.14321 DQ61.406 PVP =  

y = 1724.4x-1.464

R² = 0.638
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5.2  PPV Predictions from the Various Techniques Implemented 

 

The PPV predicted values of the testing data produced by the various AI and the empirical 

methods are presented in Table E1 of Appendix E. 

 

5.3 Comparison of the AI Methods and the Empirical Methods for Blast-Induced 

Ground Vibration Prediction 

 

The statistical results based on the testing data for each of the techniques applied are 

presented in Table 5.18. 

 

Table 5.18 Models Performance Criteria Results 

Various Models 

Performance Criteria 

MSE MAE RMSE RRMSE R R
2

 η VAF (%) 

BPNN 0.0217 0.1216 0.1473 0.1813 0.8537 0.7288 72.4927 72.8248 

RBFNN 0.0223 0.1213 0.1492 0.1837 0.8476 0.7185 71.8333 65.3360 

GRNN 0.0301 0.1458 0.1734 0.2134 0.8012 0.6419 0.6188 62.5572 

WNN 0.0227 0.1240 0.1508 0.1856 0.8438 0.7120 0.7117 71.2005 

GMDH 0.0249 0.1305 0.1579 0.1943 0.8289 0.6870 0.6840 68.6065 

MARS 0.0233 0.1265 0.1526 0.1879 0.8411 0.7074 0.7046 70.5868 

GPR 0.0245 0.1302 0.1568 0.1930 0.8338 0.6593 0.6883 68.8718 

LS-SVM 0.0215 0.1231 0.1467 0.1805 0.8542 0.7296 0.7273 72.9508 

SVM 0.0230 0.1288 0.1516 0.1866 0.8441 0.7125 0.7087 71.0200 

RVM 0.0926 0.2690 0.3043 0.3745 0.8531 0.7278 -0.1736 72.7590 

ELM 0.0217 0.1218 0.1472 0.1811 0.8532 0.7280 0.7254 72.7792 

USBM 0.0561 0.1818 0.2369 0.2916 0.7622 0.5810 0.2883 39.3169 

Ambrasey-Hendron 0.0659 0.2009 0.2566 0.3159 0.7466 0.5574 0.1649 28.0240 

Indian Standard 0.0342 0.1504 0.1849 0.2276 0.7554 0.5707 0.5665 56.9673 

Langefors-Kihlstrom 0.0456 0.1630 0.2136 0.2629 0.7833 0.6136 0.4216 49.4308 

 

This study assessed the capability of new AI techniques of LS-SVM, MARS, RVM, GPR 

and WNN as alternative ground vibration prediction tool to the benchmark AI methods of 
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BPNN, RBFNN, GRNN, ELM and SVM. The motive was to ascertain whether those 

proposed new techniques could produce comparable and satisfactory ground vibration 

predictions. Considering the dimensioned error statistic indicators (MSE, RMSE, RRMSE 

and MAE), it was found that the proposed LS-SVM produced the lowest MSE, RMSE and 

RRMSE values of 0.0215, 0.1467 and 0.1805 mm/s respectively (Table 5.18). That is, the 

LS-SVM was the best among all the candidate models. This was however, closely followed 

by the BPNN and ELM approach. These results indicate that comparatively, the proposed 

LS-SVM has strong calibration or learning power and was able to generalise well across the 

entire testing data more adequately than the other techniques considered in this study. This 

assertion is in line with the rule of thumb that, the closer the values of MSE, RMSE and 

MAE are to zero, the better the prediction capability of the developed model. However, a 

careful study of Table 5.18 indicates that comparatively, the other three proposed novel 

methods of WNN, MARS and GPR performed fairly well and thus their MSE, RMSE and 

MAE results deviate only marginally from the best performing AI methods considered in 

this research. Clearly, it can be stated that the proposed WNN, MARS and GPR can produce 

very comparable and closely related ground vibration prediction results. In comparison to 

the empirical models, the proposed AI methods outperformed them. Conversely, the 

proposed RVM technique could not produce acceptable results as it could not generalise 

well across the entire testing dataset. A visual confirmation of the predictive strength of the 

LS-SVM, WNN, MARS and GPR methods can additionally be viewed in Figures 5.5, 5.6, 

5.7 and 5.8.  

 

The R2 results presented in Table 5.18 provide quantitative evidence on how close the 

predicted ground vibration values from the various techniques are to the least squares line 

of best fit. With reference to Table 5.19, it can be seen that the proposed AI techniques (LS-

SVM, WNN, MARS, RVM and GPR) had high R2 values. This means they can 

appropriately explain the variability in the observed PPV data around its mean. However, 

in comparison with the other AI techniques, it can be observed that the LS-SVM had the 

highest R2 value of 0.7296. The other proposed methods (WNN, MARS, RVM and GPR) 

could produce comparable results as their R2 values were marginally different from the 

benchmark AI methods (BPNN, RBFNN, ELM, SVM, GRNN, GMDH) between the range 

of 0.687 to 0.7296. The empirical predictors on the other hand had lower R2 values as they 

predicted less than 62% of the variation in the observed PPV data. Figure 5.9 provides a 

graphical illustration of the R2 results. 
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Figure 5.5 Performance of Various Models for Predicting PPV Using Mean Square 

Error (MSE) 

 

 

Figure 5.6 Performance of Various Models for Predicting PPV Using Mean Absolute 

Error (MAE) 
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Figure 5.7 Performance of Various Models for Predicting PPV Using Root Mean 

Square Error (RMSE) 

 

 

Figure 5.8 Performance of Various Models for Predicting PPV Using Relative Root 

Mean Square Error (RRMSE)  

0.3043

0.2566

0.2369

0.2136

0.1849

0.1734

0.1579

0.1568

0.1526

0.1516

0.1508

0.1492

0.1473

0.1472

0.1467

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

RVM

Ambrasey-Hendron

USBM

Langefors-Kihlstrom

Indian Standard

GRNN

GMDH

GPR

MARS

SVM

WNN

RBFNN

BPNN

ELM

LS-SVM

Root Mean Square Error (mm/s)

V
a
ri

o
u

s 
T

ec
h

n
iq

u
es

0.3745

0.3159

0.2916

0.2629

0.2276

0.2134

0.1943

0.193

0.1879

0.1866

0.1856

0.1837

0.1813

0.1811

0.1805

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

RVM

Ambrasey-Hendron

USBM

Langefors-Kihlstrom

Indian Standard

GRNN

GMDH

GPR

MARS

SVM

WNN

RBFNN

BPNN

ELM

LS-SVM

Relative Root Mean Square (mm/s) 

V
a
ri

o
u

s 
T

ec
h

n
iq

u
es



119 

 

 

Figure 5.9 Performance of Various Models for Predicting PPV Using Coefficient of 

Determination  

 

The correlation coefficient, R which ranges from -1 to +1 with the strength of the 

relationship increasing towards the extremes was also used. The essence is to ascertain the 
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obtaining R values less than 0.8. The interpretation made here is that, the artificial intelligent 
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Figure 5.10 Performance of Various Models for Predicting PPV Using Correlation 

Coefficient 

 

The NASH (Equation (4.79)) is a model efficiency-based indicator. It takes values of -∞ to 

1 with improved model performance approaching one. The NASH provides the degree to 
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value with respect to the observed PPV data. Based on the computed NASH values (Table 
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could explain more than 68% of the potential error.  
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Figure 5.11 provides a graphical illustration of the NASH results. 
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Figure 5.11 Performance of Various Models for Predicting PPV Using Nash-Sutcliffe 

Efficiency Index  
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Figure 5.12 Performance of Various Models for Predicting PPV Using Variance 

Accounted For 
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results showed that the AI techniques are superior to the empirical techniques used in this 

study and are the suitable tools for modelling and predicting blast-induced ground vibration. 
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Figure 5.13 Observed PPV Versus Predicted PPV by WNN 
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Figure 5.14 Observed PPV Versus Predicted PPV by GMDH 
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Figure 5.15 Observed PPV Versus Predicted PPV by MARS 
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Figure 5.16 Observed PPV Versus Predicted PPV by LS-SVM 
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Figure 5.17 Observed PPV Versus Predicted PPV by SVM 
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Figure 5.18 Observed PPV Versus Predicted PPV by RVM 
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Figure 5.19 Observed PPV Versus Predicted PPV by ELM 
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Figure 5.20 Observed PPV Versus Predicted PPV by GPR-Matérn 3/2 
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Figure 5.21 Observed PPV Versus Predicted PPV by BPNN  
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Figure 5.22 Observed PPV Versus Predicted PPV by GRNN 
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Figure 5.23 Observed PPV Versus Predicted PPV by RBFNN 
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Figure 5.24 Observed PPV Versus Predicted PPV by USBM 
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Figure 5.25 Observed PPV Versus Predicted PPV by Ambrasey-Hendron 
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Figure 5.26 Observed PPV Versus Predicted PPV by Indian Standard 
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Figure 5.27 Observed PPV Versus Predicted PPV by Langefors-Kihlstrom 

 

5.4 Blast-Induced Ground Vibration Prediction Model Selection 

 

The AIC technique is a model selection criterion. This was utilised in this study to select the 

best model among the candidate models applied. When AIC values are made up of both 

negative and positive values, the most negative is the smallest and hence the model with 

that value is the selected model.  The computed AIC values (Table 5.19) showed that the 

proposed LS-SVM approach had a better capability of producing reliable results than the 

other investigated techniques. This is because, among the methods, the LS-SVM had the 

least AIC value (Table 5.19) and thus was selected as the best technique over the other AI 

methods and the empirical methods considered. The obtained results also revealed that the 

other proposed AI methods (WNN, MARS and GPR) produced comparable and satisfactory 

prediction results. This affirms the assertion made that, the proposed AI models can suitably 

be used to predict blast-induced ground vibration. A graphical illustration of the AIC results 

is shown in Figure 5.28.  
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Therefore, on the basis of the quantitative analyses presented in this study, it can logically 

be stated that the potential of LS-SVM, WNN, MARS and GPR in the blast-induced ground 

vibration prediction for the Ghana Manganese Limited has been duly investigated. 

 

Table 5.19 AIC Values for the Various Methods 

Various Methods AIC Values 

LS-SVM -70.111 

ELM -69.568 

BPNN -69.42 

RBFNN -67.347 

WNN -65.65 

SVM -64.833 

MARS -63.718 

GPR -59.41 

GMDH -58.314 

GRNN -43.323 

Indian Standard -39.035 

Langefors-Kihlstrom -15.968 

USBM 0.6315 

Ambrasey-Hendron 13.4178 

RVM 46.6458 
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Figure 5.28 AIC Values of the Various Blast-Induced Ground Vibration Models 
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CHAPTER 6 

INTERPRETATIONS OF AIR OVERPRESSURE PREDICTION  

 

6.1 AI Models Developed for Air Overpressure Prediction 

 

6.1.1 RBFNN Model for Air Overpressure Prediction 

 

After experimenting on the width parameter value and the maximum number of neurons in 

the hidden layer, to obtain the optimum RBFNN structure to predict air overpressure at 

NGRL, a width parameter value of 1.4 and a maximum number of 13 neurons in the hidden 

layer gave the highest R and lowest MSE for both the training and testing data sets. Hence, 

the optimum RBFNN structure selected for predicting air overpressure is [4 – 13 – 1]. That 

is, four inputs with one hidden layer of 13 neurons and one output layer. Table 6.1 presents 

the optimal training and testing results based on the R and MSE criteria. All the width 

parameter and maximum number of neurons in the hidden layer that were used to arrive at 

the optimal results are presented in Table F1 of Appendix F. 

 

Table 6.1 Optimal Training and Testing R and MSE Results for the RBFNN Model 

Width 

Parameter 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

1.4 13 0.757403 1.765968 0.76556 1.573762 

 

6.1.2 GRNN Model for Air Overpressure Prediction 

 

For the developed GRNN model for air overpressure prediction, the width parameter value 

that gave the highest R and the lowest MSE is 0.33. Table 6.2 shows the optimal training 

and testing results. However, all the width parameters that were used to arrive at the optimal 

results are presented in Table G1 of Appendix G. 

 

Table 6.2 Optimal Training and Testing R and MSE Results for the GRNN Model 

Width Parameter 
Training Testing 

R MSE R MSE 

0.33 0.8167 1.4683 0.7619 1.5050 
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6.1.3 BPNN Model for Air Overpressure Prediction 

 

Selection of the optimum training function and number of hidden neurons 

 

The results obtained by training and testing the BPNN for air overpressure prediction with 

the scaled conjugate gradient, Levenberg-Marquardt and Bayesian regularisation algorithms 

including the different number of neurons applied in the hidden layer are presented in Tables 

6.3, 6.4 and 6.5 respectively. 

 

Table 6.3 Scaled Conjugate Gradient Backpropagation Algorithm 

Numbers of 

Neurons 

Training Testing 

R MSE R MSE 

1 0.643764 2.425514 0.751499 1.529449 

2 0.801971 1.478096 0.60997 2.514451 

3 0.845982 1.177672 0.661453 2.392507 

4 0.86045 1.075407 0.463342 11.9177 

5 0.889023 0.868356 0.422787 5.027626 

6 0.916653 0.661696 0.535021 5.077056 

7 0.917788 0.653072 0.426872 7.414732 

8 0.937206 0.503875 0.304976 8.903666 

9 0.945267 0.441013 0.407616 22.97268 

10 0.940015 0.482033 -0.02687 24.35303 

11 0.956656 0.351289 0.203257 37.16648 

12 0.964665 0.287555 0.034378 56.0914 

 

From Table 6.3, it was observed that, using the scaled conjugate gradient, the number of 

neurons in the hidden layer that gave the best R and the lowest MSE for the testing data set 

is 1. It can also be realised that as the number of hidden neurons increased the R and the 

MSE of training became better while that of the testing became worse. That is, from a hidden 

layer of 4 upwards, there was overfitting. Here, the backpropagation could not learn the 

relationship between the input parameters and the target values. Hence, when new input data 

sets were introduced into the system, the air overpressure could not be properly predicted. 
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From Table 6.4, it can be observed that, using the Levenberg-Marquardt algorithm, the 

number of neurons in the hidden layer that gave the best R and the lowest MSE for the 

testing data set is 1. It can also be realised that as the number of neurons in the hidden layer 

increased, the R and the MSE of training became better while that of the testing became 

worse. That is from the hidden layer of 6 upwards, there was overfitting. 

 

Table 6.4 Levenberg-Marquardt Backpropagation Algorithm  

Numbers of 

Neurons 

Training Testing 

R MSE R MSE 

1 0.64378 2.425428 0.750613 1.535101 

2 0.74093 1.868186 0.615317 2.487786 

3 0.68527 2.19699 0.619682 2.230534 

4 0.86466 1.045275 0.714371 2.21146 

5 0.84404 1.191212 0.622374 2.866 

6 0.90438 0.754229 0.588765 4.109689 

7 0.925 0.597974 0.585553 4.251269 

8 0.92822 0.573271 0.521987 5.132623 

9 0.94545 0.439543 0.095905 28758.09 

10 0.9555 0.36018 0.22841 9.896274 

11 0.9582 0.339039 0.087962 793.0012 

12 0.9651 0.284074 0.189766 61.45825 

 

From Table 6.5, it was observed that, using the Bayesian regularisation backpropagation 

algorithm, the number of neurons in the hidden layer that gave the best R and the lowest 

MSE for the testing data set is also 1. It was also realised that, as the number of neurons in 

the hidden layer increased, the MSE of the testing data increased at a corresponding value 

as the number of neurons. 

 

The best results from Tables 6.3, 6.4 and 6.5 were selected and presented in Table 6.6. With 

reference to Table 6.6, the training function selected for the training of BPNN for the 

prediction of air overpressure at NGRL is the Bayesian regularisation backpropagation 

algorithm. This is because it gave the highest R value and lowest MSE for the testing data 

set. 
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Table 6.5 Bayesian Regularisation Backpropagation Algorithm 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

1 0.640157 2.448225 0.762784 1.473757 

2 0.757645 1.766464 0.762235 2.508773 

3 0.779699 1.628184 0.745949 3.576965 

4 0.784913 1.595108 0.758454 4.517133 

5 0.784994 1.594571 0.758129 5.522484 

6 0.785002 1.594515 0.757801 6.525853 

7 0.785006 1.594484 0.757583 7.528027 

8 0.781204 1.618605 0.745442 8.611742 

9 0.781202 1.618616 0.744025 9.623944 

10 0.781213 1.618547 0.743056 10.63229 

11 0.781211 1.618555 0.742018 11.64129 

12 0.781215 1.618529 0.741552 12.64534 

 

Table 6.6 Selection of the Best Training Function for Backpropagation Algorithm 

Training Function 

Optimum 

Hidden 

Neurons 

Training Testing 

R MSE R MSE 

Levenberg-Marquardt 

backpropagation 

algorithm 

1 0.64378 2.425428 0.750613 1.535101 

Bayesian regularisation 

backpropagation 

algorithm 

1 0.640157 2.448225 0.762784 1.473757 

Scaled conjugate 

gradient 

backpropagation 

algorithm 

1 0.643764 2.425514 0.751499 1.529449 
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Optimal BPNN structure 

 

The optimum structure of the BPNN for air overpressure prediction consists of three layers: 

input layer, hidden layer and the output layer. The BPNN structure is made up of four inputs 

with a hyperbolic tangent hidden layer transfer function and a linear output layer transfer 

function. The network was trained for 8000 epochs using the Bayesian regularisation 

backpropagation algorithm. The optimum structure of the BPNN was [4 – 1 – 1] that is four 

inputs, one hidden neuron and one output. 

 

6.1.4 WNN Model for Air Overpressure Prediction 

 

In the development of the WNN model for air overpressure prediction, it was found out 

based on the experimental results that when two wavelons were used in the hidden layer, 

the highest R and the lowest MSE were obtained on the testing data set. Thus, the structure 

of the optimum WNN is [4 – 2 – 1], that is four inputs, two wavelons in the hidden layer 

and one output. Table 6.7 shows the optimal training and testing results for the WNN 

technique based on the R and MSE criteria. All the wavelons in the hidden layer that were 

used to arrive at the optimal results are presented in Table H1 of Appendix H. 

 

Table 6.7 Optimal Training and Testing R and MSE Results for WNN 

Number of 

wavelons 

Training Testing 

R MSE R MSE 

2 0.8292 1.3045 0.6551 2.2205 

 

6.1.5 GMDH Model for Air Overpressure Prediction 

 

The developed GMDH model for air overpressure prediction having the lowest MSE and 

highest R value was found to have two parameters in input layer, one hidden layer with one 

neuron and an output layer. The corresponding polynomial equation representations of the 

developed GMDH for air overpressure prediction are shown Equations (6.1) and (6.2). 

These equations revealed that the main contributing input relative to the training and testing 

data sets are the number of blast holes, stemming length (m) and distance between the 

monitoring station and the blast point (m) to the entire inputs variables under consideration 
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Table 6.8 shows the optimal training and testing results for the GMDH technique based on 

the R and MSE criteria. 

 

Layer 1 

( ) ( ) ( )( )

( ) ( )

5 4 2 2 4

2 26

4 2

9 960 0 0555 87 51 0 01342

1 736 10 16 44

x . . x . x . x

  

x

.      x . x−

= − + +

+  −
         (6.1) 

 

Output layer 

( ) ( ) ( )( )

( ) ( )

5 1 1 5

2 25

5 1

645 7 13 82 0 1628 0 001387

0 06331 2 66 10

y . . x . x . x x

  .           x . x−

= − + − +

− + 
          (6.2) 

 

where 1x is the number of blast holes, 
2x  is the stemming length, 

4x  is the distance from 

the blasting point to the monitoring station (m), 
5x  is the resultant of layer 1.  

 

Table 6.8 Optimal Training and Testing R and MSE Results for GMDH 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

1 0.73067 1.9306 0.5025 3.5099 

 

6.1.6 MARS Model for Air Overpressure Prediction 

 

The training and testing results of the three MARS models developed based on their order 

of interactions are presented in Table 6.9.  

 

Table 6.9 Training and Testing Results for Each Order of Interaction 

Order of Interaction 
Training Testing 

R MSE R MSE 

First Order 0.5487 2.8951 0.7117 1.6961 

Second Order 0.7423 1.8595 0.6774 1.8597 

Third Order 0.6606 2.3343 0.6658 1.9132 
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From Table 6.9, it can be observed that, the MARS model with zero order gave the lowest 

MSE and the highest R value for the testing phase. Hence, the final MARS model based on 

the zero order comprises of 2 out of the 20 basis functions used at the initial forward stage. 

Table 6.10 presents the corresponding equations for the selected basis functions. 

 

Table 6.10 The Basis Functions (BF) and their Related Equations 

Basis Functions Equations 

BF9 max (0, Number of blast holes – 186) 

BF11 max (0, Distance – 1713) 

 

The developed MARS model for predicting blast-induced air overpressure is given in 

Equation (6.3). 

 

AOp = 106.156 – 0.0106961×BF9 – 0.00238971×BF11        (6.3) 

 

6.1.7 SVM Model for Air Overpressure Prediction 

 

In this study, the optimum design values of ɛ and C was set at 0.00000001 and 50 

respectively. The polynomial kernel of order one was the best kernel in this regard. Table 

6.11 shows the optimal training and testing results. 

 

Table 6.11 Optimal Training and Testing R and MSE Results for SVM 

Training Testing 

R MSE R MSE 

0.6082 2.6338 0.7357 1.6688 

 

6.1.8 LS-SVM Model for Air Overpressure Prediction 

 

In the development of the LS-SVM, the optimum design values of   (Equation (4.27)) and 

2  (Equation 4.33) that produced the best predicted air overpressure values are 3.6459 and 

0.7239. Table 6.12 shows the optimal training and testing results. 
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Table 6.12 Optimal Training and Testing R and MSE Results for LS-SVM 

Training Testing 

R MSE R MSE 

0.92375 0.64267 0.63553 2.18221 

 

6.1.9 RVM Model for Air Overpressure Prediction 

 

For the developed RVM model for air overpressure prediction, the optimum width 

parameter was found to be 1.6294. Table 6.13 shows the optimal training and testing results. 

 

Table 6.13 Optimal Training and Testing R and MSE Results for RVM 

Width 

Parameter 

Training Testing 

R MSE R MSE 

1.6294 0.62993 2.50169 0.74057 1.60649 

 

6.1.10 ELM Model for Air Overpressure Prediction 

 

For the developed ELM model for air overpressure prediction, the optimum number of 

neurons that gave the highest R and MSE is 18 having the sigmoid activation function. 

Therefore, the optimum ELM structure is [4 – 18 – 1] which equates to four inputs with one 

hidden layer of 18 neurons and one output. Table 6.14 shows the optimal training and testing 

results for the ELM technique based on the R and MSE criteria. All the neurons in the hidden 

layer that were used to arrive at the optimal results are presented in Table I1 of Appendix I. 

 

Table 6.14 Optimal Training and Testing R and MSE Results for ELM 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

18 0.78213 1.60832 0.68251 2.59418 
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6.1.11 GPR Model for Air Overpressure Prediction 

 

Using the R and MSE criteria, the comparative results obtained by the various GPR models 

using the testing data sets are presented in Table 6.15.  

 

Table 6.15 Test Results of the Various Gaussian Process Regression Model 

GPR Model Covariance Function R MSE 

GPR- Squared exponential Squared exponential 0.5430 2.4980 

GPR- Exponential Exponential 0.7059 1.7473 

GPR- Matérn 3/2 Matérn 3/2 0.65508 1.99573 

GPR- Matérn 5/2 Matérn 5/2 0.54681 4.03049 

GPR- Rational quadratic Rational quadratic 0.73091 1.6575 

 

From Table 6.15, it can be noticed that, the Rational Quadratic covariance function gave the 

highest R of 0.73091 and lowest MSE of 1.6575, relative to the other candidate covariance 

functions applied in this study. The selected proposed GPR model valid for air overpressure 

prediction has a mean function of constant 0.4536 and Rational quadratic covariance 

function with a signal variance of 44275.3144, a length scale of 8.8753 and noise variance 

of 4.23573 × 10-10. 

 

6.1.12 Empirical Models Developed for Air Overpressure Prediction 

 

Determination of the site constants of the General Predictor equation 

 

The site constants of the general predictor equation which was determined by plotting the 

air overpressure (AOp) values against the scaled distance of 3 QD is presented in Figure 

6.1. 
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Figure 6.1 Resultant AOp Versus Scaled Distance Relationship for General Predictor 

Equation 

 

From Figure 6.1, the site constants of the general predictor equation, k and β are 133.46 and 

-0.041 respectively. The Newmont model is used by engineers at Newmont Golden Ridge 

Limited (NGRL) to predict air overpressure. Its mathematical notation is given in Equation 

(4.73).  

 

6.2 Air Overpressure Prediction Using the Various Models 

 

The AOp predicted values of the testing data using the various AI and empirical models are 

presented in Table J1 of Appendix J. 

 

6.3 Comparison of the AI Methods and the Empirical Methods for Air 

Overpressure Prediction 

 

The statistical results based on the testing data for each of the techniques applied are 

presented in Table 6.16. 
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Table 6.16 Models Performance Criteria Results 

Various 

Techniques 

Performance Indicators 

MSE RMSE 
RRMSE 

(%) 
MAE R R2 NASH 

VAF 

(%) 

BPNN 1.4738 1.214 1.1605 0.9731 0.7628 0.5818 0.5712 57.938 

GRNN 1.505 1.2268 1.1728 1.0072 0.7619 0.5805 0.5621 56.831 

RBFNN 1.5738 1.2545 1.1992 1.0574 0.7656 0.5861 0.5421 58.352 

GMDH 3.5099 1.8735 1.791 1.2256 0.5025 0.2525 -0.0213 -2.1175 

WNN 2.2205 1.4901 1.4245 1.1955 0.6551 0.4292 0.3539 37.546 

SVM 1.6688 1.2918 1.2349 1.0629 0.7357 0.5412 0.5144 53.284 

LS-SVM 2.1822 1.4772 1.4122 1.1933 0.6355 0.4039 0.365 38.466 

RVM 1.6065 1.2675 1.2117 1.0148 0.7405 0.5484 0.5326 54.762 

ELM 2.5942 1.6106 1.5397 1.2343 0.6825 0.4658 0.2452 24.881 

GPR 1.6575 1.2874 1.2307 1.0732 0.7309 0.5342 0.5177 52.027 

MARS 1.6961 1.3024 1.2450 1.0738 0.7251 0.5257 0.5065 50.7183 

General 

Predictor 
2.5942 1.6106 1.5397 1.2343 0.6825 0.4658 0.2452 24.881 

Newmont 

Model 
6.6577 2.5803 2.4666 2.2659 0.681 0.4637 -0.9372 -16.671 

 

From Table 6.16 it can be observed that the BPNN model had the lowest MSE, RMSE, 

RRMSE and MAE values of 1.471, 1.2129, 1.1594 and 0.9843 dB respectively These 

statistical results indicate that the developed BPNN model for AOp predictions marginally 

deviated from the observed PPV. The reason being that the closer the statistical error 

indicator (MSE, RMSE, RRMSE and MAE) is to zero, the better the model could 

approximate closely the observed data. It can also be observed that the proposed AI 

techniques of GRNN, RBFNN, RVM, and MARS produced comparable results to 

benchmark techniques of BPNN, GPR and SVM. However, the other proposed and tested 

AI techniques of LS-SVM, WNN and ELM could not adequately generalise well on the test 

data and hence failed to produce comparable results. This was directly followed by the 

General Predictor, GMDH and Newmont model in a decreasing order of performance. A 

visual confirmation of the predictive strength of the BPNN and the proposed AI techniques 
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(GRNN, RBFNN, RVM and MARS) can additionally be viewed in Figures 6.2, 6.3, 6.4 and 

6.5.  

 

 

Figure 6.2 Performance of Various Models for Predicting AOp Using Mean Square 

Error (MSE) 

 

 

Figure 6.3 Performance of Various Models for Predicting AOp Using Root Mean 

Square Error (RMSE) 
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Figure 6.4 Performance of Various Models for Predicting AOp Using Relative Root 

Mean Square Error (RRMSE) 

 

 

Figure 6.5 Performance of Various Models for Predicting AOp Using Mean Absolute 

Error (MAE) 
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In Table 6.16, it is clear that the benchmark techniques of BPNN, GPR and SVM as well as 

the proposed and tested AI techniques of GRNN, RBFNN, MARS and RVM had R values 

greater than 0.7. This reveals a slightly high strength of linear correlation between the 

measured and predicted AOp. This is because the correlation coefficient, R which ranges 

from -1 to +1 with the strength of the relationship increasing towards the extremes, is used 

to ascertain the strength of the models’ prediction performance by comparing the 

relationship between the observed and the predicted AOp values.  

 

The analysis of the results presented in Table 6.16 further revealed that the other new AI 

techniques (LS-SVM, ELM and WNN) tested, the benchmark technique of GMDH and 

empirical models of General predictor and Newmont Model performed poorly and could 

not adequately model the test data. The reason being that, these models had R values less 

than 0.7. Comparatively, the AI techniques of RBFNN, GRNN and BPNN had the high R 

values, with RBFNN having the highest, indicating the strongest strength of correlation. 

This assertion can additionally be viewed in Figure 6.6. 

 

 

Figure 6.6 Performance of Various Models for Predicting AOp Using Correlation 
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The R2 results presented in Table 6.16 provide quantitative evidence on how close the 

predicted air overpressure values using the various techniques are to the least squares line 

of best fit. Hence with reference to Table 6.16, it is evident that the benchmark techniques 

of BPNN, GPR, SVM as well as the newly tested AI techniques of GRNN, RBFNN, MARS 

and RVM were able to predict a little more than 50% of the variation in the observed AOp 

data. However, the other AI techniques of GMDH, LS-SVM, ELM, WNN together with the 

empirical models of General predictor and Newmont Model were able to predict less than 

50% of the variation in the observed AOp data. This means that the developed BPNN, 

GRNN, RBFNN, MARS, SVM, RVM and GPR models could appropriately explain the 

variability in the observed AOp data around its mean more effectively than the other AI and 

empirical methods. Figure 6.7 provides a graphical illustration of the R2 results. 

 

 

Figure 6.7 Performance of Various Models for Predicting AOp Using Coefficient of 

Determination  
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(Table 6.16), it was found that 57.12% of the potential error has been explained by the 

BPNN model developed for predicting air overpressure. This was however, closely followed 

by the GRNN approach, with a NASH value of 56.12%. The rest of the models, RBFNN, 

RVM, GPR, SVM, MARS, LS-SVM, WNN, ELM, General Predictor, GMDH and 

Newmont Model performed in that decreasing order. Furthermore, it can be stated based on 

graphical evidence (Figure 6.8) that among the fifteen methods applied, the BPNN, GPR, 

SVM and the proposed AI techniques of GRNN, RBFNN, MARS and RVM approaches 

have comparatively demonstrated better capabilities of producing satisfactory air 

overpressure prediction results than the other methods utilised in this study. 

 

 

Figure 6.8 Performance of Various Models for Predicting AOp Using Nash-Sutcliffe 

Efficiency Index  
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performance of these aforementioned newly tested AI techniques to the benchmark 

techniques of BPNN, GPR and SVM on the basis of the VAF values (Table 6.16), it can be 

observed that the RBFNN was most able to explain the potential error as it had the highest 

VAF value of 58.352%. The other had very comparable VAF values. 

 

The analysis of the results presented in Table 6.16 further revealed that the other new AI 

techniques (LS-SVM, ELM and WNN) tested, the benchmark technique of GMDH and 

empirical models of General predictor and Newmont Model were able to predict less than 

39% of the variation in the observed AOp data. They therefore performed poorly and could 

not adequately model the test data as they had.  

 

 

Figure 6.9 Performance of Various Models for Predicting PPV Using Variance 

Accounted For 
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Scatter plots along with the regression line, 95% PI and CI for the various models are 

presented in Figures 6.10 to 6.22. A critical look at the figures shows that the 1:1 line for 

each model fell in between the 95% CI lines. This means that, there is a 95% probability 

that the true best-fit line for the population data lies within the CI. It can also be observed 

that at least 93% of the predicted AOp values fell within the 95% PI lines for all the models. 

This indicates that when these models are used to predict new PPV values, there is a 93% 

probability that, at least 96% of the predicted AOp values will fall into the prediction 

interval. Comparatively, the proposed GRNN had the highest value of 100%. This was 

keenly followed by BPNN, with value of about 99%. The empirical models of General 

Predictor and Newmont Model had the lowest value of about 93%. The comparative results 

showed that the GRNN and BPNN models are superior to the other predictive techniques 

used in this study and is a promising tool for modelling and predicting air overpressure. 
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Figure 6.10 Observed AOp Versus Predicted AOp by BPNN 
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Figure 6.11 Observed AOp Versus Predicted AOp by GRNN 
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Figure 6.12 Observed AOp Versus Predicted AOp by RBFNN 
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Figure 6.13 Observed AOp Versus Predicted AOp by GMDH 
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Figure 6.14 Observed AOp Versus Predicted AOp by WNN 
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Figure 6.15 Observed AOp Versus Predicted AOp by SVM 

 

109108107106105104103102101100

110

108

106

104

102

100

Observed AOp (dB)

P
re

d
ic

te
d

 A
O

p
 (

d
B

)

Regression

95% CI

95% PI

 

Figure 6.16 Observed AOp Versus Predicted AOp by LS-SVM 

 



154 

 

109108107106105104103102101100

110

108

106

104

102

100

Observed AOp (dB)

P
re

d
ic

te
d

 A
O

p
 (

d
B

)
Regression

95% CI

95% PI

 

Figure 6.17 Observed AOp Versus Predicted AOp by RVM 

 

109108107106105104103102101100

115

110

105

100

Observed AOp (dB)

P
re

d
ic

te
d

 A
O

p
 (

d
B

)

Regression

95% CI

95% PI

 

Figure 6.18 Observed AOp Versus Predicted AOp by ELM 
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Figure 6.19 Observed AOp Versus Predicted AOp by GPR 
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Figure 6.20 Observed AOp Versus Predicted AOp by MARS 
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Figure 6.21 Observed AOp Versus Predicted AOp by General Predicted 
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Figure 6.22 Observed AOp Versus Predicted AOp by Newmont Model 
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6.4 Air Overpressure Prediction Model Selection 

 

The calculated AIC values for the different air over pressure prediction models presented in 

this research are shown in Table 6.17 and graphically illustrated in Figure 6.23. 

 

From Table 6.17 and Figure 6.23, it can be observed that BPNN model had the lowest AIC 

value of 36.3105 is the best model among the candidate investigated models. This because 

in relation to the AIC computations, models with the lowest AIC values are the best and 

should be the selected model. Nevertheless, it can also be observed that the proposed AI 

techniques of GRNN, RBFNN, MARS and RVM produced relatively lower AIC values and 

hence can be said to produce comparable results to the BPNN. Conversely, the Newmont 

model had the highest AIC value and hence the most unsuitable model for predicting air 

overpressure among the other investigated techniques. Thus, the BPNN model is the most 

recommended approach to predict air overpressure at Newmont Golden Ridge Limited. This 

confirms the superiority of the AI techniques as the optimum models in predicting air 

overpressure over the popularly used empirical models (general predictor and Newmont 

model). 

 

Table 6.17 The Various Models’ AIC Values 

Various Techniques AIC 

BPNN 36.3105 

GRNN 37.8414 

RBFNN 41.1032 

RVM 42.6057 

GPR 44.8873 

SVM 45.3831 

MARS 46.5698 

General Predictor 51.5905 

LS-SVM 64.9647 

WNN 66.2334 

ELM 77.5889 

GMDH 99.6587 

Newmont Model 142.391 
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Therefore, on the basis of the quantitative analyses presented in this study, it can logically 

be stated that the potential of GRNN, RBFNN, MARS and RVM in the air overpressure 

prediction for the Newmont Golden Ridge Limited has been duly investigated. 

 

 

Figure 6.23 AIC Values of the Various Air Overpressure Prediction Models 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

 

In the present study, blast-induced ground vibration and air overpressure prediction using 

AI techniques were investigated. In the case of blast-induced ground vibration prediction, 

five novel AI techniques of LS-SVM, WNN, RVM, MARS and GPR have been proposed 

and tested as new adaptive computational alternative tool for PPV prediction. To provide a 

comprehensive performance evaluation of these novel techniques, six benchmark methods 

namely BPNN, GRNN, RBFNN, GMDH, SVM, and ELM and four empirical methods of 

USBM, Indian Standard, Ambrasey-Hendron and Langefors-Kihlstrom were applied to 

assess the suitability of the proposed LS-SVM, WNN, MARS, RVM and GPR approaches.  

 

To achieve this aim, a total of 210 blast event data sets acquired from Ghana Manganese 

Company (GMC) were used to develop the various predictive models. Out of the 210 blast 

data, 130 was used in the model construction stage. The remaining 80 blast data sets were 

used to independently assess the models’ adequacy. To formulate the AI models, the number 

of blast holes, cooperating charge (kg), distance between blasting point and monitoring 

station (m), hole depth (m), powder factor were the input parameters while the PPV value 

was used as the output parameter.  

 

Statistical performance criteria of mean square error (MSE), root mean square error 

(RMSE), relative root mean square error (RRMSE), mean absolute error (MAE), coefficient 

of determination (R2), correlation coefficient (R), Nash-Sutcliffe efficiency index and 

variance accounted for (VAF) were used as the basis for evaluating the performance of the 

techniques employed in this research. The Akaike Information Criterion (AIC) approach 

was further used in selecting the best model among the candidate techniques considered in 

this research.  

 

Based on the obtained statistical results, it was found out that four out of the five proposed 

AI techniques (LS-SVM, WNN, MARS and GPR) could produce good ground vibration 

predictions. Hence LS-SVM, WNN, MARS and GPR were proposed to be used as suitable 
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alternative tools to predict blast-induced ground vibration. However, taking into account all 

the methods, the LS-SVM model had the highest performance capacity and was the best 

selected model based on the AIC approach for the prediction of blast-induced ground 

vibration for Ghana Manganese Company Limited. The overall analysis indicates that the 

proposed LS-SVM, WNN, MARS and GPR models have demonstrated their suitability to 

serve as alternatives AI prediction tools due to strong calibration power and good 

generalisation capabilities. Therefore, the proposed LS-SVM, WNN, MARS and GPR 

models could be replicated and applied in the mining and civil engineering industries where 

blast operation is still relevant as a source of rock fragmentation. 

 

In the case of air-overpressure prediction, the predictive capability of the novel methods of 

GRNN, RBFNN, LS-SVM, ELM, WNN, RVM and MARS were investigated. To indicate 

the performance of those aforementioned techniques, benchmark techniques of BPNN, 

GMDH, GPR, SVM and two empirical models (General predictor and Newmont model) 

were developed. In that regard, a total of 171 blast event data sets acquired from Newmont 

Golden Ridge Limited (NGRL) were used in the air overpressure prediction modelling. Out 

of the 171 blast data sets, 98 were used in the model development stage. The remaining 73 

blast data sets were used to independently assess the performance of the various predictive 

models. To develop the AI models, number of blast holes, stemming height (m), cooperating 

charge (kg), distance between blasting point and monitoring station (m), were considered as 

input parameters while the AOp value was the output parameter. Based on the obtained 

statistical results, it was found that four out of the seven novel methods (GRNN, RBFNN, 

RVM, and MARS) tested, produced comparable and satisfactory results as the widely used 

BPNN, GPR and SVM. By virtue of that, the GRNN, RBFNN, RVM and MARS methods 

proposed could serve as suitable alternatives to the prediction of air overpressure. However, 

based on the obtained AIC values, the BPNN was the selected model for the prediction of 

air overpressure at Newmont Golden Ridge Limited (NGRL). 

 

The statistical analyses confirmed the superiority of applying AI techniques to the empirical 

techniques in predicting ground vibration and air overpressure. To this end, it is clear that 

the computational adaptive strategy of the AI techniques applied in this research enabled 

the correct calibration and generalisation to the data set. 
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Finally, a front-end, user-friendly, interactive application software was developed in the 

MATLAB program environment which enables the user to upload the data sets and generate 

the necessary results and graphs automatically. The essence of this AI-based software is to 

provide the mining engineer prior information about the efficiency of the blast design before 

blasting. In that regard, the blast design parameters can be fed into the software to estimate 

the ground vibration and air overpressure to be recorded if the current blast is carried out 

per the design.  

 

7.2 Recommendations 

 

It is recommended that: 

i. The selected artificial intelligent techniques for predicting blast-induced ground 

vibration and air overpressure should be adopted and used in Ghana Manganese 

Company Limited and Newmont Golden Ridge Limited since only the empirical 

predictors are being used. The AI-based software could be used for this purpose. 

 

ii. Previous studies reviewed have shown that little has been done in the area of 

applying evolutionary optimisation methods to automate the artificial intelligent 

system. This optimisation will minimise the human interferences that are usually 

encountered in majority of the artificial intelligent model development process, 

improve the computational speed as well as realising global optimum. This is 

because most artificial intelligent methods are based on fine tuning iterative 

parameters, slow convergence due to the gradient descent training algorithms used 

and possibility of not realising global optimisation but rather local minima. 

 

iii. The application of dimensionality reduction methods in ground vibration induced by 

blasting and air overpressure prediction is one area that is yet to be explored. The 

essence of applying those methods is to reduce the dimension of input data that are 

being used to create the model. The reason is that, it is not all the input parameters 

that contribute equally to the prediction of the output (vibration and air 

overpressure). Hence, to reduce the complexity of the model, check the relevance of 

each input parameter there is the need to move in such direction of research. This 

will further enhance the predictive strength of the artificial intelligent models. 
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iv. For future research works, denoising techniques such as discrete wavelet transforms 

(DWT) may be applied to remove any white noise in the data before applying the 

artificial intelligent techniques. Elimination of the noise and uncertainty in the data 

can lead to enhancement in the AI model prediction results.  
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APPENDICES 

 

APPENDIX A 

 

EXPERIMENTATION RESULTS OF THE WIDTH PARAMETER AND 

MAXIMUM NUMBER OF NEURONS FOR DEVELOPMENT OF RBFNN 

MODEL FOR BLAST-INDUCED GROUND VIBRATION PREDICTION 

 

Table A1 Training and Testing R and MSE Results for RBFNN Blast-Induced Ground 

Vibration Prediction Model 

Width 

Parameter 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

0.1 1 0.275726 0.111173 0.283751 0.081774 

0.1 2 0.319904 0.108007 0.211568 0.081862 

0.1 3 0.363352 0.104435 0.217865 0.082933 

0.1 4 0.422694 0.098823 0.217854 0.083946 

0.1 5 0.443424 0.096662 0.236904 0.084755 

0.1 6 0.482657 0.092291 0.356354 0.084584 

0.1 7 0.518667 0.087952 0.356335 0.08571 

0.1 8 0.543294 0.084806 0.351216 0.085979 

0.1 9 0.570436 0.081168 0.41106 0.084089 

0.1 10 0.589657 0.078485 0.442657 0.081618 

0.1 11 0.611084 0.07539 0.442663 0.082696 

0.1 12 0.62603 0.073165 0.443316 0.083686 

0.1 13 0.634537 0.071875 0.442485 0.084488 

0.1 14 0.648811 0.069671 0.525773 0.082059 

0.1 15 0.656471 0.068468 0.526114 0.082995 

0.1 16 0.671006 0.066146 0.526142 0.084132 

0.1 17 0.684702 0.063912 0.526202 0.085329 

0.1 18 0.698628 0.061594 0.533183 0.086269 

0.1 19 0.711081 0.059482 0.533205 0.087519 

0.1 20 0.721833 0.057628 0.533159 0.088752 
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Table A1 Continued 

0.2 1 0.248319 0.112901 0.10499 0.081979 

0.2 2 0.425948 0.09849 0.359088 0.071537 

0.2 3 0.434543 0.097601 0.346203 0.073066 

0.2 4 0.547208 0.084292 0.341011 0.075794 

0.2 5 0.583052 0.079417 0.538258 0.057927 

0.2 6 0.589983 0.078439 0.5337 0.05831 

0.2 7 0.606154 0.076112 0.54257 0.058091 

0.2 8 0.629439 0.07265 0.539881 0.059196 

0.2 9 0.654266 0.068816 0.658913 0.045289 

0.2 10 0.688761 0.063241 0.660202 0.045584 

0.2 11 0.712994 0.059154 0.661193 0.046026 

0.2 12 0.741503 0.054165 0.661857 0.046516 

0.2 13 0.74419 0.053685 0.661903 0.046807 

0.2 14 0.761554 0.050539 0.664749 0.046877 

0.2 15 0.768439 0.049271 0.661138 0.047573 

0.2 16 0.782248 0.046695 0.661386 0.048229 

0.2 17 0.794304 0.044408 0.655762 0.049647 

0.2 18 0.80527 0.042297 0.641298 0.052536 

0.2 19 0.811629 0.04106 0.64755 0.052281 

0.2 20 0.819363 0.039543 0.644535 0.05333 

0.3 1 0.397247 0.101333 0.313717 0.074817 

0.3 2 0.630005 0.072564 0.338138 0.078556 

0.3 3 0.634705 0.071849 0.357289 0.077405 

0.3 4 0.685314 0.063811 0.407987 0.07416 

0.3 5 0.742982 0.053901 0.586002 0.056733 

0.3 6 0.763735 0.050139 0.585113 0.058355 

0.3 7 0.767985 0.049355 0.579566 0.059014 

0.3 8 0.782899 0.046572 0.576328 0.060483 

0.3 9 0.802845 0.042767 0.574744 0.061677 

0.3 10 0.812337 0.040922 0.553548 0.064747 

0.3 11 0.821804 0.039061 0.566973 0.062306 
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Table A1 Continued 

0.3 12 0.831128 0.037206 0.645307 0.050092 

0.3 13 0.852706 0.032835 0.643252 0.050937 

0.3 14 0.871751 0.028883 0.650709 0.050832 

0.3 15 0.871752 0.028883 0.65072 0.050817 

0.3 16 0.881148 0.026901 0.651075 0.050921 

0.3 17 0.890561 0.024894 0.649629 0.05195 

0.3 18 0.89515 0.023909 0.646363 0.052868 

0.3 19 0.901366 0.022565 0.665281 0.049965 

0.3 20 0.901371 0.022564 0.665092 0.050023 

0.4 1 0.518658 0.087953 0.432733 0.067549 

0.4 2 0.770304 0.048926 0.490162 0.068111 

0.4 3 0.772622 0.048496 0.502774 0.066529 

0.4 4 0.812153 0.040958 0.555656 0.061092 

0.4 5 0.834398 0.036551 0.555476 0.063558 

0.4 6 0.849099 0.033573 0.662187 0.048943 

0.4 7 0.853458 0.03268 0.642186 0.051379 

0.4 8 0.857729 0.031801 0.635743 0.052198 

0.4 9 0.857748 0.031797 0.635168 0.052366 

0.4 10 0.860805 0.031165 0.634441 0.051629 

0.4 11 0.872646 0.028695 0.651038 0.050553 

0.4 12 0.888703 0.025292 0.651777 0.051361 

0.4 13 0.894703 0.024005 0.650989 0.050717 

0.4 14 0.896192 0.023684 0.646553 0.051666 

0.4 15 0.897848 0.023326 0.652059 0.049727 

0.4 16 0.901806 0.022469 0.688968 0.044926 

0.4 17 0.910203 0.020639 0.717808 0.040524 

0.4 18 0.921074 0.018243 0.714576 0.041238 

0.4 19 0.925677 0.01722 0.714948 0.041447 

0.4 20 0.926012 0.017146 0.712428 0.041875 

0.5 1 0.578427 0.080064 0.504486 0.061103 

0.5 2 0.815808 0.040242 0.581805 0.057751 
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Table A1 Continued 

0.5 3 0.816562 0.040094 0.587587 0.056334 

0.5 4 0.843352 0.034743 0.591508 0.056076 

0.5 5 0.859317 0.031473 0.586983 0.057928 

0.5 6 0.861138 0.031096 0.568268 0.060346 

0.5 7 0.878426 0.027477 0.704586 0.043135 

0.5 8 0.884992 0.026084 0.725471 0.039804 

0.5 9 0.890943 0.024812 0.71877 0.040665 

0.5 10 0.893525 0.024258 0.711656 0.041816 

0.5 11 0.893634 0.024235 0.713519 0.041327 

0.5 12 0.901148 0.022612 0.710175 0.042603 

0.5 13 0.901149 0.022612 0.709997 0.042633 

0.5 14 0.904621 0.021858 0.706552 0.043053 

0.5 15 0.913317 0.019955 0.719822 0.041486 

0.5 16 0.917321 0.019074 0.71305 0.04238 

0.5 17 0.919925 0.018498 0.710304 0.043076 

0.5 18 0.922245 0.017984 0.710308 0.043218 

0.5 19 0.925612 0.017235 0.715811 0.04319 

0.5 20 0.928823 0.016519 0.739703 0.039474 

0.6 1 0.734168 0.055467 0.573759 0.0596 

0.6 2 0.744408 0.053646 0.612852 0.051894 

0.6 3 0.842341 0.034948 0.639486 0.048471 

0.6 4 0.842687 0.034878 0.643083 0.047867 

0.6 5 0.860616 0.031204 0.672754 0.044429 

0.6 6 0.866006 0.030084 0.655288 0.046187 

0.6 7 0.889472 0.025128 0.695239 0.042458 

0.6 8 0.902431 0.022334 0.70253 0.041843 

0.6 9 0.902507 0.022317 0.703871 0.041459 

0.6 10 0.904314 0.021924 0.69283 0.043322 

0.6 11 0.904319 0.021923 0.692266 0.043398 

0.6 12 0.909819 0.020723 0.71386 0.041059 

0.6 13 0.917128 0.019116 0.722182 0.03977 
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Table A1 Continued 

0.6 14 0.91847 0.01882 0.712045 0.040985 

0.6 15 0.921021 0.018255 0.718791 0.039853 

0.6 16 0.921277 0.018198 0.71566 0.040483 

0.6 17 0.923363 0.017735 0.710659 0.041069 

0.6 18 0.924775 0.017421 0.716765 0.040621 

0.6 19 0.926868 0.016955 0.73533 0.038391 

0.6 20 0.932512 0.015692 0.73116 0.040066 

0.7 1 0.762787 0.050313 0.614573 0.0538 

0.7 2 0.764887 0.049927 0.633267 0.051503 

0.7 3 0.811792 0.041029 0.742456 0.036888 

0.7 4 0.86725 0.029825 0.730679 0.039473 

0.7 5 0.889361 0.025151 0.736593 0.037032 

0.7 6 0.88937 0.025149 0.736782 0.037029 

0.7 7 0.890946 0.024812 0.729187 0.037984 

0.7 8 0.891211 0.024755 0.732297 0.03734 

0.7 9 0.899088 0.023058 0.740596 0.036851 

0.7 10 0.905228 0.021725 0.744188 0.036963 

0.7 11 0.909064 0.020888 0.74362 0.036139 

0.7 12 0.913729 0.019865 0.770347 0.032663 

0.7 13 0.917645 0.019002 0.766056 0.033075 

0.7 14 0.918102 0.018901 0.763545 0.033416 

0.7 15 0.921254 0.018203 0.783513 0.030897 

0.7 16 0.923595 0.017684 0.780298 0.03131 

0.7 17 0.926086 0.017129 0.762931 0.033553 

0.7 18 0.927111 0.016901 0.756182 0.034536 

0.7 19 0.931051 0.01602 0.726945 0.038859 

0.7 20 0.932484 0.015699 0.723575 0.039419 

0.8 1 0.772562 0.048507 0.6386 0.049833 

0.8 2 0.836114 0.036206 0.650382 0.053662 

0.8 3 0.866127 0.030059 0.653457 0.047417 

0.8 4 0.866274 0.030028 0.656314 0.04688 
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0.8 5 0.884681 0.02615 0.723456 0.038169 

0.8 6 0.884906 0.026102 0.727057 0.03765 

0.8 7 0.888832 0.025265 0.705532 0.040285 

0.8 8 0.898313 0.023226 0.746577 0.035236 

0.8 9 0.902456 0.022328 0.756183 0.03401 

0.8 10 0.90707 0.021324 0.784709 0.030558 

0.8 11 0.911341 0.020389 0.789842 0.02989 

0.8 12 0.912601 0.020113 0.791183 0.029984 

0.8 13 0.914602 0.019673 0.787297 0.031075 

0.8 14 0.915905 0.019386 0.791674 0.030208 

0.8 15 0.91704 0.019135 0.796276 0.02969 

0.8 16 0.920179 0.018442 0.794338 0.030086 

0.8 17 0.923849 0.017627 0.795691 0.029774 

0.8 18 0.925863 0.017179 0.79135 0.029939 

0.8 19 0.928447 0.016603 0.7853 0.030942 

0.8 20 0.931218 0.015983 0.792938 0.030618 

0.9 1 0.825541 0.03832 0.719555 0.038673 

0.9 2 0.825755 0.038277 0.718024 0.039046 

0.9 3 0.865717 0.030144 0.712697 0.042437 

0.9 4 0.887838 0.025477 0.759339 0.033884 

0.9 5 0.889213 0.025183 0.745479 0.035526 

0.9 6 0.900765 0.022695 0.77883 0.031234 

0.9 7 0.907058 0.021326 0.797109 0.028821 

0.9 8 0.908439 0.021025 0.788838 0.029832 

0.9 9 0.909037 0.020894 0.788439 0.029928 

0.9 10 0.912189 0.020203 0.791936 0.029622 

0.9 11 0.912662 0.020099 0.791481 0.029819 

0.9 12 0.916203 0.01932 0.782076 0.031472 

0.9 13 0.918196 0.01888 0.776077 0.032417 

0.9 14 0.926477 0.017042 0.751842 0.036105 

0.9 15 0.927995 0.016704 0.755569 0.035021 
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Table A1 Continued 

0.9 16 0.928314 0.016632 0.751721 0.035421 

0.9 17 0.929383 0.016393 0.761292 0.034486 

0.9 18 0.931144 0.015999 0.771834 0.03287 

0.9 19 0.931811 0.015849 0.767963 0.033608 

0.9 20 0.932074 0.015791 0.762981 0.034315 

1 1 0.85597 0.032163 0.791319 0.0304 

1 2 0.859871 0.031358 0.780062 0.03153 

1 3 0.86371 0.030562 0.762469 0.033641 

1 4 0.879537 0.027242 0.785182 0.031003 

1 5 0.87959 0.027231 0.783996 0.03125 

1 6 0.892074 0.02457 0.78448 0.030714 

1 7 0.904887 0.0218 0.791338 0.03009 

1 8 0.906378 0.021475 0.79375 0.030504 

1 9 0.910386 0.020599 0.804669 0.028217 

1 10 0.913655 0.019881 0.808195 0.027506 

1 11 0.916528 0.019248 0.814868 0.026595 

1 12 0.917758 0.018977 0.812589 0.026944 

1 13 0.919496 0.018593 0.808947 0.02739 

1 14 0.922579 0.017909 0.793882 0.029227 

1 15 0.923626 0.017677 0.800969 0.028392 

1 16 0.924511 0.01748 0.790029 0.029872 

1 17 0.925246 0.017317 0.780722 0.031249 

1 18 0.926448 0.017049 0.792992 0.02965 

1 19 0.928657 0.016556 0.801662 0.029123 

1 20 0.930085 0.016236 0.814045 0.027598 

1.1 1 0.851214 0.03314 0.713811 0.041201 

1.1 2 0.856546 0.032045 0.736104 0.037015 

1.1 3 0.883989 0.026298 0.760324 0.034126 

1.1 4 0.892012 0.024583 0.74156 0.036016 

1.1 5 0.902203 0.022383 0.771674 0.032008 

1.1 6 0.902302 0.022362 0.769604 0.03225 
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1.1 7 0.907125 0.021312 0.782743 0.030766 

1.1 8 0.907379 0.021256 0.776961 0.031594 

1.1 9 0.913381 0.019941 0.797006 0.029289 

1.1 10 0.914653 0.019662 0.792853 0.029599 

1.1 11 0.915253 0.019529 0.793874 0.029393 

1.1 12 0.916492 0.019256 0.79389 0.029274 

1.1 13 0.918181 0.018884 0.801862 0.028334 

1.1 14 0.920053 0.01847 0.811386 0.027193 

1.1 15 0.922273 0.017977 0.819307 0.02645 

1.1 16 0.92371 0.017658 0.804466 0.028342 

1.1 17 0.924993 0.017373 0.793743 0.029771 

1.1 18 0.925873 0.017177 0.784824 0.030974 

1.1 19 0.926971 0.016932 0.779037 0.031832 

1.1 20 0.92819 0.01666 0.790546 0.030057 

1.2 1 0.84881 0.033632 0.713341 0.04084 

1.2 2 0.87737 0.0277 0.762568 0.033325 

1.2 3 0.878663 0.027427 0.757477 0.034326 

1.2 4 0.880439 0.027051 0.745772 0.035713 

1.2 5 0.888748 0.025282 0.742078 0.035793 

1.2 6 0.902887 0.022235 0.786539 0.030208 

1.2 7 0.90661 0.021424 0.782238 0.031421 

1.2 8 0.906623 0.021421 0.780839 0.031631 

1.2 9 0.909353 0.020825 0.796038 0.029488 

1.2 10 0.909897 0.020706 0.799259 0.029183 

1.2 11 0.910976 0.020469 0.795649 0.029352 

1.2 12 0.913838 0.019841 0.812781 0.027156 

1.2 13 0.913999 0.019805 0.812465 0.027205 

1.2 14 0.914344 0.01973 0.819008 0.02624 

1.2 15 0.916943 0.019157 0.814872 0.026672 

1.2 16 0.91794 0.018937 0.818745 0.026177 

1.2 17 0.918941 0.018716 0.817868 0.026385 
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1.2 18 0.920773 0.01831 0.818943 0.026108 

1.2 19 0.924112 0.017569 0.816174 0.026472 

1.2 20 0.928312 0.016633 0.815975 0.027112 

1.3 1 0.866475 0.029986 0.813181 0.027491 

1.3 2 0.884188 0.026255 0.797461 0.0293 

1.3 3 0.890251 0.024961 0.783616 0.030789 

1.3 4 0.90105 0.022633 0.810029 0.027123 

1.3 5 0.902174 0.02239 0.804217 0.027912 

1.3 6 0.904096 0.021972 0.803199 0.028196 

1.3 7 0.905546 0.021656 0.805505 0.028181 

1.3 8 0.911776 0.020294 0.818808 0.026227 

1.3 9 0.914234 0.019754 0.834202 0.024499 

1.3 10 0.91495 0.019596 0.834247 0.024387 

1.3 11 0.915379 0.019502 0.83384 0.024374 

1.3 12 0.916345 0.019289 0.829727 0.025079 

1.3 13 0.917225 0.019095 0.822193 0.02628 

1.3 14 0.920288 0.018417 0.830766 0.024997 

1.3 15 0.920434 0.018385 0.832653 0.024762 

1.3 16 0.924909 0.017392 0.805338 0.028581 

1.3 17 0.924919 0.017389 0.805472 0.028542 

1.3 18 0.924925 0.017388 0.804 0.028724 

1.3 19 0.925395 0.017283 0.802276 0.028835 

1.3 20 0.926193 0.017105 0.798342 0.029099 

1.4 1 0.861492 0.031022 0.809724 0.027926 

1.4 2 0.880008 0.027143 0.791952 0.029974 

1.4 3 0.88716 0.025622 0.778312 0.031406 

1.4 4 0.901865 0.022457 0.812138 0.026876 

1.4 5 0.903118 0.022184 0.809573 0.027229 

1.4 6 0.90884 0.020937 0.81581 0.026657 

1.4 7 0.908856 0.020933 0.816457 0.026583 

1.4 8 0.910045 0.020673 0.824975 0.025379 
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1.4 9 0.910845 0.020498 0.828122 0.025088 

1.4 10 0.911929 0.02026 0.830148 0.024835 

1.4 11 0.912963 0.020033 0.824101 0.02554 

1.4 12 0.913566 0.019901 0.819127 0.026282 

1.4 13 0.914276 0.019744 0.812772 0.027332 

1.4 14 0.916131 0.019336 0.814631 0.026762 

1.4 15 0.917701 0.01899 0.824866 0.02528 

1.4 16 0.917843 0.018958 0.827347 0.024948 

1.4 17 0.919389 0.018616 0.826022 0.025058 

1.4 18 0.920857 0.018291 0.824439 0.025363 

1.4 19 0.921771 0.018089 0.814192 0.026768 

1.4 20 0.924658 0.017447 0.806207 0.028172 

1.5 1 0.866303 0.030022 0.761079 0.035104 

1.5 2 0.883929 0.02631 0.784067 0.031643 

1.5 3 0.896801 0.023552 0.799523 0.028461 

1.5 4 0.897307 0.023443 0.794502 0.029174 

1.5 5 0.903337 0.022137 0.824989 0.025202 

1.5 6 0.905059 0.021762 0.819372 0.025983 

1.5 7 0.906454 0.021458 0.820251 0.025908 

1.5 8 0.909837 0.020719 0.830855 0.02463 

1.5 9 0.911508 0.020353 0.821648 0.025793 

1.5 10 0.91228 0.020183 0.821994 0.025779 

1.5 11 0.912724 0.020086 0.821035 0.025914 

1.5 12 0.914901 0.019607 0.812572 0.027072 

1.5 13 0.916016 0.019361 0.81934 0.026301 

1.5 14 0.916683 0.019214 0.823066 0.025635 

1.5 15 0.917111 0.01912 0.826967 0.025103 

1.5 16 0.918023 0.018918 0.829655 0.024838 

1.5 17 0.918576 0.018796 0.823569 0.025706 

1.5 18 0.918641 0.018782 0.822864 0.02578 

1.5 19 0.920759 0.018313 0.805849 0.027888 
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1.5 20 0.924573 0.017466 0.788852 0.030136 

1.6 1 0.865906 0.030105 0.759345 0.035191 

1.6 2 0.903936 0.022006 0.835968 0.023972 

1.6 3 0.904419 0.021901 0.83786 0.023836 

1.6 4 0.906532 0.021441 0.826556 0.025405 

1.6 5 0.907562 0.021216 0.834783 0.024078 

1.6 6 0.908027 0.021115 0.835566 0.023901 

1.6 7 0.908311 0.021053 0.834751 0.023997 

1.6 8 0.909048 0.020891 0.839544 0.023324 

1.6 9 0.911728 0.020304 0.827654 0.024891 

1.6 10 0.912936 0.020039 0.823934 0.025556 

1.6 11 0.916198 0.019321 0.840059 0.023402 

1.6 12 0.916566 0.01924 0.840538 0.023314 

1.6 13 0.916807 0.019187 0.840578 0.023283 

1.6 14 0.918563 0.018799 0.830877 0.02453 

1.6 15 0.919549 0.018581 0.823239 0.025604 

1.6 16 0.920214 0.018434 0.817827 0.026292 

1.6 17 0.920894 0.018283 0.816352 0.026645 

1.6 18 0.921638 0.018118 0.818281 0.026385 

1.6 19 0.922929 0.017832 0.813966 0.027013 

1.6 20 0.92591 0.017169 0.779284 0.032031 

1.7 1 0.864804 0.030335 0.757032 0.035408 

1.7 2 0.90507 0.02176 0.838789 0.023662 

1.7 3 0.905272 0.021716 0.836078 0.024075 

1.7 4 0.905631 0.021638 0.834995 0.024186 

1.7 5 0.905864 0.021587 0.832131 0.02446 

1.7 6 0.90665 0.021415 0.830246 0.024761 

1.7 7 0.908775 0.020951 0.837868 0.023597 

1.7 8 0.910115 0.020658 0.845947 0.022554 

1.7 9 0.910429 0.020589 0.84764 0.022266 

1.7 10 0.912468 0.020142 0.838781 0.02372 
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1.7 11 0.912995 0.020026 0.834457 0.024176 

1.7 12 0.914497 0.019696 0.825305 0.025384 

1.7 13 0.914638 0.019665 0.826002 0.025285 

1.7 14 0.915966 0.019372 0.838659 0.023506 

1.7 15 0.91658 0.019237 0.839088 0.023687 

1.7 16 0.917924 0.01894 0.833836 0.024334 

1.7 17 0.91898 0.018707 0.835529 0.024207 

1.7 18 0.921408 0.018169 0.83169 0.024696 

1.7 19 0.922059 0.018025 0.832978 0.024627 

1.7 20 0.923889 0.017618 0.822959 0.025889 

1.8 1 0.863307 0.030646 0.754401 0.035707 

1.8 2 0.905689 0.021625 0.840967 0.023444 

1.8 3 0.905848 0.02159 0.838718 0.023793 

1.8 4 0.906458 0.021457 0.836206 0.023984 

1.8 5 0.906971 0.021345 0.837065 0.023763 

1.8 6 0.907167 0.021302 0.837406 0.023764 

1.8 7 0.907624 0.021203 0.834811 0.024074 

1.8 8 0.908018 0.021117 0.836419 0.023865 

1.8 9 0.909127 0.020874 0.832199 0.024522 

1.8 10 0.912285 0.020182 0.83149 0.02447 

1.8 11 0.913229 0.019975 0.828953 0.024794 

1.8 12 0.914195 0.019762 0.83504 0.02395 

1.8 13 0.915991 0.019367 0.83233 0.024405 

1.8 14 0.91671 0.019208 0.830193 0.024803 

1.8 15 0.918023 0.018919 0.823699 0.025494 

1.8 16 0.919016 0.018699 0.824142 0.025566 

1.8 17 0.920078 0.018464 0.82418 0.025672 

1.8 18 0.920601 0.018348 0.819512 0.026313 

1.8 19 0.921017 0.018256 0.825312 0.025709 

1.8 20 0.921954 0.018048 0.821585 0.026177 

1.9 1 0.861614 0.030997 0.751628 0.036052 
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1.9 2 0.905966 0.021564 0.842651 0.023292 

1.9 3 0.906741 0.021395 0.841014 0.023363 

1.9 4 0.907123 0.021312 0.84149 0.023252 

1.9 5 0.907133 0.02131 0.840677 0.023354 

1.9 6 0.907844 0.021155 0.839303 0.02345 

1.9 7 0.907955 0.02113 0.837012 0.023777 

1.9 8 0.909111 0.020878 0.837226 0.023648 

1.9 9 0.909323 0.020831 0.836561 0.023727 

1.9 10 0.913294 0.01996 0.837298 0.024048 

1.9 11 0.913839 0.019841 0.833532 0.024501 

1.9 12 0.914461 0.019704 0.833113 0.024464 

1.9 13 0.91476 0.019638 0.828629 0.024969 

1.9 14 0.915433 0.01949 0.823931 0.025659 

1.9 15 0.91684 0.01918 0.835555 0.02403 

1.9 16 0.91937 0.018621 0.829625 0.024713 

1.9 17 0.921055 0.018247 0.81218 0.027011 

1.9 18 0.92161 0.018124 0.806322 0.027775 

1.9 19 0.923266 0.017757 0.792429 0.029632 

1.9 20 0.92426 0.017536 0.792656 0.029669 

2 1 0.85985 0.031362 0.748832 0.036419 

2 2 0.906019 0.021553 0.843956 0.023188 

2 3 0.907065 0.021325 0.842039 0.023281 

2 4 0.907728 0.02118 0.844226 0.022839 

2 5 0.908049 0.02111 0.839257 0.023482 

2 6 0.908175 0.021082 0.839556 0.023459 

2 7 0.909187 0.020861 0.837095 0.023702 

2 8 0.911158 0.020429 0.834405 0.024046 

2 9 0.911267 0.020405 0.832623 0.024273 

2 10 0.912589 0.020115 0.834028 0.024185 

2 11 0.913517 0.019911 0.834517 0.024053 

2 12 0.914204 0.01976 0.828941 0.024908 
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2 13 0.915995 0.019366 0.828925 0.024997 

2 14 0.916914 0.019163 0.822923 0.025614 

2 15 0.917356 0.019066 0.817212 0.026389 

2 16 0.918033 0.018916 0.821073 0.02586 

2 17 0.918887 0.018727 0.82666 0.025311 

2 18 0.919306 0.018635 0.826193 0.025377 

2 19 0.920522 0.018366 0.805839 0.028045 

2 20 0.921432 0.018164 0.803194 0.028511 
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APPENDIX B 

 

EXPERIMENTATION RESULTS OF THE WIDTH PARAMETER FOR 

DEVELOPMENT OF GRNN MODEL FOR BLAST-INDUCED GROUND 

VIBRATION PREDICTION 

 

Table B1 Training and Testing R and MSE Results for GRFNN Blast-Induced Ground 

Vibration Prediction Model 

Width Parameter 
Training Testing 

R MSE R MSE 

0.10 0.99377 0.0015 0.73665 0.0395 

0.11 0.99255 0.0018 0.74581 0.03795 

0.12 0.99097 0.00219 0.75328 0.03666 

0.13 0.98899 0.00268 0.75918 0.03564 

0.14 0.98655 0.00329 0.76376 0.03482 

0.15 0.98365 0.004 0.76735 0.03416 

0.16 0.98029 0.00483 0.77018 0.03362 

0.17 0.97657 0.00575 0.77248 0.03317 

0.18 0.97258 0.00672 0.77438 0.03279 

0.19 0.96845 0.00773 0.77598 0.03246 

0.20 0.96428 0.00873 0.77735 0.03218 

0.21 0.96015 0.00973 0.77857 0.03194 

0.22 0.95612 0.0107 0.77967 0.03172 

0.23 0.95223 0.01163 0.7807 0.03153 

0.24 0.9485 0.01253 0.78169 0.03135 

0.25 0.94494 0.01339 0.78267 0.0312 

0.26 0.94156 0.01421 0.78366 0.03105 

0.27 0.93835 0.015 0.78467 0.03092 

0.28 0.93531 0.01575 0.78571 0.0308 

0.29 0.93244 0.01646 0.7868 0.03069 

0.30 0.92973 0.01715 0.78793 0.03059 

0.31 0.92718 0.01781 0.78913 0.0305 

0.32 0.92478 0.01845 0.79037 0.03041 
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0.33 0.92252 0.01906 0.79167 0.03033 

0.34 0.9204 0.01966 0.79302 0.03026 

0.35 0.91839 0.02024 0.7944 0.03019 

0.36 0.91649 0.02081 0.79579 0.03014 

0.37 0.91469 0.02137 0.79718 0.0301 

0.38 0.91298 0.02193 0.79856 0.03007 

0.39 0.91134 0.02248 0.79991 0.03006 

0.40 0.90977 0.02303 0.80121 0.03006 

0.41 0.90827 0.02359 0.80247 0.03009 

0.42 0.90681 0.02414 0.80366 0.03013 

0.43 0.90541 0.0247 0.80479 0.03019 

0.44 0.90405 0.02527 0.80585 0.03026 

0.45 0.90273 0.02584 0.80684 0.03036 

0.46 0.90144 0.02642 0.80778 0.03047 

0.47 0.90019 0.02701 0.80864 0.03059 

0.48 0.89896 0.02761 0.80944 0.03074 

0.49 0.89775 0.02822 0.81019 0.0309 

0.50 0.89655 0.02885 0.81087 0.03107 

0.51 0.89537 0.02949 0.8115 0.03126 

0.52 0.89418 0.03014 0.81208 0.03146 

0.53 0.89299 0.03081 0.8126 0.03168 

0.54 0.89179 0.03149 0.81308 0.0319 

0.55 0.89058 0.03218 0.8135 0.03214 

0.56 0.88936 0.03289 0.81389 0.03239 

0.57 0.88813 0.03361 0.81423 0.03264 

0.58 0.88689 0.03434 0.81453 0.03291 

0.59 0.88565 0.03508 0.81479 0.03318 

0.60 0.88441 0.03583 0.815 0.03347 

0.61 0.88317 0.03659 0.81519 0.03376 

0.62 0.88195 0.03735 0.81533 0.03405 

0.63 0.88075 0.03812 0.81544 0.03435 
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0.64 0.87957 0.0389 0.81552 0.03466 

0.65 0.87843 0.03968 0.81556 0.03498 

0.66 0.87733 0.04046 0.81557 0.03529 

0.67 0.87628 0.04125 0.81555 0.03562 

0.68 0.87529 0.04203 0.8155 0.03594 

0.69 0.87435 0.04282 0.81542 0.03627 

0.70 0.87347 0.04361 0.81531 0.0366 

0.71 0.87266 0.0444 0.81518 0.03694 

0.72 0.87192 0.0452 0.81502 0.03728 

0.73 0.87125 0.04599 0.81484 0.03762 

0.74 0.87066 0.04678 0.81464 0.03797 

0.75 0.87014 0.04757 0.81443 0.03831 

0.76 0.86969 0.04837 0.81419 0.03866 

0.77 0.86932 0.04916 0.81395 0.03901 

0.78 0.86901 0.04995 0.8137 0.03937 

0.79 0.86877 0.05074 0.81344 0.03972 

0.80 0.8686 0.05153 0.81318 0.04008 

0.81 0.86849 0.05232 0.81291 0.04044 

0.82 0.86843 0.0531 0.81265 0.04079 

0.83 0.86842 0.05388 0.8124 0.04115 

0.84 0.86846 0.05466 0.81216 0.04151 

0.85 0.86855 0.05544 0.81193 0.04187 

0.86 0.86867 0.05621 0.81171 0.04224 

0.87 0.86883 0.05698 0.81152 0.0426 

0.88 0.86901 0.05775 0.81135 0.04296 

0.89 0.86922 0.05851 0.8112 0.04332 

0.90 0.86945 0.05927 0.81109 0.04369 

0.91 0.8697 0.06002 0.811 0.04405 

0.92 0.86996 0.06076 0.81094 0.04441 

0.93 0.87023 0.0615 0.81091 0.04477 

0.94 0.87052 0.06223 0.81092 0.04513 
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0.95 0.8708 0.06295 0.81096 0.04549 

0.96 0.87109 0.06367 0.81104 0.04585 

0.97 0.87139 0.06438 0.81115 0.04621 

0.98 0.87168 0.06508 0.81129 0.04656 

0.99 0.87197 0.06578 0.81146 0.04692 

1.00 0.87226 0.06646 0.81166 0.04727 
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APPENDIX C 

 

EXPERIMENTATION RESULTS OF THE NUMBER OF NEURONS FOR 

DEVELOPMENT OF WNN MODEL FOR BLAST-INDUCED GROUND 

VIBRATION PREDICTION 

 

Table C1 Training and Testing R and MSE Results for WNN Blast-Induced Ground 

Vibration Prediction Model 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

1 0.910723 0.020543 0.835420 0.023908 

2 0.912838 0.020064 0.831450 0.024362 

3 0.910333 0.020611 0.843820 0.022743 

4 0.910855 0.020502 0.831400 0.024399 

5 0.928962 0.016539 0.826180 0.025312 

6 0.925149 0.017341 0.827010 0.024963 

7 0.924545 0.017475 0.825730 0.025272 

8 0.928443 0.016606 0.818080 0.026119 

9 0.923828 0.017633 0.818290 0.026136 

10 0.93949 0.014133 0.783500 0.032367 

11 0.910195 0.020641 0.840700 0.023205 

12 0.931072 0.016016 0.787700 0.031071 

13 0.929103 0.016474 0.818000 0.026451 

14 0.937403 0.014616 0.807600 0.027562 

15 0.945905 0.012695 0.787100 0.030984 

16 0.93915 0.014247 0.810200 0.027879 

17 0.935792 0.014962 0.826900 0.024948 

18 0.932929 0.015605 0.771200 0.032453 

19 0.936154 0.014878 0.796100 0.029589 

20 0.589495 0.157951 -0.167096 0.360049 
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APPENDIX D 

 

EXPERIMENTATION RESULTS OF THE NUMBER OF NEURONS FOR 

DEVELOPMENT OF ELM MODEL FOR BLAST-INDUCED GROUND 

VIBRATION PREDICTION 

 

Table D1 Training and Testing R and MSE Results for ELM Blast-Induced Ground 

Vibration Prediction Model 

Number of Neurons 
Training Testing 

R MSE R MSE 

1 -0.0706 0.15176 0.14181 0.09356 

2 0.71715 0.05874 0.43175 0.06793 

3 0.84352 0.03495 0.75881 0.03565 

4 0.67371 0.0658 0.42293 0.07281 

5 0.8289 0.03811 0.70246 0.04021 

6 0.89338 0.02429 0.83211 0.02547 

7 0.90801 0.02112 0.85127 0.02217 

8 0.90488 0.0218 0.84269 0.02301 

9 0.91034 0.02061 0.84545 0.02274 

10 0.90929 0.02084 0.84847 0.02228 

11 0.9073 0.02127 0.85345 0.02166 

12 0.91298 0.02003 0.84061 0.02384 

13 0.91011 0.02066 0.85218 0.02194 

14 0.91164 0.02032 0.83472 0.02509 

15 0.90873 0.02096 0.84699 0.02267 

16 0.91177 0.0203 0.85141 0.02197 

17 0.91333 0.01995 0.84736 0.02225 

18 0.91337 0.01994 0.83395 0.02498 

19 0.91603 0.01936 0.78481 0.0309 

20 0.91711 0.01912 0.82404 0.0271 

21 0.91975 0.01854 0.82253 0.02623 

22 0.91277 0.02008 0.82975 0.02464 

23 0.92087 0.01829 0.81324 0.02743 
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24 0.91382 0.01985 0.85199 0.02222 

25 0.91786 0.01896 0.74118 0.03774 

26 0.91839 0.01884 0.81993 0.02587 

27 0.91569 0.01943 0.81619 0.02721 

28 0.91589 0.01939 0.83289 0.02492 

29 0.92233 0.01797 0.82059 0.02793 

30 0.91914 0.01867 0.77993 0.036 

31 0.9316 0.0159 0.75489 0.04051 

32 0.92308 0.0178 0.59133 0.06877 

33 0.9254 0.01728 0.74866 0.04079 

34 0.93003 0.01625 0.74141 0.04627 

35 0.93098 0.01604 0.62483 0.12564 

36 0.93318 0.01554 0.75911 0.03658 

37 0.92691 0.01695 0.71959 0.04218 

38 0.92983 0.01629 0.65194 0.13931 

39 0.9307 0.0161 0.7136 0.05566 

40 0.93217 0.01577 0.74003 0.04474 
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APPENDIX E 

 

PREDICTED PPV VALUES ON THE TESTING DATA SETS BY THE VARIOUS PREDICTION TECHNIQUES 

 

Table E1 Observed and Predicted PPV for the Various Models 

Observed 

PPV 

(mm/s) 

Predicted PPV (mm/s) 

BPNN GRNN RBFNN MARS WNN GMDH LSSVM RVM SVM ELM GPR USBM 
Ambrasey-

Hendron 

Indian 

Standard 

Langefors-

Kihlstrom 

1.14 1.03 0.94 0.92 0.89 0.95 0.92 1.00 1.25 1.00 1.04 0.87 0.94 0.88 1.01 0.97 

0.83 0.59 0.64 0.62 0.58 0.62 0.61 0.62 0.87 0.60 0.61 0.55 0.57 0.55 0.66 0.59 

0.13 0.24 0.36 0.33 0.15 0.30 0.42 0.18 0.46 -0.03 0.13 0.20 0.28 0.35 0.19 0.24 

0.64 0.63 0.66 0.64 0.63 0.63 0.60 0.65 0.90 0.64 0.65 0.58 0.63 0.59 0.76 0.66 

0.7 0.69 0.67 0.69 0.68 0.69 0.68 0.70 0.95 0.70 0.69 0.66 0.62 0.58 0.74 0.65 

0.7 0.74 0.69 0.70 0.69 0.69 0.67 0.75 1.00 0.80 0.71 0.72 0.68 0.62 0.83 0.72 

0.83 0.96 0.92 0.96 0.96 0.97 0.94 0.94 1.19 0.89 0.95 0.86 0.86 0.85 0.84 0.86 

0.64 0.60 0.64 0.62 0.59 0.62 0.60 0.62 0.87 0.61 0.61 0.55 0.59 0.56 0.69 0.61 

0.51 0.63 0.64 0.63 0.61 0.62 0.60 0.65 0.90 0.68 0.63 0.60 0.60 0.57 0.71 0.63 

0.64 0.62 0.77 0.63 0.65 0.61 0.57 0.64 0.89 0.64 0.61 0.53 0.75 0.74 0.74 0.75 

0.89 0.61 0.64 0.61 0.58 0.60 0.56 0.63 0.88 0.66 0.61 0.56 0.62 0.59 0.75 0.66 

0.64 0.71 0.79 0.71 0.75 0.72 0.69 0.73 0.98 0.73 0.72 0.69 0.70 0.71 0.67 0.69 

0.64 0.74 0.68 0.73 0.72 0.74 0.75 0.75 1.00 0.75 0.75 0.74 0.60 0.57 0.70 0.62 

0.51 0.64 0.65 0.65 0.63 0.66 0.65 0.66 0.91 0.65 0.65 0.61 0.59 0.56 0.70 0.62 

0.83 0.66 0.67 0.66 0.64 0.65 0.62 0.68 0.93 0.70 0.67 0.62 0.65 0.60 0.79 0.69 
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0.57 0.50 0.63 0.53 0.49 0.53 0.47 0.52 0.78 0.49 0.51 0.46 0.59 0.56 0.69 0.62 

0.7 0.56 0.62 0.59 0.56 0.59 0.57 0.58 0.83 0.58 0.57 0.52 0.56 0.54 0.65 0.58 

0.51 0.61 0.67 0.60 0.58 0.62 0.58 0.62 0.87 0.57 0.63 0.53 0.62 0.58 0.74 0.65 

0.64 0.84 0.89 0.84 0.86 0.83 0.82 0.83 1.09 0.79 0.85 0.75 0.90 0.87 0.90 0.91 

0.57 0.70 0.66 0.71 0.67 0.71 0.73 0.71 0.96 0.69 0.71 0.69 0.56 0.54 0.64 0.58 

0.89 0.80 0.90 0.80 0.82 0.80 0.79 0.80 1.06 0.74 0.78 0.70 0.94 0.93 0.86 0.92 

0.32 0.39 0.49 0.35 0.40 0.37 0.33 0.39 0.64 0.33 0.41 0.39 0.43 0.39 0.59 0.47 

0.7 0.82 0.88 0.84 0.84 0.83 0.81 0.82 1.07 0.79 0.83 0.76 0.86 0.84 0.86 0.87 

0.57 0.72 0.83 0.74 0.75 0.74 0.73 0.73 0.98 0.68 0.70 0.67 0.75 0.76 0.70 0.74 

0.32 0.47 0.47 0.42 0.50 0.43 0.48 0.49 0.74 0.45 0.50 0.48 0.41 0.38 0.55 0.44 

0.83 0.81 0.79 0.81 0.83 0.80 0.78 0.82 1.07 0.85 0.81 0.84 0.72 0.70 0.78 0.74 

0.64 0.63 0.65 0.64 0.62 0.63 0.62 0.65 0.90 0.67 0.64 0.60 0.60 0.57 0.71 0.63 

0.89 0.68 0.66 0.68 0.67 0.68 0.68 0.69 0.94 0.70 0.68 0.67 0.59 0.56 0.69 0.62 

0.44 0.62 0.65 0.63 0.61 0.62 0.60 0.64 0.89 0.63 0.63 0.57 0.62 0.58 0.74 0.65 

0.7 0.66 0.64 0.67 0.62 0.70 0.74 0.67 0.92 0.59 0.67 0.62 0.52 0.51 0.58 0.53 

0.64 0.74 0.67 0.72 0.69 0.76 0.82 0.74 1.00 0.66 0.76 0.71 0.55 0.53 0.62 0.56 

0.95 0.94 0.96 0.94 0.94 0.93 0.95 0.93 1.19 0.89 0.92 1.01 1.04 1.07 0.87 1.00 

0.95 0.76 0.84 0.74 0.74 0.69 0.63 0.77 1.02 0.81 0.81 0.66 0.93 0.87 1.00 0.96 

0.95 0.73 0.67 0.73 0.70 0.74 0.77 0.74 0.99 0.70 0.74 0.72 0.57 0.54 0.65 0.59 

1.08 1.07 1.01 1.07 1.07 1.06 1.07 1.05 1.30 1.04 1.07 1.11 1.12 1.11 1.01 1.11 

0.32 0.43 0.68 0.43 0.48 0.49 0.51 0.45 0.72 0.50 0.46 0.60 0.72 0.68 0.81 0.75 

0.38 0.32 0.42 0.43 0.30 0.34 0.44 0.32 0.58 0.30 0.28 0.46 0.33 0.34 0.38 0.33 

0.76 0.99 0.98 1.00 0.98 1.00 1.02 0.97 1.22 0.92 0.97 1.04 1.00 1.01 0.88 0.98 
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0.89 0.79 0.75 0.82 0.81 0.82 0.83 0.79 1.04 0.76 0.80 0.80 0.62 0.61 0.66 0.63 

0.7 0.79 0.92 0.75 0.81 0.77 0.78 0.80 1.06 0.74 0.75 0.76 0.94 0.99 0.75 0.88 

0.96 0.91 0.92 0.94 0.92 0.93 0.93 0.90 1.16 0.88 0.91 0.95 0.88 0.87 0.85 0.88 

0.83 0.93 0.96 0.91 0.93 0.91 0.93 0.92 1.18 0.86 0.91 0.90 1.12 1.14 0.95 1.09 

1.08 0.87 0.89 0.87 0.87 0.85 0.82 0.87 1.12 0.88 0.88 0.83 0.90 0.86 0.93 0.92 

0.83 1.05 1.00 0.97 1.02 0.96 0.99 1.03 1.29 1.03 1.06 1.08 1.43 1.46 1.12 1.37 

0.64 0.85 0.88 0.86 0.86 0.83 0.81 0.85 1.10 0.86 0.87 0.81 0.90 0.86 0.92 0.91 

0.7 0.98 0.98 0.88 0.95 0.85 0.88 0.97 1.23 0.98 0.99 0.91 1.47 1.49 1.15 1.40 

0.38 0.46 0.72 0.50 0.48 0.52 0.56 0.48 0.75 0.42 0.43 0.49 0.57 0.60 0.50 0.54 

0.38 0.31 0.40 0.29 0.32 0.28 0.27 0.29 0.54 0.27 0.30 0.35 0.37 0.34 0.52 0.40 

0.64 0.72 0.82 0.74 0.76 0.74 0.73 0.74 0.99 0.72 0.72 0.72 0.70 0.72 0.64 0.68 

0.83 1.07 1.01 1.01 1.06 1.00 1.04 1.05 1.30 1.02 1.05 1.14 1.39 1.45 1.04 1.31 

0.57 0.70 0.81 0.72 0.74 0.72 0.70 0.72 0.97 0.69 0.69 0.64 0.74 0.74 0.71 0.73 

1.27 1.12 1.04 1.09 1.11 1.09 1.14 1.10 1.36 1.06 1.10 1.13 1.37 1.43 1.03 1.29 

1.27 0.98 0.97 0.88 0.97 0.89 0.89 0.97 1.22 0.96 0.96 1.08 1.21 1.29 0.89 1.13 

1.08 1.08 1.02 1.03 1.07 1.02 1.08 1.05 1.31 1.01 1.07 1.11 1.40 1.43 1.11 1.35 

1.02 0.99 0.99 0.93 0.98 0.94 0.97 0.98 1.23 0.93 0.95 1.09 1.24 1.31 0.92 1.16 

1.33 1.10 1.03 1.05 1.08 1.04 1.08 1.08 1.33 1.06 1.10 1.15 1.39 1.41 1.11 1.34 

1.02 1.03 1.00 0.99 1.01 1.00 1.04 1.01 1.26 0.94 0.99 1.09 1.19 1.25 0.91 1.12 

1.02 1.11 1.03 1.09 1.09 1.09 1.14 1.08 1.34 1.03 1.09 1.13 1.30 1.34 1.02 1.24 

1.02 0.98 0.98 0.99 0.98 0.98 0.99 0.96 1.22 0.93 0.98 1.02 1.05 1.05 0.94 1.04 

1.14 0.98 0.97 0.97 0.98 0.95 0.95 0.97 1.22 0.97 0.98 1.03 1.09 1.08 0.98 1.07 

1.08 1.08 1.02 1.02 1.07 1.02 1.07 1.05 1.31 1.01 1.06 1.13 1.40 1.44 1.08 1.33 
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0.89 0.99 0.98 0.90 0.98 0.90 0.92 0.98 1.23 0.96 0.96 1.05 1.35 1.41 1.00 1.26 

1.52 1.27 1.13 1.29 1.27 1.29 1.31 1.25 1.51 1.25 1.27 1.21 1.34 1.37 1.06 1.28 

0.89 1.08 1.02 1.09 1.07 1.08 1.07 1.06 1.31 1.07 1.07 1.09 1.04 1.03 0.95 1.03 

0.64 0.80 0.91 0.79 0.84 0.76 0.75 0.82 1.07 0.88 0.82 1.02 1.01 1.01 0.90 0.99 

1.14 0.95 0.95 0.96 0.96 0.95 0.95 0.93 1.19 0.91 0.95 0.97 0.98 0.96 0.93 0.98 

0.76 0.75 0.83 0.75 0.77 0.76 0.74 0.75 1.01 0.69 0.75 0.64 0.79 0.77 0.82 0.80 

0.95 1.19 1.06 1.16 1.17 1.16 1.17 1.17 1.42 1.17 1.19 1.12 1.35 1.39 1.05 1.28 

1.21 1.12 1.03 1.08 1.11 1.08 1.10 1.10 1.35 1.07 1.10 1.13 1.35 1.41 1.02 1.28 

0.32 0.31 0.48 0.26 0.25 0.28 0.40 0.29 0.58 0.09 0.41 0.22 0.32 0.48 0.14 0.24 

1.14 1.04 1.00 1.07 1.04 1.06 1.04 1.02 1.28 1.00 1.04 1.02 0.93 0.95 0.81 0.90 

1.21 1.18 1.07 1.18 1.17 1.18 1.21 1.16 1.42 1.13 1.17 1.12 1.35 1.41 1.02 1.27 

0.95 1.10 1.02 1.06 1.09 1.05 1.08 1.08 1.33 1.07 1.09 1.14 1.34 1.39 1.04 1.28 

0.89 1.18 1.08 1.22 1.17 1.22 1.22 1.16 1.41 1.15 1.17 1.07 1.06 1.05 0.95 1.04 

0.83 0.98 0.98 0.91 0.97 0.91 0.97 0.96 1.22 0.88 0.94 0.91 1.32 1.36 1.05 1.27 

0.95 1.19 1.07 1.16 1.18 1.16 1.19 1.17 1.43 1.17 1.20 1.15 1.46 1.50 1.12 1.39 

1.33 1.35 1.18 1.37 1.36 1.41 1.46 1.35 1.60 1.35 1.35 1.33 1.50 1.53 1.17 1.43 

1.33 1.08 1.02 1.04 1.07 1.04 1.09 1.06 1.31 1.00 1.05 1.14 1.36 1.41 1.04 1.29 

0.64 0.84 0.88 0.86 0.86 0.85 0.83 0.84 1.09 0.81 0.84 0.82 0.84 0.83 0.83 0.84 

1.14 1.13 1.04 1.10 1.11 1.10 1.12 1.11 1.36 1.08 1.11 1.09 1.29 1.36 0.97 1.21 
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APPENDIX F 

 

EXPERIMENTATION RESULTS OF THE WIDTH PARAMETER AND 

MAXIMUM NUMBER OF NEURONS FOR DEVELOPMENT OF RBFNN 

MODEL FOR AIR OVERPRESSURE PREDICTION 

 

Table F1 Training and Testing R and MSE Results for RBFNN Air Overpressure 

Prediction Model 

Width 

Parameter 

Maximum 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

0.1 1 0.166848 4.026843 -0.02868 3.650764 

0.1 2 0.175126 4.015117 -0.02868 3.627714 

0.1 3 0.214011 3.952439 -0.0289 3.577931 

0.1 4 0.434651 3.359613 0.204703 3.465466 

0.1 5 0.438106 3.347122 0.223 3.456109 

0.1 6 0.453229 3.291288 0.23412 3.442062 

0.1 7 0.457840 3.273885 0.233635 3.437853 

0.1 8 0.460982 3.261928 0.233229 3.435711 

0.1 9 0.496435 3.121331 -0.03269 3.479245 

0.1 10 0.506847 3.078058 -0.0325 3.472474 

0.1 11 0.510414 3.063028 -0.0323 3.470052 

0.1 12 0.512792 3.052951 -0.0433 3.477137 

0.1 13 0.526274 2.994924 -0.0439 3.484637 

0.1 14 0.530704 2.975529 -0.0443 3.490873 

0.1 15 0.535416 2.954719 -0.0447 3.499039 

0.1 16 0.537081 2.947325 -0.0449 3.504049 

0.1 17 0.582302 2.73765 -0.046 3.541599 

0.1 19 0.587776 2.711119 -0.0462 3.541665 

0.1 20 0.591329 2.693766 -0.0458 3.555809 

0.2 1 0.316611 3.726934 -0.08856 3.954509 

0.2 2 0.383943 3.531548 -0.02504 3.693904 
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0.2 3 0.399508 3.481039 -0.013 3.589052 

0.2 4 0.602303 2.639509 0.219256 3.273481 

0.2 5 0.602773 2.637161 0.217282 3.275216 

0.2 6 0.668269 2.292334 0.195888 3.345498 

0.2 7 0.669541 2.285287 0.191579 3.366934 

0.2 8 0.690624 2.166506 0.190796 3.326245 

0.2 9 0.690955 2.164611 0.192522 3.320512 

0.2 10 0.691202 2.163195 0.19101 3.325484 

0.2 11 0.691218 2.163106 0.18945 3.328381 

0.2 12 0.709458 2.05728 0.20388 3.348785 

0.2 13 0.713938 2.030868 0.21123 3.31291 

0.2 14 0.713949 2.030802 0.2112 3.314097 

0.2 15 0.719308 1.998988 0.21439 3.289152 

0.2 16 0.751184 1.80483 0.28653 3.16054 

0.2 17 0.752611 1.795942 0.28422 3.164284 

0.2 18 0.759781 1.751025 0.14519 3.638146 

0.2 19 0.779177 1.627381 0.12408 3.710847 

0.2 20 0.780092 1.621472 0.11196 3.748493 

0.3 1 0.055990 4.129168 -0.15974 3.654667 

0.3 2 0.098022 4.102354 -0.15974 3.559928 

0.3 3 0.410081 3.445584 0.405523 2.930589 

0.3 4 0.412791 3.436346 0.408098 2.930149 

0.3 5 0.494019 3.131241 0.398621 2.990194 

0.3 6 0.557818 2.853279 0.414215 3.182617 

0.3 7 0.568492 2.80348 0.397906 3.35905 

0.3 8 0.604004 2.631012 0.429378 3.063432 

0.3 9 0.605482 2.623602 0.398675 3.130127 

0.3 10 0.606063 2.620691 0.39342 3.16148 

0.3 11 0.635136 2.471216 0.34407 3.447228 

0.3 12 0.646906 2.408713 0.29859 3.705978 
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0.3 13 0.766591 1.707971 0.4407 2.873698 

0.3 14 0.770502 1.683065 0.43008 2.967437 

0.3 15 0.774292 1.658818 0.45299 2.844459 

0.3 16 0.776016 1.647748 0.46033 2.783915 

0.3 17 0.782124 1.608322 0.44522 2.9121 

0.3 18 0.782892 1.603348 0.43802 2.976259 

0.3 19 0.824116 1.328939 0.41216 2.920385 

0.3 20 0.826211 1.314615 0.42475 2.954236 

0.4 1 0.093978 4.10557 0.237536 3.448153 

0.4 2 0.153967 4.04396 0.237547 3.326492 

0.4 3 0.627061 2.513437 0.529291 2.685733 

0.4 4 0.653424 2.373608 0.528492 2.529751 

0.4 5 0.654531 2.367611 0.530193 2.554042 

0.4 6 0.712498 2.039374 0.558932 2.363511 

0.4 7 0.712814 2.037512 0.562682 2.350095 

0.4 8 0.722012 1.982841 0.552383 2.41344 

0.4 9 0.765119 1.717307 0.585643 2.378778 

0.4 10 0.774617 1.65673 0.57696 2.332132 

0.4 11 0.775018 1.65416 0.57913 2.333922 

0.4 12 0.775018 1.654159 0.57911 2.333883 

0.4 13 0.777563 1.637791 0.57094 2.345018 

0.4 14 0.781092 1.615006 0.58187 2.342773 

0.4 15 0.786196 1.581873 0.60616 2.413115 

0.4 16 0.788896 1.564257 0.59906 2.298591 

0.4 17 0.789088 1.563001 0.5941 2.295528 

0.4 18 0.791408 1.547809 0.5836 2.296524 

0.4 19 0.793327 1.535217 0.56688 2.373925 

0.4 20 0.810138 1.42356 0.48497 3.095134 

0.5 1 0.232959 3.917359 0.37432 3.161819 

0.5 2 0.314676 3.731993 0.374471 2.965067 
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0.5 3 0.374952 3.559812 0.382141 3.026305 

0.5 4 0.590335 2.698634 0.513653 2.749792 

0.5 5 0.656333 2.357827 0.61734 2.248562 

0.5 6 0.660216 2.336653 0.611754 2.284066 

0.5 7 0.665891 2.305479 0.596734 2.392617 

0.5 8 0.697247 2.12843 0.636238 2.216 

0.5 9 0.697258 2.128371 0.636905 2.212518 

0.5 10 0.706797 2.072893 0.61723 2.302155 

0.5 11 0.712420 2.039833 0.58455 2.483617 

0.5 12 0.712521 2.03924 0.59092 2.44768 

0.5 13 0.720565 1.991489 0.53104 2.790543 

0.5 14 0.729136 1.940023 0.45098 3.276322 

0.5 15 0.730161 1.933824 0.41348 3.521654 

0.5 16 0.737767 1.88758 0.28384 4.533923 

0.5 17 0.752122 1.798986 0.13308 6.461002 

0.5 18 0.752582 1.796123 0.16391 5.979463 

0.5 19 0.755058 1.780657 0.25421 4.741599 

0.5 20 0.768997 1.692664 0.11212 7.726998 

0.6 1 0.241265 3.901044 0.421693 3.128468 

0.6 2 0.337599 3.67006 0.422279 2.836417 

0.6 3 0.382512 3.536092 0.424553 2.918041 

0.6 4 0.407974 3.45272 0.491889 2.693294 

0.6 5 0.421036 3.407869 0.489316 2.796348 

0.6 6 0.648530 2.399999 0.544857 2.796273 

0.6 7 0.740064 1.873519 0.666387 2.034421 

0.6 8 0.743480 1.852526 0.658697 2.053993 

0.6 9 0.747042 1.830537 0.644146 2.134969 

0.6 10 0.751221 1.804597 0.62184 2.271359 

0.6 11 0.754227 1.785854 0.57206 2.574412 

0.6 12 0.754335 1.78518 0.58274 2.509874 
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0.6 13 0.761082 1.742829 0.66573 2.087836 

0.6 14 0.763305 1.728791 0.61993 2.300608 

0.6 15 0.769205 1.691341 0.67732 2.041976 

0.6 16 0.770963 1.680125 0.61629 2.29377 

0.6 17 0.812167 1.409923 0.15963 7.288368 

0.6 18 0.812186 1.409797 0.14742 7.42662 

0.6 19 0.825082 1.322338 0.36444 4.297613 

0.6 20 0.839051 1.226049 0.62715 2.109617 

0.7 1 0.248076 3.887239 0.451894 3.134555 

0.7 2 0.355834 3.617684 0.452239 2.742419 

0.7 3 0.389756 3.512919 0.451653 2.842812 

0.7 4 0.403070 3.469198 0.446057 2.955296 

0.7 5 0.424226 3.396699 0.41126 3.212896 

0.7 6 0.446647 3.31582 0.490982 2.89436 

0.7 7 0.646764 2.409477 0.406499 3.919043 

0.7 8 0.746026 1.836818 0.694909 1.923381 

0.7 9 0.746735 1.832436 0.693995 1.904804 

0.7 10 0.748330 1.822555 0.68989 1.907085 

0.7 11 0.749335 1.816324 0.69523 1.907598 

0.7 12 0.764657 1.720234 0.65988 1.997409 

0.7 13 0.776242 1.646291 0.71004 2.285803 

0.7 14 0.782384 1.606638 0.73093 2.740783 

0.7 15 0.782390 1.606602 0.73036 2.716876 

0.7 16 0.788091 1.569515 0.74025 3.731281 

0.7 17 0.790501 1.553754 0.729 2.613777 

0.7 18 0.795468 1.521128 0.61966 2.340981 

0.7 19 0.796721 1.51286 0.54934 2.4835 

0.7 20 0.796954 1.511322 0.5173 2.609501 

0.8 1 0.254321 3.874242 0.470126 3.165597 

0.8 2 0.370448 3.573718 0.467661 2.687207 
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0.8 3 0.396960 3.489445 0.467764 2.795771 

0.8 4 0.441019 3.336515 0.505721 2.64348 

0.8 5 0.445346 3.320628 0.502808 2.694928 

0.8 6 0.450919 3.299939 0.489465 2.831412 

0.8 7 0.658785 2.344471 0.464339 3.486763 

0.8 8 0.750884 1.806697 0.71254 1.979437 

0.8 9 0.750967 1.80618 0.712905 1.957342 

0.8 10 0.751845 1.800716 0.71183 1.860894 

0.8 11 0.751855 1.800653 0.71167 1.851744 

0.8 12 0.764469 1.721426 0.68074 1.978188 

0.8 13 0.764717 1.719853 0.68555 1.989474 

0.8 14 0.765094 1.717468 0.67452 1.978327 

0.8 15 0.771332 1.67777 0.70903 2.271829 

0.8 16 0.782422 1.606394 0.59364 2.320285 

0.8 17 0.791251 1.548839 0.72987 2.393356 

0.8 18 0.814355 1.395183 0.38562 3.972979 

0.8 19 0.816429 1.381173 0.32147 5.127931 

0.8 20 0.818743 1.365503 0.1672 6.585819 

0.9 1 0.260697 3.86064 0.480621 3.207786 

0.9 2 0.382614 3.53577 0.471561 2.673272 

0.9 3 0.404373 3.464839 0.475627 2.77394 

0.9 4 0.452961 3.292291 0.494095 2.731424 

0.9 5 0.652345 2.379445 0.553742 2.671167 

0.9 6 0.754644 1.783246 0.716119 2.072167 

0.9 7 0.754664 1.783121 0.716113 2.082469 

0.9 8 0.754665 1.783119 0.716118 2.078989 

0.9 9 0.754886 1.781733 0.715665 2.024391 

0.9 10 0.754928 1.781475 0.71621 1.977551 

0.9 11 0.764033 1.724184 0.70786 2.139127 

0.9 12 0.764036 1.724167 0.70805 2.143792 
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0.9 13 0.771995 1.673525 0.71734 2.704551 

0.9 14 0.776860 1.642317 0.70711 2.056213 

0.9 15 0.778238 1.633438 0.69726 1.989812 

0.9 16 0.778328 1.632859 0.7031 2.013717 

0.9 17 0.778332 1.632832 0.70243 2.009036 

0.9 18 0.789771 1.558535 0.75146 3.395284 

0.9 19 0.811302 1.415745 0.56692 2.895903 

0.9 20 0.813062 1.403902 0.49893 3.324575 

1.0 1 0.290435 3.792751 0.510259 3.199509 

1.0 2 0.434322 3.360796 0.485382 2.63484 

1.0 3 0.442070 3.33267 0.493368 2.620059 

1.0 4 0.443732 3.326572 0.501259 2.585019 

1.0 5 0.446751 3.315435 0.494433 2.639769 

1.0 6 0.717580 2.009271 0.614738 4.237895 

1.0 7 0.741085 1.867255 0.681306 3.708964 

1.0 8 0.744716 1.844906 0.703143 3.205198 

1.0 9 0.758045 1.761939 0.735849 2.294176 

1.0 10 0.772474 1.670467 0.75258 3.374856 

1.0 11 0.773581 1.663376 0.75048 3.231331 

1.0 12 0.786529 1.579702 0.68816 2.191566 

1.0 13 0.788643 1.565908 0.65734 2.220657 

1.0 14 0.798530 1.500907 0.543 3.448117 

1.0 15 0.798958 1.49808 0.56198 3.406213 

1.0 16 0.803679 1.46674 0.42101 4.082587 

1.0 17 0.811086 1.417191 0.1942 6.536784 

1.0 18 0.816890 1.378059 0.08734 9.182863 

1.0 19 0.817790 1.371961 0.0382 10.802929 

1.0 20 0.819759 1.358609 -0.0517 13.148749 

1.1 1 0.293886 3.784399 0.51237 3.248248 

1.1 2 0.438593 3.345355 0.473256 2.684376 
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1.1 3 0.443323 3.328073 0.478232 2.673885 

1.1 4 0.451040 3.299487 0.485556 2.670371 

1.1 5 0.451648 3.297213 0.477355 2.713102 

1.1 6 0.452116 3.295459 0.471072 2.746987 

1.1 7 0.480524 3.185716 0.509086 2.804409 

1.1 8 0.738926 1.880491 0.568483 4.191074 

1.1 9 0.751718 1.801505 0.659141 3.569435 

1.1 10 0.753863 1.788128 0.68661 3.090196 

1.1 11 0.782034 1.608909 0.71921 2.190164 

1.1 12 0.782660 1.604849 0.7379 2.33153 

1.1 13 0.785159 1.588621 0.72263 2.26208 

1.1 14 0.786011 1.583075 0.73732 2.321713 

1.1 15 0.792054 1.543573 0.56938 2.686022 

1.1 16 0.808529 1.434349 0.3185 5.778833 

1.1 17 0.811329 1.41556 0.23555 7.006707 

1.1 18 0.819083 1.363194 0.12626 10.289813 

1.1 19 0.820829 1.351334 0.05412 13.214115 

1.1 20 0.832462 1.271669 -0.1717 22.355155 

1.2 1 0.298474 3.773142 0.515173 3.269297 

1.2 2 0.438562 3.345466 0.454469 2.73455 

1.2 3 0.447467 3.312785 0.469806 2.705064 

1.2 4 0.447901 3.311174 0.470393 2.706269 

1.2 5 0.462473 3.256224 0.511865 2.54846 

1.2 6 0.462774 3.255072 0.509144 2.564518 

1.2 7 0.466613 3.240293 0.516127 2.574195 

1.2 8 0.726322 1.956988 0.699452 2.097935 

1.2 9 0.739652 1.876044 0.70476 1.857138 

1.2 10 0.759276 1.754199 0.74683 1.953703 

1.2 11 0.775818 1.649018 0.74664 2.299254 

1.2 12 0.781781 1.610544 0.73014 4.39289 
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1.2 13 0.781998 1.609139 0.72861 4.324867 

1.2 14 0.782987 1.602728 0.73394 4.179534 

1.2 15 0.783193 1.601394 0.73726 4.078539 

1.2 16 0.789285 1.561713 0.70748 4.624343 

1.2 17 0.789602 1.559641 0.7243 4.268069 

1.2 18 0.822807 1.337868 0.14166 4.795021 

1.2 19 0.833827 1.262248 0.02396 6.212741 

1.2 20 0.833921 1.261599 0.0477 5.952323 

1.3 1 0.301650 3.765248 0.515014 3.304409 

1.3 2 0.441679 3.334102 0.440337 2.793448 

1.3 3 0.452239 3.295001 0.465272 2.738125 

1.3 4 0.452304 3.294758 0.464876 2.742707 

1.3 5 0.491986 3.139542 0.540453 2.433857 

1.3 6 0.495549 3.124969 0.564981 2.344479 

1.3 7 0.503223 3.093221 0.614913 2.193645 

1.3 8 0.509254 3.06793 0.608448 2.382667 

1.3 9 0.536014 2.952065 0.538913 2.617259 

1.3 10 0.616204 2.569347 0.40359 3.142282 

1.3 11 0.757564 1.764955 0.68205 2.872181 

1.3 12 0.762819 1.731864 0.71391 2.944984 

1.3 13 0.765019 1.717941 0.72442 2.791019 

1.3 14 0.767374 1.702995 0.74156 2.586511 

1.3 15 0.775346 1.652053 0.78216 2.058031 

1.3 16 0.783071 1.602183 0.74508 2.307346 

1.3 17 0.791159 1.549442 0.61043 3.518352 

1.3 18 0.791758 1.54552 0.68441 2.959306 

1.3 19 0.806311 1.449186 0.33935 7.766053 

1.3 20 0.828102 1.301657 -0.0081 21.846609 

1.4 1 0.304764 3.757426 0.513588 3.334968 

1.4 2 0.444222 3.32477 0.427091 2.860896 
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1.4 3 0.457324 3.27584 0.464292 2.765997 

1.4 4 0.457397 3.275563 0.465523 2.757295 

1.4 5 0.507392 3.07577 0.554956 2.378932 

1.4 6 0.507392 3.07577 0.555013 2.37871 

1.4 7 0.510344 3.063324 0.55536 2.379172 

1.4 8 0.510724 3.061718 0.561378 2.360507 

1.4 9 0.740707 1.869572 0.719193 2.243893 

1.4 10 0.745783 1.838318 0.71121 1.986148 

1.4 11 0.747224 1.829406 0.70771 2.056128 

1.4 12 0.757254 1.766906 0.76035 1.598571 

1.4 13 0.757403 1.765968 0.76556 1.573762 

1.4 14 0.772570 1.669849 0.78059 1.934464 

1.4 15 0.772648 1.669351 0.7816 1.979519 

1.4 16 0.785452 1.586712 0.69643 2.685672 

1.4 17 0.796344 1.515349 0.55422 5.947606 

1.4 18 0.816440 1.381102 0.1508 16.065747 

1.4 19 0.837187 1.238993 -0.0115 55.640623 

1.4 20 0.848639 1.159021 -0.0226 60.370569 

1.5 1 0.291237 3.790821 0.338389 3.636047 

1.5 2 0.293987 3.784153 0.291134 3.622302 

1.5 3 0.316096 3.728284 0.433059 3.604485 

1.5 4 0.382078 3.537468 0.467445 2.859242 

1.5 5 0.384936 3.528387 0.461411 3.05282 

1.5 6 0.566178 2.814356 0.428196 4.277868 

1.5 7 0.587373 2.713081 0.47737 3.933314 

1.5 8 0.588668 2.706774 0.4735 3.823123 

1.5 9 0.613673 2.582239 0.451699 3.574857 

1.5 10 0.634036 2.477003 0.36433 3.813929 

1.5 11 0.697333 2.127934 0.55638 4.893531 

1.5 12 0.774638 1.656596 0.7558 3.048669 
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1.5 13 0.774809 1.655497 0.74927 2.92465 

1.5 14 0.776519 1.644513 0.71675 3.105895 

1.5 15 0.777191 1.640186 0.65755 3.581872 

1.5 16 0.781450 1.612688 0.70439 3.16755 

1.5 17 0.781458 1.612636 0.69792 3.217646 

1.5 18 0.789085 1.56302 0.77763 2.900455 

1.5 19 0.789478 1.560448 0.78424 2.821531 

1.5 20 0.819401 1.36104 0.50606 13.300112 

1.6 1 0.293131 3.786234 0.33593 3.656439 

1.6 2 0.294712 3.782385 0.294337 3.652377 

1.6 3 0.314564 3.732286 0.435719 3.615651 

1.6 4 0.391911 3.505941 0.462099 2.911702 

1.6 5 0.394114 3.49877 0.453533 3.116193 

1.6 6 0.580515 2.74626 0.444688 4.079601 

1.6 7 0.594732 2.677049 0.48512 3.751641 

1.6 8 0.594802 2.676705 0.484457 3.716466 

1.6 9 0.627207 2.512678 0.459342 3.504597 

1.6 10 0.650738 2.388116 0.3559 4.111687 

1.6 11 0.710389 2.051804 0.57173 4.834368 

1.6 12 0.773267 1.665385 0.75816 3.209768 

1.6 13 0.773338 1.664929 0.75354 3.091139 

1.6 14 0.774748 1.655889 0.72365 3.172279 

1.6 15 0.775299 1.65235 0.65837 3.611907 

1.6 16 0.786879 1.577421 0.75073 6.970177 

1.6 17 0.787551 1.573038 0.74341 6.325772 

1.6 18 0.837029 1.240088 0.29333 6.423051 

1.6 19 0.844566 1.187589 0.27171 6.750205 

1.6 20 0.844568 1.187579 0.27181 6.746178 

1.7 1 0.294778 3.782225 0.333582 3.673696 

1.7 2 0.295543 3.780354 0.300935 3.674769 
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1.7 3 0.313321 3.735517 0.438003 3.625238 

1.7 4 0.404543 3.464269 0.459634 2.977153 

1.7 5 0.406048 3.459215 0.450379 3.170798 

1.7 6 0.406049 3.459214 0.450571 3.170838 

1.7 7 0.610786 2.596882 0.500838 4.273409 

1.7 8 0.616471 2.567984 0.531516 3.909108 

1.7 9 0.642383 2.432871 0.557834 3.856681 

1.7 10 0.642499 2.432251 0.55889 3.874305 

1.7 11 0.643019 2.429485 0.55413 3.727743 

1.7 12 0.664918 2.31084 0.57651 4.149611 

1.7 13 0.714627 2.026789 0.60074 8.486882 

1.7 14 0.768202 1.697728 0.72673 5.098855 

1.7 15 0.769427 1.689923 0.65877 4.638945 

1.7 16 0.771462 1.676933 0.71562 5.488587 

1.7 17 0.821430 1.347245 0.15812 6.572002 

1.7 18 0.825610 1.318727 -0.0166 10.39976 

1.7 19 0.826423 1.313169 0.01608 10.867553 

1.7 20 0.830167 1.287476 0.14233 8.510365 

1.8 1 0.188338 3.995225 0.215804 3.647832 

1.8 2 0.328704 3.694609 0.184098 3.888375 

1.8 3 0.421597 3.405912 0.391355 3.485699 

1.8 4 0.553176 2.874637 0.517893 3.416552 

1.8 5 0.658535 2.345832 0.580426 4.10142 

1.8 6 0.659210 2.34215 0.566144 4.140312 

1.8 7 0.745541 1.839813 0.690633 3.978612 

1.8 8 0.746042 1.836717 0.696758 3.96739 

1.8 9 0.753439 1.790773 0.728362 3.29201 

1.8 10 0.755926 1.775226 0.70587 3.644004 

1.8 11 0.757233 1.767035 0.74389 3.463451 

1.8 12 0.758221 1.76083 0.75966 3.521689 
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1.8 13 0.768435 1.696244 0.77268 4.213573 

1.8 14 0.768752 1.694223 0.77785 3.609577 

1.8 15 0.772246 1.671924 0.69698 8.492686 

1.8 16 0.772260 1.671835 0.68767 8.702444 

1.8 17 0.784258 1.594478 0.46249 15.079678 

1.8 18 0.789603 1.559636 0.37475 28.734067 

1.8 19 0.829219 1.293991 0.17148 13.05611 

1.8 20 0.836650 1.242717 0.13389 15.690801 

1.9 1 0.193229 3.987496 0.216165 3.645896 

1.9 2 0.327629 3.697531 0.178657 3.917748 

1.9 3 0.425070 3.393731 0.401891 3.462882 

1.9 4 0.549438 2.89171 0.516223 3.404381 

1.9 5 0.657816 2.349754 0.583471 4.016319 

1.9 6 0.658737 2.344728 0.565113 4.056505 

1.9 7 0.742446 1.858889 0.688913 4.023735 

1.9 8 0.742637 1.857713 0.692597 4.017532 

1.9 9 0.751919 1.800253 0.72995 3.309086 

1.9 10 0.755318 1.779032 0.70038 3.787624 

1.9 11 0.756498 1.771643 0.74199 3.585878 

1.9 12 0.757640 1.764482 0.76041 3.652902 

1.9 13 0.775005 1.654243 0.78292 4.990304 

1.9 14 0.775005 1.654242 0.78311 4.970796 

1.9 15 0.775709 1.649717 0.74218 7.315046 

1.9 16 0.777723 1.636762 0.72803 9.178786 

1.9 17 0.783234 1.601124 0.51034 15.357574 

1.9 18 0.788521 1.566705 0.40305 33.424024 

1.9 19 0.824532 1.326101 0.2395 11.523879 

1.9 20 0.835722 1.249141 0.16965 17.224176 

2.0 1 0.197457 3.980654 0.216437 3.644195 

2.0 2 0.326668 3.700137 0.174354 3.94088 
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2.0 3 0.428259 3.382458 0.410775 3.441355 

2.0 4 0.545997 2.907325 0.515626 3.372395 

2.0 5 0.656941 2.354519 0.5874 3.906952 

2.0 6 0.658111 2.348147 0.564964 3.946591 

2.0 7 0.739274 1.87836 0.687733 4.036837 

2.0 8 0.753557 1.790037 0.713635 4.128283 

2.0 9 0.758942 1.756301 0.692848 4.041943 

2.0 10 0.759851 1.750581 0.67076 4.571312 

2.0 11 0.768513 1.695747 0.66546 4.663459 

2.0 12 0.768594 1.695232 0.65944 4.833385 

2.0 13 0.769170 1.691562 0.69522 4.128475 

2.0 14 0.769640 1.688569 0.75369 3.717277 

2.0 15 0.803448 1.468271 0.77006 8.761943 

2.0 16 0.823067 1.336095 0.60241 9.323572 

2.0 17 0.823117 1.335756 0.59855 9.717422 

2.0 18 0.848001 1.163511 0.28806 22.957803 

2.0 19 0.853813 1.122541 0.25254 33.011151 

2.0 20 0.856576 1.10296 0.24967 25.43816 

 

 

 

 

 

 

 

 

 

 

 

 

 



217 

 

APPENDIX G 

 

EXPERIMENTATION RESULTS OF THE WIDTH PARAMETER FOR 

DEVELOPMENT OF GRNN MODEL FOR AIR OVERPRESSURE PREDICTION 

 

Table G1 Training and Testing R and MSE Results for GRNN Air Overpressure 

Prediction Model 

Width Parameter 
Training Testing 

R MSE R MSE 

0.10 0.961792 0.317504 0.48684 3.314226 

0.11 0.955984 0.366098 0.50234 3.156089 

0.12 0.950333 0.413955 0.51811 3.001924 

0.13 0.944599 0.462861 0.53432 2.852437 

0.14 0.938511 0.514602 0.55125 2.707097 

0.15 0.931878 0.570173 0.56903 2.565811 

0.16 0.924665 0.629414 0.58748 2.429729 

0.17 0.916985 0.691228 0.6062 2.300922 

0.18 0.909035 0.754089 0.62465 2.181511 

0.19 0.901029 0.816513 0.64234 2.073003 

0.20 0.893154 0.877316 0.65892 1.976088 

0.21 0.885543 0.935719 0.67415 1.890775 

0.22 0.878276 0.991332 0.68794 1.816608 

0.23 0.871381 1.044085 0.70026 1.752847 

0.24 0.864851 1.094137 0.71118 1.69861 

0.25 0.858654 1.141774 0.72077 1.652958 

0.26 0.852746 1.187328 0.72914 1.61497 

0.27 0.847086 1.231112 0.73641 1.583795 

0.28 0.841637 1.27339 0.74269 1.558686 

0.29 0.836371 1.314374 0.74806 1.539006 

0.30 0.831265 1.354231 0.7526 1.524222 

0.31 0.826303 1.393096 0.75637 1.513884 

0.32 0.821468 1.431085 0.75945 1.507594 

0.33 0.816747 1.468303 0.76187 1.504989 
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0.34 0.812126 1.504843 0.76371 1.505725 

0.35 0.807592 1.540789 0.765 1.509467 

0.36 0.803132 1.57621 0.76583 1.515894 

0.37 0.798736 1.61116 0.76623 1.524697 

0.38 0.794398 1.645679 0.76628 1.535591 

0.39 0.790111 1.679789 0.76602 1.548311 

0.40 0.785875 1.713503 0.7655 1.562622 

0.41 0.781686 1.746821 0.76477 1.578315 

0.42 0.777548 1.77974 0.76386 1.595206 

0.43 0.77346 1.812251 0.76281 1.613138 

0.44 0.769425 1.844346 0.76164 1.631973 

0.45 0.765445 1.876017 0.76038 1.651594 

0.46 0.761522 1.907254 0.75905 1.671899 

0.47 0.757655 1.938054 0.75766 1.692801 

0.48 0.753847 1.96841 0.75622 1.714222 

0.49 0.750097 1.998319 0.75475 1.736094 

0.50 0.746406 2.027779 0.75325 1.758358 

0.51 0.742773 2.056789 0.75174 1.78096 

0.52 0.739199 2.085346 0.75021 1.803852 

0.53 0.735682 2.113451 0.74868 1.826988 

0.54 0.732222 2.141105 0.74714 1.850327 

0.55 0.72882 2.168309 0.74561 1.873833 

0.56 0.725475 2.195065 0.74408 1.897469 

0.57 0.722186 2.221376 0.74256 1.921203 

0.58 0.718953 2.247245 0.74104 1.945003 

0.59 0.715776 2.272679 0.73955 1.96884 

0.60 0.712655 2.297683 0.73807 1.992686 

0.61 0.709589 2.322263 0.7366 2.016517 

0.62 0.706578 2.346429 0.73516 2.040306 

0.63 0.703621 2.370188 0.73375 2.064032 

0.64 0.700719 2.393551 0.73236 2.087672 
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Table G1 Continued 

0.65 0.69787 2.416527 0.731 2.111206 

0.66 0.695074 2.439127 0.72967 2.134616 

0.67 0.692331 2.461361 0.72838 2.157883 

0.68 0.689639 2.483242 0.72712 2.180992 

0.69 0.686998 2.50478 0.72591 2.203927 

0.70 0.684407 2.525987 0.72473 2.226674 

0.71 0.681864 2.546873 0.7236 2.24922 

0.72 0.679369 2.567451 0.72251 2.271554 

0.73 0.676919 2.58773 0.72146 2.293664 

0.74 0.674514 2.607721 0.72046 2.315541 

0.75 0.672152 2.627434 0.71951 2.337176 

0.76 0.669831 2.646878 0.71861 2.358561 

0.77 0.667549 2.666062 0.71776 2.379689 

0.78 0.665306 2.684994 0.71695 2.400554 

0.79 0.663099 2.703681 0.7162 2.421149 

0.80 0.660925 2.722131 0.71549 2.44147 

0.81 0.658785 2.740351 0.71483 2.461512 

0.82 0.656675 2.758344 0.71422 2.481271 

0.83 0.654593 2.776118 0.71365 2.500744 

0.84 0.65254 2.793675 0.71313 2.519928 

0.85 0.650511 2.811021 0.71265 2.538821 

0.86 0.648507 2.828158 0.71222 2.55742 

0.87 0.646525 2.845089 0.71182 2.575725 

0.88 0.644565 2.861818 0.71147 2.593733 

0.89 0.642624 2.878345 0.71115 2.611444 

0.90 0.640702 2.894673 0.71086 2.628858 

0.91 0.638798 2.910803 0.71061 2.645974 

0.92 0.636911 2.926736 0.71039 2.662793 

0.93 0.635039 2.942473 0.7102 2.679315 

0.94 0.633182 2.958014 0.71003 2.69554 

0.95 0.63134 2.973361 0.70989 2.71147 
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Table G1 Continued 

0.96 0.629512 2.988513 0.70978 2.727105 

0.97 0.627698 3.00347 0.70968 2.742448 

0.98 0.625897 3.018233 0.70961 2.7575 

0.99 0.624109 3.032802 0.70955 2.772263 

1.00 0.622333 3.047177 0.70951 2.786739 
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APPENDIX H 

 

EXPERIMENTATION RESULTS OF THE NUMBER OF NEURONS FOR 

DEVELOPMENT OF WNN MODEL FOR AIR OVERPRESSURE PREDICTION 

 

Table H1 Training and Testing R and MSE Results for WNN Air Overpressure 

Prediction Model 

Number of 

wavelons 

Training Testing 

R MSE R MSE 

1 0.662424 2.393671 0.416895 3.349886 

2 0.829222 1.304473 0.655149 2.220467 

3 0.865855 1.037036 0.126214 44.277157 

4 0.840528 1.216792 0.245651 38.882232 

5 0.855197 1.113297 0.600602 2.555487 

6 0.885915 0.89121 0.613846 2.490908 

7 0.895546 0.820739 0.503404 3.442285 

8 0.904324 0.755851 0.212029 13.601103 

9 0.911602 0.703535 0.588081 2.895814 

10 0.920941 0.629497 0.527007 2.994557 

11 0.897545 0.809023 0.533309 2.785099 

12 0.925107 0.598168 0.458044 4.778487 

13 0.941914 0.474367 0.49239 3.89988 

14 0.920611 0.632634 0.424708 7.285348 

15 0.918916 0.647115 0.532564 3.228061 

16 0.923326 0.611634 0.583772 2.715249 

17 0.929370 0.569123 0.349354 5.234822 

18 0.951174 0.394928 0.168478 10.674106 

19 0.935638 0.518238 0.084647 14.193746 

20 0.929775 0.563313 0.551053 5.171826 
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APPENDIX I 

 

EXPERIMENTATION RESULTS OF THE NUMBER OF NEURONS FOR 

DEVELOPMENT OF ELM MODEL FOR AIR OVERPRESSURE PREDICTION 

 

Table I1 Training and Testing R and MSE Results for ELM Air Overpressure 

Prediction Model 

Number of 

Neurons 

Training Testing 

R MSE R MSE 

1 -0.308042 1280.59283 -0.381013 1830.083913 

2 0.285687 49.762514 0.469775 50.910363 

3 0.269833 8.335737 -0.156645 12.188697 

4 0.144991 9.386551 -0.233652 11.926608 

5 -0.430779 234.267516 -0.476217 277.584165 

6 0.440006 4.088657 0.533459 4.23514 

7 0.649211 2.399635 0.304497 6.22982 

8 0.672977 2.274472 0.397278 5.964566 

9 0.689639 2.183468 0.225106 10.835281 

10 0.756416 1.773126 0.271383 11.013166 

11 0.686103 2.199696 0.46459 4.675781 

12 0.655315 2.372119 0.589382 2.992013 

13 0.739202 1.879033 0.605862 3.864762 

14 0.772167 1.67288 0.132864 28.584665 

15 0.728739 1.945187 0.495288 6.249487 

16 0.747264 1.830395 0.4222 4.699861 

17 0.767746 1.700628 0.374074 13.267117 

18 0.782129 1.608317 0.682514 2.594184 

19 0.786761 1.578526 0.380538 32.38551 

20 0.798097 1.503774 -0.05641 186.507465 

21 0.792719 1.539549 0.209277 243.809467 

22 0.783539 1.599295 0.325998 50.335294 

23 0.810577 1.42094 0.303136 13.743804 

24 0.840147 1.218435 0.155257 1222.242569 



223 

 

Table I1 Continued 

25 0.809454 1.42817 0.167893 32.308697 

26 0.816537 1.380454 0.019404 147.725434 

27 0.841311 1.210335 -0.080776 345.888 

28 0.846939 1.170981 0.192223 253.928187 

29 0.847936 1.163963 -0.083973 847.274617 

30 0.84553 1.180844 0.195546 123.944314 

31 0.870427 1.003877 0.299927 12.086098 

32 0.847935 1.163973 -0.117216 2073.549334 

33 0.858011 1.092777 0.3904 8.591206 

34 0.862569 1.060286 0.142293 5594.504399 

35 0.874575 0.973898 0.226044 111.748952 

36 0.871058 0.999331 0.127562 25187.40149 

37 0.876392 0.960718 0.138423 8432.889395 

38 0.874622 0.973556 0.139481 2221.804237 

39 0.899578 0.790156 0.115582 84851.47808 

40 0.879552 0.937735 0.13288 9027.058671 
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APPENDIX J 

 

PREDICTED AIR OVERPRESSURE VALUES ON THE TESTING DATA SETS BY THE VARIOUS PREDICTION TECHNIQUES 

 

Table J1 Observed and Predicted AOp for the Various Models 

Observed 

Aop (dB) 

Predicted AOp (dB) 

BPNN GRNN RBFNN GMDH WNN SVM LS-SVM RVM ELM GPR MARS 
General 

Predicted 

Newmont 

Model 

104.2 103.9 104.6 104.6 103.7 103.9 104.1 104.0 104.0 104.0 104.0 104.5 104.5 102.2 

101.9 102.0 101.5 101.5 101.3 98.8 102.3 99.4 102.3 101.2 102.3 102.6 103.2 98.9 

102.8 103.4 103.6 103.7 103.0 102.6 103.7 102.5 103.5 103.1 103.6 104.0 104.2 101.3 

105.5 104.9 104.3 104.5 104.3 104.3 104.3 103.8 104.7 103.7 104.1 104.2 104.4 102.0 

103.5 104.2 103.9 103.6 104.8 104.8 103.6 105.3 103.9 105.2 104.8 103.7 103.3 99.2 

101.9 103.0 102.9 103.5 102.4 101.8 103.2 101.9 103.2 102.7 103.6 103.6 104.0 100.9 

103.5 105.4 104.6 104.9 106.0 106.3 106.3 104.8 105.3 108.0 104.1 106.2 104.1 101.3 

102.8 103.6 104.3 104.4 103.5 103.3 103.9 103.1 103.8 103.5 103.8 104.2 104.5 102.1 

104.9 104.8 103.7 106.7 108.8 105.9 105.3 104.8 105.2 105.1 106.5 103.5 106.8 107.7 

105.5 105.2 104.9 104.9 104.5 104.2 104.7 103.3 105.1 103.7 104.5 104.5 104.8 102.9 

101.9 104.6 103.5 104.1 104.3 104.4 104.0 104.7 104.4 104.1 103.4 104.0 104.0 100.9 

101.9 102.6 102.3 102.2 101.9 100.9 102.9 101.1 102.8 101.9 102.2 103.2 103.5 99.6 
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Table J1 Continued 

103.5 104.1 102.6 103.1 104.2 104.2 103.5 104.0 104.0 104.0 102.4 103.5 103.6 100.1 

102.8 104.6 103.8 104.2 104.2 104.4 104.0 103.9 104.5 103.5 103.9 103.9 104.2 101.5 

104.2 104.3 102.7 103.3 104.2 104.1 103.6 103.9 104.1 103.8 102.8 103.5 103.8 100.5 

108.8 106.4 105.9 107.4 107.5 106.3 107.1 104.8 106.5 110.0 106.4 106.2 107.3 109.0 

101.9 103.1 103.1 103.3 102.4 102.7 103.3 103.0 103.2 102.8 103.0 103.8 103.8 100.6 

103.5 105.7 105.3 106.6 107.1 106.2 106.3 104.8 105.8 105.5 104.8 105.4 106.3 106.5 

104.2 104.8 104.6 105.0 104.9 104.0 105.2 103.5 104.7 104.1 103.5 105.7 104.6 102.5 

108 105.2 105.9 106.7 105.9 106.0 105.5 106.5 105.2 106.7 106.0 105.6 105.8 105.2 

106 106.5 105.3 106.9 106.1 105.4 106.6 105.3 106.4 105.3 105.5 106.1 105.3 104.1 

103.5 104.8 103.3 103.1 104.3 104.3 104.6 104.8 104.7 105.0 104.0 104.1 103.8 100.5 

106 107.0 105.7 107.2 107.2 106.1 108.1 105.5 107.8 106.7 106.1 106.2 107.1 108.5 

107 105.2 106.0 106.6 105.7 106.0 105.5 106.7 105.1 107.1 106.2 105.8 105.6 104.9 

106 105.9 105.7 106.1 105.2 105.1 105.6 105.1 105.9 104.8 105.6 105.4 105.5 104.5 

105.5 106.8 105.4 107.0 106.7 106.1 107.5 105.1 107.3 107.7 105.8 105.9 106.9 107.9 

108 106.3 105.8 106.5 105.6 105.4 106.2 106.2 106.3 105.5 105.9 105.7 105.8 105.3 

105.5 106.6 105.7 107.1 106.3 106.0 106.8 105.5 106.9 106.6 105.8 105.5 106.7 107.4 

104.2 104.6 105.7 105.9 104.8 105.6 104.9 106.4 104.6 106.1 105.5 105.3 105.1 103.6 

106 106.3 106.0 106.8 105.6 105.6 106.3 106.7 106.3 105.7 106.2 106.1 105.7 105.1 

106 106.8 105.7 107.3 106.8 106.1 107.5 106.0 107.4 107.4 106.5 106.1 107.1 108.4 
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Table J1 Continued 

103.5 102.9 104.5 104.8 104.0 103.5 103.2 104.3 103.4 102.6 104.6 103.1 104.7 102.7 

106 106.1 105.9 107.5 107.4 106.4 106.7 104.9 106.2 108.6 106.3 105.8 107.2 108.5 

101.9 103.1 101.7 102.5 104.6 105.3 102.5 105.0 103.1 104.1 103.1 102.5 103.0 98.6 

103.5 102.9 104.3 104.6 103.5 104.2 103.2 104.0 103.4 102.6 104.5 103.2 104.6 102.5 

105.5 104.1 105.0 105.1 104.0 104.6 104.3 104.8 104.1 104.6 104.5 104.7 104.7 102.7 

105.5 104.9 104.1 104.3 104.3 104.0 104.3 103.5 104.7 103.7 103.8 104.1 104.4 101.9 

104.2 102.5 103.3 104.0 102.8 103.7 102.7 103.7 103.0 101.9 104.5 102.7 104.3 101.6 

105.5 104.6 105.6 105.9 105.0 105.5 104.8 106.2 104.6 105.7 105.5 105.2 105.2 103.9 

104.2 104.7 103.7 103.9 104.2 103.9 104.1 103.4 104.5 103.6 103.6 104.0 104.2 101.5 

101.9 104.5 103.9 104.1 104.2 103.9 103.9 103.6 104.4 102.9 104.3 103.6 104.4 101.9 

104.2 104.5 103.4 103.7 104.1 103.8 103.9 103.2 104.4 103.4 103.5 103.7 104.2 101.3 

104.9 105.4 105.2 105.3 104.9 104.3 105.0 103.4 105.3 103.8 104.5 104.6 105.2 103.8 

107 106.6 105.8 107.0 106.2 105.7 106.9 105.6 106.7 105.6 105.7 106.2 105.7 105.1 

104.9 104.8 104.0 104.6 104.8 104.7 104.2 105.7 104.4 105.2 105.0 104.2 103.7 100.1 

103.5 103.5 103.9 103.6 102.9 104.4 103.7 105.3 103.5 103.5 104.2 104.3 103.8 100.4 

108.4 106.5 106.0 107.2 107.6 106.2 107.4 104.9 106.7 111.1 106.2 106.2 107.4 109.1 

105.5 104.6 103.6 103.7 104.2 103.6 104.0 103.1 104.5 103.5 103.5 103.9 104.2 101.4 

108.8 107.0 105.8 107.3 107.1 106.1 107.9 105.7 107.6 106.6 106.1 106.2 106.9 108.0 

107.5 106.7 105.6 106.7 106.3 105.6 107.1 105.4 106.8 105.4 105.7 106.2 105.7 105.2 



227 

 

Table J1 Continued 

104.2 104.5 105.3 105.5 104.8 104.7 104.8 104.9 104.5 104.5 104.6 105.1 105.0 103.5 

106.5 104.7 103.9 103.9 104.7 104.2 104.2 105.2 104.3 105.0 104.6 104.2 103.6 99.9 

102.8 104.3 105.0 105.1 104.5 104.4 104.6 104.5 104.4 104.3 104.1 105.0 104.8 102.9 

103.5 104.5 104.9 105.0 104.5 104.3 104.8 104.3 104.4 104.4 104.2 105.2 104.7 102.7 

102.8 103.4 103.6 103.2 102.8 103.7 103.8 103.8 103.5 103.1 103.3 104.2 103.7 100.3 

107 106.1 105.4 105.8 105.3 104.8 106.0 105.9 106.0 105.0 105.0 106.0 105.1 103.6 

104.2 104.0 104.7 104.8 104.0 104.1 104.3 104.3 104.1 104.1 104.1 104.7 104.6 102.5 

103.5 103.9 104.6 104.6 103.8 103.9 104.2 103.9 104.0 103.9 103.9 104.5 104.5 102.3 

106.5 105.7 104.9 105.7 105.1 104.5 105.3 105.5 105.4 105.0 105.0 105.2 104.5 102.1 

104.9 105.1 104.3 104.4 104.4 103.9 104.6 104.1 104.9 104.1 103.9 104.5 104.4 101.9 

102.8 105.2 104.5 104.6 104.5 104.0 104.7 104.1 105.0 104.1 104.0 104.6 104.5 102.1 

103.5 105.2 104.2 104.4 104.6 103.9 104.7 104.9 104.9 104.5 103.4 104.7 104.2 101.4 

106.5 107.4 106.8 107.1 95.5 103.8 108.8 104.7 109.6 113.2 104.1 106.1 105.2 103.8 

105.5 105.2 104.5 104.8 104.6 104.2 104.7 105.2 104.9 104.5 104.0 104.7 104.3 101.6 

106 106.2 105.7 107.1 107.3 106.1 107.0 104.6 106.3 106.5 106.4 106.2 106.8 107.6 

104.2 106.2 105.5 106.8 107.3 106.1 107.1 104.8 106.3 105.4 106.1 106.2 106.6 107.3 

105.5 103.8 104.3 104.3 103.7 103.4 104.1 103.3 103.9 103.6 103.7 104.5 104.4 102.0 

104.2 103.4 103.9 104.1 103.2 102.7 103.6 102.5 103.6 103.0 103.8 103.9 104.4 101.8 

104.2 103.9 104.7 104.7 103.8 104.0 104.1 104.0 104.0 104.0 104.0 104.5 104.6 102.4 



228 

 

Table J1 Continued 

106 105.3 104.8 105.1 104.7 104.4 104.8 105.4 105.0 104.7 104.4 104.9 104.4 101.8 

102.8 104.4 103.9 104.7 104.1 103.9 104.6 105.0 104.1 104.4 105.3 104.8 104.1 101.1 

101.9 101.8 101.6 101.6 101.1 100.0 101.9 100.3 102.0 100.5 103.2 102.3 103.0 98.4 

100 101.7 100.7 102.0 100.9 96.9 101.7 100.0 101.9 100.0 102.3 102.1 103.2 98.9 
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INDEX 

 

A 

ABC (artificial bee colony), 49, 56 

ABCANN model, 49 

ABC-ANN model, 49 

ability, 31, 77, 79 

absolute error (AE), 34, 44–45, 48, 53–

55, 99, 117, 145, 159 

accuracy, 31–32, 37, 39–42, 46, 49–50, 

52–53, 55, 58–59, 61–64, 119–20 

   higher level of, 4, 31 

Achieved Navigation Accuracy, 165 

activation function, 69, 76–77, 90–91 

   linear, 70 

   nonlinear, 74 

   non-linear, 69 

   sigmoid, 91, 110, 140 

   sine, 91 

adaptive neuro-fuzzy inference systems. 

See ANFIS 

adaptive regression splines, 30, 64, 79 

adaptive regression splines method, 79 

adaptive strategy, 160 

additive nature, 93 

additive regression trees, 65 

Adverse Effects of Blasting, 164 

AE. See absolute error 

AE equation, 53 

Aero Engine Performance Parameter 

Chaotic Prediction, 166 

African Mining Services (AMS), 13 

AI-based Software, 101–2, 161 

AI-Based Software Development, 101 

AIC (Akaike Information criterion), 101, 

130, 132, 157, 159 

AIC approach, 160 

AIC computations, 157 

AIC technique, 130 

AIC value, least, 130 

AIC Values, 130–32, 158 

   calculated, 157 

   computed, 130 

   lower, 157 

   lowest, 157 

   obtained, 160 

Air Blast, 176 

Airblast and Rock Fragmentation, 176 

Airblast-Overpressure Induced, 168 

air humidity, 63 

air overpressure, 1–6, 14–15, 27–31, 57–

58, 60–61, 65, 69, 73, 95, 98–99, 

101, 133–35, 141–42, 157, 160–61 

Air-Overpressure, 163, 169 

air overpressure 

   blast-induced, 59, 164, 170 

   induced, 57 

   minimise, 29 

   peak, 27 

   predicting, 5, 133, 148, 150, 157 

   predicting blast-induced, 139, 173 

Air-Overpressure Induced, 163 

air overpressure levels, 2 

air overpressure modelling, 71, 96 

air overpressure models, 73 

air overpressure monitoring, 21 

air overpressure prediction, 4–5, 56, 61, 

64–66, 68, 75, 98, 133–35, 137–42, 

149, 158–61, 203, 217, 221–22 

air overpressure prediction analysis, 6 

air overpressure prediction 

interpretations, 133 

air overpressure prediction modelling, 

95, 160 

air overpressure prediction models, 29, 

101, 158 

Air Overpressure Prediction Model 

Selection, 157 

Air-Overpressure Produced, 172 

Air Overpressure Resulting, 167 

air overpressure system, 1 

air overpressure values, 68, 95 

   best predicted, 139 

   predicted, 147, 224 

air overpressure waves, 28 

air pollutants, predominant, 14 

air pollution, 14 

air pressure pulse, 28 

Air pressure pulse (APP), 28 

Air Vibrations, 30, 172 

Ajenjua Bepo Forest Reserve, 2 

Akaike Information Criteria, 158–59 

Akaike Information criterion. See AIC 

Akaike Information Criterion Values, 

132 

algorithm, 77, 167 
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   ant colony, 30 

   back-propagation, 77 

   based optimisation, 94 

   bee colony, 30 

   competitive, 51, 56, 65 

   cuckoo optimisation, 50, 56 

   gradient descent learning, 73 

   new learning, 90 

   novel swarm intelligence, 49 

   scaled conjugate gradient 

backpropagation, 105–6, 136 

Alpha-blast, 27 

Ambient air quality monitoring, 21 

Ambrasey-Hendron and Ground 

Empirical, 39 

Ambrasey-Hendron Equation, 112, 114 

Ambraseys- Hendron, 47 

Ambraseys-Hendron and Indian 

Standard, 34 

Ambreseys-Hedron model, 26 

Amnieh, 35, 55, 69, 163, 165–69, 172 

amplitudes, 27 

   large, 27 

AMS (African Mining Services), 13 

analysis 

   quantitative, 131, 158 

   statistical, 160 

analysis procedure, linear regression, 98 

ANFIS (adaptive neuro-fuzzy inference 

systems), 4, 30, 32, 41, 46, 48, 56, 

59–61, 65, 169 

ANFIS, applied, 44, 50–51 

ANFIS and ANN model, 44 

ANFIS and USBM models, 41, 48 

ANFIS model, 32–33, 41, 44, 46, 50–51, 

59, 165 

   developed, 50 

angle, right, 23 

ANN (artificial neural networks), 3, 30, 

32, 36, 38, 41–47, 49, 53, 55–65, 

163, 165, 173–74, 177 

ANN 

   developed, 49 

   five, 62 

   pre-developed, 47, 59, 61 

Annals, 167 

ANN and Empirical Geomechanical 

Relationships, 163 

ANN and empirical methods, 60 

ANN and empirical models, 46, 49, 60–

61, 63 

ANN and empirical models of USBM, 49 

ANN and MLR models, 53 

ANN and MVRA models, 32, 34, 37 

ANN and USBM equation, 61 

ANN and USBM models, 62 

ANN-Based Approach, 175 

ANN-based models, 54–55 

ANN-KNN, 47, 56, 61, 65 

ANN-KNN model, 47, 61 

ANN methods, novel, 53 

ANN model, 31–39, 41–44, 46, 49, 53, 

57–58, 60, 62 

   developed, 38, 43–44, 53, 57 

   hybrid PSO-based, 58 

   layered, 37 

   one-single-input, 33 

   trained hybrid PSO-based, 58 

   two-input, 33 

ANN predictions of ground vibrations, 

31 

ANNPSO, 65 

ANN-PSO, 58 

ANN-RF, 65 

ANNs-RF model, 63 

ant colony algorithm (ACA), 30 

AOp, 29, 56, 58–59, 61–64, 68, 98–99, 

139, 141–42, 224 

   blast-induced, 62 

   measured, 58 

AOP data sets, 57 

AOp in Assiut Cement Company, 57 

AOp predictions, 61, 143 

AOp values, 58, 64, 69, 160 

   measured, 60–61 

   predicted, 146, 150 

Apalangya, 7, 9, 11–15, 164 

APP (Air pressure pulse), 28 

Appendix, 106–7, 110, 115, 133, 137, 

140, 142, 178, 192, 196–97, 199, 

203, 217, 221–22, 224 

applicability, 45 

Application for Termite Detection, 173 

Application of Cuckoo Search, 167 

Application of PSO, 168 

Application of Soft Computing, 171 

Applications, 31, 56, 91, 161, 165, 168–

69, 173–75 

   daily direct water, 21 
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Applied Acoustics, 168 

applied adaptive neuro-fuzzy inference 

system, 32, 41, 59 

applied ANN, 31–33, 35, 37–39, 42, 44, 

49, 53, 56–57 

applied group method, 54 

Applying BP Neural Network Model, 

175 

approach 

   empirical, 45, 58 

   novel, 54, 175 

   optimization-based artificial neural 

network, 168 

   rational, 1 

   recommended, 157 

approximate reasoning, 31 

approximation, sparse, 176 

Arabian Journal, 164, 168, 170 

architecture, 36, 42, 44, 71 

   optimum ELM, 91 

   selected, 71 

area 

   marked, 12 

   surrounding, 9 

   total, 2 

Area Age Unit, 11 

argillaceous horizon, thin, 9 

Armaghani, 2–4, 26, 28–29, 31, 43–44, 

52, 56, 59–60, 65, 97, 164–66, 168–
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