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Abstract  

The objective of this study is to establish the relationship between weather parameters such as rainfall, temperature, wind 

speed and relative humidity and power interruption of a 33 kV feeder and to develop an Artificial Neural Network (ANN) 

model for the prediction of these weather-related power interruptions. Four years data spanning 2013 to 2016 on the weather 

parameters for the geographical area and number of recorded outages on the feeder were taken. These data were used to 

develop the prediction model. The data were used to train, validate and test the performance of the network and that of 2016 

were used to predict the number of outages. The Levenberg Marquardt algorithm was used to train the network. Different 

models were developed to predict the occurrences of the outages based on a total of nine scenarios. This was also done to 

investigate which parameters had the most influence on the outage events. The weather data for 2016 were used as new 

inputs (sample) to the networks, and all the networks were simulated to predict the number of outages. The results showed 

that the ANN model was able to predict the number of outages with a reasonable level of accuracy. Rainfall and wind speed 

were established as the critical causes of the outage events while temperature and humidity had minimal influence on the 

outage events. 
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1 Introduction  

The landscape of Tarkwa-Nsuaem municipality is 

generally undulating with ridges and valleys 

parallel to one another. The ridges rise over 70 m 

above the valley floors. The municipality falls 

within the rain forest belt with the height of trees 

ranging between 15 – 40 meters. It has a humid, 

tropical climate with an average annual rainfall of 

over 1680 mm. The rainfall is characterised with 

lightning and thunderstorms. The average annual 

temperature ranges between 26 oC in August and 

30 oC in March. Sunshine duration for most of the 

year averages 7 hours per day (Anon., 2016; 

Nyarko, 2014).   

The Tarkwa-Nsuaem municipality is supplied by 

nine main  electrical feeders, six at 33 kV voltage 

level and three at 11 kV voltage level. The 

municipality has an average load demand of about 

34 MVA (2017 estimate) which is supplied from 

the national grid at a voltage level of 161 kV. Three 

transformers rated 161/33 kV step down this 

voltage to a voltage level of 33 kV. The bus-bar is 

fed with 33 kV which is stepped down to 11 kV at 

the Bulk Supply Point (BSP) which is the Atoabo 

substation. 

The Bonsa feeder distribution network is a 33 kV 

radial overhead distribution line supplying about 

3338 customers (2017 estimate). The average load 

on the feeder is 1.6 MVA. Protection schemes are 

provided to protect the feeder against faults which 

may lead to power outages. At the substation, there 

is a circuit breaker fitted with an ABB Distribution 

Protection Unit (DPU), and an advanced 

microprocessor-based relay for protecting the main 

supply line against three-phase faults and line-to-

line faults. Overhead ground wires are provided on 

the steel mini-tower poles to intercept direct 

lightning strokes. The 11 kV lines are protected 

with in-line fuses and an auto recloser. 

The duration of interruption is determined by the 

utility's protective devices and the particular event 

that led to the fault. Occurrences of interruptions in 

power distribution networks are almost 

unavoidable. Reliability is a significant factor in 

operating and maintaining electric power 

distribution systems. Reliability of power systems 

is generally designated as a measure of the ability 

of the system to provide consumers with adequate 

supply (Uhunmwangho and Omoroguiwa, 2014). 

 

The problems and the damages caused to the 

consumer due to the inadequate voltage conditions, 

dips and short and long-time interruptions 

determine substantial additional costs. 

 

Providing reliable electrical service is the number 

one priority of electric power distribution 

companies. Unfortunately, electric power 

distribution networks are facing some operational 

problems, one of which is unscheduled power 

interruptions. A typical distribution network 

saddled with this problem is the 33 kV Bonsa 

feeder of Tarkwa. According to Maharajan (2012), 

an interruption occurs when the supply voltage or 
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load current decreases to less than 0.1 per unit for 

about 1 minute. Interruptions can be sustained or 

momentary. Momentary interruption is any 

interruption that lasts for less than 1 minute, hence 

sustained interruption is any interruption that lasts 

for more than 1 minute.  

Prediction of the possible future occurrences of 

these weather-related power interruptions on the 

Bonsa feeder and dissemination of the information 

to power utility company should help in planning 

for unscheduled power interruptions. Related 

researches on Artificial Neural Network (ANN) 

applications convince that it is possible to define 

and build a model using Artificial Neural Networks 

(ANNs), which can use the weather parameters as 

inputs and predict the occurrences of interruptions 

with reasonable accuracy (Sarwat et al., 2016). 

An ANN is an information processing paradigm 

that is inspired by the way biological nervous 

system processes information (Maind and Wankar, 

2014).  They are nonlinear models that have the 

potential of being used as useful forecasting tools 

in a large number of application areas (Kaur, 2016). 

The basic computational unit in a neural network is 

the neuron or perceptron which consists of inputs, 

weights (W), a summing point, a bias (b) and a 

nonlinear activation function (f). The neuron acts 

as a parallel processing unit that performs simple 

mathematical operations on its inputs and imitates 

the functions of biological neurons in its unique 

process of learning. The scalar inputs are 

transmitted through connections that multiply their 

strength by the scalar weights to form the product. 

All the scalar inputs are added together with the 

bias. The result is the argument of a transfer 

function which produces the output. The bias is a 

weight that has a constant input of 1.  

An ANN is typically defined by the interconnection 

pattern between the different layers of neurons, 

learning process for updating the weights of the 

interconnections and the activation function that 

converts a neuron's weighted input to its output 

activation. The grouping of these neurons into 

layers, the connections between these layers, the 

summation and transfer functions comprise the 

functioning neural network. Most ANN 

applications require a network that contains at least 

three layers of neurons: input, hidden and output 

layers. The layer of input neurons receives the data, 

the output layer sends information directly to the 

outside world and the hidden layer receives the 

signals from all of the neurons in the input layer. 

After the hidden layer performs its functions, it 

passes its output to all of the neurons in the output 

layer, providing a feedforward path to the output 

(Maind and Wankar, 2014). 

 

By way of training, the ANN is adjusted to perform 

a particular application. Once the network is trained 

with a variety of patterns of input and output 

combinations, ideally, it should be able to predict 

the correct output when an input pattern is given 

randomly. There are two approaches to training; 

supervised and unsupervised training. Supervised 

training involves a mechanism of providing the 

network with the desired output either by manually 

"grading" the network's performance or by 

providing the desired outputs with the inputs. 

Unsupervised training is where the network has to 

make sense of the inputs without an outside help 

(Dike et al., 2018; Maind and Wankar, 2014). 

Several algorithms have been proposed for training 

an ANN. The neural network learning algorithms 

play an important role in building an efficient 

forecasting model. The algorithms are used to set 

the network’s weights in order to minimise the 

difference between the actual outputs and the target 

values produced by the network. Some of these 

algorithms are Levenberg-Marquardt (LM), 

Bayesian regularisation (BR) and Scaled Conjugate 

Gradient (SCG). The LM and BR use Jacobian 

calculations to perform their operations. LM is 

recommended for most problems, but for some 

noisy and small problems, BR can take longer 

computation time but obtain better solutions. For 

large problems, however, SCG is recommended as 

it uses gradient calculations which are more 

memory efficient than the Jacobian calculations the 

other two algorithms use (Anon., 2014; Kaur, 

2016). 

A number of weather-related variables are known 

to affect electric power outages and are duly 

reported in the literature. Notable among  these 

variables are thunderstorms using regression tree 

models (Cerrai et al., 2019), probability 

distributions (Kabir et al., 2019), vegetation 

management combined with LiDAR-derived tree 

height data and random forest model (Wanik et al., 

20017) and Bayesian prediction using historical 

high-resolution radar observations together with 

outage information (Yue et al., 2018); prediction of 

hurricanes making use of binary classification, 

multi-class classification, regression, random forest 

algorithm and with weighted mean absolute error 

(Shashaani et al., 2018), use of hurricane outage 

prediction model that included trees (D’Amico et 

al., 2019), utilisation of logistic regression 

(Eskandapour and Khodaei, 2017) and use of 

random forest model (Nateghi et al., 2014); Arif 

and Wang (2018) used statistical analysis and deep 

neural networks to predict repair and restoration 

times of distribution networks incapacitated as a 

result of outages caused by both thunderstorms and 

hurricanes. Outages caused by snow and ice storms 

were predicted by Cerrai et al. (2020) using 
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machine learning-based model and a generalised 

linear model. Yan et al. (2016) predicted weather-

caused blackouts by combining ArcGIS mapping 

with historical outage events and weather forecast 

data.  Temperature (Bartos et al., 2016), rainfall 

and humidity (Sawart et al., 2016) and wind 

(Matavalam, 2004) also affected electric power 

outages. Clearly, thunderstorms and hurricanes 

were much researched however, no research, to the 

best of our knowledge, combined wind, rainfall, 

temperature and humidity for power outages 

prediction. For a town like Tarkwa, these four 

weather-related elements aside of lightning stroke, 

can be crucial in predicting outages experienced by 

a typical feeder.  The objective of this paper is 

therefore, to utilise readily available historical data 

on wind, rainfall, temperature and humidity to 

predict outages experienced by numerous custo-

mers that are served with electric  power from the 

Bonsa distribution feeder. More so, no such study 

was done with regard to the Bonsa feeder. 

Recommendations from this research stand to be 

useful to the utility company responsible for the 

feeder in question.  

The rest of this paper is organised as follows: In 

Section 2, analysed outage data and meteorological 

data on the four weather elements are presented 

together with ANN models development and usage 

for the prediction. The results and discussion are 

presented in Section 3 with emphasis on 

performance of the models and the simulation 

results with their discussion. The conclusions and 

recommendations are given in Section 4.   

2 Resources and Methods Used  
 

2.1 Data Analysis and Integration 
 

The two types of data, namely outage and 

meteorological data, were used to develop the 

models. The meteorological data were used as 

inputs to the network to establish a relationship 

between the weather parameters and outage event. 

The outage data were used as a target to teach and 

direct the network to produce the desired results. 

The prediction was based on monthly data since the 

number of outages experienced per day was 

insufficient to produce a good prediction model. 

Fig. 1 and Fig. 2 show the analysed outage and 

meteorological data, respectively. 
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Fig. 1 Analysed Outage Data for the Study Period 
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Fig. 2 Analysed Meteorological Data for the Study Period 

 

2.2 Development of the Artificial Neural 

Network Model 

The prediction models were developed based on 

each of the weather parameters and a combination 

of them. The weather and outage data from 2013 to 

2015 were used to create the network, train and 

validate the performance of the network and that of 

2016 were used for the prediction. The training 

parameters were changed depending on the 

network's performance until an excellent 

performance was achieved. A flowchart of the 

proposed weather-related interruption prediction 

method is presented in Fig. 3. 

The steps involved in the development of the 

weather-based interruption prediction model 

illustrated in Fig. 3 are as follows: 

 

Step 1: Start to initialise MATLAB software. 

Step 2: Load weather and outage data into 

MATLAB software and select the NN toolbox. 

Step 3: Define inputs and target in the NN toolbox, 

prepare data for training, validation and testing, 

select the network’s architecture and select the 

training function. 

Step 4: Train, validate and test the network. 

Step 5: Is the performance of the network good? If 

yes, proceed to the next step but if no, change the 

number of neurons and then go back to step 4. 
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Fig. 3 Flowchart of the Weather-based 

Interruption Prediction Model 
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Step 6: Simulate the network for prediction. The 

output of the simulated network is the predicted 

number of outages and the actual number of 

outages which were used as the target. 

Step 7: Compare the actual and predicted interrup- 

tions. Is the predicted result feasible? If no, modify 

the training parameters and go back to step 4, if yes 

end. 

Step 8: End. 

 

The time series app. in the neural network toolbox 

was used to develop the ANN models. This tool 

allows the user to solve three kinds of problems, 

namely Nonlinear Autoregressive with External 

Input (NARX), Nonlinear Autoregressive (NAR) 

and Nonlinear Input-Output (NIO). NARX allows 

the user to predict series y(t) (targets) given past 

values of y(t) and another series x(t) (inputs), NAR 

predicts series y(t) given past values of y(t) and 

NIO predicts series y(t) given past values of series 

x(t). NARX was selected to develop the model and 

for the prediction. This was because the prediction 

of the number of outages was based on past 

occurrences of these outages and weather data 

which were considered as external inputs. 

According to Anon. (2014), NARX solutions are 

very accurate for this type of prediction than the 

others.  

 

Different models were developed to predict the 

occurrences of these outages (using the available 

data from 2013 to 2015) based on a number of 

scenarios. The scenarios are as follows: 

 

(i) The individual weather parameters were 

used as input to the network; 

(ii) Rainfall and wind speed were used together 

as inputs to the network; 

(iii) Temperature and humidity were used as the 

inputs; 

(iv) Rainfall, wind speed and temperature were 

used as inputs; 

(v) Rainfall, wind speed and humidity were 

used as inputs; and 

(vi) All the weather parameters were used 

together as inputs to the network. 

In all these scenarios, the network design was 

changed to enhance performance. The optimal 

number of hidden neurons for each network was 

obtained experimentally by changing the network's 

design and running the training process several 

times until an excellent performance was achieved. 

 

2.2.1 Creation of the Artificial Neural Network 

 

The weather parameter data points from the year 

2013 to 2015 (total of 36) were imported into the 

toolbox as inputs and the number of outages as the 

targets. 

 After defining the inputs and targets, the next step 

was to randomly divide the dataset into training, 

validation and testing datasets. Training always 

requires a larger dataset than validation and testing. 

The division was done using percentages, and this 

depended on the size of the available data. By 

default, 70% of the data was used for training, and 

the remaining 30% was used for validation and 

testing. (Anon., 2014; Sawart et al., 2016). The 

ANNs were then created using the available data. 

This was simply done by defining the type of 

network architecture, the number of layers and the 

number of neurons in each layer. According to 

Nazir (2015), three layers are enough to solve any 

problem though depends on the nature of the 

problem. The number of hidden layers and nodes 

also depend on the number of input parameters and 

the type of network architecture selected. The 

number of neurons in the input and output layers 

depend on the number of inputs and outputs. For 

this study, a three-layer feedforward network 

(input, hidden and output layers) was selected for 

the models. The number of hidden neurons were 

selected based on the inputs to the networks and the 

performance of the networks. A graphical diagram 

of the model developed for the prediction is 

presented in Fig. 4. 

 

 

Fig. 4 Graphical Diagram of Artificial Neural 

Network Model 

 

2.2.2 Training, Validation and Testing 

The Levenberg-Marquardt (LM) algorithm was 

employed in the training of the ANNs. This 

algorithm is recommended for most problems 

because it is the fastest method for training 

moderate-sized feedforward neural networks. 

The ANNs were trained for a fixed number of 

epochs (iterations) several times until an excellent 

performance was achieved. A snapshot of the 

neural network training process is shown in Fig. 5. 
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Fig. 5 Training Process of the Artificial Neural 

Network Model 

 

3 Results and Discussion  
 

3.1 Performance of the Artificial Neural  
 Networks 

 

The performance of the network was evaluated by 

the Mean Squared Error (MSE) and the Regression 

(R). MSE is the average squared difference 

between outputs and targets. Lower values are 

better. Zero means no error. The R values measure 

the correlation between outputs and targets. An R 

value of 1 means a close relationship and 0 means a 

random relationship. The performance of all the 

network models is presented in Table 1. The level 

of accuracy of the predicted result is dependent on 

the performance of the network during training, 

testing and validation. Excellent performance leads 

to a high level of accuracy. For this study, all the 

MSE values are above 1, and this is acceptable due 

to the method employed and the data used in the 

prediction of the outages. The total number of  

outages were used as targets, but the output of the 

network was the number of outages due to weather. 

There were times where the output was less than 

the target and times where the output was more 

than the target and this resulted in the higher MSE 

values. MSE varied according to the type of input 

and its effect on the outages. All the R values were 

above 0.5 and this indicates that there is a good 

relationship between the output and targets. A good 

relationship means that the network has a high 

level of accuracy, and hence the predicted results 

are also very accurate. From the Table 1, the 

network with rainfall and wind speed as the inputs 

is the best model since it has the best performance 

in terms of R and MSE. 

 

3.2 Simulation Results 

The output of the ANN is two columns of data; a 

prediction for each entry in the evaluation dataset 

and the actual number of interruptions for each 

entry in the evaluation dataset. Graphs representing 

the actual and predicted outages are presented in 

Fig. 6 to Fig. 14. 

Table 1 Performance of the Artificial Neural Network Models  

Network Input MSE 
Regression (R) 

Training Validation Testing All Dataset 

Rainfall 7.750 0.919 0.885 0.700 0.817 

Wind Speed 7.165 0.891 0.500 0.505 0.698 

Temperature 1.631 0.902 0.992 0.724 0.804 

Relative Humidity 8.754 0.837 0.604 0.743 0.737 

All Four Parameters 10.218 0.976 0.704 0.780 0.816 

Rainfall, Wind Speed and Relative  

Humidity 
8.224 0.738 0.612 0.753 0.710 

Rainfall, Wind Speed and Temperature 6.894 0.937 0.871 0.514 0.848 

Temperature and Relative Humidity 12.165 0.775 0.542 0.551 0.603 

Rainfall and Wind Speed 1.605 0.956 0.990 0.884 0.911 
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Fig. 6 Prediction Pattern of Number of Outages of the Model with Rainfall as Input 

 

 

Fig. 7 Prediction Pattern of Number of Outages of the Model with Wind Speed as Input 

 

 

Fig. 8 Prediction Pattern of Number of Outages of the Model with Temperature as Input  
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Fig. 9 Prediction Pattern of Number of Outages of the Model with Relative Humidity as Input 

  

  

Fig. 10 Prediction Pattern of Number of Outages of the Model with Rainfall, Wind Speed, Temperature 

and Relative Humidity as Inputs  

 

 

Fig. 11 Prediction Pattern of Number of Outages of the Model with Rainfall, Wind Speed and Relative 

Humidity as Inputs 
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Fig. 12 Prediction Pattern of Number of Outages of the Model with Rainfall, Wind Speed and 

Temperature as Inputs  

 

 

Fig. 13 Prediction Pattern of Number of Outages of the Model with Temperature and Relative Humidity  

as Inputs 

 

 

Fig. 14 Prediction Pattern of Number of Outages of the Model with Rainfall and Wind Speed as Inputs
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3.3 Discussion of Simulation Results 
 

The simulation results show that in the cases of 

rainfall (Fig. 6) and wind speed (Fig. 7), the 

changes in weather conditions as evidenced in Fig. 

2 forced the ANN model to predict the number of 

outages as proportional to the changes. On the 

other hand, the predicted number of outages were 

almost constant in the case of temperature (Fig. 8) 

and humidity (Fig. 9) meaning rainfall and wind 

speed had a greater influence on the outage events 

but temperature and humidity as individual weather 

parameters had little or no influence on the outage 

events. The changes in the actual values of 

temperature and humidity for the period of study as 

presented in Fig. 2 were too small to influence the 

model.  

Comparing the predicted values of Fig. 10, Fig, 11 

and Fig. 12, it can be seen that only rainfall and 

wind speed of the four weather parameters account 

for most of the variation in the number of 

interruptions hence, the temperature and humidity 

effects can be neglected. This observation can be 

confirmed from Fig. 13 and Fig. 14 as well where 

the predicted outages were not similar. Fig. 13 

differed from Figs. 10, 11 and 12 whilst Fig. 14 

proved otherwise. Therefore, the prediction model 

selected for the study was the model in Fig. 14 with 

rainfall and wind speed as inputs. Detailed 

observation of the results in Fig. 14 shows that 

there were cases where the predicted outages were 

less than the actual, more than the actual and equal 

to the actual. 

3.3.1 Predicted Outages Less than Actual 

 

Where the predicted outage values were less than 

the actual, the number of the predicted outages 

matched the number of weather-related outages that 

occured.  

3.3.2 Predicted Outages More than Actual 

 

The weather conditions for these months were 

relatively high. This large change in weather   

conditions forced the ANN model to predict the 

number of outages proportional to the weather 

conditions. The actual number of outages for these 

months were pretty small though their weather 

conditions vary over a wide range. The reason was 

that precautionary measures such as tree trimming, 

maintenance of equipment such as insulators, cross 

arms and lightning arrestors were very effective 

during these months. They reduced the influence of 

high rains and wind speed on the occurrences of 

these outages. 

 

3.3.3 Predicted Outages Same as Actual 

 

These months were close to the beginning of a 

minor rainfall season where the influence of wind 

is high and so therefore the model was forced to 

predict the number of outages proportional to the 

high wind speeds experienced during the period.  

 

4 Conclusions and Recommendations  

It has been shown from this research that ANN has 

the potential to provide powerful modelling tools, 

and can be used to provide limited real-time 

prediction. The accuracy and precision of the 

model is dependent as much on the input of the 

ANN model. Whenever the number of interruptions 

is forecasted based on historical weather data, the 

utilities can prevent a major percent of these events 

by establishing preventive maintenance programs. 

 

It is therefore recommended that: 

(i) There should be proper vegetation 

management to reduce the faults caused by 

vegetation growth. 

(ii) The performance of the whole distribution 

network (including all the nine feeders) 

should be investigated and used for the 

prediction of the weather related-outages, in 

that case, the prediction model will be based 

on the daily number of outages which will 

provide better results. 

(iii) Other types of ANNs or their combinations 

should be tested to see which of the models 

gives better prediction results. 

(iv) The use of ANNs for fault diagnosis, 

transient stability assessment and static and 

dynamic security assessment should also be 

considered to reduce the number of faults 

with an unknown cause. 
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