
UNIVERSITY OF MINES AND TECHNOLOGY

TARKWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

A THESIS REPORT ENTITLED

SECURE MODEL FOR SOFTWARE QUALITY ASSURANCE

BY

BELINDA IVY BOTCHWAY

SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF

THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND

ENGINEERING

TARKWA, GHANA

 FEBRUARY 2022

UNIVERSITY OF MINES AND TECHNOLOGY

TARKWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

A THESIS REPORT ENTITLED

SECURE MODEL FOR SOFTWARE QUALITY ASSURANCE

BY

BELINDA IVY BOTCHWAY

SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF

THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND

ENGINEERING

THESIS SUPERVISORS

…………………………………….

PROF BONIFACE KAYODE ALESE

…………………………………….

ASSOC PROF SOLOMON NUNOO

TARKWA, GHANA

FEBRUARY 2022

i

DECLARATION

I declare that this thesis is my own work. It is being submitted for the Degree of Doctor of

Philosophy in Computer Science and Engineering in the University of Mines and

Technology (UMaT), Tarkwa. It has not been submitted for any degree or examination in

any other University.

..

(Signature of candidate)

….th day of February, 2022.

ii

ABSTRACT

The increasing usage of software in all fields of life, including safety-critical departments

of organisations has necessitated the need for the development of quality software. Although

software quality is of paramount concern to software development, it may be a challenging

task to software developers as it depends on ensuring that developed software meet the

standards of software quality design. Different quality models have been proposed by

researchers to serve as a benchmark for software quality design but most of these models

are tailored towards specific projects’ needs, hence, the need for the generic quality model

suitable for evaluation of all software projects. In this research, eleven (11) main software

quality attributes and thirteen (13) sub-attributes were identified and used for the quality

assurance model. These were attained from ten well-known standard software quality

models to rank the quality attributes. The Analytic Hierarchy Process (AHP) was used to

rank the software quality attributes and maintainability was observed to have the highest

score while cost had the lowest score. Mathematical models of the quality attributes were

used to evaluate software and the scores attained by each attribute was modeled with a

voting model and multiplied with the criteria weight from the AHP to get the overall quality

score for each evaluated software. Access to the quality assurance model was restricted by

the development of an access control model with the use of the Bell-LaPadula and Biba

model to regulate the people who use the model. To perform software evaluation, the

application must be hosted online, hence, must have a domain name. As a result, twenty-

eight web-based applications, grouped under six (6) categories, namely, Educational, E-

commerce, Company, Document Creation Software, Video editing, and Form creation web

applications were evaluated. Results from the evaluation showed that Document Creation

Software had the highest average quality score of 96.21% while Educational web

applications had the lowest average score of 84.16%. To evaluate the performance of the

software quality assurance model, recent works were used. The performance evaluation

showed that our model outperformed their models when evaluated against the attributes they

used and when extended to the use of eleven (11) quality attributes. The access control

model was also evaluated for accuracy, precision, and recall and was seen to have values of

0.93, 0.96, and 0.91, respectively. The study has established a model for assessing the

quality of software factoring in the major attributes of software quality assurance.

iii

DEDICATION

I dedicate this thesis to the Almighty God and my family.

iv

ACKNOWLEDGEMENTS

My profound gratitude goes to the ever-merciful God for his divine love, peace, guidance,

favour, wisdom, knowledge and understanding throughout my academic journey.

My immense appreciation to the Departments of Computer Science and Engineering and

Electrical and Electronic Engineering of the University of Mines and Technology (UMaT),

Tarkwa, Ghana and the Cybersecurity Department of the Federal University of Technology

(FUTA), Akure, Nigeria, for the opportunity granted me to pursue this research.

A special thanks goes to my supervisors, Prof B. K. Alese and Assoc Prof Solomon Nunoo.

I am grateful for your guidance, craftmanship and staunch commitment to your roles. There

were times that the path was hazy, but your constant voices kept guiding me through this

research. It is truly a pleasure to be mentored by you. I am motivated by your in-depth

knowledge, unfaltering levels of professionalism and creativity throughout the work.

My profound gratitude goes to the current and immediate past Vice Chancellors of UMaT,

Prof Richard Amankwah and Prof J. S. Y. Kuma, Pro Vice Chancellor of UMaT, Assoc Prof

Anthony Simons, Dean, School of Postgraduate Studies, Prof Grace Ofori Sarpong, Dean

of Quality Assurance, Assoc Prof Bernard Kumi-Boateng, Head, Computer Science and

Engineering Department, Dr William Akotam Agangiba, Head, Electrical and Electronic

Engineering Department, Dr J. C. Attachie, Assoc Prof (Mrs) Cynthia Borkai Boye, and

lecturers of the Departments of Computer Science and Engineering and Electrical and

Electronic Engineering for their motivation and continuous support towards the completion

of this research work.

I acknowledge the inputs of Assoc Prof (Mrs) Favour-Bethy Aderonke Thompson, Assoc

Prof Gabriel Iwasokun, Dr Emmanuel Akinwonmi, Dr Gabriel Arome and Mr Ogundipe

Iyanuoluwa Boluwatife towards the success of this research. You supported me in ways that

I never expected, and I am forever grateful.

I appreciate my parents, siblings and father in the Lord, Mr. Gill-Christ Essandoh, for your

prayers, sound advice, love, motivation and support throughout the entire PhD programme.

I am forever grateful. God reward you all bountifully.

v

TABLE OF CONTENTS

Content Page

DECLARATION i

ABSTRACT ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES x

CHAPTER 1 GENERAL INTRODUCTION 1

1.1 Overview of Research 1

1.2 Problem Definition 4

1.3 Objectives of Research 7

1.4 Methods Used 8

1.5 Contribution to Knowledge 8

1.6 Scope of the Research 9

1.7 Significance of the Research 9

1.8 Research Applications 9

1.9 Facilities Used 9

1.10 Research Approach 9

1.11 Organisation of Thesis 10

CHAPTER 2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Software 13

2.2.1 Application Software 13
2.2.2 Software Development 15

2.3 Software Quality 16

2.3.1 Software Quality Model 17
2.3.2 Software Quality Attributes 29

2.4 Limitations of the Existing Software Quality Models 33

vi

2.5 Multi-Criteria Decision-Making Analysis 33

2.5.1 Analytic Hierarchy Process 34

2.6 Software Security 39

2.6.1 Software Security Goals 40
2.6.2 Open Web Application Security Project 41
2.6.3 Software Security Model 43

2.7 Voting Model 48

2.8 Summary of Relevant Literature 49

2.9 Research Gaps in Related Works 53

2.10 Justification of Methods Used 53

2.10.1 The Proposed Quality Model 53
2.10.2 The Secured Model 54
2.10.3 AHP Technique 54

CHAPTER 3 SYSTEM DESIGN 55

3.1 Introduction 55

3.2 Quality Attributes and Sub-Attributes 55

3.3 Quality Assurance Model 55

3.4 Assessment of Software Quality Attributes 57

3.5 Mathematical Models for the Secured Quality Assurance Model 61

3.5.1 Mathematical Model for the Access Control Security Model 61
3.5.2 Mathematical Model for the Quality Assurance Model 62

3.6 Voting Method 73

3.7 Architecture of the Proposed Model 74

3.8 Flow Diagram of the Proposed System 76

CHAPTER 4 SYSTEM IMPLEMENTATION, RESULTS, AND DISCUSSIONS80

4.1 Introduction 80

4.2 Identification of Software Quality Attributes 80

4.3.1 Quality Attribute Selection Judgement Matrices 82
4.3.2 Alternative Selection Judgement Matrices 89
4.3.3 Quality models and attributes 96

4.4 Software Quality Assurance Model Implementation 97

4.4.1 Security Model for Quality Assurance Software Access Control 100

4.4.2 Software Efficiency Test 106
4.4.3 Software Reliability Test 110

4.4.4 Software Testability 113
4.4.5 Software Usability Test 116
4.4.6 Software Maintainability Test 150

vii

4.4.7 Software Portability Test 153
4.4.8 Software Functionality Test 157

4.4.9 Software Availability Test 159
4.4.10 Software Reusability Test 161
4.4.11 Software Security Test 164
4.4.12 Software Cost Estimate Test 166

4.5 Voting Method 168

4.6 Performance Evaluation 174

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 178

5.1 Conclusions 178

5.2 Recommendations 179

REFERENCES 180

APPENDICES 200

APPENDIX A CODES USED 200

INDEX 205

viii

LIST OF FIGURES

Figure Title Page

2.1 Software Development Life Cycle 16

2.2 Software quality perspectives and software quality factors 18

2.3 Core Security Goals 40

2.4 Bell-LaPadula Model 45

2.5 Artificial Neuron 49

3.1 Hierarchical Structure of the Proposed Quality Assurance Model 56

3.2 Hierarchical Structure of Software Quality Attributes 57

3.3 Voting Method Technique 74

3.4 Architecture of the Proposed Model 75

3.5 Flow Diagram of the Proposed Model 77

3.6 Flow Diagram of the System Login 78

3.7 Flow Diagram of the System Authentication 79

4.1 Weights of the Software Quality Attributes. 88

4.2 Quality attributes and their rates of address by Quality models 96

4.3 User Login Page of the Software Quality Assurance Model 98

4.4 Register Account Page of the Software Quality Assurance Model 99

4.5 Successful Register Account Page 99

4.6 Performance Evaluation of Access Control Model 102

4.7 Homepage of Software Quality Assurance Model 103

4.8 Generated Results showing Scores of Attributes for a Domain Name 104

4.9 Results showing Score from Voting Model 104

4.10 Results for Educational Web Applications 169

4.11 Results for Video editing Web Applications 170

ix

4.12 Results for E-commerce Software 170

4.13 Results for Online Form creation Software 171

4.14 Results for Company Web Applications 172

4.15 Results for Document Creation Software 172

4.16 Average Result of Web-Applications 173

x

LIST OF TABLES

Table Title Page

2.1 Software Quality factors and Quality criteria. 19

2.2 Boehm’s Quality Software Model 21

2.3 Dromey’s Quality Software Model characteristics and attributes 22

2.4 ISO Software Quality Model Characteristics and Attributes 24

2.5 Scale of Comparison 36

2.6 Number of Comparisons with the corresponding RI value 37

2.7 Number of Comparisons 37

2.8 Summary of Literature Review 50

3.1 Scale of Comparison 58

3.2 Number of Comparisons 58

3.3 Questionnaire Given to Expert 58

3.4 Number of Comparisons with the corresponding RI value 60

3.5 Confusion Matrix 62

3.6 Survey Questions and Scale Used 66

3.7 Relationship Between Cronbach Alpha’s Score and Reliability 67

3.8 SUS Score and Grade 68

3.9 Vulnerability Level and Score 70

3.10 Functional Point parameter and Weight of Complexity 71

3.11 Questions for the value adjustment factor 72

3.12 Programming Language and Score Points for AVC 73

3.13 Mode and Factors 73

4.1 Quality Attributes of the Existing Quality Models and the Proposed Model 81

xi

4.2 Geometric Mean of the Filled Questionnaire 84

4.3 Normalised Pair-wise Comparison Matrix 85

4.4 Consistency of Pair-wise Comparison Matrix 87

4.5 The Weight of Alternatives for Maintainability 89

4.6 The Weight of Alternatives for Testability 90

4.7 The Weight of Alternatives for Reliability 90

4.8 The Weight of Alternatives for Efficiency 91

4.9 The Weight of Alternatives for Usability 91

4.10 The Weight of Alternatives for Portability 92

4.11 The Weight of Alternatives for Reusability 92

4.12 The Weight of Alternatives for Functionality 93

4.13 The Weight of Alternatives for Availability 93

4.14 The Weight of Alternatives for Cost 94

4.15 The Weight of Alternatives for Security 94

4.16 The Weights for Software Quality Attribute Selection 95

4.17 Confusion Matrix for Access Control 101

4.18 List of Web Applications being evaluated 105

4.19 Web Applications and Overall Efficiency 107

4.20 Reliability Test Evaluation 111

4.21 Web Applications and Testability Test Rank 114

4.22 Case Processing Summary for Survey 117

4.23 Reliability Statistics of Survey Score 118

4.24 Survey Statistics for Application 1 120

4.25 Survey Statistics for Application 2 121

4.26 Survey Statistics for Application 3 122

xii

4.27 Survey Statistics for Application 4 123

4.28 Survey Statistics for Application 5 124

4.29 Survey Statistics for Application 6 125

4.30 Survey Statistics for Application 7 126

4.31 Survey Statistics for Application 8 127

4.32 Survey Statistics for Application 9 128

4.33 Survey Statistics for Application 10 129

4.34 Survey Statistics for Application 11 130

4.35 Survey Statistics for Application 12 131

4.36 Survey Statistics for Application 13 132

4.37 Survey Statistics for Application 14 133

4.38 Survey Statistics for Application 15 134

4.39 Survey Statistics for Application 16 135

4.40 Survey Statistics for Application 17 136

4.41 Survey Statistics for Application 18 137

4.42 Survey Statistics for Application 19 138

4.43 Survey Statistics for Application 20 139

4.44 Survey Statistics for Application 21 140

4.45 Survey Statistics for Application 22 141

4.46 Survey Statistics for Application 23 142

4.47 Survey Statistics for Application 24 143

4.48 Survey Statistics for Application 25 144

4.49 Survey Statistics for Application 26 145

4.50 Survey Statistics for Application 27 146

4.51 Survey Statistics for Application 28 147

xiii

4.52 Overall Usability Evaluation 148

4.53 Software Maintainability Evaluation 151

4.54 Software Portability Evaluation 154

4.55 Software Functionality Evaluation 157

4.56 Software Availability Evaluation 159

4.57 Software Reusability Evaluation 162

4.58 Security Test Results 164

4.59 Cost Evaluation based on software category 166

4.61 Comparison of Proposed Model with Bayu and Banowosari (2021) 175

4.62 Comparison of Proposed Model with Kaur, Kaur and Kaur (2016) 176

4.63 Comparison of Proposed Model with Budiman et al. (2018) 177

1

CHAPTER 1

GENERAL INTRODUCTION

1.1 Overview of Research

Organisations worldwide are adopting various techniques for profit maximisation through

software usage and, thus, has become prevalent in aiding these techniques (Saini et al.,

2020). The emergence of software has eased our way of life by allowing people to perform

repetitive tasks easily and faster. It has changed the way jobs are coordinated in the working

environment and has positively impacted the global economy due to increase in innovations

that has equally enhanced productivity (Salleh, Bahari and Zakaria, 2017). Software has

found its application in various fields of life including safety-critical departments.

Consequent upon the aforementioned, is the need for quality since the use of less quality

software may be prone to adverse effects such as loss of life, financial loss, and mission

failure (Sahu and Srivastava, 2018). Software quality is therefore, a key element in software

engineering since software users perceive software as a supporting tool in all fields and life.

In that regard, it is of essence that software is reliable and useful as established by Kabir,

Rehman and Majumdar (2016) that the rejection of less quality software is on the increase.

Therefore, in recent times, most software development companies seek to enhance software

quality by incorporating quality standards into software development to meet both user and

stakeholder requirements (Gambo, Soriyan, and Achimugu, 2011), yet some other software

developers only factor quality when developing safety-critical systems.

Quality is, therefore, the totality of standard features and characteristics of a product to

satisfy given requirements (Kabir, Rehman and Majumdar, 2016). According to Tomov and

Ivanova (2015), quality can be explained from five (5) different perspectives:

transcendental, product, user, manufacturing, and value-based views. The following provide

a basic explanation of each of these perspectives:

a) Transcendental view: Quality is seen as a feature that can be predicted yet cannot be

explained;

b) User view: Quality is perceived to be the appropriateness for usage;

c) Manufacturing view: Quality is the conformance to requirements;

d) Product view: Quality is perceived to be the essential features of a product; and

2

e) Value-based view: Quality is seen to have a direct reflection on the amount a

customer is willing to pay for a product.

Irrespective of the way quality is defined, it is vital in software development. Software

quality according to Hussain, Farid and Mumtaz (2019), refers to the conformance to a

specification and meeting customer requirements. Meeting customer requirements is

independent of quantifiable attributes. Software quality is, therefore, a standard for

measuring the requirements of software to satisfy user’s prospects. Software users expect

software product to be of high-quality standard and opine that software companies will

follow the standards of developing quality software to satisfy sought needs (Kassie and

Singh, 2020).

According to Mishra and Otaiwi (2020), the ability of software developers in recent times

to create new dynamic and innovative software features of high quality is a critical factor in

the software development industry. Developers rely on the adoption of libraries and

components of existing software. This exhibits some major drawbacks, which according to

Morgenstern, Marx and Landesman (2005) and Al-Badareen et al. (2011) are:

a) Vulnerabilities in developed software product;

b) Likelihood of information theft and modification;

c) The developed software becomes unreliable;

d) Customer satisfaction is not met;

e) The cost of maintenance is high;

f) Likelihood of unauthorised access; and

g) Non-compliance to laid down standards.

Research gaps have, therefore, been found in the field of software quality (Pohl and Hof,

2015). Software quality can be evaluated by using software quality models and these models

factor quality attributes for determining the quality of software. There are five (5) commonly

known software quality models, according to Kassie and Singh (2020), which are: FURPS

quality model, McCall’s quality model, ISO 9126 quality model, Dromey’s quality model,

and Boehm’s quality model. However, most of these models, if not all, have remained

theoretical as there are no visible implementation of designs of any of them (Kaur, 2012).

The ISO 9126 standard states that a quality model must have one or more of the following

attributes:

3

a) Functionality: The presence of functions and their itemised properties. The functions

meet specified requirements;

b) Reliability: Ability of a software product to preserve its performance level given a

specified condition and time;

c) Usability: The effort needed for use, and on the individual assessment of such use

by a stated or implied set of users;

d) Efficiency: The connection between software performance and used resources,

under stated conditions;

e) Maintainability: The effort required to make specified improved adjustments; and

f) Portability: The ability of software to be transported from one computing

environment to another.

Software security is one of the software quality attributes and refers to the conservation of

confidentiality, integrity, and availability of information (Suveetha and Manju, 2016). It is

an idea incorporated into software development for safety against malicious attacks to

ensure the correct functioning of the software product. In the past, programmers presumed

that securing an organisation’s infrastructure could prevent malicious attacks but recently,

hackers are bypassing software security with techniques such as cross-site scripting and

Structured Query Language (SQL) injection attacks (Singh et al., 2015). Hackers or

intruders capitalise on system vulnerabilities to render software incapacitated, thus, adopting

strict security mechanisms into software development should be keenly ensured in all

software usage environments.

Software usability is a significant software quality attribute as well as being a vital attribute

for software development. It is used to measure software accessibility; therefore, usability

of software must be assessed aptly and regularly to satisfy user needs (Qui, Chui and

Helander, 2006). According to Nielsen (2012), usability refers to the ability to easily use

and understand a software product. Software is developed for organisations to guarantee

profitability, suitability, and accessibility (Signore, 2005); therefore, usability evaluation is

significant to improve performance and speed (Islam and Tsuji, 2011).

Software functionality refers to satisfying software stated needs (Dubey, Ghosh and Rana,

2012) and is one of the key quality attributes. It reflects the degree of design compliance.

4

However, most development processes have not given much consideration to it (Salleh,

Bahari and Zakaria, 2017).

Software testability is the verification of the correctness of software to reveal the tendency

of flaws in its codes (Nasrabadi and Parsa, 2021). According to Kasisopha,

Rongviriyapanish and Meananeatra (2020), there are numerous software measurement

methods available for software testing, however, the best method that will suit the project

needs to be considered.

The proposed secure model for software quality assurance attempts to design a secure

quality assurance software model that meets certain required specifications for software

development.

1.2 Problem Definition

In the quest to carry out daily activities with ease, researchers have adopted strategies that

have been found over the years to effectively assist mankind. Out of these strategies evolved

the development of software, which are used by individuals and organisations. Software

may be used to store sensitive information, track performance records in human resources,

monitor financial processes, and control workflow, among others in the corporate

environment.

The use of software has been trusted to the extent that users do not consider its quality

features but solely look out for the efficiency and ability to solve the problem at hand.

According to Christakis and Bird (2016), software engineering practices emphasise

functionality over quality. Presently, the ability of software developers to frequently offer

novel software functionality and features of high quality is debatable in the software

development industry (Mishra and Otaiwi, 2020). This is as a result of the increase in

demand for software with similar features and functionality, hence, the birth of the concept

of software reuse.

Software Reuse is the integration and use of various software components, software

libraries, and modules from previously developed software for the development of new

applications. Most software development companies rely on reusable software components

to decrease development time and cost to improve productivity (Ali, Daneth and Hong,

2020). Despite the known advantages of software reuse, there exist some drawbacks as

5

quality cannot be guaranteed. Additionally, it has the potential of introducing flaws into

newly developed applications, hence, the concern on quality arising from the current ways

of developing software applications. Most developers rely on software reuse to quickly

meet customer demands, thereby, getting good customer feedback when the software is

released into the market (Panagiotou and Mentzas, 2011).

In that regard, some developed software applications are not given much consideration to

the quality mechanisms put in place. The use of less quality software has a major threat to

individuals, companies, and the nation at large as it can directly endanger user’s life.

According to Petersen (2021), Boeing 777 aircraft had been involved in 31 cases of aviation

accidents, including 7 hull losses with 541 fatalities as of February 2021, due to a flawed

software algorithm. Also, Boeing 737 aircraft was reported by Campbell (2019) to have

experienced a malfunction in its software, which led to another aviation incident.

Another software accident occurred, as stated by Fleischman and Crawford (2020),

involving Therac-25, a radiation therapy machine used for the treatment of cancer. Therac-

25 was charged with administering an overdose of massive radiation to multiple patients,

resulting in their deaths (Johnston, 2021). From all these occurrences, it is evident that

software developers and users are much focused on performance and functionalities rather

than the quality of the system.

According to Weiss et al. (2021), a software error, which was as a result of less quality

software, caused the failure of an American air defence system in detecting and seizing an

Iraqi scud missile, which resulted in the death of twenty-eight (28) US soldiers with ninety-

eight (98) wounded. A software error was also reported by Johnston (2021) to have caused

an autonomous Uber vehicle to kill a woman in March 2019. Furthermore, the loss of

NASA’s Mars Climate Orbiter was associated with failure to use metric units in its software

file, which resulted in errors in the system (Buckleton et al., 2020). Although the impact of

using less quality software is high, some developed software are not giving much

consideration to the quality measures put in place. Therefore, there is a need for the

development of a quality assurance model that can be used by software developers and

designers to evaluate the quality of software.

6

Despite the increasing urge to provide quality software by adopting various forms of

techniques, there are existing models such as ISO 9126, McCall’s, FURPS, Boehm’s,

among others, for evaluating the quality of software.

Related works were reviewed to identify some thought-provoking hitches in the existing

software quality models. The limitations were also addressed, and the salient points of these

works were documented.

Kassie and Singh (2020) studied software quality factors to enhance software quality

assurance. The research was conducted by studying existing software quality models and

gathering twenty-seven (27) quality factors. They further conducted a survey by giving out

a questionnaire containing twenty-seven (27) questions to seventy (70) participants. Each

question in the survey represented one software quality attribute. The participants were to

complete the survey for three (3) different software programs, namely, Matrix Laboratory

(MATLAB), Microsoft Word, and Mozilla Firefox with different levels of users. They

gathered the responses and identified the ten (10) most important software quality attributes

that are of importance to users as functionality, operability, usability, portability, reliability,

maintainability, understandability, interoperability, efficiency and aesthetic. The limitation

of the model was its inability to address other important users’ perspective-based software

quality attributes such as availability and testability.

In order to prevent an occurrence of compromising the developed software quality assurance

model, the overall system is secured by an access control model, which was designed using

the Bell-LaPadula (BLP) model for confidentiality enforcement and the Biba model for

integrity enhancement. Related works on BLP and Biba models were reviewed to identify

some thought-provoking hitches as well.

Saravanan and Umamakeswari (2020) also applied the BLP model to protect user data in a

cloud environment. An access control matrix was constructed for patient’s records in a

hospital using the BLP model where subjects in a particular level, li, had access rights to

objects, Oj, in the same level. The patient’s documents were assigned security values when

storing them on the secure cloud storage. Upon retrieval, the credentials were checked and

authenticated. Once the authentication process was passed, the user was given access right

to the document. Although the user authentication level was successfully ensured, the

integrity of user credentials was not enforced.

7

Liu et al. (2017) worked on flexibility enhanced Biba integrity model using break the glass

(BTG) strategy for securing operating systems. Although the traditional Biba model can

keep the integrity of information, however, it has the tendency of blocking the access

requests of some subjects leading to a decrease in the system’s accessibility. However,

enhanced Biba model using BTG strategy allowed the user immediate access to the system

when necessary. BTG is based upon a pre-staged emergency user accounts and allows

emergency access to the system. The limitation of the study was that, BTG mode is not open

to all the subjects in the system.

Although there have been numerous works done in the area of software quality and security

models, from literature done, it was noted that this research differs from other works because

it focuses on the design of a secured quality assurance software model using a hybrid

software quality model from ten (10) standard and well-known quality models.

Twenty-four (24) software quality attributes were sampled and based on deductions made

from literature, were reduced to eleven (11) main attributes with thirteen (13) sub-attributes.

These main attributes were ranked using Analytic Hierarchy Process (AHP) to obtain their

criteria weights. Two (2) software security models were also used for ensuring access

control of the quality assurance software.

The outcome of this research has resulted in the successful development of a secure software

quality assurance model to evaluate web-based software programs against eleven (11)

software quality attributes. Web-based software used by companies, researchers and

educational institutions, business environments, and individuals could be tested for quality.

This will build up confidence and trust between software developers and end-users about

effectiveness and safety of software products.

1.3 Objectives of Research

The specific objectives of the research are to:

a) identify and analyse the various software quality assurance attributes;

b) carry out a multi-criteria decision-making analysis of the software quality attributes

based on the output of (a);

c) develop mathematical models for attributes identified based on (a);

8

d) develop an integrated mathematical model for the quality assurance software based

on a multi-criteria decision-making analysis of the software attributes; and

e) evaluate the performance of the integrated mathematical model using some standard

metrics.

1.4 Methods Used

The methods used for the achievement of the stated objectives include:

a) literature review on Analytic Hierarchy Process (AHP), software quality, and

software security models (BLP and Biba models);

b) identification of the various attributes of quality software, and analysing them to

bring together similar ones;

c) carry out a multi-criteria decision-making analysis of the software quality attributes

using the Analytic Hierarchy Process;

d) design of mathematical models from the various models aimed at using (b);

e) use the output of AHP to develop a hybrid model; and

f) evaluate the design using some standard metrics.

1.5 Contribution to Knowledge

The study has contributed to knowledge by:

a) establishing a model for assessing the quality of application software factoring in the

major attributes of software quality assurance. This will assist software developers

and end-users greatly in developing and assessing software quality;

b) ranking software quality attributes to determine attributes that are of great

importance to stakeholders during software development.

c) providing a voting model to bring in all the eleven (11) mathematical models of the

proposed software quality assurance model.

9

1.6 Scope of the Research

The research is limited to the:

a) use of mathematical formulation behind the design of quality and secured software;

b) use of web-based applications for the evaluation process; and

c) assessment of the quality of application software.

1.7 Significance of the Research

This research has established a secure model for software quality assurance based on

dynamic analysis that can detect the quality of web-based software.

1.8 Research Applications

The research may be applied in Software Re-use techniques, Software Re-engineering

techniques, the design of Commercial-Off-The-Shelf (COTs) software, Enterprise Resource

Planning (ERP) software, Service-Oriented software, web-based software applications, and

others.

1.9 Facilities Used

The facilities employed for this project include:

a) Library, internet and computing facilities of University of Mines and Technology,

Tarkwa and Federal University of Technology, Akure; and

b) Laptop computer equipped with Python programming software. In addition, the

following web technologies were used; ExpressJS, Angular, and NodeJS with

MongoDB for data storage.

1.10 Research Approach

Methodology for the achievement of the stated objectives are in four (4) phases. Phase one

reviewed related works on software, software quality, analytic hierarchy process, and

software security models. Relevant literature on the strengths and limitations of the various

models are also highlighted. Expertise in information security, software engineering,

software development, mathematics, coupled with experts in other fields were consulted.

Phase two employed the use of the Analytic Hierarchy Process (AHP) to rank the software

quality attribute for the design of the quality model. The ranking was made from eleven (11)

10

software quality attributes and three (3) alternatives. This information was used to develop

a hierarchical structure with the goal at the top level, the attributes at the second level, and

the alternatives at the third level, where a pair-wise comparison was done between the

attributes to determine their relative importance to the goal.

Phase three of the research deals with the design of the hybrid software quality model and

the access control model. Eleven (11) software quality attributes from various software

quality models were employed for the design of the software quality model to address the

important software quality factors needed for the evaluation of software.

The model was implemented using Python programming language and the web technologies

used were ExpressJS, Angular, and NodeJS with MongoDB as its data storage. The

application can run on browsers such as Mozilla Firefox, Google Chrome, Microsoft Edge,

Internet Explorer, Safari, and Opera Mini. The Operating System requirements are Windows

7, Windows 8 or Windows 10, and Mac OSX 10.8, 10.9, 10.10, or 10.11. The hardware

requirements are a laptop with a processor speed of 2.30 Gigahertz (GHz) or above, a

minimum of 4 GB RAM, monitor resolution of 1024x768 or higher, Ethernet connection

(LAN) or wireless adapter (WiFi) with a speed of 4 Mbps or higher.

1.11 Organisation of Thesis

The thesis is organised as into five chapters.

Chapter 1 is the introductory chapter. It contains the background to the study, problem

definition, objectives of the study, methods used to achieve the objectives, contribution to

knowledge, scope of work, significance of the study and the facilities that were available

for developing and writing the thesis. This chapter also contains a brief summary of the

research methodology and gives the organization of the study.

Chapter 2 reviews related literature on models for quality software development and also

discusses the quality attributes of these models. The chapter also discusses a technique for

multicriteria decision making analysis known as the Analytic Hierarchy Process and its

applications by other researchers relevant to the study. Software Security, its goals and

Security Models are also discussed. The summary of relevant literature is also contained in

the chapter.

11

Chapter 3 proposes the software quality assurance model that consists of eleven (11) main

attributes and thirteen (13) sub-attributes. It also shows the mathematical models used for

the development of both the quality assurance model and the security assess control model.

AHP technique is used to perform a multi-criteria decision-making assessment to select a

suitable software quality attribute for the development of the quality model. Finally, the

voting model is applied in the chapter to multiply values from the score of attributes from

the software quality assurance model with the scores attained from the AHP technique.

Chapter 4 covers implementation of the proposed model, the results obtained and the

comparative analysis drawn from the research and existing works.

Chapter 5 gives the conclusions and recommendations and future research work that can be

undertaken.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the era of globalisation and connectivity, the urge for an easier and faster way to go about

daily activities has become of keen importance to all. The usage of smartphones is on the

increase and has led to the development of various software applications. As a result, people

rely on software programs to enable them to work with ease. Software and information

systems have become necessary in most fields of life, including the health sector, business,

military, and also in social networking fields (Abrahamyan et al., 2016). It has changed the

way jobs are coordinated in the working environment and has positively impacted the

worldwide economy (Salleh, Bahari and Zakaria, 2017). Although the use of software has

eased the way of life, its quality issues are of major concern to both end-users and software

development companies who want users to patronise their products.

Software is important in providing a competitive edge for organisations. There is, therefore,

the need for development of quality applications to increase the trust of customers and

organizations to share information and perform transactions (Mohammed et al., 2016).

Although previous works have focused on the functionality and usability features of

software and do not consider the quality measures put in place (Christakis and Bird, 2016),

the quality of software products is currently considered as an essential feature in software

development. Furthermore, systems such as safety-critical, real-time and control systems

are sensitive, hence, disregarding quality features during development may lead to adverse

effects (Al-Qutaish, 2010).

According to Kassie and Singh (2020), software quality has become an important

requirement when it comes to software development and as a result, its assessment and

improvement are being highlighted by software development companies. In as much as

these companies seek to enhance software quality, some other software developers only

factor in quality when developing sensitive systems irrespective of user expectations

(Gambo, Soriyan, and Achimugu, 2011). The quality of software may be evaluated through

various means including software tests (Budiman et al., 2018) and has resulted in the

proposal of standard quality models by researchers for assessing the quality properties of

13

software (Galli, Chiclana and Siewe, 2020). Software developers who do not assess the

quality of their developed software programs may produce software that does not conform

to the approved standards for the development of quality software. Hence, there is the need

to develop the urge to create a quality assurance model to test for the quality of software

programs.

2.2 Software

Software connotes the collection of instructions that tell the computer how to perform

certain tasks and enables the user to interact with computing devices (Anon., 2021a).

Software may be divided into programming software, system software and application

software.

System software is made up of files and programs that form the operating system (Anon.,

2021b). It includes device drivers, compilers, and other utilities that help the computing

device run efficiently. System software helps to interface the computer hardware with the

application software and runs at the lowest level of computers (Anon., 2021b).

Programming software is a subset of system software and is a set of tools (compilers,

interpreters, and debuggers) or software that helps developers to design application software

(Thomas, 2020). Application software is designed to enable users to perform tasks such as

creating documents, playing games, and surfing the web. Application software is task-

specific and can be simple or complex (Pedamkar, 2020). It resides above the system

software and includes programs such as photo editor, word processor, media player, and

others.

2.2.1 Application Software

Application software can be either desktop-based, web-based, or mobile-based. According

to Bychkov (2013), desktop-based applications usually run locally on a computer system

while web-based applications run on two computers, i.e., the server, which is always

connected to the internet to provide a unique address called Uniform Resource Locator

(URL), and the client computer, which is randomly connected to the internet. Mobile-based

applications are designed to operate on mobile devices such as smartphone, tablet or watch

rather than desktop or laptop computers.

14

Desktop-based Application Software

Software development, according to Smith (2021a), began with desktop-based applications

which ran directly on the operating system and can be used on standalone machines only.

These applications have to be installed separately on multiple client computers and store

most of the user-generated data and the application’s data on the hard drive of the computer

it is running on. There are usability constraints with desktop application usage since it

cannot be accessed everywhere, yet, they have an advantage with connectivity since they

are standalone and do not face hindrances from internet connectivity (Smith, 2021a).

Mobile-based Application Software

Mobile applications provide users with similar services provided by desktop and web

applications. These applications provide limited and isolated functionality such as games or

calculators. The simplest mobile application is taken from a desktop-based application and

ported into a mobile device while a more sophisticated one is specifically developed for the

mobile environment (Anon., 2021c). Mobile applications use iOS or Android as their

platform.

Web-based Application Software

According to O’Shea (2017), a web-based application runs over a network such as an

internet or intranet. It has features and functionality that are not different from that of

mobile-based applications and uses a different platform (iOS or Android is used for mobile

applications and web browser is used for web-based applications). They may be

programmed using a programming language like JavaScript which has support for web

browsers together with a markup language like HyperText Markup Language (HTML).

Web-based applications have the capability of updating and maintaining web applications

without necessarily distributing and installing software on numerous computers (as in the

case of desktop-based applications). It has gained popularity due to the support for cross-

platform compatibility. Traditional desktop-based applications are being replaced by web-

based applications for portability and easy accessibility since web applications store most

of their data on the cloud (Anon., 2021d).

Therefore, this research evaluates the quality of application software, which is being hosted

online by inputting their Uniform Resource Locators (URLs) into the proposed software

15

quality assurance model for assessment. The research also performed the quality evaluation

on the homepages of the web applications since errors on homepages mostly run through

the rest of a web application (Kurt, 2011).

2.2.2 Software Development

Software development is an iterative process used to create software in an orderly way to

address a specific goal. It is carried out by a software programmer through the writing of

program codes. Software development goes through various stages such as conducting

research to identify the required software needed to perform a task, specifying needed

requirements, drawing a software design to include a flow diagram that will encompass the

flow of data and processes, and documenting the processes used (Salve, Samreen and

Khatri-Valmik, 2018). This is known as the Software Development Life Cycle (SDLC).

Software Development Life Cycle

SDLC is the framework that defines tasks performed at each step in a software development

process. According to Mohino et al. (2019), the software development process is divided

into distinct phases, as shown in Figure 2.1, to improve the software design and ensure that

good software is built. These phases, according to Salve, Samreen and Khatri-Valmik

(2018), include:

a) Requirement specification: This is mostly the fundamental stage in software

development, where customer requirements are gathered. Afterward, the goals,

objectives, and estimated cost of the project are documented;

b) System design: This stage defines model formulation, the project architecture, flow

of data, flow of processes, and interfacing of components to meet customer

requirements;

c) Coding: This is where the developer writes program codes according to how the

client wants it to function;

d) Testing: Testing is performed during all the stages in development;

e) Documentation: Documentation of the development process is needed for future

reference and becomes handy when changes have to be made in system

requirements;

16

f) Deployment: This comprises activities that make software readily available for use

in a given environment. These activities include installation, configuration, and

updating; and

g) Maintenance: Maintenance is done to improve software and add new user

requirements.

SDLC defines the methods used to improve the quality of software as well as the overall

software development (Omar and Fahad, 2017).

Figure 2.1 Software Development Life Cycle (Mohino et al., 2019)

2.3 Software Quality

Software quality is of major concern to software stakeholders as customer demand is equally

on the rise (Al-Qutaish, 2010). It measures the degree to which software is designed and its

conformance to the design specifications (Hussain, Farid and Mumtaz, 2019). To evaluate

that developed software meet user’s stipulated requirements, software quality is the

benchmark used. It ensures that user requirements are met, documentation is provided,

system design is made and all the requirements that are necessary in developing standard

and satisfactory software is followed. It strictly follows the software development life cycle

to evaluate and improve software performance (Omar and Fahad, 2017).

SDLC

Requirement
Specification

System
Design

Coding

TestingDocumentation

Deployment

Maintenance

17

There exist various definitions for software quality by software quality experts like Crosby

(1979), Juran (1988), Ishikawa (1989), Shewhart (1931), Feigenbaum (1991), and others.

According to Crosby (1979), quality means goodness, luxury, or shininess and is used to

signify the worth of something. Juran (1988) defines quality as the product features which

meet customer needs, thereby providing product satisfaction. Shewhart (1931) defines

quality in two aspects, i.e., an objective reality independent of the existence of man, and a

result of the objective reality, which relates to what we think, feel or sense. In other words,

there is a subjective side of quality.

2.3.1 Software Quality Model

Software quality model is a model that ensures that developed software programs conform

to the standard quality of software, and evaluates software using quality attributes. These

quality models and attributes play an essential role in the assessment of software quality.

Over the years, different quality models have been presented by researchers such as McCall

et al. (1977), Boehm et al. (1978), Deming (1986), Glib (1988), Grady (1992), Dromey

(1995), Anon. (2001), and Jamwal and Jamwal (2009). These models have varying

attributes, and sub-attributes for evaluating the quality of software. Quality attributes are

used to characterise software products and are evaluated using quantitative or qualitative

approaches.

McCall Software Quality Model

McCall et al. (1977) presented a quality model for measuring software quality known as

McCall’s software quality model. It is one of the predecessors of today’s quality models and

is also known as General Electric’s Model of 1977 (Tripathi, 2014). It was developed to

evaluate the quality of the United States military Air Force system development process and

was used by the system developers (Al-Obaithani and Ameen, 2018). In this quality model,

McCall attempted to bridge the gap between users and developers by focusing on several

software quality attributes that reflect both the users’ views and the developers’ priorities

(Al-Obaithani and Ameen, 2018).

The motivation behind McCall’s model was to assess the relationship between external

quality factors which are measured by customers; and product quality criteria which are also

measured by the software developers (Lisa, 2001). According to Al-Badareen et al. (2011),

18

the McCall software quality model defines software quality based on three (3) perspectives:

product revision, product transition, and product operation.

a) Product revision: This connotes the ability of making changes;

b) Product transition: This is the ability to of a software product to adapt to new

environments; and

c) Product operations: This represents the ease of use, operation and understanding.

The three (3) software quality perspectives are matched unto eleven (11) quality attributes

(Fawareh, 2020) as shown in Figure 2.2. These software quality attributes are portability,

testability, maintainability, flexibility, integrity, interoperability, efficiency, reliability,

usability, reusability, and correctness and are matched unto twenty-three sub-attributes as

shown in Table 2.1.

Figure 2.2 Software quality perspectives and software quality factors

Maintainability

Flexibility

Testability

Product Revision

Correctness

Efficiency

Reliability

Integrity

Usability

Product Operation

Portability

Reusability

Interoperability

Product Transition

19

Table 2.1 Software Quality factors and Quality criteria.

Quality Attributes/ Factors Sub-Attributes/ Criteria

 Maintainability Modularity

Simplicity

Self-descriptiveness

Conciseness

 Flexibility Expandability

Generality

Self-descriptiveness

 Testability Instrumentation

Simplicity

Modularity

Self-descriptiveness

 Correctness Completeness

Consistency

Traceability

 Efficiency Execution Efficiency

Storage Efficiency

 Reliability Error Tolerance

Consistency

Accuracy

 Integrity Access Audit

Access Control

 Usability Training

Communicativeness

Operability

 Portability Machine Independence

Self-descriptiveness

Software System Independence

 Reusability Modularity

Software System Independence

Generality

Self-descriptiveness

Machine Independence

 Interoperability Data Commonality

Communication Commonality

Modularity

(Source: Al-Qutaish, 2010)

20

Although McCall’s model creates a affiliation between software quality attributes and sub-

attributes, it does not consider the software’s functionality (Regan et al., 2020; Waliaro,

Omieno and Ondulo, 2019).

Boehm Software Quality Model

According to Olav (2018), Boehm’s model is an ordered model that is structured with

primitive level characteristics, intermediate level characteristics, and high-level

characteristics, which collectively result in the formation of a quality model. The high-level

characteristic deals with the general utility, maintainability, and portability of a system

(Kassie and Singh, 2020). The intermediate level deals with the flexibility, reliability,

efficiency, testability, understandability, and usability of a system. The primitive level

provides the foundation for defining quality metrics. According to Al-Badareen et al.

(2011), Boehm’s model added some distinct characteristics to McCall’s model but focuses

mainly on addressing software maintainability and evaluating the software for its utility.

The high-level characteristics deal with the questions mostly asked by software users, such

as:

a) General utility/ as-is utility: How well can the software be used as it is?

b) Maintainability; How well can the software be maintained? and

c) Portability: Can the software operate on other computing environments?

The intermediate level deals with the seven (7) quality attributes that represent the qualities

a software is expected to have. These include flexibility, efficiency, portability, reliability,

testability, understandability, and usability.

The primitive characteristics serve as a guide for defining sub-attributes. This model is

created from a wider scope of attributes and integrates nineteen (19) sub-attributes to form

the primitive characteristics. The use of primitive characteristics was one of the vital goals

established by Boehm when he proposed the quality model. The quality model is shown in

Table 2.2.

21

Table 2.2 Boehm’s Quality Software Model

General Utility

High-Level

Characteristics

Intermediate Level

Characteristics

Primitive

Characteristics

Portability Portability
Self-Containedness

Device Independence

As-Is Utility

Reliability

Accuracy

Self-Containedness

Completeness

Consistency

Robustness/Integrity

Efficiency

Device Efficiency

Accessibility

Accountability

Human Engineering

Communicativenes

Robustness/Integrity

Accessibility

Maintainability

Testability

Communicativeness

Structuredness

Self-Descriptiveness

Accountability

Accessibility

Understandability

Conciseness

Legibility

Self-Descriptiveness

Consistency

Modifiability
Augmentability

Structuredness

(Source: Al-Obaithani and Ameen, 2018)

Although Boehm’s model includes attributes of hardware performance (Nihal and Abran,

2001), it has a major drawback where it did not provide suggestions about measuring these

quality attributes and did not cover software functionality (Waliaro, Omieno and Ondulo,

2019).

Dromey Software Quality Model

Dromey’s software quality model was proposed to evaluate the requirement determination,

design, and implementation phases of software (Dromey, 1995). The model consists of eight

(8) high-level quality attributes which include reusability, process maturity, and the six (6)

22

quality attributes from ISO 9126. The framework consists of the design quality model,

required quality model, and implementation quality model. In this model, characteristics of

software product properties include contextual, internal, correctness, and descriptive, as

shown in Table 2.3.

Table 2.3 Dromey’s Quality Software Model characteristics and attributes

Software Product
Software Product

Properties
Quality Attributes

Implementation

Correctness
Functionality

Reliability

Internal

Maintainability

Efficiency

Reliability

Contextual

Maintainability

Reusability

Portability

Reliability

Descriptive

Maintainability

Reusability

Portability

Usability

(Source: Al-Obaithani and Ameen, 2018)

The main objective for creating this model was to increase the relationship between the

attributes and sub-attributes of software quality whiles addressing software properties that

affect these attributes (Maryoly, Perez and Rojas, 2002). The limitation of Dromey’s model

is that it does not address the reliability and maintainability of software products (Fahmy et

al., 2012).

FURPS Software Quality Model

The FURPS software quality model was proposed by Robert Grady and Hewlett Packard in

1987. FURPS model stands for Functionality, Usability, Reliability, Performance, and

Supportability. The model categorises software attributes into functional and non-functional

requirements. The functional requirements are defined by the input and expected output,

23

while non-functional requirements include performance, reliability, usability, and

supportability. The limitation of the FURPS model is that it did not address software

portability and integrity problems (Waliaro, Omieno and Ondulo, 2019).

ISO 9126 Software Quality Model

ISO 9126 software quality model is an internationally accepted model for assessing the

quality of software using the internal and external software qualities and their connection to

attributes (Nistala, Nori and Reddy, 2019). It comprises of four (4) parts, namely, quality

model, quality in use metrics, internal metrics, and external metrics.

According to Hussain, Farid and Mumtaz (2019), the first part of the model is an extension

of previous works done by FURPS, Boehm (1978), and McCall (1977). It categorises quality

attributes into high-level attributes: portability, reliability, functionality, efficiency,

usability, and maintainability, which are broken down into sub-attributes as shown in Table

2.4. The objective of the model is to identify the internal and external software quality

attributes. The limitation is that it does not show how the internal and the external software

attributes can be measured (Maryoly, Perez and Rojas, 2002). Many scholars have adopted

this model for evaluating systems. Such systems include e-book systems (Fahmy et al.,

2012), website electronic learning systems (Padayachee, Kotze and Van-Der-Merwe, 2010),

computer-based systems (Valenti, Cucchiarelli and Panti, 2002), and electronic government

systems (Quirchmayr, Funilkul and Chutimaskul, 2007).

24

Table 2.4 ISO Software Quality Model Characteristics and Attributes

Independent High-Level Quality Characteristics Software Quality Attributes

 Functionality

Suitability

Accuracy

Security

Interoperability

Compliance

 Reliability

Maturity

Fault Tolerance

Recoverability

 Usability

Understandability

Learnability

Operability

Compliance

 Efficiency
Time behaviour

Resource behaviour

 Maintainability

Analysability

Changeability

Stability

Testability

 Portability

Adaptability

Installability

Conformance

Replaceability

(Source: Al-Obaithani and Ameen, 2018)

Various works by researchers have seen the application of these quality models in the

evaluation of software for quality.

Yadav and Kishan (2020) predicted the reliability of component-based software by

analysing and assessing existing software quality models. The assessment was done from

models such as McCall’s, Boehm’s, FURPS, ISO 9126, and Dromey’s and a performed

25

analysis showed that software reliability was addressed by all the quality models under the

scope. The researchers also observed that software can be easily redesigned using the

component-based software engineering approach, hence, the quality of reusable components

is of essence. To build a software reliability prediction model, the researchers disclosed that

components have to be selected based on the specifications of the model. Therefore, they

proposed the sub-attributes of reliability to include maturity, recoverability, and fault-

tolerance. The study also presented the parameters for calculating each of the outlined

reliability sub-attributes but did not perform an evaluation of the model.

Sharma and Dubey (2015) worked on software reliability by performing a study of the

various methods used in literature and extending the methodologies used. They were of the

view that the effectiveness of any developed software was dependent on its reliable nature,

therefore, software reliability evaluation is of essence. The outcome of the analysis showed

that software reliability plays a vital role in software quality assessment and object-oriented

metrics aid in reliability prediction. The limitation of the study was the failure to outline the

object-oriented metrics being referred to.

Parthasarathy et al. (2020) used the ISO/IEC 9126 quality model to assess the quality of

standard and customised Commercial-Off-The-Shelf (COTS) products. They quantitatively

measured the attributes and sub-attributes of the ISO/IEC 9126 quality model. They

measured the software quality of the customised COTS product in its pre-customisation

stage. Thereafter, they applied the attributes by presenting some projected values. After

customisation of the COTS software, they applied the same attributes. This allowed the

researchers to analyse the behaviour of the customised product. From the results obtained,

it was observed that sub-attributes such as maturity, operability, understandability,

changeability, and suitability worked well after the customisation while sub-attributes such

as learnability, adaptability, time behaviour, resource behaviour, replaceability,

analysability, and conformance were slightly affected. The sub-attributes that were greatly

disadvantaged were testability, compliance, fault tolerance, and accuracy. The research was

limited to the application of software quality attributes for one module of a customised

COTS package.

Thamer, Mohammad and Ahmad (2013) applied the use of the ISO 9126 model in assessing

the quality of software in Enterprise Resource Planning (ERP) systems. The implementation

26

of ERP systems allows institutions and organisations to provide quality and productive

professional operations. The researchers observed that, higher educational institutions have

invested a high percentage of their funds and time in implementing ERP systems. Therefore,

the research objective was to propose a model to evaluate the quality of ERP systems in

such institutions. The research listed the attributes of existing quality models and compared

it with the attributes of ERP systems. The limitation posed by the research was that it did

not rank the main quality attributes of the model.

Alanazi et al. (2019) also proposed a quality model to evaluate ERP systems based on the

ISO 9126 model. The model was proposed to comprise of reliability, functionality,

efficiency, maintainability, portability and usability. The limitation of the model was that,

it failed to consider some vital software quality attributes such as flexibility, testability, and

availability.

Kabir, Rehman and Majumdar (2016) investigated software usability quality factors. They

were of the view that in order to improve quality, it is essential to ensure quality attributes

such as learnability, efficiency, usability, and many more. The objective of their research

was to analyse ten quality models to propose an improved usability model. The researchers

proposed the new usability evaluation model from ten (10) models of Shackel, McCall,

Nielsen, ISO 9126, Boehm, ISO 9242-11, FURPS, SUMI, and QUIM models with twelve

(12) proposed quality factors, namely, effectiveness, operability, training, attractiveness,

satisfaction, usability compliance, reliability, efficiency, understandability, helpfulness,

learnability, and human engineering. The contribution made to knowledge was the analysis

and comparison of ten (10) recognised quality models to propose an improved usability

model that provides twelve (12) category-based usability factors. The limitation was that

the research did not show the implementation of the model and, hence, the performance of

the model was not evaluated.

Kassie and Singh (2020) studied software quality factors to enhance software quality

assurance. The research was conducted by studying existing software quality models and

gathering twenty-seven (27) quality attributes. They went ahead to conduct a survey by

giving out a questionnaire containing twenty-seven (27) questions to seventy (70)

participants. Each question in the survey represented one software quality attribute. The

participants were to complete the survey for three (3) different software programs, which

27

were MATLAB, Mozilla Firefox and MS Word with diverse user levels. They gathered the

responses and identified ten (10) vital quality attributes of great importance to users as

portability, operability, functionality, interoperability, efficiency, maintainability, aesthetic,

understandability, reliability, and usability. The limitation of the model was its inability to

address other important users’ perspective-based software quality attributes such as

availability and testability.

Al-Nawaiseh, Helmy and Khalil (2020) proposed a quality model for Academic Information

Systems (AIS). The main objective of the research was to help academic establishments that

seek to use e-learning systems to assess and select the appropriate quality attributes that are

vital to the success of the system. The model was proposed to have six (6) main attributes

based on the ISO 9126 model. The research was able to build an approach to measure and

assess the quality of AIS in universities and several software quality standards to assist

programmers, developers, and system analysts in their projects. The limitation of the

proposed model was that, it failed to assess the importance of the evaluated quality

attributes.

Noe (2017) presented a usability and accessibility evaluation of e-government websites. The

researcher employed the use of Google Speed Insight, Pingdom automation tool, Acunetix,

and Wave. The outcome of the evaluation showed that the applications were experiencing

multiple usability issues such as broken webpage links and longer loading time problems.

The recommendations provided based on the outcome of the results were on the how

usability and accessibility issues can be improved.

Kous et al. (2018) investigated the usability of a library web application using the

effectiveness, satisfaction, and efficiency of the application. The researchers applied the

used of formal testing approaches such as log analysis, survey approach and the think-aloud

protocol. The outcome specified that the respondents gave a low usability score to the

evaluated website, signifying that, it cannot be easily navigated. The researchers further

presented recommendations for providing a highly usable website. A major drawback was

that the study was only performed on the external usability factors of the website.

Sukmasetya, Setiawan and Arumi (2020) evaluated the usability of a university website

using a survey-based approach. The questionnaire contained seventeen (17) questions which

were administered to ninety-five (95) respondents. The outcome of the survey demonstrated

28

that the website had an easy usage; nonetheless, there existed few drawbacks that required

urgent attention. The internal usability factors such as the load time and page size were not

considered.

Uska, Wirasasmita and Fahrurrozi (2019) conducted a study to analyse the usability of the

New Student Acceptance (NSA) system in SMAN 1 Pringgarata, a senior high school in

Indonesia, using methods such as effectiveness, user satisfaction and efficiency. The

research adopted the Likert scale and System Usability Scale (SUS) questionnaire. Results

from the study disclosed that the system was highly usable and the researchers additionally

suggested ways to provide exciting webpages for user satisfaction.

Bayu and Banowosari (2021) carried out a usability analysis on the payroll system of PT

Karya Prima Usahatama company. This assessment was done by conducting a survey. The

consistency of the questionnaire was calculated by conducting a reliability check using

Cronbach Alpha’s mathematical method. This was further modelled with SPSS software.

The outcome of the study disclosed that the software was readily understood and highly

attractive to the respondents. In addition to the usability analysis, a functionality analysis

was done using a survey-based approach with three (3) experts in web development. Sixty

(60) web functions were assessed and all experts evaluated the functions as “working

correctly”. The authors also carried out an efficiency analysis using an online automated

tool called GTmetrix. Results showed that pagespeed was 84%, Yslow was 65%, fully

loaded time was 3.3 seconds, total page size was 336 Kilobytes and page request was 30

seconds. Portability test showed a success rate as the software was seen to easily move

between web browsers. Reliability test also showed a success rate when a stress test was

conducted within 10 minutes. Software maintainability was evaluated with Land R version

instrument and results showed that there was consistency in the form designs and there was

a warning on the data processing system to signify errors created by the user. The

maintainability test was also seen to have been passed. Although, the software was

concluded to be of good functionality, the usability technique used could not assess the

software’s internal factors. Also, the efficiency test did not evaluate parameters such as the

software’s throughput and bandwidth.

Rahardjo, Mirchandani and Joshi (2014) performed a functionality evaluation where they

assessed the functions and features of e-government websites in Indonesia. They used a

29

survey methodology and identified that functions related to transactions are focused on

efficiency and appeal whereas functions for general services focus on appeal, quality, and

personalisation. The authors suggested that developing a successful e-government website

was dependent on considering the functionality and features that are of importance to the

citizens.

Budiman et al. (2018) evaluated the quality of a student academic portal based on the ISO

software quality model. The authors considered four (4) quality attributes including

Usability, Reliability, Efficiency and Portability based on increasing number of users on the

portal. In evaluating for software efficiency, the result for page speed was 66%, YS-low

grade was 67%, response time was 5.29 seconds and average load time was 5.09 seconds.

For portability evaluation, results showed that the portal could be accessed without error

and can run on different web browsers without encountering error. Reliability evaluation

showed that when the software was simulated for 500 users, there was a reliability score of

100%. For usability analysis, the authors did the evaluation based on heuristic analysis and

results showed that the score was in the small problems category. A major drawback to the

study was that the usability evaluation method used could not categorically state the score

for usability and the software’s internal and external usability factors were not assessed.

Kaur, Kaur and Kaur (2016) drew a correlation between the sub-attributes of usability,

including, speed, load time, performance, heat maps, user experience, Search Engine

Optimisation (SEO), number of requests, page size, security, navigation, content, design,

mobile readiness, accessibility, and clickstream of twenty-one (21) online automation tools.

The researchers additionally assessed the performance efficiency of various university

websites using GTMetrix, Pingdom, Site Speed Checker and Website Grader. Scores

attained by the websites were analysed and the overall usability score was shown. The

drawback is that the external usability factors of the websites were not evaluated.

2.3.2 Software Quality Attributes

Software quality attributes are the artistic measurements for postulating customer needs of

a software and are used by developers. Most of the quality models mention that quality

attributes such as performance, efficiency and reliability can be measured by executing the

system while other quality attributes such as usability can are observed by system execution.

The software development life cycle certifies that the employment of quality attributes in

30

software development may lead to the creation of a well-engineered software, hence, it must

be made compulsory in software implementation, development, and deployment phases

(Sharma, 2017).

External Software Quality Attributes

External attributes specify the relationship between the environment and the system or

process (Martins et al., s2020). It deals with how the software product works in the deployed

environment and regulates the realisation of stakeholder’s specifications. It ensures that the

system provides the required functionality with clearness and consistency. It only affects

the user of the software. External attributes result from internal attributes.

Correctness: Correctness is the ability of software to meet its stipulated results. McCall

defines correctness as the extent to which a program meets its specifications (Tinnaluri,

2016). It determines the degree to which a software’s design and implementation are free

from defects.

Usability: Usability refers to the ability of customers to easily use, understand and learn

software. McCall defines usability as the ease with which a user can navigate through the

system (Weichbroth, 2018); Boehm defines it as the reliability, efficiency, and human-

engineering of software; Dromey defines it as the capability of the software product to be

understood by users; and ISO defines it as a set of attributes that relate to the effort needed

for use, and on the individual assessment of such use, by a stated or implied set of users.

According to Madan and Dubey (2012), usability is a product attribute that influences the

quality of a software system. Nielsen (2012) defines usability with five (5) attributes:

learnability, efficiency, memorability, errors, and satisfaction.

Efficiency: Efficiency is the performance of software by accomplishing tasks in at a faster

rate, while using fewer resources and saving computer power. McCall defines efficiency as

the number of computing sources and code required by a program to perform its function;

Boehm defines it as the ability of the software to satisfy its purpose without waste of

resources; Dromey defines it as the capability of the software to adequately perform

irrespective of the number of resources used; ISO defines it as the degree to which software

makes optimum utilisation of the resources (Tinnaluri, 2016).

Reliability: Reliability refers to the likelihood of software to operate in a given environment

within a specified period without encountering a breakdown. McCall defines it as the ability

31

of a program to withstand failure; Boehm defines it as the ability of software to perform its

intended functionalities satisfactorily (Tripathi, 2014.

Robustness: Robustness refers to the ability of a software product to cope with any form of

error it may encounter during operation (Dubey, Ghosh and Rana, 2012).

Functionality: Functionality is the ability of software to perform the tasks for which it was

intended. Dromey defines functionality as the capability of the software product to provide

functions that meet stated and implied needs when the software is used under specified

conditions; FURPS defines it as the totality of feature sets, capabilities, and security of

software; and ISO also defines it as the degree to which software satisfies its stated needs

(Dubey, Ghosh and Rana, 2012).

Performance: Performance refers to the total effectiveness of a software product. FURPS

defines performance as the ability to impose conditions on functional requirements such as

speed, efficiency, availability, accuracy, throughput, response time, recovery time, and

resource usage.

Availability: Availability refers to the degree to which a software product is operational and

easily accessible when needed for usage.

Security: Security is the ability of a software product to reduce the likelihood of malicious

attacks and loss of information. It is the measure of a system’s ability to resist unauthorized

access.

Cost: Software cost is the amount of money paid for software development. It may be

charged based on the category of the developed software. Web-based software applications

may be grouped under five (5) categories: retail, financial services, news and information,

portals and entertainment web applications (Choudhury and Choudhury, 2010). The cost of

developing a retail web application according to Smith (2021b), ranges between $20,000

and $210,000; financial web application ranges between $20,000 and $30,000 (Rehman,

2019); news and information web applications range between $2,000 and $9,000 (Anon.,

2021e); portals range between $2,500 and $600,000 (Ibanga, 2021); and entertainment web

application ranges between $40,000 and above $100,000 (Martin, 2020).

32

Internal Software Quality Attributes

Internal attributes are derived from the software product. It deals with how the software

product was developed and determines a developer’s ability to move forward in a project

(Nilson, Antinyan and Gren, 2019).

Maintainability: Maintainability is the ease with which software can be modified to correct

faults or improve performance. McCall defines maintainability as the effort required to fix

and test errors; Boehm defines it as the easiness to modify and test software; Dromey defines

it as the capability of the software product to be modified; and ISO defines it as the ease

with which the software can be modified.

Flexibility: Flexibility is the ability of software to adapt to possible future changes in its

requirements. McCall defines flexibility as the effort required to modify an already

operational program; whiles Boehm defines it as the ability of software to facilitate the

incorporation of changes once the nature of the desired change has been determined. Highly

flexible software applications have modules and components that are loosely coupled.

Portability: Portability is the measure of the ease of transferring software from one

computing environment to the other. McCall defines portability as the effort required to port

an application from one system to another; Boehm defines it as the ease of software

operation on computer configurations other than the one it currently runs on. Dromey

defines it as the capability of the software product to be transferred from one environment

to another; ISO defines it as the ease with which software can be migrated from one

environment to the other.

Reusability: Reusability is the use of existing tested and validated loosely coupled

components in the development of software applications. McCall defines it as the extent to

which a program or sub-program can be re-used in other applications.

Testability: Testability is the ease with which the correctness of software can be verified.

McCall defines testability as the effort required to test a program so that it performs its

intended specification in an error-free state. Boehm defines it as the ability to facilitate the

establishment of verification criteria and supporting the evaluation of software performance.

Understandability: Understandability is the capability of a software product to enable the

user to understand whether the software is suitable and its usability for specific tasks and

33

conditions for use. It has a major influence on cost and reliability when it comes to the

maintenance and reuse of the software. Boehm defines it as the clarity of software purpose

to the inspector.

Interoperability: Interoperability is the ease with which software is used with other software

applications. McCall defines it as the extent required to couple one system to another.

2.4 Limitations of the Existing Software Quality Models

Although researched works on software quality models are good referencing tools for

defining product quality, there exist some loopholes that are worth addressing. ISO 9126

model tends to be more precise than the other models, yet, it has not clarified how the quality

attributes can be measured (Djouab and Bari, 2016). Also, most of the models tend to ignore

certain quality attributes while some also fail to describe how quality attributes can be

measured (Kaur, 2012). In the case of McCall’s model, software functionality was not

considered although it is a very essential attribute (Tabassum et al., 2017). As a result, the

user’s vision is not factored and hence, user requirements are not met. Boehm’s model also

did not describe how the quality attributes can be measured (Waliaro, Omieno and Ondulo,

2019). Likewise, FURPS model did not consider other equally important software quality

attributes such as portability which is vital in software development (Regan et al., 2020).

2.5 Multi-Criteria Decision-Making Analysis

Multi-Criteria Decision-Making (MCDM) is a branch of operational research that deals with

evaluating multiple conflicting criteria in decision-making (Kumar et al., 2017). It helps to

find optimal results in complex situations where there is a need to choose between the

alternatives being evaluated. MCDM is applied by individuals, groups, and organisations to

perform tasks such as short-listing job applicants, selecting new projects or investments,

among others. MCDM has been applied extensively in science and industry to enhance

quality decisions by making the process more explicit, rational, and efficient (Lai and

Ishizaka, 2019). It is used where there is the need for alternatives to be ranked, prioritised,

or chosen based on multiple criteria being considered (Choudhuri, 2014). MCDM reduces

the impact of biases from decision-makers relying on their feelings and preferences. It uses

weights between criteria in a structured way and, hence, the results obtained from using it

are more transparent and consistent (Lai and Ishizaka, 2019). It works by quantifying

34

qualitative criteria and calculating the total score of the evaluation subjects according to the

weight of each criterion or alternative (Aliu et al., 2020). This helps decision-makers to have

a stronger and more accurate basis on the choice to make. MCDM, according to Aliu et al.

(2020), involves four (4) components:

a) Alternatives: Objects or individuals to be ranked;

b) Criteria: The alternatives to be evaluated and compared;

c) Weights: The relative importance of the criteria; and

d) Decision Makers: The experts whose preferences are to be represented.

Some commonly used MCDM methods, according to Wang et al. (2020), include Analytic

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Hierarchy

Process (AHP), Preference Ranking Organisation Method for Enrichment Evaluation

(PROMETHEE), and Analytic Network Process (ANP). However, many researchers

consider the AHP technique to be well suited for group decision-making (Lai, Wong and

Cheung, 2002).

2.5.1 Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is a technique for multi-criteria assessment that

simplifies decision-making processes. It was formerly developed by Thomas L. Saaty

(Saaty, 1977) to provide measures of judgement consistency; to derive priorities among

criteria and alternatives; and to simplify the rating of preferences among decision criteria

using pair-wise comparisons (Khwanruthai, 2012).

AHP is based on mathematics and psychology (Osman et al., 2014). It helps decision-

makers to find a decision that best suits their goal and their understanding of a given

problem. It is a method to derive ratio scales from paired comparisons (Teknomo, 2017) and

is based on a certain scale that changes subjective judgements into objective judgement and

solves qualitative problems with quantitative analysis. It is simple and hence has seen its

application in many fields.

According to Sarkar (2011), the four (4) steps of AHP methodology are:

a) Build a decision hierarchy by breaking down the problem into various components:

objective or goal, criteria or attributes, and alternatives;

35

b) Gather relational data for the decision criteria and encode them using the AHP

relational scale;

c) Estimate the relative priorities (weights) of the decision criteria and alternatives; and

d) Perform the composition (synthesis) of priorities of criteria and alternatives, which

ranks the alternatives to the problem objective.

The input for AHP decision-making can be attained from real measurements such as price,

colour, and others or from subjective opinions such as feelings and preferences. AHP is seen

to be one of the best multi-criteria decision-making tools as it allows for small inconsistency

in judgement since there may be some levels of inconsistency in human judgement. AHP

breaks down complex multi-criteria decision-making problems into hierarchy interrelated

decision criteria and decision alternatives. It uses a prioritisation procedure to determine the

relative importance of criteria.

In AHP, a problem involving “m” alternatives and “n” attributes is used to form a judgement

matrix of alternatives of order m × m and another judgement matrix of order n × n. Further,

a decision matrix of order m × n is constructed using the relative scores of the alternatives.

The AHP judgement matrix is shown in equation (2.1).

1 1

2
11 12 1

2 2
21 22 2

1

1 2

1 2

w w
1

w w

w w
1

w w

w w
1

w w

n
n

n
n

n n nn
n n

a a a

a a a
A

a a a

 = =

 (2.1)

where, A = Comparison pair-wise matrix;

 1w = weight of element 1;

 2w = weight of element 2; and

w n = weight of element n.

The AHP relational scale of real numbers from 1 to 9 and their reciprocals are used to assign

preferences in a systematic order. AHP Pair-wise comparison is based on a standardised

comparison scale of nine (9) levels as shown in Table 2.5.

36

Table 2.5 Scale of Comparison

 Scale of Importance Degree of Preference

 1 Equal Importance

 3 Moderate Importance

 5 Strong Importance

 7 Very Strong Importance

 9 Extreme Importance

 2,4,6,8 Intermediate Values

 1/3, 1/5, 1/7, 1/9 Values for Inverse Comparison

(Source: Saaty, 2008)

A normalised pair-wise matrix, Xi j, was generated by summing the values, ɑi j, in each

column of the pair-wise matrix and then dividing each element in the matrix by its column

total as shown in equation (2.2).

1

X
i j

i j n
i ji

a

a
=

=

 (2.2)

where n = number of columns.

To generate the weighted matrix, Wi j, the sum of the rows of the normalised pair-wise matrix

were divided by the number of criteria, n, used. This is shown in equation (2.3).

 1

n
i jj

i j

x
W

n

=
=

 (2.3)

The consistency vector, λmax, was calculated by multiplying the pair-wise matrix by the

weight vector and the sum of the row entries were divided by the corresponding criterion

weight.

To evaluate the consistency of one’s judgement, the Consistency Index (CI) is calculated.

This is shown in equation (2.4).

 max n
CI

n 1

 −
=

−
 2.4)

where n = order of the matrix.

37

The Consistency Ratio (CR) is also calculated using equation (2.5).

 CR
CI

RI
= (2.5)

where RI = Random Index.

The Random Index (RI) is shown in Table 2.6.

Table 2.6 Number of Comparisons with the corresponding RI value

n 1 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52

If CR≤ 0.1, the judgement is seen to be acceptable, else the judgement is to be re-examined.

In AHP, the number of comparisons is given in Table 2.7.

Table 2.7 Number of Comparisons

Number of Things 1 2 3 4 5 6 7 n

Number of Comparisons 0 1 3 6 10 15 21 𝑛(𝑛 − 1)

2

The AHP process is repeated for the alternatives too. The weighted matrix of the alternatives

is multiplied with the weighted matrix of the attributes or criteria.

The structure of the final decision matrix is shown as

 where, 1W to nW = criteria;

1A to mA = alternatives; and

amn = number in row m and column n.

1 2 3

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

1 2 3

n

n

n

n

m m m m mn

W W W W

A a a a a

A a a a a

A a a a a

A a a a a

38

The overall consistency ratio, 𝐶𝑅̅̅ ̅̅ , was calculated as shown in equation (2.6) by summing

up the weighted consistency index, wiCIi, in the nominator and the weighted random

consistency index, wiRIi, in the denominator.

i ii

i ii

w CI
CR

w RI
=

 (2.6)

AHP has been applied by several researchers to enhance group decisions. It has been applied

in the military (Aull-Hyde and Davis, 2012), educational sector (Sharma, Kumar and

Grover, 2020), construction projects (Okudan and Budayan, 2020), electronic toll collection

systems (Aliu et al., 2020), etc.

Verma and Mehlawat (2017) used the AHP technique to assess and select Commercial-Off-

The-Shelf (COTS) components. The authors realised that the technique was valuable in the

creation of trade-offs between tangible and intangible factors when evaluating the weight of

COTS components. The application of these weights aided in the determination of the best

component using some constraints. The major drawback of the approach was that, fewer

alternatives were used in the comparison.

Siavvas, Chatzidimitriou and Symeonidis (2017) introduced an adaptive framework called

Qatch to assess software product quality. The researchers employed the AHP technique in

developing a model that uses statistical analysis to produce a stakeholder-required software

quality model. The technique was evaluated to be adequate for decision-making and useful

in situations that require the elimination of complexity in a pair-wise comparison matrix.

The drawback of the research was the inability to rank the quality attributes used.

AHP was applied by Dubey and Mishra (2014) to evaluate the reliability of object-oriented

software based on the ISO/IEC 9126 model. The outcome of their results disclosed AHP to

be a valuable tool in making group decisions where there is the necessity to choose between

the objects being evaluated.

Febrero, Moraga, and Calero (2017) analysed software reliability based on AHP. The

feasibility and rationality of their model was proved by applying it to a large industrial

system. This provided a piece of empirical evidence on the conceptual descriptiveness, by

capturing stakeholders’ views and industrial applicability efficiently. The drawback was the

difficulty in computation with an increased number of pair-wise comparisons.

39

Kumar and Singh (2016) applied AHP to evaluate the aspect-oriented software quality

model. The weights for the evaluation process were calculated equivalently between the

attributes and sub-attributes using AHP. The researchers concluded that AHP provides a

powerful tool that makes decisions in situations involving multiple objectives. The

drawback was the ranking irregularities in the scores attained from experts.

Yujun et al. (2019) used the AHP technique to perform a risk assessment on software

quality. The authors evaluated the weight and order of risk factors to form an index risk

assessment of software quality. This led to the classification of risk into technology, process,

demand, and management risks. The results showed that process risk is an important source

of software quality risk. The drawback was that the survey was performed on a small

population, hence, fewer responses were attained.

Aliu et al. (2020), used AHP and fuzzy comprehensive evaluation to analyse information

security risk. The weights obtained through AHP were used for both the single and multi-

level factor analysis of the fuzzy comprehensive evaluation. Results obtained showed that

the risk assessment would assist in recommending the necessary controls for information

security systems. The survey was performed on a small population; hence, fewer responses

were attained.

2.6 Software Security

Security refers the act of guarding computing systems and data being stored or accessed

from harm, theft, and unauthorised use. Security can also be defined as the guard against

valued resources or computer systems. These resources could be software, hardware, data,

infrastructure, processes or people. Security also refers to the amalgamation of access

control, confidentiality, authentication, integrity, non-repudiation and availability to either

protect an institution, individual or a nation (Alese et al., 2007). Security can be breached

through intentional or unintentional means. These intentional and unintentional security

violations by end-users also cause severe security losses (Aldabbas and Teufel, 2016).

In 2011, Sony Pictures encountered an SQL Injection attack where about a million of their

users’ accounts including passwords, emails, and home addresses were released by LulzSec

(Poggi, 2018). The worst case was that Sony stored its customer’s data in plain text and not

in an encrypted format. In 2015, the Vtech Learning Lodge database encountered a security

40

breach that exposed about 6.3 million children’s profiles (Shasha et al., 2019). In 2015, Uber

accidentally revealed the personal information of hundreds of its drivers (Kokalitcheva,

2015). Recently, LinkedIn was also seen to have suffered a security breach in which about

6.5 million user names and passwords were exposed (Johnson, 2016).

For these reasons, security has become an essential component in all phases of software

development (Felderer et al., 2016), hence, measures have to be put in place to ensure that

software programs are properly secured to prevent intrusion and loss or damage of data.

2.6.1 Software Security Goals

The core security goals are confidentiality, integrity, and availability as shown in Figure 2.3.

Figure 2.3 Core Security Goals (Source: Dorri et al., 2017)

Confidentiality means that people are denied the privilege to access sensitive data either on

a computer or data traveling on a network, which they are not entitled to.

Integrity, on the other hand, prevents attackers from destroying and altering data on a

computer or data that is traveling on a network.

Availability means that authorised people to data or resources have access to it and can read

and modify it.

Software security is a critical issue that needs to be given much attention, hence, the Open

Web Application Security Project (OWASP) was founded to evaluate application software

security and classify the vulnerability level under ten (10) categorical levels.

Confidentiality

Integrity

Availability

41

2.6.2 Open Web Application Security Project

Open Web Application Security Project (OWASP) is a non-profitable foundation that

produces articles, methodologies, documentation, and tools to detect and improve web

application security (Ouissem et al., 2021). The OWASP ten (10) security vulnerability are

classified, according to Pandya and Patel (2016) under Code Injection attack (A1), Broken

Authentication and Session Management (A2), Cross-Site Scripting attack (XSS) (A3),

Insecure Direct Object References (A4), Security Misconfiguration (A5), Sensitive Data

Exposure attack (A6), Missing Function Level Access Control (A7), Cross-Site Request

Forgery attack (CSRF) (A8), Using Components with Known Vulnerabilities (A9) and

Unvalidated Redirects and Forwards (A10).

Injection (A1)

Code injection attack, according to Anon. (2021f), occurs due to the sending of unauthorised

data to web applications by attackers to make the application perform operations that it has

not been originally programmed to do. Injection attack is considered as the most critical web

application security risk as it can be easily exploited and can have a severe impact on the

data of the hosted application such as data loss or data corruption (Al-Khurafi and Al-

Ahmad, 2015).

Broken Authentication and Session Management (A2)

Broken Authentication and Session Management is a type of vulnerability that allows

attackers to steal privileged user accounts to gain control of an application. This

vulnerability level is one of the top risks, according to OWASP, and occurs due to the

improper implementation of user authentication and active session management (Kelley et

al., 2012). An example is the 2015 cyber-attack by Pakistan against Bangladesh where about

180 web applications were defaced as a result of broken authentication problems (Hassan et

al., 2018).

Cross-Site Scripting (XSS) (A3)

Cross-Site Scripting attack is seen as one of the most predominant web application

vulnerability attacks in recent times (Johns, Engelmann and Posegga, 2008). This attack

does not affect the server-side but rather occurs within the user’s web browser, hence,

affecting the user. It occurs when web pages display inputs that are not properly validated.

42

As a result, attackers inject malicious scripts into the software to modify the display of

content and execute the codes they provide on the computer of any user that visits the web

application (Gupta and Gupta, 2017).

Insecure Direct Object References (A4)

Insecure Direct Object Reference occurs when a programmer refers to an internally

implemented object (Ouissem et al., 2021). This object may be a database key, directory, or

even a file. Hackers can, therefore, bypass the authorisation process when there is no strict

security measure to access these unauthorised resources in the database of the system that

otherwise would not be accessible (Srinivasan and Sangwan, 2017).

Security Misconfiguration (A5)

Security Misconfiguration occurs when a component of a system such as a framework,

application server, web server, database, and network router is not well designed or

configured (Ouissem et al., 2021). The use of default configuration of components may

lead to vulnerabilities as attackers may exploit these configuration flaws to attack the entire

system.

Sensitive Data Exposure (A6)

A database may be used to store personal data like phone numbers, addresses, login

credentials, or credit card details. Sensitive Data Exposure occurs when data that should be

protected are compromised (Gorrie, 2021). This may result from weak or no encryption,

software errors or unintentionally uploading files to an incorrect database. Once these

vulnerabilities are exploited by an attacker, there can be information theft. Information

storage web applications that do not use a secure version of the hypertext transfer protocol

(HTTPS) as their security are also susceptible to data exposure (Kudkar, 2021).

Missing Function Level Access Control (A7)

Access rights must be checked before allowing access to some resources in a web

application. When users are allowed to perform activities that should be restricted or access

resources that should be protected, missing function level access control is said to have

occurred (Hamit, 2014). This occurs as a result of flaws in the authorisation logic (Chetan,

2017).

43

Cross-Site Request Forgery (A8)

Cross-Site Request Forgery (CSRF) is an attack that makes a user’s web browser execute

unwanted Hypertext Transfer Protocol (HTTP) requests on a vulnerable web application,

thereby, causing an undesired action (Sudhodanan et al., 2017). This occurs when attackers

use inferred authentication mechanisms of the HTTP protocol and cookies cached in a

browser to pass the authentication process and execute the attack on the targeted website

(Zhang, Hu and Huo, 2021).

Using Components with Known Vulnerabilities (A9)

Attackers mostly exploit system vulnerabilities by running automated scripts to probe web

applications for known vulnerabilities (Ochaun, 2020). Therefore, the use of components

such as APIs, libraries, open-source codes, and frameworks that have previously been

successfully exploited in the past endangers a web application (Sundar, 2014).

Unvalidated Redirects and Forwards (A10)

Unvalidated redirects and forwards occur when a web application receives input from an

anonymous source that could lead to redirecting requests to an untrusted URL (Ayachi et

al., 2019). Improper validation of web applications could cause an attacker to redirect users

to phishing or malware sites.

2.6.3 Software Security Model

A security model refers to the system for implementing security policies. They can also be

referred to as methods used to validate security policies to provide procedures that a

computer can follow to implement vital security procedures. According to Justiniano

(2015), there are several types of security models including the following but not limited to

the BLP confidentiality model, Biba integrity model, Harrison- Ruzzo-Ullman model and

Graham-Denning model.

Bell- LaPadula Confidentiality model

BLP was the first multilevel security policy model that was designed for military

applications. It provides strict protection of confidential information and is mostly used in

military environments. BLP policies enforce multi-level security policies to ensure

44

confidentiality requirements and flexibility of access control policies (Ramkumar, 2017;

Patel and Sahani, 2018).

BLP model aims to attain multi-level security (MLS) policy by stopping information

leakage from subjects in a high-level category to subjects in a low-level category. In order

to ensure the multi-level security policy, BLP model outlines two security properties: simple

security property (ss-property) and star property (* -property). The ss-property simulates the

real world where subjects are denied read privilege to objects with a higher security level.

The star property allows subjects the write privilege to objects when their security level is

higher than that of the object (Zhu et al., 2016). In the BLP model, information cannot flow

towards levels of lower confidentiality because this would cause information leakage

(McMillin and Roth, 2017).

BLP model as shown in Figure 2.4 focuses on ensuring that subjects with different

clearances are properly authenticated. It uses the simple security rule (no read-up rule) and

the star property rule (no write-down rule). It is a state machine model and, hence, defines

states with current permissions and current instances of subjects accessing the objects

(Cankaya, 2011).

The set of access rights given to a subject are read, append, execute and read-write. Read

gives the subject permission to only read the object; Append allows the subject to only

“write” to the object but it cannot “read”; Execute allows the subject to execute the object

but can neither “read” nor “write”; Read-Write gives the subject both “read” and “write”

permissions to the object.

Reading down: A subject at a given security level only has the read access to objects whose

security level is below the subject’s security level.

Writing up: A subject can append an object whose security level is higher than its security

level.

45

Figure 2.4 Bell-LaPadula Model

Application Areas of BLP Model: The BLP model is used in areas where there is much focus

on restricting access control to information. It is used in military applications and

government applications due to its rigidity and high cost (Ghosh, Singhal, and Das, 2019).

It can also be used to stop virus infection (Zhu et al., 2016).

Strengths of BLP Model: The BLP model has the following strengths (Zhu et al., 2016):

a) Read Down property: This property prevents users from gaining access to

information that is above their security clearance. A user with a low clearance level

is not allowed to access information above its clearance level whereas a user with a

high clearance level can access information beneath it;

b) Write Up property: Data tends to migrate into higher security classifications, hence,

the clearance of a subject attempting access to an object is compared with the

object’s classification; and

c) Mathematics-based model: It is a mathematical model that uses a set theory to define

access rights while keeping a secure operating state.

Problems with BLP Model: The BLP model has the following limitations (Toapanta et al.,

2018; Liu et al., 2016):

a) It addresses only confidentiality giving no regards to integrity or availability;

High Security Level

Medium Security Level

Low Security Level

46

b) The process of assigning and enforcing security classifications for each user is

glossed over in the model and is hard to implement in real life;

c) Information flow is restricted. Lower levels cannot access information of higher

classification;

d) Data tends to migrate into higher security classifications; and

e) High level of rigidity.

Balamurugan et al. (2015) used the BLP model to secure cloud computing by summarising

all the access control techniques in a cloud environment and coming up with a novel

attribute-based access control model. The researchers used an enhanced BLP model inspired

by the honey bee behaviour. Although they were able to ensure privacy and make users feel

secure to store and retrieve data to and from the cloud, data integrity was not enforced in

their design.

Salman et al. (2017) used the BLP model in a private cloud environment to dynamically

change the security level of objects. The researchers presented a multi-level security model

with the use of the BLP, which has increasingly seen its application in the information

security domain. They reviewed its application in the network domain, and proposed a

modified version of the BLP model for the proposed 5G/IoT. The model was proven to be

secure by demonstrating the transition from one secure state to another, thereby, conforming

to the defined security properties. The drawback of the model was its failure to clearly define

the security management tasks.

Biba Integrity Model

Unlike the BLP model, which addresses confidentiality, this is an information flow model

that addresses the integrity of data (Henk and Sushil, 2014). The Biba integrity model was

published in 1977 at the Mitre Corporation, one year after the BLP model was published.

Biba integrity uses a simple integrity rule (no read down), star integrity rule (no write up),

and invocation property (Hopkins et al., 2020). It is a hierarchical security model designed

to protect system assets (or objects) from unauthorised modification; which is to say it is

designed to protect system integrity.

Biba model is based on the realisation that an entity with high integrity level is more reliable

than a lower-ranked entity. In this model, subjects and objects are associated with integrity

47

levels where subjects can modify objects only at a level equal to or below their integrity

level (Liu et al., 2017). The Biba model consists of the following access modes (Moe and

Thwin, 2019):

a) Modify: This gives subjects the write privilege to objects;

b) Observe: This gives subjects the read privilege to objects;

c) Invoke: This permits subjects to communicate with other subjects; and

d) Execute: This allows a subject to execute an object.

Strengths of Biba Integrity Model: According to Toapanta et al. (2018) and Schinagl, Paans

and Schoon (2016), the strengths of the Biba Model are:

a) The Biba model is simple and easy to implement;

b) It can easily be combined with the BLP model to provide a hybrid security model

that can provide both confidentiality and integrity security;

c) Its implementation is intuitive and easily understood;

a) Biba model is a common commercial security model; and

b) The Biba model provides several different policies that can be selected based on

need.

Problems with Biba Integrity Model: The problems with Biba model, according to Yadav

and Shah (2015), include:

a) The model only solves the integrity problem without considering the confidentiality

and availability;

b) There is no instruction to manage the access control and no method about how to

distribute and change the classification level;

c) Biba model does not support the granting and revocation of authorisation; and

d) To use this model, all computers in the system must support the labelling of integrity

for both subjects and objects.

Westmacott (2019) proposed the use of the Biba model, which is specifically designed to

protect data integrity to solve the problem of online attack. With the use of the simple

integrity property (read up), star integrity property (write down), and the discretionary

security property, the model was proposed to be feasible and could prevent users from

reading posts from users who were less identifiable irrespective of the intended recipient.

48

The proposed model was also stated to prevent users of low identifiability from sending

posts to identifiable users, nevertheless, the drawback is that the model was not

implemented, and performance evaluation was not made.

Liu et al. (2017) researched on the flexibility enhanced Biba integrity model using BTG

strategy to secure operating systems. Although the traditional Biba integrity model can

protect information integrity, it sometimes denies various access requests of subjects,

thereby decreasing the availability of a system. Therefore, a mechanism that allowed

exceptional access control was proposed using the BTG strategy to provide both an original

Biba model used in normal situations and a mechanism used in emergencies. BTG is based

upon a pre-staged emergency user accounts and allows emergency access to the system. The

limitation of the study was that BTG mode was not open to all the subjects in the system.

2.7 Voting Model

The voting model applied in this research was adopted from Artificial Neural Network

(ANN). ANN is a mathematical model that consists of an interconnected group of artificial

neurons for modelling complex relationships between inputs and outputs. ANN can be

perceived as a weighted directed graph in which artificial neurons serve as nodes with

directed edges, which also serve as weights. The artificial neuron in ANN as shown in Figure

2.5, takes a set of inputs; x1, ..., xn, and multiplies with their respective weights to generate

the output, O as represented in equation (2.7).

 ()1
.

n
i ii

O f w x= =
 (2.7)

where, wi = weight;

 i and n= integer; and

 f = activation function.

49

Figure 2.5 Artificial Neuron

2.8 Summary of Relevant Literature

Literature review presented in the areas of Analytic Hierarchy Process, Software Quality

and Software Security models (Bell-LaPadula and Biba Integrity models) are summarised

and presented in Table 2.8.

50

Table 2.8 Summary of Literature Review

Author(s), Year, Research

Title

Objective Methodology Contribution to Knowledge Limitation(s)

Analytic Hierarchy Process

Kumar and Singh (2016), A

Comprehensive Evaluation of

Aspect-Oriented Software

Quality (AOSQ) Model

To evaluate the

Aspect-Oriented

Software Quality

model.

Analytic Hierarchy

Process

The weights between

attributes and sub-attributes

helped in evaluating the

model.

There were ranking

irregularities.

Verma and Mehlawat (2017),

multi-criteria optimisation model

integrated with AHP for

evaluation and selection of COTS

components

To evaluate and

select Commercial-

off-the-shelf

(COTS)

components.

Analytic Hierarchy

Process

Applying these weights as

coefficients of an objective

function in the proposed

model helped to determine

the best component.

The maximum number of

alternatives to be

compared at a time was

small.

Yujun et al. (2019), Software

Quality Risk Assessment Method

for Information System

To calculate the

weight and order of

risk factors.

Analytic Hierarchy

Process

The results showed that there

was the need to pay more

attention to the change of

requirements and the

development process.

Decision-makers found it

difficult to convert from

verbal to numeric scale.

Mahmudova and Jabrailova

(2020), Development of an

algorithm for selecting software.

To develop an

algorithm to

evaluate software

functionality.

Analytic Hierarchy

Process

The AHP method was applied

for the first time to evaluate

software functionality.

It was difficult to compute

when the number of pair-

wise comparisons became

large.

51

Author(s), Year, Research Title Objective Methodology Contribution to Knowledge Limitation(s)

Software Quality

Kabir, Rehman and Majumdar

(2016), An Analytical Study of

Software Usability Factors.

To analyse ten

famous quality

models for a

usability model.

McCall, Boehm,

Shackel, FURPS,

Nielsen, ISO 9242-

11 and ISO 9126

models

An improved usability model

that provides twelve usability

factors was presented.

The research did not show

the implementation of the

model, hence,

performance evaluation

was not carried out.

Kassie and Singh (2020), A Study

on Software Quality Factors and

Metrics.

To propose a user’s

perspective-based

software quality

model.

Use of existing

software quality

models.

They identified the ten most

important software quality

attributes that are of

importance to users.

The study did not cover a

wide scope of quality

attributes.

Parthasarathy et al. (2020),

Quality Assessment of Standard

and Customised COTS Products.

To assess the

quality of standard

COTS products.

ISO/IEC 9126

model.

A measurement of the quality

attributes and sub-attributes

of the ISO/IEC 9126 quality

model was made.

The research did not

address software

availability problems.

Al-Nawaiseh, Helmy and Khalil

(2020), A New Software Quality

Model for Academic Information

Systems: Case Study of E-

Learning Systems.

To guide academic

institutions that are

in the process of

building their E-

learning systems to

evaluate software

attributes.

ISO/IEC 9126

quality model.

The research was able to

build a standard approach that

measures and evaluates the

quality of AIS.

The proposed model failed

to evaluate the importance

of the quality attributes.

52

Author(s), Year, Research Title Objective Methodology Contribution to Knowledge Limitation(s)

Software Security Models

Salman et al. (2017), Multi-Level

Security for the 5G/IoT

Ubiquitous Network

To present a multi-

level security

model.

The BLP model. The model was proven to be

secure by demonstrating the

transition from one secure

state to another secure state.

The model failed to define

the security management

tasks.

Saravanan and Umamakeswari

(2020), Lattice Based Access

Control for Protecting User Data

in Cloud Environments

To protect patient’s

data on a secure

cloud storage.

The BLP model. The user authentication level

was successfully

implemented using the BLP

model.

The user found it difficult

accessing documents at

higher security levels.

Liu et al. (2017), BTG-BIBA: A

Flexibility-Enhanced Biba Model

Using BTG Strategies

To secure operating

systems.

Biba model with

break-the-glass

(BTG) strategy.

A mechanism that allowed

exceptional access control

was proposed using BTG

strategy.

The limitation of the study

was that, break the glass

mode was not open to all

the subjects in the system.

Westmacott (2019), Biba

Security Model Inspired Social

Media Security Controls

To protect the

integrity of social

media users

The Biba model. The proposed model was

proposed to be feasible

enough to prevent reading

posts from less identifiable

senders irrespective of

intended recipient.

Failed to address

confidentiality issues.

Toapanta et al. (2018), Analysis

of the Appropriate Security

Models for a Distributed

Architecture

The objective was

to perform the

analysis of security

models.

The BLP and Biba

security models.

The model provided an

adequate security model to

improve the confidentiality,

integrity and authenticity of

information.

The research did not show

the implementation of the

models; hence, evaluation

was not made.

53

2.9 Research Gaps in Related Works

Researchers in Section 2.8.3 have applied software quality attributes to evaluate COTS, ERP

systems, AIS, and web-based software but these works did not capture a higher scope of

quality attributes. As a result, some vital software quality attributes were not addressed.

Also, most of these works have focused on proposing quality models tailored towards

specific project’s needs (Galli, Chiclana, and Siewe, 2020), hence, a generic model that can

suit all software projects is sought for. Additionally, the quality attributes addressed by these

researchers have not been ranked to allow easy identification of the most important

attributes to use for projects (Thamer, Mohammad and Ahmad (2013); Alanazi et al. (2019);

Al-Nawaiseh, Helmy and Khalil (2020)). Furthermore, the researchers did not factor in all

the quality attributes either directly or indirectly for assessing the quality of software.

Secondly, works by researchers in Section 2.8.2 are on BLP and Biba models for ensuring

confidentiality and integrity. The core security goals according to Dorri et al. (2017) are

confidentiality, integrity, and availability but most of these works have eliminated some of

the core security goals (Zhu et al. (2016); Liu et al. (2017)).

Moreover, most of the works have not been implemented (Kabir, Rehman and Majumdar

(2016); Toapanta et al. (2018)). As a result, evaluation of these works has not been made to

assess the performance of the models.

2.10 Justification of Methods Used

2.10.1 The Proposed Quality Model

Software quality models provide the necessary basis to determine the quality of software

based on attributes such as flexibility, maintainability, reliability, testability, efficiency,

security, portability, understandability, integrity, functionality, usability, interoperability,

reusability, and robustness. Although there are other existing quality attributes, these

attributes were chosen based on their distinct characteristics and wide application by

researchers. A comparison between ten (10) software quality models which include

Kitchenham and Pickard model, McCall model, FURPS model, Georgiadou model,

Boehm’s model, Glib model, Ghezzi model, ISO model, Dromey’s model, and Jamwal

model was drawn.

54

2.10.2 The Secured Model

Over the years, many models have been developed using BLP and Biba models to address

confidentiality and integrity issues. The Biba model addresses the problem with the star

property of the Bell-LaPadula model, which does not restrict a subject from writing to a

more trusted object. Hence, the hybrid model consisting of BLP and Biba models will

complement and address the shortcomings of each other.

2.10.3 AHP Technique

The AHP technique was applied in this research because it is a robust decision-making tool.

It is also flexible in dealing with complex decision problems and uses a multi-level

hierarchical structure of objective or goal at the top level, criteria or attributes at the second

level, and alternatives at the third level.

55

CHAPTER 3

SYSTEM DESIGN

3.1 Introduction

The methodology for achieving the stated objectives is divided into four (4) phases. Phase

one categorises the software quality attributes into main attributes and sub-attributes. Phase

two employs the use of AHP to carry out a multi-criteria decision-making analysis of the

software quality attributes. Phase three involves the actual design and implementation of the

software quality attributes using the voting method. Finally, phase four covers the design

and implementation of the access control system for the overall quality assurance software.

In order to achieve the design of the proposed software quality model, individual standard

quality attributes were identified, and thereafter, combined using a voting model. For the

design of the access control model, Bell-LaPadula was used for the login process while Biba

model was used at the account registration stage.

3.2 Quality Attributes and Sub-Attributes

Twenty-four (24) software quality attributes were initially sampled using purposive

sampling technique from the following ten (10) standard and well-known software quality

models: Georgiadou’s, Dromey’s, Glib’s, ISO 9126, McCall’s, Kitchenham and Pickard’s,

FURPS, Ghezzi’s, Boehm’s, and Jamwal’s models. The quality attributes are

Interoperability, Non-Repudiation, Efficiency, Security, Cost, Supportability, Flexibility,

Correctness, Portability, Adaptability, Integrity, Understandability, Testability, Reusability,

Maintainability, Reliability, Usability, Functionality, Performance, Availability,

Extensibility, Confidentiality, Accuracy, and Robustness. Review of related works showed

that some of the quality attributes had similar functionality as others and were grouped into

main and sub-attributes.

3.3 Quality Assurance Model

The quality assurance model consists of eleven (11) main attributes and thirteen (13) sub-

attributes as shown in Figure 3.1. Maintainability has Flexibility, Extensibility and

Supportability as its sub-attributes. Security is also seen to have Integrity, Confidentiality

and Non-Repudiation as its sub-attributes. Functionality is seen to have Correctness and

56

Interoperability as its sub-attributes. Also, Reliability has Robustness and Accuracy as the

sub-attributes. Usability has Understandability as its sub-attribute while Efficiency has

Performance as its sub-attribute. Lastly, Portability has Adaptability as its sub-attribute.

Reusability, Testability, Availability and Cost have no sub-attributes.

Figure 3.1 Hierarchical Structure of the Proposed Quality Assurance Model

Proposed Software Quality
Assurance Model

Maintainability

Flexibility

Extensibility

Supportability

Security

Integrity

Confidentaility

Non-Repudiation

Functionality

Correctness

Interoperability

Reliability

Robustness

Accuracy

Usability Understandability

Efficiency Performance

Portability Adaptability

Reusability

Testability

Availability

Cost

57

3.4 Assessment of Software Quality Attributes

The research used the AHP technique to rank the software quality attributes which will be

used in the development of the quality model.

The ranking was made by using the attributes selected under Section 3.3, namely, Testability

(T), Security (S), Usability (U), Cost (Co), Efficiency (E), Reusability (Re), Maintainability

(M), Availability (A), Reliability (R), Functionality (Fn), and Portability (P), and three (3)

alternatives, i.e., Doubles up as Sub-attribute, Has sub-attributes, and Mostly addressed.

This data was used to develop an ordered structure with the goal at the top level, the

attributes at the second level, and the alternatives at the third level as shown in Figure 3.2.

The obtained hierarchical structure was synthesised to determine the relative importance of

the different attributes to the goal. This is done using a pair-wise comparison matrix with

the help of a scale of relative importance as shown in Table 3.1.

Figure 3.2 Hierarchical Structure of Software Quality Attributes

Attribute Selection

M E R P Re Fn U T
A

Mostly Addressed Doubles Up as Sub-Attribute Has Sub-Attributes

S Co

58

Table 3.1 Scale of Comparison

Scale of Importance Degree of Preference

 1 Equal Importance

 3 Moderate Importance

 5 Strong Importance

 7 Very Strong Importance

 9 Extreme Importance

 2,4,6,8 Intermediate Values

 1/3, 1/5, 1/7, 1/9 Values for Inverse Comparison

(Source: Saaty, 2008)

The number of comparisons is a combination of the number of things to be compared as

shown in Table 3.2.

Table 3.2 Number of Comparisons

Number of Things 1 2 3 4 5 6 7 n

Number of Comparisons 0 1 3 6 10 15 21 𝑛(𝑛 − 1)

2

A primary questionnaire was designed, as shown in Table 3.3 and given to thirty (30) experts

in Ghana and Nigeria from the fields of Cybersecurity, Software Programming, Software

Development and Software Engineering to complete.

Table 3.3 Questionnaire Given to Expert

Attributes M T R P A E Fn Re S U Co

M 1

T 1

R 1

P 1

A 1

E 1

Fn 1

Re 1

S 1

U 1

Co 1

59

After completion of the questionnaire by the experts, a matrix comprising of the eleven (11)

attributes was generated. The matrix was filled by asking the importance of one attribute

relative to the other. Since there are eleven (11) comparisons, an 11 × 11 matrix was

generated. The diagonal of the matrix is always 1 and the upper triangle of the matrix is

filled using the following rules according to Saaty (1977):

i. If the judgement value is on the left side of 1, we write the actual judgement value;

and

ii. If the judgement value is on the right side of 1, we write the reciprocal judgement

value.

To fill the lower triangular matrix, the reciprocal values of the upper diagonal are used. If

ijc is the element of row i column j of the matrix, then the lower diagonal is filled using

1

ji
ij

c
c

= (3.1)

The comparison matrix is generated as

11 1 24

5 1 5 24

c c

c c

 (3.2)

The comparison matrix is normalised to calculate the consistency vector (relative weight).

The relative weight is given by the eigenvector, W, which is the largest eigenvalue, λmax.

This was calculated from the comparison matrix by multiplying the pair-wise matrix by the

weight vector and the sum of the row entries were divided by the corresponding criterion

weight.

To evaluate the consistency of one’s judgement, the Consistency Index (CI) is calculated as

shown, in equation (3.3).

max n

CI
n 1

 −
=

−
 (3.3)

where, n = order of the matrix.

60

The Consistency Ratio (CR) is also calculated using equation (3.4).

 CR
CI

RI
= (3.4)

where, RI = Random Index and it is as shown in Table 3.4.

Table 3.4 Number of Comparisons with the corresponding RI value

n 1 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52

If CR ≤ 0.1, the judgement is seen to be acceptable, else the judgement is to be re-examined.

The process is repeated to analyse the alternatives as well. The weighted matrix of the three

(3) alternatives is multiplied with the weighted matrix of the attributes or criteria.

The structure of the final decision matrix is shown as:

where, W1 to Wn = Criteria;

A1 to Am = Alternatives; and

amn = number in row m and column n.

The overall consistency ratio, 𝐶𝑅̅̅ ̅̅ , was calculated as shown in equation (3.5) by summing

up the weighted consistency index, wiCIi, in the nominator and the weighted random

consistency index, wiRIi, in the denominator.

i ii

i ii

w CI
CR

w RI
=

 (3.5)

1 2 3

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

1 2 3

n

n

n

n

m m m m mn

W W W W

A a a a a

A a a a a

A a a a a

A a a a a

61

3.5 Mathematical Models for the Secured Quality Assurance Model

The twenty-four (24) attributes from Section 3.2 were reduced to eleven (11) because of

similarities of the attributes. Thereafter, AHP was used to carry out a multi-criteria decision-

making analysis on the attributes.

The attributes used to implement the software quality assurance model are Reusability,

Testability, Reliability, Availability, Efficiency, Maintainability, Usability, Functionality,

Cost, Security, and Portability. Confidentiality and Integrity were used to implement the

access control security model which will secure the overall quality assurance model.

3.5.1 Mathematical Model for the Access Control Security Model

The attributes for the access control security model were mathematically modelled using the

BLP and Biba models.

Confidentiality

This refers to the state of denying unauthorised people the privilege to assess information.

The Star property (* - property) of the BLP model was used to ensure software

confidentiality. It denies subjects the write privilege to objects at lower security levels and

is written mathematically using equation (3.6).

 s oc c (3.6)

where, oc = state of the object; and

sc = state of the subject.

Integrity

This refers to the state of preventing unauthorised people from destroying or altering data.

The simple integrity rule of the Biba model was used to ensure integrity. It states that

subjects at a given level are denied read privilege of data at lower sensitive levels and is

written mathematically as:

 s oi i (3.7)

where, si = integrity level of the subject; and

oi = integrity level of the object.

62

Confusion Matrix for Access Control Model

The confusion matrix is used to evaluate the performance of a model. The confusion matrix

of the access control model was calculated to evaluate user data points that were rightly

predicted as the True Positive (TP) values, True Negative (TN) values, False Positive (FP)

values, and False Negative (FN) values as shown in Table 3.5.

Table 3.5 Confusion Matrix

 Results (n=100) Access Granted Access Denied

 Access Granted TP FP

 Access Denied FN TN

(Source: Zeng, 2019)

The accuracy of predicted values was evaluated using equation (3.8).

TP +TN

Accuracy =
TP +FP +TN +FN

 (3.8)

In order to evaluate the number of correctly “granted user access” that turned out to be true,

the precision was found using equation (3.9).

TP

Precision =
TP + FP

 (3.9)

To evaluate the “granted user access” cases that were correctly predicted by the model, the

recall was calculated using equation (3.10).

TP

Recall=
TP + FN

 (3.10)

F1 score was also calculated using equation (3.11) to find a balance between Precision and

Recall.

Precision Recall

F1 Score= 2
Precision Recall

+
 (3.11)

3.5.2 Mathematical Model for the Quality Assurance Model

The quality assurance model was modelled using the eleven (11) software quality attributes

that were ranked by the AHP. Their mathematical models were used to implement each of

the attributes.

63

Maintainability

Maintainability shows how easily a system can be repaired once it encounters an error. The

higher a system is maintained, the lower the mean time it takes to repair. The time it takes

to repair includes the repair process time and return to service time. This is together

encapsulated in the Mean Time To Recover (MTTR). Improving an application’s MTTR

improves its maintainability. Maintainability, M, can be expressed mathematically in

equation (3.12).

 M = MTTR (3.12)

MTTR is expressed in terms of the Total downtime, TD, and the number of failures, FN, a

web application encounters during operation. This is expressed mathematically in equation

(3.13).

Total Downtime

Number of Failures
MTTR = (3.13)

Therefore, Maintainability of a web application software is calculated using equation 3.14.

 D

N

M =
T

F
 (3.14)

Testability

It is necessary to verify the requirements of software. Testing takes up a lot of time and

effort in software development as it is used to determine whether the desired user

requirements have been met, whether the software functions correctly, and so on. Web

application software needs to be tested before it is made publicly accessible. Testability is a

function of correctness, reliability, and the time taken to test the web application. Testability,

T, can be expressed mathematically using equation (3.15).

(.)1

lim 1 . .t
r

x
T e

x

 −

→

= +

 (3.15)

where, t = time taken to test the web application;

 = failure rate of the system;

ɛr = error rate; and

x = number of constraints being considered.

The number of constraints used may include memory usage and throughput. The failure rate

of the software was evaluated by conducting a load test where 500 concurrent users were

simulated. The value of the failure rate was attained from the number of failed connections

64

(connections that were refused by the software) and the number of failed hits (failed attempts

to retrieve data).

Reliability

Reliability, R, defines how a system works under specific conditions over time. To test for

the Reliability of software, it is necessary to test it under ways it is likely to encounter failure.

This is done by conducting high accelerated life tests where the software is put under stress

to determine the software’s limitations and test its error handling capabilities under

extremely heavy conditions. The failure rate of the software is determined from the number

of failed hits and the number of failed connections. The reliability of a system varies

exponentially as a function of time. It can be shown in equations (3.16).

 (.)tR e −= (3.16)

where, t = period the software product was put to use; and

 = failure rate.

Software reliability is a probabilistic feature and ranges between 0 and 1. It increases when

bugs are removed from the software.

Efficiency

Efficiency, E, is the ability of software to offer the right performance relative to the given

and used resources. An efficient software fulfils its purpose without resource wastage. The

efficiency of a web-based application may be calculated using throughput and bandwidth.

Throughput is the number of items processed per unit time, such as bits transmitted per

second, HTTP operations per day, or millions of instructions per second (MIPS). It is used

to check how many requests a web-based application will be able to process per second, per

minute, or hour. Throughput is an important metric in evaluating web-based applications

because it is used to determine how much bandwidth is required to handle a load of both

concurrent users and website requests.

To calculate for Throughput of a software, equation (3.17) is used:

 Throughput = ni (3.17)

where, ni = number of requests being sent to the servers per unit time;

65

Bandwidth is the measurement of the amount of data a software uses during a specific time

frame. For web-based applications, the amount of traffic and the number of resources

(images, files, graphics, and others) affect bandwidth. Bandwidth restrictions have

significant practical implications because, when exceeded, they can greatly increase end-

user frustration and seriously degrade interaction with a web application.

The efficiency of a web-based application may be expressed mathematically in equation

(3.18).

ST

E = . 100
SB

 (3.18)

where, ST = Throughput; and

 SB = Bandwidth.

Availability

Availability refers to the ability of users to access and use a web-based application. An

available software is accessible and usable as expected by the user. When speaking about

availability, we often refer to the ratio of the available time to the total time. It emphasizes

the repair time and restart time of the web application. A web application’s availability is

typically calculated as a percentage for a given period. It can be expressed in terms of Mean

Time Between Failure (MTBF) and MTTR. MTBF and MTTR are calculated using

equations (3.19) and (3.13) respectively.

Number of Operational hours

Number of Failures
MTBF = (3.19)

Availability can be expressed mathematically using equations (3.20) and (3.21).

Z

A =
Z+ Y

 (3.20)

where, Z = Mean Time Between Failure; and

 Y = Mean Time to Recover.

Availability reaches 100% when there is an instant repair once failure is encountered and

the MTTR approaches 0. It is also represented in terms of operational hours, O, and

downtime, TD.

66

D

A =
O

O T+
 (3.21)

Usability

Software usability assessment is important because it aids in evaluating performance and

user fulfilment of a product. Immediately users face difficulty in website navigation, they

tend to look for other websites with similar functionalities. Website usability evaluation was

performed based on a survey approach using the ISO 9126, ISO 9241-11 and Nielsen

usability models (Nielsen, 2003; Nielsen, 2012) and survey questions that were modelled

from the System Usability Scale (SUS) and Post-Study Survey Usability Questionnaire

(PSSUQ). The survey approach gathered answers on learnability, navigation, effectiveness,

clarity of information, understandability, and others from the respondents.

Questionnaire-based Usability Evaluation: The usability evaluation was performed by

administering a questionnaire to users. This questionnaire, as shown in Table 3.6, was

completed using a scale defined from 1 to 5, with 1 as Strongly Disagree, 2 as Disagree, 3

as Undecided, 4 as Agree, and 5 as Strongly Agree.

Table 3.6 Survey Questions and Scale Used

No. Question

Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

5 4 3 2 1

1

There is an easy

navigation within the

web application

2

The information I

needed were readily

available

3

There was a clear

organisation of

information

4
The website had a

pleasant interface

5
There were useful

images on the website

6
There was an orderly

presentation of content

7
The size of web controls

was appropriate

8
The website had less

loading time

67

Table 3.6 Survey Questions and Scale Used (cont’d)

No. Question

Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

5 4 3 2 1

9 The website has all the

needed functions

10 The website is

satisfactory

The results from the questionnaire were evaluated for Reliability using Cronbach Alpha

mathematical method which is expressed in equation (3.22).

 α = 𝑁𝑐̅/(�̅� + (𝑁 − 1) ∗ 𝑐̅) (3.22)

where, α = Cronbach Alpha;

 N = Number of items;

 𝑐̅ = Covariance between the items; and

 �̅� = average variance.

The scores from the questionnaire were implemented in IBM SPSS Statistics 26.0 software.

The value for Cronbach Alpha ranges between 0 and 1 and signifies high reliability when

the value is closer to 1 as shown in Table 3.7.

Table 3.7 Relationship Between Cronbach Alpha’s Score and Reliability

 Cronbach Alpha’s Score Level of Reliability

 α ≥ 0.9 Excellent (Very Reliable)

 0.9 > α ≥ 0.8 Good (Reliable)

 0.8 > α ≥ 0.7 Acceptable (Quite Reliable)

 0.7 > α ≥ 0.6 Questionable (Rather Reliable)

 0.6 > α ≥ 0.5 Poor (Less Reliable)

(Source: Polat et al., 2017)

The usability, U, of the web applications were individually calculated using equation (3.23)

as:

TS

U = .100
MS

 (3.23)

where, TS = Total Score; and

 MS = Maximum Score.

68

The usability value was graded after calculation using the SUS as shown in Table 3.8.

Table 3.8 SUS Score and Grade

 SUS Score Grade Rating

 > 80.3 A Excellent

 68 – 80.3 B Good

 68 C Okay

 51 - 68 D Poor

 < 51 F Awful

(Source: Derisma, 2020)

Reusability

Reusability can be measured by the time it takes a software to deliver (delivery time) and

the correctness of the software (Ogundele, 2018). Delivery time is the expected time for the

software to return the same results under the same conditions after several usages. The

higher the delivery time value, the better the reusability of software components. Delivery

time may be expressed in terms of MTBF and MTTR in equation 3.24 as:

MTBF

DeliveryTime =
MTTR

 (3.24)

Reusability, Re, may also be expressed using equations (3.25) and (3.26).

 𝑅𝑒 = lim
x→∞

(1 +
1

x
) + Delivery Time (3.25)

 𝑅𝑒 = lim
x→∞

(1 +
1

x
) +

MTBF

MTTR
 (3.26)

When the value of correctness converges to 1, the equation as shown in (3.27) and (3.28)

become;

 𝑅𝑒 = 1 +
MTBF

MTTR
 (3.27)

O

R 1
T

p

e

D

= + (3.28)

where, Op = Operational Time; and

 TD = Total Downtime.

69

Functionality

This is the ability of software to perform the tasks for which it was intended. It has a direct

relationship with the components of the software and may be expressed mathematically

using the working and not working functions in the software as shown in equation (3.29).

A

= 1 . 100
B

o
n

o

F

−

 (3.29)

where, Fn = Functionality;

Ao = number of functions that are not working correctly; and

Bo = number of functions that are working correctly.

The functions used in the test include submission of forms, search box working correctly,

live chat feature working correctly, social media tabs redirecting correctly, internal links

functioning, site map aiding in user navigation, functioning print page feature, correctly

working events calendar, and others.

Portability

This is an approach that depicts the ease with which a software or an application can run

across various computing platforms. Portability tests can be done across various hardware

platforms, operating systems, or web browsers. This helps to find out the ease with which a

software component from one computing environment can be used in another environment.

Portability, P, is expressed as a form of accelerated motion as shown in equation (3.30).

21

= ()
2

o o oP at vt P+ + (3.30)

where, a = acceleration of the software across various platforms;

to = time taken to move across various platforms;

v = speed of moving across various platforms; and

Po = rate of transfer across various platforms.

Acceleration was used to evaluate the rate of change of the software’s speed across multiple

web browsers, speed was used to evaluate the rate at which the software opens in a web

browser, time evaluates the average time it takes the software to open on multiple browsers

while the rate of transfer is the total time it takes the software to open on multiple web

browsers. The web browsers used for the test were Google Chrome version 89.0, Mozilla

Firefox version 87.0, Microsoft Edge version 89.0, and Safari version 5.1.

70

Security

The security of the web applications was categorised under the Open Web Application

Security Problem (OWASP) top ten (10) security vulnerability model version 2017.

Security, S, may be expressed as shown in equation (3.31).

10

1

S = Ai

i=

 (3.31)

where, A = Security Vulnerability; and

 i = Vulnerability Level.

The OWASP top ten (10) security vulnerability are classified under Code Injection attack

(A1), Broken Authentication and Session Management (A2), Cross-Site Scripting attack

(XSS) (A3), Insecure Direct Object References (A4), Security Misconfiguration (A5),

Sensitive Data Exposure attack (A6), Missing Function Level Access Control (A7), Cross-

Site Request Forgery (CSRF) (A8), Using Components with Known Vulnerabilities (A9)

and Unvalidated Redirects and Forwards (A10). The Security Vulnerability Level and the

corresponding scores are shown in Table 3.9.

Table 3.9 Vulnerability Level and Score

Security

Vulnerability

Level

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Score 10 10 10 10 10 10 10 10 10 10

Cost

Software Cost is the amount of money paid for software development. It is estimated using

function points (FP), source lines of codes (SLOC), and labour used. Functional point

parameters are calculated using External Interface Files (EIF), External Inputs (EI), Internal

Logic Files (ILF), External Outputs (EO), and External Inquiries (EQ). The functional point

parameter and the weight of complexity are shown in Table 3.10.

71

Table 3.10 Functional Point parameter and Weight of Complexity

Functional Point Parameter

(FPP)

Weight of Complexity (WC)

Low Average High

External Inputs (EI) 3 4 6

External Outputs (EO) 4 5 7

External Inquiries (EQ) 3 4 6

Internal Logic Files (ILF) 7 10 15

External Interface Files (EIF) 5 7 10

(Source: Hana, Abeer and Hana, 2019)

Function Point, FP, was calculated using equation (3.32).

 FP = UFP × CAF (3.32)

where, UFP = Unadjusted Functional Point; and

 CAF = Complexity Adjustment Factor.

To calculate UFP, the values from the functional point parameter and their corresponding

weight of complexities are summed up. This is expressed mathematically in equation (3.33).

 UFP = (FPP ×WC) (3.33)

where, FPP = function point parameter; and

 WC = weight of complexity.

CAF is also calculated using equation (3.34) as:

 CAF= 0.65+(0.01 × F)i (3.34)

where, Fi = value adjustment factor based on responses to questions in Table 3.11.

The questionnaire was filled using a scale defined from 1 to 5, with 1 as Incidental, 2 as

Moderate, 3 as Average, 4 as Significant, and 5 as Essential.

72

Table 3.11 Questions for the value adjustment factor

No. Question
Essential Significant Average Moderate Incidental

5 4 3 2 1

1
Data

Communication

2

The software

requires distributed

data processing

3
What is the rate of

performance

4

The software has a

heavily used

configuration

5
It has a transaction

role

6 Allows data entry

7
Requires end-user

efficiency

8
Allows online

update

9

The software uses

complex

processing

10

The components of

the software are

reusable

11
There should be

ease of installation

12
Allows operational

use

13
The software uses

multiple sites

14 It facilitates change

SLOC was calculated using function points and programming language used as shown in

equation (3.35). The programming language used was evaluated using Table 3.12.

73

Table 3.12 Programming Language and Score Points for AVC

 Programming Language Score Points for Average Lines of Codes (AVC)

 JAVA 53

 C 97

 C++ 50

 COBOL 61

 C# 54

 HTML 34

 .NET 57

 PYTHON 55

 PHP 52

(Source: Duke and Obidinnu, 2010)

 SLOC = FP × AVC (3.35)

The effort required to develop the software is calculated in terms of KLOC in equation

(3.43) as:

 𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎 × (𝐾𝐿𝑂𝐶)^𝑏 (3.36)

where, KLOC = lines of codes in thousands;

a and b = Factors.

Table 3.13 Mode and Factors

 Mode a b

 Organic 2.4 1.05

 Semi-detached 3.0 1.12

 Embedded 3.6 1.20

(Source: Balaji, Shivakumar and Ananth, 2013)

Software cost estimate is calculated using Effort, E, and Labour, L, used as shown in

equation 3.37.

 oC = E×L (3.37)

3.6 Voting Method

The voting method multiplies values from the score of attributes from the software quality

assurance model with the scores attained from the AHP technique.

After the multiplication, the scores are summed up at the summing junction. The value at

the summing junction lies between 0 and 100%. This is then outputted and displayed as the

74

overall quality assurance evaluation of the application. Figure 3.3 shows the voting method

used. The voting method was performed using equation (3.38).

11

k1n =1
Output = (SQA×w) (3.38)

where, SQA= Software Quality Attribute

wk1 = Weight generated from AHP

n = number of quality attributes

Figure 3.3 Voting Method Technique

3.7 Architecture of the Proposed Model

The architecture of the proposed model depicts the organisation and structure of the whole

development model. It also shows how the model will operate as shown in Figure 3.4. The

model contains a software quality model container that houses the eleven (11) quality

attributes for the evaluation process. It also contains each attribute’s corresponding criteria

weights which were evaluated from the AHP analysis made. There is an application server

to provide an environment to run the software and a database engine that contains the

mathematical models for evaluating each software quality attribute. Finally, the model

contains a voting system where the score of quality attribute attained by the evaluated web-

based application software is multiplied with the corresponding AHP criteria weight, which

lies between 0 and 100. The overall software quality assurance score is outputted and ranges

between 0% and 100%. The higher the score from the software quality evaluation, the higher

the quality of the web application.

M(s)

Input

attributes

Criteria

weights

Summing

Junction

R(s)

E(s)

 ⋮ ⋮

Wk1

 Wk2

Wkn

Output

75

Figure 3.4 Architecture of the Proposed Model

76

3.8 Flow Diagram of the Proposed System

The system flow diagram, as shown in Figure 3.5, enables visualisation of the process flow

in the model. The proposed model starts with a login process, which moves to the

authorisation stage. Once the user is authorised, the dashboard is displayed where results for

Usability are entered since it was done based on a survey approach. A request is then sent

to the backend where Availability, Reliability, Reusability, Maintainability, Portability,

Testability, Functionality, Cost, Efficiency, and Security tests are performed. The results

move to the collation stage and are displayed for each of the quality attributes on the

dashboard.

The voting method is carried out by multiplying the criteria weights from the AHP technique

with the scores generated by each quality attribute in the software quality assurance model.

The overall score from the voting method varies between 0 and 100% and shows the

percentage of software quality for each evaluated web application.

The user is finally given the option to run a new test or end the process.

77

Figure 3.5 Flow Diagram of the Proposed Model

Login Authorised?

No

DashboardYes

Usability

Sends

Request to

Backend

Calculates

Testability

Availability,

Functionality

Calculates

Efficiency,

Reliability,

Portability

Performs

Security

Scan

Collates

Results

Display results of

each Quality

attribute on

Dashboard

Run New

Test

Yes

Apply Voting

Method to ascertain

percentage of

Software Quality

Display Software

Quality Assurance

Percentage on

Dashboard

No End

Calculates

Maintainability,

Reusability, Cost

Part B

Part A

78

The model also has an access control model that performs confidentiality check at the

system login stage and integrity check at the account registration stage. A process flow

diagram of the system login stage is shown in Figure 3.6.

Start

Enter Login

Credentials

Performing a Write

Operation?
Yes

No

Part B of

Flow

Diagram

Yes

Is User Confidentiality Level

 Object s level?

End
Access

Denied

Access

Granted
No

Figure 3.6 Flow Diagram of the System Login

The process is started for the user to enter the login credentials. It moves to the decision-

making process where the system asks whether the user wants to perform a write operation;

if yes, the user and object confidentiality levels are checked, else, it goes back to start the

process. On checking the confidentiality level, if the user confidentiality level is less than

or equal to the object’s confidentiality level, the user is denied access to the system, else,

the user is granted access to the software quality assurance model.

The account registration page performs an integrity check at the account activation stage as

shown in Figure 3.7.

79

Start

After

Successful

Registration

Performing a Read

Up Operation?
Yes

No

Part A of

Flow

Diagram

Yes

Is User Integrity Level

Object s level?

End
Access

Denied

Access

Granted
No

Account

Activation

Link is sent to

Email

Click on Link

to Activate

Figure 3.7 Flow Diagram of the System Authentication

After a user has successfully registered into the system, an account activation link is sent to

the user’s email for activation. The user, therefore, has to open the email to activate the

account. It moves to the decision-making process where the system asks whether the user

wants to perform a read-up operation, if yes, the user’s and object’s integrity levels are

checked, else, it goes back to start the process. Upon performing the integrity check, if the

user’s integrity level is less than or equal to the object’s integrity level, the user is denied

access to the system; else, the user is granted access to the software quality assurance model.

80

CHAPTER 4

SYSTEM IMPLEMENTATION, RESULTS, AND DISCUSSIONS

4.1 Introduction

This chapter deals with the system implementation, results, and discussions. The first aspect

deals with ranking of the software quality attributes using the AHP. The second aspect deals

with the implementation of each of the eleven (11) software quality attributes. Thirdly, the

voting method is applied to combine the eleven (11) individually implemented quality

attributes and are multiplied by criteria weights calculated using the AHP approach.

Fourthly, the access control model is implemented to secure the overall system. Lastly, the

performance of the secured quality assurance model is evaluated and validated using some

standard metrics.

4.2 Identification of Software Quality Attributes

Twenty-four (24) software quality attributes were initially sampled using purposive

sampling from ten (10) standard and well-known software quality models including FURPS

model, Boehm’s model, ISO-9126 quality model, Ghezzi’s model, McCall’s model,

Dromey’s model, Glib’s model, Kitchenham and Pickard’s model, Georgiadou’s model, and

Jamwal’s model. This is shown in Table 4.1.

81

Table 4.1 Quality Attributes of the Existing Quality Models and the Proposed Model

McCall

et al.

(1977)

Boehm

(1978)

FURPS

(1987)

Dromey

(1995)

ISO-

9126

(1986)

Glib

(1988)

Kitchenham

and Pickard

(1989)

Ghezzi,

Jazayeri,

and

Mandrioli

(1991)

Georgiadou

(2003)

Jamwal

and

Jamwal

(2009)

Proposed

Hybrid

Quality

Model

Maintainability / / / / / / / /

Flexibility / / / *

Testability / / /

Correctness / / *

Reliability / / / / / / / / / /

Efficiency / / / / / / /

Usability / / / / / / / / / / /

Portability / / / / / / / /

Reusability / / / /

Interoperability / *

Understandability / *

Functionality / / / / /

Performance / / *

Supportability / *

Availability / /

Adaptability / *

Accuracy / *

Robustness / / *

Extensibility * *

Security / /

Cost / /

Integrity / / *

Confidentiality / *

Non-Repudiation / *

82

Table 4.1 shows the software quality attributes of the existing models and the proposed

model. McCall’s model addresses eleven (11) main attributes, Boehm’s model has eight (8)

main attributes, FURPS model has five (5) main attributes and one (1) sub-attribute,

Dromey’s model has seven (7) main attributes, the ISO 9126 model has six (6) main

attributes, Glib’s model has three (3) main attributes, Kitchenham and Pickard’s model has

three (3) main attributes, Ghezzi’s model has nine (9) main attributes, Georgiadou’s model

has ten (10) main attributes, Jamwal’s model has seven (7) main attributes while the

proposed quality model has eleven (11) main attributes and thirteen (13) sub-attributes.

Review of related works showed that some of the quality attributes had similar functionality

as others and were grouped into main and sub-attributes. The following are the main quality

attributes of the proposed model: Testability, Security, Efficiency, Reliability, Usability,

Cost, Portability, Maintainability, Functionality, Reusability, and Availability. The sub-

attributes are: Flexibility, Extensibility, Supportability, Integrity, Confidentiality, Non-

Repudiation, Correctness, Interoperability, Robustness, Accuracy, Understandability,

Performance and Adaptability.

4.3 Ranking of Software Quality Attributes Using Analytic Hierarchy Process

The judgement matrix was designed using thirty (30) experts’ decisions, based on related

research. The implementation was done in MATLAB/Simulink Software R2020b.

4.3.1 Quality Attribute Selection Judgement Matrices

A geometric mean of the scores from the survey was found and presented in a matrix form

for effective criteria and pair-wise comparison and is represented in equation (4.1).

83

1.00 2.05 2.44 2.98 2.95 2.75 2.95 2.18 1.55 1.59 2.80

0.49 1.00 2.04 2.30 2.99 2.02 2.85 1.90 1.20 1.31 2.10

0.41 0.49 1.00 1.00 1.95 1.72 2.69 1.50 1.28 2.10 2.59

0.34 0.43 1.00 1.00 1.20 0.75 0.98 1.29 1.05 1.03 1.68

0.34 0.33 0.51 0.51 1.00 1

 =Q

.02 1.01 0.67 0.20 2.54 1.54

0.36 0.50 0.58 1.33 0.98 1.00 1.02 1.59 0.28 2.85 1.50

0.34 0.35 1.37 1.02 0.99 0.98 1.00 2.65 0.32 0.55 1.85

0.46 0.53 0.67 0.78 1.49 0.63 3.57 1.00 0.23 0.60 1.55

0.65 0.83 0.78 0.95 5.00 3.57 3.13 4.35 1.00 0.87 1.90

0.63 0.76 0.48 0.97 0.39 0.35 1.82 1.67 1.15 1.00 1.00

0.36 0.48 0.39 0.60 0.65 0.67 0.54 0.65 0.53 1.00 1.00

 (4.1)

The geometric mean matrix is shown in Table 4.2. Table 4.3 also shows the normalised pair-

wise comparison matrix while Table 4.4 shows the consistency matrix.

A questionnaire was administered to thirty (30) experts for the multi-criteria decision

process. These experts filled the questionnaire by asking the importance of the quality

attributes relative to the other but did not suggest that addition of other attributes to the

model. The geometric mean of the scores from the filled questionnaire was found by

multiplying the values for each of the attributes in Table 4.2 and setting it to the 1/nth power.

The sum of each attribute was finally calculated. The geometric mean of the scores was

found using equation (4.2).

1

1 2

1

n n

n
i n

i

x x x x
=

=

 (4.2)

where, n = number of terms that are being multiplied; and

x = scores from the questionnaire.

84

Table 4.2 Geometric Mean of the Filled Questionnaire

Attributes M T R P A E Fn Re S U Co

M 1.00 2.05 2.44 2.98 2.95 2.75 2.95 2.18 1.55 1.59 2.80

T 0.49 1.00 2.04 2.30 2.99 2.02 2.85 1.90 1.20 1.31 2.10

R 0.41 0.49 1.00 1.00 1.95 1.72 2.69 1.50 1.28 2.10 2.59

P 0.34 0.43 1.00 1.00 1.20 0.75 0.98 1.29 1.05 1.03 1.68

A 0.34 0.33 0.51 0.51 1.00 1.02 1.01 0.67 0.20 2.54 1.54

E 0.36 0.50 0.58 1.33 0.98 1.00 1.02 1.59 0.28 2.85 1.50

Fn 0.34 0.35 0.37 1.02 0.99 0.98 1.00 2.65 0.32 0.55 1.85

Re 0.46 0.53 0.67 0.78 1.49 0.63 3.57 1.00 0.23 0.60 1.55

S 0.65 0.83 0.78 0.95 5.00 3.57 3.13 4.35 1.00 0.87 1.90

U 0.63 0.76 0.48 0.97 0.39 0.35 1.82 1.67 1.15 1.00 1.00

Co 0.36 0.48 0.39 0.60 0.65 0.67 0.54 0.65 0.53 1.00 1.00

SUM 5.36 7.75 10.26 13.44 19.60 15.46 21.56 19.44 8.79 15.44 19.51

Table 4.2 shows the geometric mean of the scores from the questionnaire. Rules from the

AHP show that the values on the diagonal of the table are always 1.00 while judgement

values on the upper diagonal are the actual scores from the questionnaire. In order to fill the

lower diagonal of the table, the reciprocal values of the upper diagonal are used. The sum

of each column is also found and presented in the table. Availability was seen to have the

highest number of 19.60 while Maintainability had the lowest number of 5.36.

85

Table 4.3 Normalised Pair-wise Comparison Matrix

Attributes M T R P A E Fn Re S U Co
Criteria

Weight

Criteria

Weight

(%)

M 0.186 0.26 0.238 0.222 0.151 0.178 0.1369 0.112 0.176 0.103 0.144 0.1737 17.37

T 0.091 0.13 0.199 0.171 0.153 0.131 0.1322 0.098 0.137 0.085 0.108 0.1302 13.02

R 0.076 0.06 0.098 0.074 0.100 0.111 0.1248 0.077 0.146 0.136 0.133 0.1035 10.35

P 0.063 0.06 0.098 0.074 0.061 0.049 0.0455 0.066 0.120 0.067 0.086 0.0713 7.13

A 0.063 0.04 0.05 0.038 0.051 0.066 0.0469 0.034 0.023 0.165 0.079 0.0599 5.99

E 0.068 0.06 0.057 0.099 0.050 0.065 0.0473 0.082 0.032 0.185 0.077 0.0749 7.497

Fn 0.063 0.05 0.036 0.076 0.051 0.063 0.0464 0.136 0.036 0.036 0.095 0.0622 6.22

Re 0.086 0.07 0.065 0.058 0.076 0.041 0.1657 0.051 0.026 0.039 0.079 0.0686 6.86

S 0.12 0.11 0.076 0.071 0.255 0.231 0.1450 0.224 0.114 0.056 0.097 0.1361 13.61

U 0.117 0.10 0.046 0.072 0.020 0.023 0.0844 0.086 0.131 0.065 0.051 0.0721 7.22

Co 0.067 0.06 0.038 0.044 0.033 0.043 0.0251 0.033 0.060 0.065 0.051 0.0473 4.73

86

The normalised pair-wise comparison matrix was found in Table 4.3 by diving each of the

values for the attributes in Table 4.2 by the sum. To calculate the criteria weight, an average

of the rows was found. The results indicated that, Maintainability had a criteria weight of

17.37% and Usability also had a criteria weight of 7.22%. Reusability, Availability,

Testability and Functionality had 6.86%, 5.99%, 13.02% and 6.22% as their respective

criteria weights. Also, Cost was seen to have 4.73%, Security also had 13.61% while

Portability had 7.13%. Furthermore, Reliability and Efficiency were seen to have 10.35%

and 7.49% respectively.

To evaluate the correctness of expert’s evaluation, the consistency of the pair-wise

comparison matrix was calculated in Table 4.4 by multiplying the criteria weight by the

pair-wise comparison matrix, which was not normalised in Table 4.2. The weighted sum of

the new matrix was found and then divided by the criteria weight in Table 4.3. The overall

sum was found for the calculation of the consistency vector, 𝜆𝑚𝑎𝑥, and Consistency Ratio

(CR). The consistency vector, 𝜆𝑚𝑎𝑥, was calculated by multiplying the pair-wise matrix by

the weight vector and the sum of the row entries was divided by the corresponding criterion

weight. The value of the consistency ratio must be less than 0.1 to make the judgement

matrix acceptable.

 max

134.04
612.18

11
 = = (4.3)

max n 12.186 11

CI 0.119
n 1 10

 − −
= = =

−
 (4.4)

CI 0.119

CR = 0.079
RI 1.52

= = (4.5)

The selection judgement matrix is consistent since the value of the CR is 0.079, which is

less than 0.1.

Results from Table 4.3 indicate that the attribute with the highest criteria weight of 17.37%

is Maintainability (M) while the attribute with the lowest weight of 4.73% is Cost (Co).

87

Table 4.4 Consistency of Pair-wise Comparison Matrix

Criteria

Weight

(CW)

0.174 0.13 0.104 0.071 0.06 0.075 0.0622 0.069 0.136 0.072 0.047

Attributes M T R P A E Fn Re S U Co

Weighted

Sum Value

(WSV)

WSV/

CW

M 0.174 0.27 0.253 0.213 0.177 0.206 0.1835 0.15 0.211 0.115 0.132 2.07981 11.973

T 0.085 0.13 0.211 0.164 0.179 0.151 0.1773 0.13 0.163 0.095 0.099 1.58551 12.178

R 0.071 0.06 0.104 0.071 0.117 0.129 0.1673 0.103 0.174 0.152 0.123 1.27414 12.308

P 0.058 0.06 0.104 0.071 0.072 0.056 0.0609 0.088 0.143 0.074 0.079 0.86401 12.116

A 0.059 0.04 0.053 0.037 0.06 0.076 0.0628 0.046 0.027 0.183 0.073 0.72068 12.029

E 0.063 0.06 0.06 0.095 0.059 0.075 0.0634 0.109 0.038 0.206 0.071 0.90389 12.057

Fn 0.059 0.05 0.038 0.073 0.059 0.074 0.0622 0.182 0.044 0.04 0.088 0.76337 12.274

Re 0.08 0.07 0.069 0.055 0.089 0.047 0.2221 0.069 0.031 0.043 0.073 0.84772 12.359

S 0.112 0.11 0.081 0.068 0.3 0.268 0.1944 0.298 0.136 0.063 0.09 1.71803 12.623

U 0.109 0.1 0.049 0.069 0.024 0.026 0.1131 0.114 0.156 0.072 0.047 0.88039 12.196

Co 0.062 0.06 0.04 0.042 0.039 0.05 0.0336 0.044 0.072 0.072 0.047 0.56433 11.929

SUM 134.04

 max = 12.186 CR = 0.079

88

Figure 4.1 shows a graphical representation of the weights of the software quality attributes.

Figure 4.1 Weights of the Software Quality Attributes.

It can be seen from Figure 4.1 that Maintainability has the highest criteria weight of 17.37%.

This is followed by Security with a criteria weight of 13.61%. Cost is noted to have the

lowest weight of 4.73%. Quality attributes such as Testability, Reliability, Efficiency,

Usability and Portability have percentage weights of 13.02, 10.35, 7.49, 7.22 and 7.13

respectively. Furthermore, Reusability and Functionality are noted to have criteria weights

0

2

4

6

8

10

12

14

16

18

M S T R E U P Re Fn A Co

17.37

13.61
13.03

10.35

7.49
7.22 7.13 6.86

6.22
5.99

4.73

C
ri

te
ri

a
W

ei
g
h
ts

Software Quality Attributes

Quality Attributes Weights (%)

M S T R E U P Re Fn A Co

89

of 6.86% and 6.22%. Lastly, Availability had the second to last score with the weight

5.99%. According to experts judgement, Maintainability had the highest score while Cost

had the lowest score. This was due to the fact that the users in this part of Africa (Ghana and

Nigeria) are much concerned with using software with highly maintainable features but are

less concerned with the cost of software because they mostly prefer the use of unlicensed

software to licensed software. These results are consistent with the findings of Kassie and

Singh (2020).

4.3.2 Alternative Selection Judgement Matrices

The alternatives, which are “Has Sub-attributes”, “Doubles up as Sub-attributes”, and

“Mostly addressed”, were also analysed for Maintainability as shown in Table 4.5.

Table 4.5 The Weight of Alternatives for Maintainability

Maintainability Has Sub-

attributes

Doubles up as

Sub-attributes

Mostly

Addressed

Criteria

Weight

Has Sub-attributes 1 1 1/4 0.15

Doubles up as Sub-

attributes 1 1 1/9

0.11

Mostly Addressed 4 9 1 0.74

 max = 3.0749 CR = 0.0646

Table 4.5 indicates that Maintainability has been mostly addressed 74% of the time and has

doubled up as a sub-attribute 11% of the time.

The alternatives were also analysed for Testability (T) as shown in Table 4.6.

90

Table 4.6 The Weight of Alternatives for Testability

Testability Has Sub-

attributes

Doubles up as

Sub-attributes

Mostly

Addressed

Criteria

Weight

Has Sub-attributes 1 3 1/4 0.23

Doubles up as Sub-

attributes 1/3 1 1/5

0.10

Mostly Addressed 4 5 1 0.67

 max = 3.0869 CR = 0.07496

Table 4.6 shows that Testability has been mostly addressed at a rate of 67% and has doubled

up as a sub-attribute at a rate of 10%.

The alternatives were also analysed for Reliability as shown in Table 4.7.

Table 4.7 The Weight of Alternatives for Reliability

Reliability
Mostly

Addressed

Has Sub-

attributes

Doubles up as

Sub-attributes

Criteria

Weight

Mostly Addressed 1 7 8 0.78

Has Sub-attributes 1/7 1 2 0.14

Doubles up as Sub-

attributes
1/8 1/2 1 0.08

 max = 3.035 CR = 0.0304

Table 4.7 shows that Reliability has been mostly addressed 78% times and has doubled up

as a sub-attribute 8% times.

The alternatives were also analysed for Efficiency as shown in Table 4.8.

91

Table 4.8 The Weight of Alternatives for Efficiency

Efficiency
Has Sub-

attributes

Doubles up as

Sub-attributes

Mostly

Addressed

Criteria

Weight

Has Sub-attributes 1 4 1/3 0.28

Doubles up as Sub-

attributes
1/4 1 1/5 0.10

Mostly Addressed 3 5 1 0.62

 max = 3.0867 CR = 0.0747

Table 4.8 shows that Efficiency is being mostly addressed 62% of the time and has doubled

up as a sub-attribute 10% of the time.

The alternatives were also analysed for Usability as shown in Table 4.9.

Table 4.9 The Weight of Alternatives for Usability

Usability
Mostly

Addressed

Has Sub-

attributes

Doubles up as

Sub-attributes

Criteria

Weight

Mostly Addressed 1 9 8 0.80

Has Sub-attributes 1/9 1 2 0.12

Doubles up as Sub-

attributes
1/8 1/2 1 0.08

 max = 3.075 CR = 0.0649

Table 4.9 shows that Usability has been mostly addressed at a rate of 80% and has doubled

up as a sub-attribute at a rate of 8%.

The alternatives were also analysed for Portability as shown in Table 4.10.

92

Table 4.10 The Weight of Alternatives for Portability

Portability Has Sub-

attributes

Doubles up as

Sub-attributes

Mostly

Addressed

Criteria

Weight

Has Sub-attributes 1 5 1/2 0.35

Doubles up as Sub-

attributes 1/5 1 1/5

0.093

Mostly Addressed 2 5 1 0.56

 max = 3.0183 CR = 0.01581

Table 4.10 shows that Portability is being mostly addressed at a rate of 56% and has doubled

up as a sub-attribute at a rate of 9%.

The alternatives were also analysed for Reusability as shown in Table 4.11.

Table 4.11 The Weight of Alternatives for Reusability

Reusability Mostly

Addressed

Doubles up as

Sub-attributes

Has Sub-

attributes

Criteria

Weight

Mostly Addressed 1 1 1 0.33

Doubles up as Sub-

attributes 1 1 1/2

0.26

Has Sub-attributes 1 2 1 0.41

 max = 3.054 CR = 0.0463

Table 4.11 shows that Reusability has sub-attributes at a rate of 41% and has doubled up as

a sub-attribute at a rate of 26%.

The alternatives were also analysed for Functionality as shown in Table 4.12.

93

Table 4.12 The Weight of Alternatives for Functionality

Functionality Has Sub-

attributes

Doubles up as

Sub-attributes

Mostly

Addressed

Criteria

Weight

Has Sub-attributes 1 4 1/2 0.33

Doubles up as Sub-

attributes
1/4 1 1/5 0.10

Mostly Addressed 2 5 1 0.57

 max = 3.0247 CR = 0.0213

Table 4.12 shows that Functionality has been mostly addressed at a rate of 57% and has

doubled up as a sub-attribute at a rate of 10%.

The alternatives were also analysed for Availability as shown in Table 4.13.

Table 4.13 The Weight of Alternatives for Availability

Availability Mostly

Addressed

Has Sub-

attributes

Doubles up as

Sub-attributes

Criteria

Weight

Mostly Addressed 1 1 1/5 0.17

Has Sub-attributes 1 1 1/2 0.23

Doubles up as Sub-

attributes
5 2 1 0.60

 max = 3.0951 CR = 0.08196

Table 4.13 shows that Availability has doubled up as a sub-attribute at a rate of 60% and

has been mostly addressed at a rate of 17%.

The alternatives were also analysed for Cost as shown in Table 4.14.

94

Table 4.14 The Weight of Alternatives for Cost

Cost Has Sub-

attributes

Mostly

Addressed

Doubles up as

Sub-attributes

Criteria

Weight

Has Sub-attributes 1 1 1/9 0.11

Mostly Addressed 1 1 1/5 0.13

Doubles up as Sub-

attributes
9 5 1 0.77

 max = 3.0389 CR = 0.0336

Table 4.14 shows that Cost has doubled up as a sub-attribute at a rate of 77% and has sub-

attributes at a rate of 11%.

The alternatives were also analysed for Security as shown in Table 4.15.

Table 4.15 The Weight of Alternatives for Security

Security Mostly

Addressed

Has Sub-

attributes

Doubles up as

Sub-attributes

Criteria

Weight

Mostly Addressed 1 2 1/2 0.35

Has Sub-attributes 1/2 1 1/9 0.09

Doubles up as Sub-

attributes
2 9 1 0.56

 max = 3.0745 CR = 0.0642

Table 4.15 shows that Security has doubled up as a sub-attribute at a rate of 56% and has

sub-attributes at a rate of 9%.

The overall weights for the software quality attribute selection are summarised in Table

4.16.

95

Table 4.16 The Weights for Software Quality Attribute Selection

Element Weight

Alternatives

Mostly Addressed 0.5200

Doubles up as Sub- attributes 0.2210

Has Sub-attributes 0.2590

Criteria or Attributes

Maintainability 0.1737

Testability 0.1302

Reliability 0.1035

Efficiency 0.0749

Usability 0.0722

Portability 0.0713

Reusability 0.0686

Security 0.1361

Functionality 0.0622

Availability 0.0599

Cost 0.0473

Overall Consistency Ratio: 0.0570

The overall consistency ratio, 𝐶𝑅̅̅ ̅̅ , was calculated as shown in equation (4.6) by summing

up the weighted consistency index, wiCIi, in the nominator and the weighted random

consistency index, wiRIi, in the denominator.

i ii

i ii

w CI
CR

w RI
=

 (4.6)

The results in Table 4.16 show that “Mostly Addressed” is the highest-ranking software

quality alternative with 0.520 representing 52% and “Has Sub- attribute” is the lowest

ranking alternative with 0.221 representing 22.10%. The result also shows Maintainability

96

as the highest-ranking software quality attribute with 0.1737 which represents 17.37%.

Table 4.16 also shows that the overall analysis is consistent since the value of CR is 0.057,

which is less than 0.1. The analysis can, therefore, be considered as consistent.

4.3.3 Quality models and attributes

Software quality attributes such as Usability, Maintainability, and Reliability have been

addressed by most quality models while Availability, Security, and Cost have been

addressed by single quality models. This is shown in Figure 4.2.

Figure 4.2 Quality attributes and their rates of address by Quality models

Usability has been addressed by all the quality models, followed by Reliability which has

also been addressed by nine (9) out of ten (10) models. Figure 4.2 also shows that

Availability has only been addressed by Glib’s model, Security has been addressed by

Georgiadou while Cost has also been only addressed by Jamwal’s model.

0

1

2

3

4

5

6

7

Quality Attributes and Rate of Address by Models

M U R E P Re Fn T A Co S

97

Maintainability has been mostly addressed in software quality models such as McCall’s

model, Boehm’s model, Dromey’s model, ISO-9126 model, Kitchenham and Pickard’s

model, Ghezzi’s model, and Georgiadou’s model as shown in Figure 4.2.

Usability has been addressed in all the software quality models as shown in Figure 4.2. It

has always been present, even in the very first software quality models, and is also one of

the widely used software quality attributes in the industry.

According to Figure 4.2, Reliability has also been addressed by most software quality

models such as McCall’s model, Boehm’s model, Dromey’s model, FURPS, ISO-9126

model, Kitchenham and Pickard’s model, Ghezzi’s model, Georgiadou’s model, and

Jamwal’s model.

Efficiency has been addressed by McCall’s model, Boehm’s model, Dromey’s model,

Ghezzi’s model, and Georgiadou’s model.

Portability has been addressed by McCall’s model, Boehm’s model, Dromey’s model, ISO-

9126 model, Ghezzi’s model, Georgiadou’s model, and Jamwal’s model.

Reusability, according to Figure 4.2, has been addressed by McCall’s model, Dromey’s

model, and Ghezzi’s model.

Functionality has also been addressed by the FURPS model, Dromey’s model, ISO-9126

model, and Georgiadou’s model as shown in Figure 4.2.

Testability has been addressed by McCall’s model and Boehm’s model.

Availability has been addressed by Glib’s model only.

Security has been addressed by Georgiadou’s model. It is seen as an important software

quality attribute due to its enforcement of confidentiality, integrity, authentication, and non-

repudiation schemes into software products.

Cost has also been addressed by Jamwal’s model only.

4.4 Software Quality Assurance Model Implementation

The implementation of the software quality model was done using Python and the interface

was designed using web technologies such as ExpressJS, Angular, and NodeJS. Data was

stored using MongoDB. The application can run on browsers such as Mozilla Firefox,

98

Google Chrome, Microsoft Edge, Internet Explorer, Safari, and Opera Mini. The following

are the other requirements for running the software:

a) Operating System Requirements: It can run on Windows 7, Windows 8, or Windows

10 and Mac OSX 10.8, 10.9, 10.10 or 10.11.

b) Hardware Requirements: It can be run on a laptop with a processor speed of 2.3

Gigahertz (GHz) or above, a minimum of 2 GB RAM, monitor resolution of

1024×768 or higher, Ethernet connection (LAN) or wireless adapter (WiFi) with a

speed of 4 Mbps or higher.

The user login page contains text fields for users to enter their email and password as shown

in Figure 4.3 before having access to the quality assurance software. It has been secured

using a hybrid security model consisting of Bell-LaPadula and Biba models. There are also

options for registering new users and an option for resetting one’s password in case of

forgetting the password.

Figure 4.3 User Login Page of the Software Quality Assurance Model

99

The register account page as shown in Figure 4.4 allows new users to register into the quality

assurance software. It contains text fields for entering one’s username, email address,

password, and confirmation email. Once the register button is clicked, the user is notified as

having registered successfully as shown in Figure 4.5.

Figure 4.4 Register Account Page of the Software Quality Assurance Model

Upon successful login, an account activation link is sent to the user's email address for

authentication. This is shown in Figure 4.5.

Figure 4.5 Successful Register Account Page

100

4.4.1 Security Model for Quality Assurance Software Access Control

Authentication of user account registration is done through two-factor authentication. The

first factor is the textual password entry while the second one is the account activation link

sent to the user’s email address.

Ensuring Confidentiality

The confidentiality of the quality assurance software was enforced using the BLP model to

ensure that unauthorised persons are denied access privilege to the software. This allows an

authorised person to log into the system and run the test for a web application’s quality

assurance assessment. The confidentiality check uses the following process:

a) A user sends a request to the permission granting engine, which contains the BLP

write-up commands.

b) Upon receiving the request, the permission granting engine performs a check to

match the user’s confidentiality level to the object’s confidentiality level.

c) Once the user’s confidential security level is not less than the object’s confidentiality

level, access to the system is granted. If the user’s confidential security level is less

than or equal to the object’s confidentiality level, access to the system is denied.

Ensuring Integrity

Integrity was also enforced based on the Biba model to prevent unauthorised persons from

altering data in the quality assurance software. This allows an authorised person to receive

an activation code for successful login to the software after completing the system

registration process. It uses the following process:

a) An account activation code is sent to the user’s email address.

b) The user opens the email and clicks on the code for activation.

c) The permission granting engine, which also contains the Biba read-up commands,

performs a check to match the user’s integrity level to the object’s integrity level.

d) Once the user’s integrity level is not less than the object’s integrity level, read access

to the system is granted. If the user’s integrity security level is less than or equal to

the object’s integrity level, read access to the system is denied.

101

Confusion Matrix for the Access Control

A confusion matrix was generated using Scikit-learn in Python programming language and

the result is shown in Table 4.17.

Table 4.17 Confusion Matrix for Access Control

Results Access Granted Access Denied

Access Granted 50 2

Access Denied 5 43

According to Table 4.17, the confusion matrix recorded the user data points for access

denied and access granted values. 50 positive user data points were correctly granted access

to the software (true positive); 43 negative user data points were correctly denied access to

the software (true negative); 2 negative user data points as incorrectly granted access to the

software while 5 positive user data points were incorrectly denied access to the software.

In reality, 100 predictions were made and out of it, the classifier predicted the denied access

value to be 45 and predicted access granted 55 times. There were 52 cases in which the

actual value was Access granted and 48 cases in which the actual value was Access denied.

In order to evaluate the performance of the access control, the accuracy, precision, recall

and F1 score of the confusion matrix were calculated and shown in Figure 4.6:

102

Figure 4.6 Performance Evaluation of Access Control Model

Figure 4.6 shows a pictorial representation of evaluation of the access control model where

the precision, accuracy, recall and f1 scores are shown. Accuracy had a score of 0.93,

Precision had 0.96, Recall had 0.91 and F1 score had 0.92.

Quality Assurance Model Homepage

The homepage of the software quality assurance model after successful login is shown in

Figure 4.7. It shows the identity of the user by displaying the user’s email address in the

upper right corner.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Accuracy Precision Recall F1 Score

Series 1 0.93 0.96 0.91 0.92

P
er

fo
rm

an
ce

 S
co

re

Evaluation of Access Control Model

103

Figure 4.7 Homepage of Software Quality Assurance Model

The homepage contains three (3) important sections: Manage Users, Interface, Settings, and

Detailed results.

a) Manage Users: This section allows the creation, editing, and deleting of user

functions;

b) Interface: This section contains the eleven (11) software quality attributes.

Efficiency, reliability, testability, usability, reusability, availability, functionality,

maintainability, portability, security, and software cost assessment are performed in

this section;

c) Settings: This section contains the login and logout functions; and

d) Detailed results: This is where the detailed results of the quality assessment are

displayed.

The generated results are shown in Figure 4.8 and Figure 4.9.

104

Figure 4.8 Generated Results showing Scores of Attributes for a Domain Name

Figure 4.8 pictorially represents the results generated for a domain name by displaying the

scores against the software quality attribute’s name.

Figure 4.9 Results showing Score from Voting Model

105

According to Figure 4.9, the score generated from the voting model is displayed. The Figure

also displays all scores generated for the eleven-software quality attributes and allows the

user to perform a print function of the generated results.

Web-based Applications for Evaluation

The web applications being evaluated sum up to twenty-eight (28) and have been grouped

under six (6) categories: Educational web applications, Video editing web applications, E-

commerce software, Online form creation software, Company web applications, and

Document creation software. The web applications and their corresponding masked domain

names are shown in Table 4.18.

Table 4.18 List of Web Applications being evaluated

Name Domain Name

Educational Web Applications

Application 1 https://www. application1.edu.gh/

Application 2 https://www. application2.edu.ng/

Application 3 https://www. application3.edu.gh/

Application 4 https://www. application4.edu.gh/

Application 5 https://www.application5.edu.ng/

Video editing Web applications

Application 6 https://www.application6.com/

Application 7 https://www.application7.com/

Application 8 https://www.application8.com/

Application 9 https://www.application9.com/

Application 10 https://www.application10.com/

E-commerce Software

Application 11 https://www.application11.com.ng/

Application 12 https://www.application12.com/

Application 13 https://www.application13.com/

Application 14 https://www.application14.com/

Application 15 https://www.application15.com/

106

Table 4.18 List of Web Applications being evaluated (cont’d)

Name Domain Name

Online Form Creation Software

Application 16 https://www.application16.com/

Application 17 https://www.application17.com/

Application 18 https://www.application18.com/

Application 19 https://www.application19.com/

Application 20 https://www.application20.com/

Company Web applications

Application 21 https://www.application21.com

Application 22 http://www.application22.com/

Application 23 https://www.application23.com/

Application 24 http://www.application24.com/

Application 25 http://www.application25.com/

Document Creation Software

Application 26 https://application26.com/

Application 27 http://www.application27.com/

Application 28 https://www.application28.com/

4.4.2 Software Efficiency Test

The throughput and bandwidth for the web applications were evaluated and the overall

Efficiency was calculated. The python script for efficiency evaluation in the custom

application mirrors what users are expected to do, such as navigating through a web

application, searching for an item, registering for an account among others. Upon entering

the URL of a website into the application, the python script opens the website and performs

some activities to mimic a typical user on a website.

These activities were then automated and run for 500 users and the number of requests being

sent over time to the web server of the website under review was measured as the

throughput. The characters sent per second to the web server was also recorded as the

bandwidth.

The efficiency test performed is network dependent, hence, better results were recorded with

good network while poor network gave poor results. Therefore, the test was performed on

107

wireless (Wi-Fi) and cellular internet networks respectively and an average of the scores

was found and is shown in Table 4.19.

Table 4.19 Web Applications and Overall Efficiency

Application

Name

Throughput

(KiB/s)

Bandwidth

(KiB/s)

Efficiency

Score

Efficiency (%)

Educational Web Applications

Application 1 236.25 314.98 0.75 75

Application 2 178.56 278.63 0.64 64

Application 3 206.61 268.32 0.77 77

Application 4 165.59 217.88 0.76 76

Application 5 131.58 185.32 0.71 71

Video editing Web applications

Application 6 136.37 197.63 0.69 69

Application 7 172.61 243.11 0.71 71

Application 8 156.72 195.89 0.80 80

Application 9 154.46 217.54 0.71 71

Application 10 137.11 214.23 0.64 64

E-commerce Software

Application 11 224.17 339.65 0.66 66

Application 12 158.08 254.96 0.62 62

Application 13 177.642 236.856 0.75 75

Application 14 187.52 215.53 0.87 87

Application 15 161.67 218.47 0.74 74

Online Form Creation Software

Application 16 177.35 218.95 0.81 81

Application 17 162.93 214.37 0.76 76

Application 18 148.79 198.38 0.75 75

Application 19 140.95 195.76 0.72 72

Application 20 153.77 216.57 0.71 71

108

Table 4.19 Web Applications and Overall Efficiency (cont’d)

Application

Name

Throughput

(KiB/s)

Bandwidth

(KiB/s)

Efficiency

Score

Efficiency (%)

Company Web applications

Application 21 176.08 217.38 0.81 81

Application 22 149.63 204.96 0.73 73

Application 23 149.38 196.54 0.76 76

Application 24 188.05 213.69 0.88 88

Application 25 147.18 193.65 0.76 76

Document Creation Software

Application 26 138.15 206.18 0.67 67

Application 27 146.49 160.97 0.91 91

Application 28 95.65 156.79 0.61 61

Table 4.19 shows that the Efficiency for each of the web applications has been evaluated.

For the Educational web applications, Application 2 had an Efficiency score of 64% with

178.56KiB/s throughput and bandwidth of 278.63KiB/s. Application 1 had 75% as its

Efficiency score with 236.25KiB/s throughput and bandwidth of 314.98KiB/s. The

throughput score for Application 3 was 206.61KiB/s and bandwidth was 268.32KiB/s with

an Efficiency of 77%. Application 4 had an Efficiency score of 76% with a throughput of

165.59KiB/s and bandwidth of 217.88KiB/s. Finally, Application 4 had an Efficiency score

of 71% with a throughput of 131.58KiB/s and bandwidth of 185.32KiB/s. The application

with the highest efficiency score was Application 3 while Application 2 had the lowest

score. This shows that Application 3 can perform well and provide faster results while using

less computing resources than the other applications. The average efficiency score in the

category is 72.60%.

For the Video editing web applications, the Efficiency score of Application 6 was 0.69 with

a throughput of 136.37KiB/s, a bandwidth of 197.63KiB/s, and an Efficiency of 69%.

Application 7 had 71% as its Efficiency score, 172.61KiB/s as throughput, and bandwidth

of 243.11KiB/s. Application 8 also had 80% as its Efficiency score with 156.72KiB/s as

throughput and bandwidth of 195.89KiB/s. The throughput score for Application 9 was

154.46KiB/s and bandwidth was 217.54KiB/s. Finally, Application 10 had an Efficiency

109

score of 64% with a throughput of 137.11KiB/s and bandwidth of 214.63KiB/s. It can be

seen that Application 8 had the highest Efficiency score under the category while

Application 10 had the lowest score. The average efficiency score in the category is 71%.

For the E-commerce software, The Efficiency level of Application 11 was 0.66 with a

throughput of 224.17KiB/s, a bandwidth of 339.65KiB/s, and an Efficiency of 66%.

Application 12 had 62% as its Efficiency score, 158.08KiB/s as throughput, and bandwidth

of 254.96KiB/s. Application 13 also had 75% as its Efficiency score with 177.642KiB/s as

throughput and bandwidth of 236.85KiB/s. The throughput score for Application 14 was

187.52KiB/s and bandwidth was 215.53KiB/s with an Efficiency level of 0.87. Finally,

Application 15 had an Efficiency score of 74% with a throughput of 161.67KiB/s and

bandwidth of 218.47KiB/s. Application 14 had the highest efficiency score with 87% while

Application12 had the lowest score with 62%. The average Efficiency score is seen to be

72.80%.

The evaluated online form creation software had efficiency scores ranging between 70%

and 82% with an average Efficiency score of 75%. The throughput also ranged between

140KiB/s and 177KiB/s while bandwidth ranged between 195KiB/s and 219KiB/s.

Application 16 was seen to have a throughput of 177.35KiB/s and bandwidth of

218.95KiB/s and an efficiency score of 81%. Application 17 had a throughput of

162.93KiB/s and bandwidth of 214.37KiB/s and an efficiency score of 76%. Application 18

had a throughput of 148.79KiB/s and bandwidth of 198.38KiB/s and an efficiency score of

75%. Application 19 had a throughput of 140.95KiB/s and bandwidth of 195.76KiB/s and

an efficiency score of 72%. Finally, the efficiency score of Application 20 was 71% with

throughput and bandwidth of 153.77KiB/s and 216.57KiB/s respectively. Application 16

had the highest Efficiency score while Application 20 had the lowest score.

The company web applications had Efficiency levels ranging between 0.72 and 0.89. The

highest throughput value was 176.08 KiB/s while the lowest was 147.18KiB/s. The highest

bandwidth score was recorded as 217.38KiB/s and the lowest was 193.65KiB/s. Application

24 had the highest Efficiency score of 88% with throughput and bandwidth of 188.05KiB/s

and 213.69KiB/s respectively while Application 22 had the lowest Efficiency score of 73%

with throughput and bandwidth of 149.63KiB/s and 204.96KiB/s respectively. The average

Efficiency score was 78.80%.

110

The Document Creation Software also performed the test with Efficiency levels ranging

from 0.61 to 0.91. The highest efficiency score was recorded as 91% while the lowest was

61%. Application 27 was seen to have performed better among all the evaluated Document

Creation Software with an Efficiency score of 91%, throughput of 146.49KiB/s, and

bandwidth of 160.97KiB/s. Application 26 also had an Efficiency score of 67%, throughput

of 138.15KiB/s, and bandwidth of 206.18KiB/s. Finally, Application 28 had the lowest

Efficiency score of 61% with a throughput of 95.65KiB/s and bandwidth of 156.79KiB/s.

The average Efficiency score was seen to be 73%.

The web application category with the highest average Efficiency score was the Company

web application with 78.80% while the one with the lowest average Efficiency score was

the Video editing web applications with 71%.

4.4.3 Software Reliability Test

The applications were evaluated for reliability by conducting a stress test to assess the ability

of the website to cope well under stress. The stress test evaluates the error handling

capabilities of the website under extremely heavy conditions (accessed by a lot of users

concurrently) and ensures that the application does not crash under such instances.

The python script conducted the test by creating the test plan where the number of threads

(number of users), the ramp up period (time it takes a thread to begin execution) and the

loop count (how many times to repeat the test) were provided. Finally, an HTTP get request

was sent to the website under review.

The test was run for 500 concurrent users and the number of users that failed the test was

recorded as the failure rate. A failure rate of 0 shows that all the users could concurrently

access the web application without failure. A failure rate of 120 showed that 120 out of 500

users could not access the web application and the system experienced failure. The

reliability test done on each of the web applications is shown in Table 4.20.

111

Table 4.20 Reliability Test Evaluation

Application

Name

Testing Time, t (s) Failure

Rate (𝝀)

Score Reliability

Score (%)

Educational Web Applications

Application 1 120 0 1 100

Application 2 120 120 0 0

Application 3 120 130 0 0

Application 4 120 0 1 100

Application 5 120 0 1 100

Video editing Web applications

Application 6 120 0 1 100

Application 7 120 0 1 100

Application 8 120 0 1 100

Application 9 120 0 1 100

Application 10 120 0 1 100

E-commerce Software

Application 11 120 0 1 100

Application 12 120 70 0 0

Application 13 120 0 1 100

Application 14 120 0 1 100

Application 15 120 50 0 0

Online Form Creation Software

Application 16 120 0 1 100

Application 17 120 0 1 100

Application 18 120 80 0 0

Application 19 120 0 1 100

Application 20 120 0 1 100

112

Table 4.20 Reliability Test Evaluation (cont’d)

Application

Name

Testing Time, t (s) Failure

Rate (𝝀)

Score Reliability

Score (%)

Company Web applications

Application 21 120 0 1 100

Application 22 120 120 0 0

Application 23 120 130 0 0

Application 24 120 0 1 100

Application 25 120 0 1 100

Document Creation Software

Application 26 120 0 1 100

Application 27 120 0 1 100

Application 28 120 0 1 100

Table 4.20 shows that under the Educational web application category, Applications 1, 4,

and 5 performed well in the reliability test with no failure rate and had a Reliability score of

100% while Applications 2 and 3 failed the test with failure rates of 120 and 130

respectively. This shows that Applications 1, 4, and 5 can perform well within a specified

time frame without encountering errors. The average Reliability score was 60%.

All the applications under the Video editing category had a Reliability score of 100% with

no failure rate when tested for 120 seconds. The average Reliability score was 100%.

Under the e-commerce category, Applications 11, 13, and 14 had 100% as the Reliability

score with no failure rate while Applications 12 and 15 failed the test with 70 and 50 as the

failure rates, respectively. The average Reliability score was 60%.

Web applications under the online form creation software also performed well in the

reliability test. Applications 16, 17, 19, and 20 had 100% as the Reliability score with no

failure rate. Application 18 failed the test with 80 as the failure rate. Although applications

under the category are seen to be reliable, they had an average Reliability score of 80%.

Under the company web application category, three (3) applications are seen to have

performed well in the test while two (2) are seen to have performed poorly. Applications

113

21, 24, and 25 had 100% as the Reliability score with no failure rate while Applications 22

and 23 had 120 and 130 as the failure rates, respectively. The average Reliability score was

also 60%.

Lastly, applications under the Document Creation Software category had 100% as the

Reliability score and had no failure rate. The average Reliability score was 100% and the

applications can be said to have performed well within a specified time frame without

encountering errors.

The web application categories with the highest average Reliability score were the Video

and Photo applications and Document Creation Software with the score of 100% while the

ones with the lowest average scores were the Educational, E-commerce, and Company web

applications with the score of 60%.

4.4.4 Software Testability

The web applications were evaluated for testability and the result is shown in Table 4.21.

The python script conducted the test by simulating 500 concurrent users on each of the web

applications. The value for the constraints used was from the software throughput values

performed in the Efficiency test.

114

Table 4.21 Web Applications and Testability Test Rank

Application

Name

Constraints

(x)

Testing

Time, t (sec)

Failure

(𝝀)
𝜺𝒓 (%)

Success

Score

Success

Rate (%)

Educational Web Applications

Application 1 236.25 120 0 1 1 100

Application 2 178.56 120 0 1 1 100

Application 3 206.61 120 0 1 1 100

Application 4 165.59 120 20 1 0 0

Application 5 131.58 120 80 1 0 0

Video editing Web applications

Application 6 136.37 120 0 1 1 100

Application 7 172.61 120 0 1 1 100

Application 8 156.72 120 0 1 1 100

Application 9 154.46 120 0 1 1 100

Application 10 137.11 120 0 1 1 100

E-commerce Software

Application 11 224.17 120 0 1 1 100

Application 12 158.08 120 70 1 0 0

Application 13 177.642 120 0 1 1 100

Application 14 187.52 120 0 1 1 100

Application 15 161.67 120 50 1 0 0

115

Table 4.21 Web Applications and Testability Test Rank (cont’d)

Application

Name

Constraints

(x)

Testing

Time, t (sec)

Failure

(𝝀)
𝜺𝒓 (%)

Success

Score

Success

Rate (%)

Online Form Creation Software

Application 16 177.35 120 0 1 1 100

Application 17 162.93 120 0 1 1 100

Application 18 148.79 120 80 1 0 0

Application 19 140.95 120 0 1 1 100

Application 20 153.77 120 0 1 1 100

Company Web applications

Application 21 176.08 120 0 1 1 100

Application 22 149.63 120 120 1 0 0

Application 23 149.38 120 130 1 0 0

Application 24 188.05 120 0 1 1 100

Application 25 147.18 120 0 1 1 100

Document Creation Software

Application 26 138.15 120 0 1 1 100

Application 27 146.49 120 0 1 1 100

Application 28 95.65 120 0 1 1 100

On conducting a Testability test for the Educational web applications, it was noted that

Applications 4 and 5 failed the test with 20 and 80 as the failure rate, respectively, while

Applications 1, 2, and 3 passed the test with no failure rate when tested for 120 seconds.

The average Testability score was seen to be 60%.

The Video editing software performed well in the Testability test with a success rate of

100% with no failure. The average Testability score was 100% and the correctness of the

software can be said to have been verified.

116

The e-commerce software also had an average Testability score of 60% with three (3)

Applications passing the test and the remaining two (2) failing the test. Applications 11, 13,

and 14 had Testability scores of 100% with no failure rate while Applications 12 and 15

failed the test with 70 and 50 failure rates, respectively.

The Online form creation software had an average score of 80% with four (4) Applications

passing the test and one (1) failing the test. Applications 16, 17, 19, and 20 had 100% as the

Testability score while Application 18 had a failure rate of 80, hence, failed the test.

The Company web application category had an average Testability score of 60%.

Applications 21, 24, and 25 had 100% as the Testability score with no encountered failure

while Applications 22 and 23 had 0% as the Testability score with failure rates of 120 and

130, respectively.

Finally, the Document Creation Software performed well in the test with an average

Testability score of 100% with no encountered failure rate. The correctness of the software

can be said to have been verified with no encountered error.

In conclusion, the web application categories with the highest average Testability score were

the Video and Photo applications and Document Creation Software with the score of 100%

while the ones with the lowest average scores were the Educational, E-commerce, and

Company web applications with the score of 60%.

4.4.5 Software Usability Test

The usability test adopted in this study was assessing the external usability factors. This was

selected based on evaluating user experience on the web applications. To evaluate the

Usability of the applications, a questionnaire was administered to individuals in both Nigeria

and Ghana via their email. To get the highest the response rate, the people were guaranteed

that their responses and identities would be treated with the highest confidentiality since the

research was being conducted for academic purposes. Therefore, 100 correspondents were

identified and issued the survey questionnaire and the rate of response rate was 65%. To

evaluate the consistency of the survey scores, reliability of the score was calculated using

Cronbach’s Alpha model in IBM SPSS Statistics 26.0 software.

A summary showing the number of users who were administered the survey is shown in

Table 4.22 while Table 4.23 shows the reliability statistics of the scores from the survey.

117

Table 4.22 Case Processing Summary for Survey

Survey Processing Survey Number %

Cases Valid 64 98.5

Excludeda 1 1.5

Total 65 100.0

Excludeda is the listwise deletion based on all variables in the procedure.

Table 4.22 shows the entire respondents and the percentage score. The Cronbach’s Alpha

model gave a listwise deletion value is 1, indicating that, there was one redundant value.

This was excluded from the model during the evaluation process. The percentage of valid

values that were used for the evaluation was 98.5% while the excluded values were 1.5%.

The scores from the survey were evaluated to assess the reliability of the scores from the

questionnaire using equation (4.6).

 α = 𝑁𝑐̅/(�̅� + (𝑁 − 1) ∗ 𝑐̅) (4.6)

where, α = Cronbach’s Alpha;

 N = Number of objects being considered;

 𝑐̅ = Covariance between the considered objects; and

 �̅� = average variance.

Survey scores for applications that had Cronbach Alpha values less than 0.80 were said to

be unreliable and sent for re-evaluation while values greater than 0.80 were accepted and

tested for usability.

118

Table 4.23 Reliability Statistics of Survey Score

Application Name Cronbach’s Alpha

Educational Web Applications

Application 1 0.964

Application 2 0.890

Application 3 0.902

Application 4 0.974

Application 5 0.864

Video editing Web applications

Application 6 0.819

Application 7 0.829

Application 8 0.956

Application 9 0.921

Application 10 0.851

E-commerce Software

Application 11 0.983

Application 12 0.852

Application 13 0.820

Application 14 0.910

Application 15 0.905

Online Form Creation Software

Application 16 0.927

Application 17 0.935

Application 18 0.951

Application 19 0.924

Application 20 0.929

119

Table 4.23 Reliability Statistics of Survey Score

Application Name Cronbach’s Alpha

Company Web applications

Application 21 0.915

Application 22 0.821

Application 23 0.847

Application 24 0.913

Application 25 0.879

Document Creation Software

Application 26 0.957

Application 27 0.929

Application 28 0.954

Number of Items = 28

Table 4.23 shows that from the survey for Educational web applications, Application 1 had

Cronbach Alpha’s value of 0.964, Application 2 had a Cronbach alpha value of 0.890,

Application 3 had 0.902, Application 4 had 0.974 and Application 5 had 0.864. The

reliability survey of the applications is seen to be within the Reliable and Very Reliable

categories.

With the Video editing software, Application 6 had 0.819 as the Cronbach Alpha value,

Application 7 had 0.829, Application 8 had 0.956, Application 9 had 0.921 while

Application 10 also had 0.851 as Cronbach Alpha value. The values are also seen to be

within the Reliable and Very Reliable categories.

The survey for E-commerce software recorded a Cronbach Alpha value of 0.983 for

Application 11, 0.852 for Application 12, 0.820 for Application 13, 0.910 for Application

14, and 0.905 for Application 15. These values are also seen to be within the Reliable and

Very Reliable categories.

For the Online form creation software, Application 16 had 0.927 as the Cronbach Alpha

value, Application 17 had 0.935, Application 18 had 0.951, Application 19 had 0.924 while

Application 20 also had 0.929. The values are all seen to be Very Reliable.

120

The Cronbach Alpha values for the Company web applications were seen to be within the

Reliable and Very Reliable categories. Application 21 had Cronbach Alpha value of 0.915,

Application 22 had 0.821, Application 23 had 0.847, Application 24 had 0.913 and

Application 25 had 0.879.

Finally, the Cronbach Alpha values of the Document Creation Software were seen to be

Very Reliable. Application 26 had the value of 0.957, Application 27 had 0.929 while

Application 28 had 0.954.

Usability assessment was carried out on each of the web applications by using the scores

obtained from the questionnaire. The total score was multiplied with the provided scale in

order to get the total score.

Usability Evaluation of Application 1: The score of Application 1 was calculated by

evaluating the survey statistics to get the total score as shown in Table 4.24.

Table 4.24 Survey Statistics for Application 1

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 15 34 9 2 5

Easy Information search 20 28 11 0 6

Clearer Information

organisation
17 30 11 1 6

Pleasant Interface 14 28 11 3 9

Usefulness of presented Images 15 34 9 1 6

Right Presentation of content 14 28 14 0 9

Appropriate Size of web

controls
15 24 18 2 6

Less Load time 18 22 10 7 8

Meet Expected Functions 14 21 22 2 6

Overall Satisfaction 14 27 14 2 8

Sum 156 276 129 20 69

Total Score
156×5 =

780

276×4

= 1104

129×3 =

387

20×2 =

40

69×1 =

69

Sum of Total Score = 2380

121

Table 4.24 shows that 156 scores was attained by Strongly Agree, Agree had 276 scores,

Undecided had 129 scores, Disagree had 20 scores while Strongly Disagree had 95 scores.

Usability = Total Score/Maximum Score × 100

Maximum Score = Number of Respondents × Number of Survey × 5

 = 65 × 10 × 5

 = 3250

Usability = 2380/3250 × 100

 =73.2

The percentage value of Application 1 lies in the Good class of the SUS score since it had a

usa. This shows that there was an easy usage of the web application.

Usability Evaluation for Application 2: The score of Application 2 was calculated by

evaluating the survey statistics to get the total score as shown in Table 4.25.

Table 4.25 Survey Statistics for Application 2

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 22 30 11 2 0

Easy Information search 17 30 11 5 2

Clearer Information

organisation
16 33 9 7 0

Pleasant Interface 15 21 18 6 5

Usefulness of presented

Images
17 32 10 5 1

Right Presentation of content 17 34 11 2 1

Appropriate Size of web

controls
16 26 18 4 0

Less Load time 15 24 17 7 2

Meet Expected Functions 12 21 19 8 5

Overall Satisfaction 14 20 14 6 1

Sum 161 271 138 52 17

Total Score 161×5 =

805

271×4 =

1084

138×3 =

414

52×2 =

104

17×1 =

17

Sum of Total Score = 2424

122

Results from Table 4.25 indicate that, Strongly Agree had 161of the score, Agree had 271

of the score, Undecided had 138 of the score, while Disagree and Strongly Disagree had 52

and 17 respectively.

Usability = Total Score/Maximum Score × 100

Maximum Score = Number of Respondents × Number of Surveys × 5

 = 65 × 10 × 5

 =3250

Usability= 2424/3250 × 100

 = 74.6

The percentage value of Application 2 based on the survey scores was 74.6%. This figure

lies in the Good category of the SUS scale. It can be concluded that the web application can

be easily navigated and learned by users.

Usability Evaluation for Application 3: The score of Application 3 was calculated by

evaluating the survey statistics to get the total score as shown in Table 4.26.

Table 4.26 Survey Statistics for Application 3

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 25 26 5 0 9

Easy Information search 24 26 6 1 8

Clearer Information organisation 19 32 6 0 8

Pleasant Interface 18 29 9 1 8

Usefulness of presented Images 17 26 10 2 10

Right Presentation of content 18 30 9 0 8

Appropriate Size of web controls 16 25 13 2 9

Less Load time 13 22 12 8 10

Meet Expected Functions 14 20 21 1 9

Overall Satisfaction 20 28 6 2 9

Sum 184 264 97 17 88

Total Score
184×5 =

920

264×4

= 1056
97×3 = 291

17×2 =

34
88×1 = 88

Sum of Total Score = 2389

123

Results from the Table 4.26 show that, Strongly Agree had the value of 184 out of the overall

score, Agree had the value of 264 out of the overall score, Undecided had the value of 97

out of the overall score while Disagree and Strongly Disagree had the values of 17 and 88

out of the overall score.

Usability = 2389/3250 × 100

 =73.5

The percentage value of Application 3 was 73.5%. The results show that the application is

in the Good category of the SUS scale.

Usability Evaluation for Application 4: Usability assessment of Application 4 was

performed and the result is shown in Table 4.27.

Table 4.27 Survey Statistics for Application 4

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 29 25 1 0 10

Easy Information search 30 23 3 0 9

Clearer Information

organisation
29 22 4 0 10

Pleasant Interface 26 23 6 1 9

Usefulness of presented Images 22 27 5 2 9

Right Presentation of content 21 24 9 0 11

Appropriate Size of web

controls
22 25 9 0 9

Less Load time 24 22 5 4 10

Meet Expected Functions 23 18 15 0 9

Overall Satisfaction 30 23 2 1 9

Sum 256 232 59 8 95

Total Score 256×5 =

1280

232×4

= 928
59×3 = 177 8×2 = 16

95×1 =

95

Sum of Total Score = 2496

124

Based on Table 4.27, it can be said that the scores for Strongly Agree are 256, scores for

Agree are 232, scores for Undecided are 59, scores for Disagree are 8, and scores for

Strongly Disagree are 95.

Usability=2496/3250 × 100

 =76.8

The results indicate that the percentage value of Application 4 is 76.8%. It can be concluded

based on the analysis that the application was pleasant and met the user’s satisfaction.

Usability Evaluation for Application 5: Usability assessment of Application 5 was

performed and the result is shown in Table 4.28.

Table 4.28 Survey Statistics for Application 5

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 23 29 11 2 0

Easy Information search 17 29 12 5 2

Clearer Information

organisation
15 33 9 8 0

Pleasant Interface 14 22 19 5 5

Usefulness of presented

Images
16 32 10 6 1

Right Presentation of content 17 34 11 2 1

Appropriate Size of web

controls
15 26 18 6 0

Less Load time 14 24 17 8 2

Meet Expected Functions 12 22 22 8 1

Overall Satisfaction 14 29 15 6 1

Sum 157 280 144 56 13

Total Score 157×5 =

785

280×4

= 1120

144×3 =

432

56×2 =

112

13×1 =

13

Sum of Total Score = 2462

125

Table 4.28 shows that, Strongly Agree had 157, Agree had 280, Undecided, Disagree and

Strongly Disagree had 144, 56 and 13 respectively.

Usability=2462/3250 × 100

 =75.75

The percentage value of Application 5 according on the survey score was 75.75%. This

figure, which falls in the Good category of the SUS score, shows that the web application is

learnable.

Usability Evaluation for Application 6: Usability assessment of Application 6 was

performed and the result is shown in Table 4.29.

Table 4.29 Survey Statistics for Application 6

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 25 12 15 1 12

Easy Information search 29 15 14 5 2

Clearer Information

organisation
27 22 6 10 0

Pleasant Interface 29 5 21 4 6

Usefulness of presented

Images
21 18 17 7 2

Right Presentation of content 32 18 15 0 0

Appropriate Size of web

controls
15 25 19 5 1

Less Load time 14 18 17 16 0

Meet Expected Functions 12 21 18 5 9

Overall Satisfaction 27 25 7 3 3

Sum 231 179 149 56 35

Total Score 231×5 =

1155

179×4

= 716

149×3 =

447

56×2 =

112

35×1 =

35

Sum of Total Score = 2465

126

Table 4.29 displays the scores for Strongly Agree, Agree, Undecided, Disagree, and

Strongly Disagree.

Usability=2465/3250 × 100

 =75.84

The percentage value of Application 6 according to the survey was 75.84%. This value lies

in the Good category of the SUS score. This shows that the website can be easily accessed

by users.

Usability Evaluation for Application 7: Usability assessment of Application 7 was

performed and the result is shown in Table 4.30.

Table 4.30 Survey Statistics for Application 7

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 20 15 12 13 5

Easy Information search 12 7 19 15 12

Clearer Information

organisation
24 19 14 6 2

Pleasant Interface 30 12 19 0 4

Usefulness of presented

Images
25 10 15 10 5

Right Presentation of content 27 12 14 12 0

Appropriate Size of web

controls
15 13 17 9 11

Less Load time 18 16 15 0 16

Meet Expected Functions 12 25 16 6 6

Overall Satisfaction 23 22 17 0 3

Sum 206 151 158 71 64

Total Score 206×5 =

1030

151×4

= 604

158×3 =

474

71×2 =

142

64×1 =

64

Sum of Total Score = 2314

127

According to Table 4.30, Strongly Agree had the score of 206, Agree had the score of 151,

Undecided had the score of 158, Disagree had the score of 71, and Strongly Disagree had

the score of 64.

Usability=2314/3250 × 100

 =71.20

The percentage value of Application 7 is 71.20%. This falls in the Good category of the

SUS score.

Usability Evaluation for Application 8: Usability assessment of Application 8 was

performed and the result is shown in Table 4.31.

Table 4.31 Survey Statistics for Application 8

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 25 14 12 14 0

Easy Information search 16 9 15 13 12

Clearer Information

organisation
29 17 13 5 1

Pleasant Interface 26 15 18 2 4

Usefulness of presented

Images
21 14 17 8 5

Right Presentation of content 23 18 13 9 2

Appropriate Size of web

controls
32 16 17 0 0

Less Load time 29 16 16 0 4

Meet Expected Functions 25 22 12 0 6

Overall Satisfaction 20 22 17 3 3

Sum 246 163 150 54 37

Total Score 246×5 =

1230

163×4

= 652

150×3 =

450

54×2 =

108

37×1 =

37

Sum of Total Score = 2477

128

Table 4.31 shows that Strongly Agree had the score of 246, Agree had the score of 163,

Undecided had the score of 150, Disagree had the score of 54, and Strongly Disagree had

the score of 37.

Usability=2477/3250 × 100

 =76.21

The percentage value of Application 8 was evaluated as 76.21%. This value is in the Good

category of the SUS scale.

Usability Evaluation for Application 9: Usability assessment of Application 9 was

performed and the result is shown in Table 4.32.

Table 4.32 Survey Statistics for Application 9

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 29 16 15 5 0

Easy Information search 25 17 13 5 5

Clearer Information

organisation
29 14 12 9 1

Pleasant Interface 28 12 14 9 2

Usefulness of presented

Images
23 18 19 5 0

Right Presentation of content 12 29 16 8 0

Appropriate Size of web

controls
19 19 16 6 5

Less Load time 35 19 2 5 4

Meet Expected Functions 28 12 16 0 9

Overall Satisfaction 22 20 3 17 3

Sum 250 176 126 69 29

Total Score 250×5 =

1250

176×4

= 704

126×3 =

378

69×2 =

138

29×1 =

29

Sum of Total Score = 2499

129

According to Table 4.32, it can be said that the scores for Strongly Agree are 250, scores

for Agree are 176, scores for Undecided are 126, scores for Disagree are 69, and scores for

Strongly Disagree are 29.

Usability=2499/3250 × 100

 =76.89

The percentage value of Application 9 was evaluated as 76.89%. This value shows that the

website can be easily learned and accessed by users.

Usability Evaluation for Application 10: Usability assessment of Application 10 was

performed and the result is shown in Table 4.33.

Table 4.33 Survey Statistics for Application 10

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 24 19 14 7 1

Easy Information search 29 15 12 8 1

Clearer Information

organisation
26 19 10 9 1

Pleasant Interface 26 12 16 9 2

Usefulness of presented

Images
29 16 17 3 0

Right Presentation of content 14 25 19 2 5

Appropriate Size of web

controls
26 12 19 3 5

Less Load time 29 21 6 9 0

Meet Expected Functions 28 12 14 4 7

Overall Satisfaction 26 18 3 12 6

Sum 257 169 130 66 28

Total Score 257×5 =

1285

169×4

= 676

130×3 =

390

66×2 =

132

28×1 =

28

Sum of Total Score = 2511

130

Table 4.33 shows that the value for Strongly Agree was 257, value for Agree was 169, value

for Undecided was 130, value for Disagree was 66, and value for Strongly Disagree was 28.

Usability=2511/3250 × 100

 =77.26

The percentage value of Application10 was 77.26%. This falls in the Good category of the

SUS score. The attained result shows that the application could be easily navigated and had

a clearer organisation of information.

Usability Evaluation for Application 11: Usability assessment of Application 11 was

performed and the result is shown in Table 4.34.

Table 4.34 Survey Statistics for Application 11

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 20 18 9 15 3

Easy Information search 15 24 12 5 9

Clearer Information

organisation
15 23 9 6 12

Pleasant Interface 18 27 10 3 7

Usefulness of presented

Images
16 25 10 6 8

Right Presentation of content 13 30 15 7 0

Appropriate Size of web

controls
15 15 18 12 5

Less Load time 14 22 15 5 9

Meet Expected Functions 19 18 15 0 13

Overall Satisfaction 17 19 15 6 8

Sum 162 221 128 65 74

Total Score 162×5 =

810

221×4

= 884

128×3 =

384

65×2 =

130

74×1 =

74

Sum of Total Score = 2282

131

According to Table 4.34, Strongly Agree had 162, Agree had 221, Undecided had 128,

Disagree had 65, and Strongly Disagree had 74.

Usability=2282/3250 × 100

 =70.21

The percentage value of Application 11 was evaluated as 70.21%. This figure lies in the

Good category of the SUS score.

Usability Evaluation for Application 12: Usability assessment of Application 12 was

performed and the result is shown in Table 4.35.

Table 4.35 Survey Statistics for Application 12

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 18 20 0 15 12

Easy Information search 10 24 16 8 7

Clearer Information

organisation
12 21 12 8 12

Pleasant Interface 18 27 10 3 7

Usefulness of presented

Images
13 22 8 10 12

Right Presentation of content 19 27 12 0 7

Appropriate Size of web

controls
12 14 0 19 20

Less Load time 17 21 12 7 8

Meet Expected Functions 15 20 12 0 18

Overall Satisfaction 18 14 12 8 13

Sum 152 210 94 78 116

Total Score 152×5 =

760

210×4

= 840 94×3 = 282

78×2 =

156

116×1 =

116

Sum of Total Score = 2154

Table 4.35 shows that the value for Strongly Agree is 152, value for Agree is 210, value for

Undecided is 94, value for Disagree is 78, and value for Strongly Disagree is 116.

132

Usability=2154/3250 × 100

 = 66.27

The percentage value of Application 12 was further evaluated as 66.27%. This value lies in

the Poor category of the SUS score. It can be concluded that Application was difficult to

navigate due to a number of non-working functions.

Usability Evaluation for Application 13: The Usability evaluation for Application 13 was

done and results were shown in Table 4.36.

Table 4.36 Survey Statistics for Application 13

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 13 14 0 18 20

Easy Information search 15 27 18 0 5

Clearer Information

organisation
22 25 0 5 13

Pleasant Interface 12 10 24 19 0

Usefulness of presented

Images
13 22 8 10 12

Right Presentation of content 28 15 1 20 1

Appropriate Size of web

controls
8 25 5 12 15

Less Load time 19 15 12 12 7

Meet Expected Functions 13 18 12 6 16

Overall Satisfaction 12 16 13 9 15

Sum 155 187 93 111 114

Total Score 155×5 =

775

187×4

= 748 93×3 = 279

111×2 =

222

114×1 =

114

Sum of Total Score = 2128

Table 4.36 shows the scores attained by Strongly Agree, Agree, Undecided, Disagree and

Strongly Disagree. Strongly Agree had 155 out of the survey, Agree had 187 out of the

survey, Undecided had 93, Disagree Strongly had 111while Disagree had 114.

133

Usability=2128/3250 × 100

 = 65.47

The percentage value of Application 13 according to the values from the evaluation was

65.47%. This falls in the Poor category of the SUS score.

Usability Evaluation for Application 14: Usability evaluation for Application 14 was done

and results were shown in Table 4.37.

Table 4.37 Survey Statistics for Application 14

Question Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 19 16 11 18 1

Easy Information search 25 22 16 2 0

Clearer Information

organisation
27 21 10 5 2

Pleasant Interface 19 24 14 7 1

Usefulness of presented

Images
23 22 8 10 2

Right Presentation of content 28 18 9 8 2

Appropriate Size of web

controls
18 15 9 18 5

Less Load time 18 12 18 10 7

Meet Expected Functions 15 19 17 6 8

Overall Satisfaction 28 19 0 3 15

Sum 220 188 112 87 43

Total Score 220×5 =

1100

188×4

= 752

112×3 =

336

87×2 =

174

43×1 =

43

Sum of Total Score = 2405

According to Table 4.37, Strongly Agree had 220 out of the scores, Agree had 188 out of

the scores, Undecided had 112 out of the scores, Disagree had 87 out of the scores, and

Strongly Disagree had 43 out of the scores.

Usability=2405/3250 × 100

 =74.0

134

The percentage value of Application 14 was evaluated as 74.0%. This falls in the Good

category of the SUS score. This shows that the website had a lesser load time.

Usability Evaluation for Application 15: Usability assessment for Application 15 was done

and results were shown in Table 4.38.

Table 4.38 Survey Statistics for Application 15

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 18 15 12 0 20

Easy Information search 24 21 20 0 0

Clearer Information

organisation
29 23 5 5 3

Pleasant Interface 25 21 12 6 1

Usefulness of presented

Images
29 16 10 8 2

Right Presentation of content 28 15 8 10 4

Appropriate Size of web

controls
28 20 11 3 3

Less Load time 19 16 14 11 5

Meet Expected Functions 12 25 15 6 7

Overall Satisfaction 28 25 7 6 2

Sum 240 197 114 55 47

Total Score 240×5 =

1200

197×4

= 788

114×3 =

342

55×2 =

110

47×1 =

47

Sum of Total Score = 2487

According to Table 4.38, Strongly Agree had 240, Agree had 197, Undecided had 114,

Disagree had 55, while Strongly Disagree had 47.

Usability=2487/3250 × 100

 =76.52

135

The percentage value of Application 15 was evaluated as 76.52%. This falls in the Good

category of the SUS score. This shows that the website can be easily used since it had a

pleasant interface with useful images.

Usability Evaluation for Application 16: Usability assessment for Application 16 was done

and results were shown in Table 4.39.

Table 4.39 Survey Statistics for Application 16

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 30 17 12 5 1

Easy Information search 29 16 12 7 1

Clearer Information

organisation
28 18 13 5 1

Pleasant Interface 22 15 16 10 2

Usefulness of presented

Images
28 16 19 2 0

Right Presentation of content 25 14 2 19 5

Appropriate Size of web

controls
28 14 15 5 3

Less Load time 27 23 9 6 0

Meet Expected Functions 27 15 12 5 6

Overall Satisfaction 26 18 12 6 3

Sum 270 166 122 70 22

Total Score 270×5 =

1350

166×4

= 664

122×3 =

366

70×2 =

140

22×1 =

22

Sum of Total Score = 2542

According to Table 4.39, Strongly Agree is seen to have scores of 270, Agree is seen to have

scores of 166, Undecided is seen to have scores of 122, Disagree is seen to have scores of

70, while Strongly Disagree is also seen to have scores of 22.

Usability=2542/3250 × 100

 =78.21

136

The percentage value of Application 16 was calculated as 78.21%. This falls in the Good

category of the SUS score. This shows that the website the users expected functions.

Usability Evaluation for Application 17: Usability assessment for Application 17 was done

and results were shown in Table 4.40.

Table 4.40 Survey Statistics for Application 17

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 25 15 12 1 12

Easy Information search 31 19 12 3 0

Clearer Information

organisation
26 22 7 10 0

Pleasant Interface 25 15 15 4 6

Usefulness of presented

Images
21 17 18 7 2

Right Presentation of content 32 15 15 3 0

Appropriate Size of web

controls
30 15 14 5 1

Less Load time 20 10 18 17 0

Meet Expected Functions 16 15 18 8 8

Overall Satisfaction 28 22 3 7 5

Sum 254 165 132 65 34

Total Score 254×5 =

1270

165×4

= 660

132×3 =

396

65×2 =

130

34×1 =

34

Sum of Total Score = 2490

According to Table 4.40, it is seen that Strongly Agree had 254, Agree had 165, Undecided

had 132, Disagree had 65, and Strongly Disagree had 34.

Usability=2490/3250 × 100

 =76.61

137

The percentage value of Application 17 according to survey score was 76.61%. This falls in

the Good category of the SUS score. This shows that the website had a pleasant user

interface.

Usability Evaluation for Application 18: Usability assessment for Application 18 was done

and results were shown in Table 4.41.

Table 4.41 Survey Statistics for Application 18

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 29 10 12 5 9

Easy Information search 36 15 10 3 1

Clearer Information

organisation
29 17 13 6 0

Pleasant Interface 24 16 15 4 6

Usefulness of presented

Images
24 19 13 7 2

Right Presentation of content 29 18 17 1 0

Appropriate Size of web

controls
26 16 13 9 1

Less Load time 23 8 17 16 1

Meet Expected Functions 21 12 18 14 0

Overall Satisfaction 25 23 8 5 4

Sum 266 154 136 70 24

Total Score 266×5 =

1330

154×4

= 616

136×3 =

408

70×2 =

140

24×1 =

24

Sum of Total Score = 2518

Table 4.41 shows that, Strongly Agree had 266, Agree had 154, Undecided had 136,

Disagree had 70, and Strongly Disagree also had 24.

Usability=2518/3250 × 100

 =77.47

138

The percentage value of Application 18 according to the survey scores was 77.47%. This

falls in the Good category of the SUS score. This shows that the application met the expected

functions of users.

Usability Evaluation for Application 19: Usability assessment for Application 19 was done

and results were shown in Table 4.42.

Table 4.42 Survey Statistics for Application 19

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 23 13 15 9 5

Easy Information search 26 19 16 3 1

Clearer Information

organisation
27 16 19 1 2

Pleasant Interface 27 19 17 0 2

Usefulness of presented

Images
22 16 19 2 6

Right Presentation of content 24 19 13 8 1

Appropriate Size of web

controls
26 20 12 0 7

Less Load time 29 7 14 14 1

Meet Expected Functions 18 6 16 19 6

Overall Satisfaction 27 23 12 1 2

Sum 249 158 153 57 33

Total Score 249×5 =

1245

158×4

= 632

153×3 =

459

57×2 =

114

33×1 =

33

Sum of Total Score = 2483

Table 4.42 shows that, Strongly Agree had 249 out of the total scores, Agree had 158 out of

the total scores, Undecided had 153 out of the total scores, Disagree had 57 out of the total

scores, and Strongly Disagree had 33 out of the total scores.

Usability=2483/3250 × 100

 =76.40

139

The percentage value of Application 19 was evaluated as 76.40%. This falls in the Good

category of the SUS score. This shows that content on the website were rightly presented

and in an orderly manner.

Usability Evaluation for Application 20: Usability assessment for Application 20 was done

and results were shown in Table 4.43.

Table 4.43 Survey Statistics for Application 20

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 29 12 13 7 4

Easy Information search 23 15 19 3 5

Clearer Information

organisation
27 16 19 1 2

Pleasant Interface 25 12 19 6 3

Usefulness of presented

Images
22 19 16 6 2

Right Presentation of content 24 19 8 13 1

Appropriate Size of web

controls
18 3 20 15 9

Less Load time 21 7 26 1 10

Meet Expected Functions 28 2 18 15 2

Overall Satisfaction 23 29 12 1 0

Sum 240 134 170 68 38

Total Score 240×5 =

1200

134×4

= 536

170×3 =

510

68×2 =

136

38×1 =

38

Sum of Total Score = 2420

According to Table 4.43, Strongly Agree had 240, Agree had 134, Undecided had 170,

Disagree had 68, and Strongly Disagree had 38.

Usability=2420/3250 × 100

 =74.46

140

The percentage value of Application 20 according to the scores survey was evaluated as

74.46%. This falls in the Good category of the SUS score. This shows that there was an

overall satisfaction of the website usage by the users.

Usability Evaluation for Application 21: Usability assessment for Application 21 was done

and results were shown in Table 4.44.

Table 4.44 Survey Statistics for Application 21

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 29 15 18 1 2

Easy Information search 15 13 25 5 7

Clearer Information

organisation
25 16 14 1 9

Pleasant Interface 18 19 17 6 5

Usefulness of presented

Images
26 12 19 2 6

Right Presentation of content 27 16 13 8 1

Appropriate Size of web

controls
22 12 13 10 8

Less Load time 15 19 13 16 2

Meet Expected Functions 27 5 16 16 1

Overall Satisfaction 25 26 12 0 2

Sum 229 153 160 65 43

Total Score 229×5 =

1145

153×4

= 612

160×3 =

480

65×2 =

130

43×1 =

43

Sum of Total Score = 2410

Table 4.44 shows that, Strongly Agree had 229 out of the survey scores, Agree had 153 out

of the survey scores, Undecided had 160 out of the survey scores, Disagree had 65 out of

the survey scores, and Strongly Disagree had 43 out of the survey scores.

Usability=2410/3250 × 100

 =74.15

141

The percentage value of Application 21 was evaluated as 74.15%. This falls in the Good

category of the SUS score.

Usability Evaluation for Application 22: Usability assessment for Application 22 was done

and results were shown in Table 4.45.

Table 4.45 Survey Statistics for Application 22

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 31 12 15 6 1

Easy Information search 17 15 22 8 3

Clearer Information

organisation
23 18 12 6 6

Pleasant Interface 25 13 16 8 3

Usefulness of presented

Images
26 12 19 2 6

Right Presentation of content 27 19 11 5 3

Appropriate Size of web

controls
25 16 8 7 9

Less Load time 28 12 17 6 2

Meet Expected Functions 27 15 13 9 1

Overall Satisfaction 28 25 8 1 3

Sum 257 157 141 58 37

Total Score 257×5 =

1285

157×4

= 628

141×3 =

423

58×2 =

116

37×1 =

37

Sum of Total Score = 2489

Table 4.45 indicates that, Strongly Agree had 257, Agree had 157, Undecided had 141,

Disagree had 58, and scores for Strongly Disagree are 37.

Usability=2489/3250 × 100

 =76.58

The percentage value of Application 22 according to the scores was seen to be 76.58%.

142

Usability Evaluation for Application 23: Usability assessment for Application 23 was done

and results were shown in Table 4.46.

Table 4.46 Survey Statistics for Application 23

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 35 15 9 5 1

Easy Information search 20 15 20 7 3

Clearer Information

organisation
25 16 6 12 6

Pleasant Interface 28 16 13 5 3

Usefulness of presented

Images
26 19 12 6 2

Right Presentation of content 19 25 14 4 3

Appropriate Size of web

controls
23 14 12 9 7

Less Load time 25 17 15 5 3

Meet Expected Functions 24 18 16 2 5

Overall Satisfaction 31 26 5 1 2

Sum 256 181 122 56 35

Total Score 256×5 =

1280

181×4

= 724

122×3 =

366

56×2 =

112

35×1 =

35

Sum of Total Score = 2517

Table 4.46 displays that, Strongly Agree had 256, Agree had 181, Undecided had 122,

Disagree had 56, and Strongly Disagree had 35.

Usability=2517/3250 × 100

 =77.44

The percentage value of Application 23 according to the survey scores was evaluated as

77.44%. This falls in the Good category of the SUS score. This shows that there was an

appropriate size of web controls on the web application.

143

Usability Evaluation for Application 24: Usability assessment for Application 24 was done

and results were shown in Table 4.47.

Table 4.47 Survey Statistics for Application 24

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 32 18 5 8 2

Easy Information search 22 14 19 10 0

Clearer Information

organisation
27 14 8 9 7

Pleasant Interface 30 12 8 10 5

Usefulness of presented

Images
31 17 14 0 3

Right Presentation of content 21 19 16 9 0

Appropriate Size of web

controls
29 16 16 0 4

Less Load time 16 25 16 3 5

Meet Expected Functions 23 20 15 4 3

Overall Satisfaction 29 14 5 15 2

Sum 260 169 122 68 31

Total Score 260×5 =

1300

169×4

= 676

122×3 =

366

68×2 =

136

31×1 =

31

Sum of Total Score = 2509

Table 4.47 shows that, Strongly Agree had 260, Agree had 169, Undecided had 122,

Disagree had 68, and Strongly Disagree also had 31.

Usability=2509/3250 × 100

 =77.20

The percentage value of Application 24 according to the survey scores was evaluated as

77.20%. This lies in the Good category of the SUS scale.

144

Usability Evaluation for Application 25: Usability assessment for Application 25 was done

and results were shown in Table 4.48.

Table 4.48 Survey Statistics for Application 25

Questions
Strongly

Agree
Agree Undecided Disagree

Strongly

Disagree

Easy Navigation 23 30 2 6 4

Easy Information search 24 14 17 8 2

Clearer Information

organisation
29 12 10 8 6

Pleasant Interface 32 11 12 7 3

Usefulness of presented

Images
31 19 9 2 4

Right Presentation of content 24 15 9 16 1

Appropriate Size of web

controls
31 12 15 4 3

Less Load time 22 16 19 5 3

Meet Expected Functions 25 18 12 7 3

Overall Satisfaction 26 15 9 13 2

Sum 267 162 114 76 31

Total Score 267×5 =

1335

162×4

= 648

114×3 =

342

76×2 =

152

31×1 =

31

Sum of Total Score = 2508

According to Table 4.48, the value attained by Strongly Agree was 267, value attained by

Agree was 162, value attained by Undecided was 114, value attained by Disagree was 76,

and lastly, value attained by Strongly Disagree was 31.

Usability=2508/3250 × 100

 =77.16

The percentage value of Application 25 was 77.16%. This falls in the Good category of the

SUS score.

145

Usability Evaluation for Application 26: Usability assessment for Application 26 was done

and results were shown in Table 4.49.

Table 4.49 Survey Statistics for Application 26

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 30 23 4 2 6

Easy Information search 24 17 14 7 3

Clearer Information

organisation
26 15 10 10 4

Pleasant Interface 31 15 8 9 2

Usefulness of presented

Images
31 16 12 6 0

Right Presentation of content 29 14 12 9 1

Appropriate Size of web

controls
31 15 12 7 0

Less Load time 22 21 5 14 3

Meet Expected Functions 27 15 15 5 3

Overall Satisfaction 26 13 12 8 6

Sum 277 164 104 77 28

Total Score 277×5 =

1385

164×4

= 656

104×3 =

312

77×2 =

154

28×1 =

28

Sum of Total Score = 2535

Table 4.49 presents the scores attained during the evaluation. Strongly Agree had 277, Agree

had 164, Undecided had 104, Disagree had 77, and Strongly Disagree had 28.

Usability=2535/3250 × 100

 =78.0

The percentage value of Application 26 according to the survey scores was 78.0%. This falls

in the Good category of the SUS score.

146

Usability Evaluation for Application 27: Usability assessment for Application 27 was done

and results were shown in Table 4.50.

Table 4.50 Survey Statistics for Application 27

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 32 20 6 2 5

Easy Information search 24 18 7 13 3

Clearer Information

organisation
29 12 5 15 4

Pleasant Interface 36 15 3 6 5

Usefulness of presented

Images
32 20 11 2 0

Right Presentation of content 14 29 9 12 1

Appropriate Size of web

controls
23 15 13 9 5

Less Load time 21 22 8 11 3

Meet Expected Functions 26 16 12 9 2

Overall Satisfaction 25 14 18 3 5

Sum 262 181 92 82 33

Total Score 262×5 =

1310

181×4

= 724 92×3 = 276

82×2 =

164

33×1 =

33

Sum of Total Score = 2507

According to Table 4.50, the value attained by Strongly Agree was 262, value attained by

Agree was 181, value attained by Undecided was 92, value attained by Disagree was 82,

and finally, value attained by Strongly Disagree was 33.

Usability=2507/3250 × 100

 =77.13

The percentage value of Application 27 was evaluated as 77.13%.

147

Usability Evaluation for Application 28: Usability assessment for Application 28 was done

and results were shown in Table 4.51.

Table 4.51 Survey Statistics for Application 28

Questions Strongly

Agree

Agree Undecided Disagree Strongly

Disagree

Easy Navigation 29 19 9 5 3

Easy Information search 26 17 8 11 3

Clearer Information

organisation
28 12 8 13 4

Pleasant Interface 29 13 14 5 4

Usefulness of presented

Images
27 19 15 2 2

Right Presentation of content 29 15 9 11 1

Appropriate Size of web

controls
24 16 12 8 5

Less Load time 22 21 11 5 6

Meet Expected Functions 28 14 13 8 2

Overall Satisfaction 29 13 15 3 5

Sum 271 159 114 71 35

Total Score 271×5 =

1355

159×4

= 636

114×3 =

342

71×2 =

142

35×1 =

35

Sum of Total Score = 2510

According to Table 4.51, the value attained by Strongly Agree was 271, value attained by

Agree was 159, value attained by Undecided was 114, value attained by Disagree was 71,

and value attained by Strongly Disagree was also 35.

Usability=2510/ 3250 x 100

 =77.23

The percentage value of Application 28 based on the scores from the survey was calculated

as 77.23%. This falls in the Good category of the SUS score. This shows that the website

can be easily understood and used by users.

148

The overall usability scale for evaluating the web applications is shown in Table 4.52.

Table 4.52 Overall Usability Evaluation

Application Name Total Score Maximum Score Usability Scale (%)

Educational Web Applications

Application 1 2380 3250 73.20

Application 2 2424 3250 74.60

Application 3 2389 3250 73.50

Application 4 2496 3250 76.80

Application 5 2462 3250 75.75

Video editing Web applications

Application 6 2465 3250 75.84

Application 7 2314 3250 71.20

Application 8 2477 3250 76.21

Application 9 2499 3250 76.89

Application 10 2511 3250 77.26

E-commerce Software

Application 11 2282 3250 70.21

Application 12 2154 3250 66.27

Application 13 2128 3250 65.47

Application 14 2405 3250 74.00

Application 15 2487 3250 76.52

Online Form Creation Software

Application 16 2542 3250 78.21

Application 17 2490 3250 76.61

Application 18 2518 3250 77.47

Application 19 2483 3250 76.40

Application 20 2420 3250 74.46

149

Table 4.52 Overall Usability Evaluation (cont’d)

Application Name Total Score Maximum Score Usability Scale (%)

Company Web applications

Application 21 2410 3250 74.15

Application 22 2489 3250 76.58

Application 23 2517 3250 77.44

Application 24 2509 3250 77.20

Application 25 2508 3250 77.16

Document Creation Software

Application 26 2535 3250 78.00

Application 27 2507 3250 77.13

Application 28 2510 3250 77.23

According to Table 4.52, web applications under the Educational category had Usability

scores ranging from 76.8% to 73.2%. Application 1 had the lowest score of 73.2%, followed

by Application 3 with 73.5%, Application 2 with 74.6%, Application 5 with 75.75% while

Application 4 had the highest usability score of 76.80%. The average Usability score was

74.77%.

Under the Video editing category, the Usability score ranged between 71.20% to 77.26%.

Application 6 had 75.84%, Application 7 had 71.20%, Application 8 had 76.21%,

Application 9 had 76.89% while Application 10 had a usability score of 77.26%. The

average Usability score was 75.48%.

Under the e-commerce category, Application 11 had 70.21%, Application 12 had 66.27%,

Application 13 had 65.47%, Application 14 had 74.0% while Application 15 had 76.52%.

Application 13 had the lowest usability score while Application 15 had the highest score.

The average Usability score was 70.494%.

Application 16 under the online form creation software category had the highest Usability

score with 78.21% while Application 20 had the lowest score with 74.46%. Application 17

had 76.61%, Application 18 had 77.47% while Application 19 had 76.40%. The average

Usability score was 76.63%.

150

The company web applications had Usability scores ranging from 77.44% to 74.15%.

Application 23 had the highest Usability score of 77.44% followed by Application 20 with

77.20%. Application 25 was third with 77.16%. Application 22 had 76.58% while

Application 21 recorded the least score with 74.15% in the category. The average Usability

score was 76.506%.

Lastly, the Document Creation Software had a Usability score ranging from 78.00% to

77.13%. Application 26 had the highest score of 78.00% followed by Application 28 with

77.23% and lastly, Application 27 had 77.13%. The average Usability score was 77.453%.

4.4.6 Software Maintainability Test

Maintainability evaluation was done by sending HTTP get requests to the web applications.

The python script was automated to send HTTP requests to the website being evaluated at

every 10 seconds for a period of 3600 seconds. The time the web applications were

unavailable for usage was recorded as the total downtime and the number of times the

unavailability occurred was recorded as the number of failures the software encountered.

The maintainability rate for the web applications is shown in Table 4.53.

151

Table 4.53 Software Maintainability Evaluation

Application

Name
Total Downtime

Number

of

Failures

Maintainability

Score

Maintainabi

lity Rate

(%)

Educational Web Applications

Application 1 0.010% or 1 min 20 secs 8 0.022 99.978

Application 2 0.031% or 5 min 4 secs 27 0.150 99.850

Application 3 0.013% or 1 min 59 secs 10 0.098 99.957

Application 4 0.016% or 2 min 45 secs 13 0.073 99.927

Application 5 0.043% or 5 min 36 sec 32 0.328 99.672

Video editing Web applications

Application 6 0.004% or 25 secs 2 0.005 99.996

Application 7 0% or 0 min 5 sec 1 0.000 100

Application 8 0% or 0 min 5 sec 1 0.000 100

Application 9 0.005% or 40 secs 3 0.007 99.993

Application 10 0% or 0 min 5 sec 1 0.000 100

E-commerce Software

Application 11 0.019% or 2 min 15 secs 15 0.073 99.927

Application 12 0% or 0 min 5 sec 1 0.000 100

Application 13 0% or 0 min 5 sec 1 0.000 100

Application 14 0.014% or 2 min 5 secs 11 0.055 99.945

Application 15 0% or 0 min 5 sec 1 0.000 100

Online Form Creation Software

Application 16 0% or 0 min 5 sec 1 0.000 100

Application 17 0% or 0 min 5 sec 1 0.000 100

Application 18 0% or 0 min 5 sec 1 0.000 100

Application 19 0% or 0 min 5 sec 1 0.000 100

Application 20 0% or 0 min 5 sec 1 0.000 100

152

Table 4.53 Software Maintainability Evaluation (cont’d)

Application

Name
Total Downtime

Number

of

Failures

Maintainability

Score

Maintainabi

lity Rate

(%)

Company Web applications

Application 21 0.006% or 1 min 5 secs 5 0.019 99.981

Application 22 0.021% or 2 min 48 secs 17 0.098 99.902

Application 23 0.013% or 1 min 59 secs 10 0.098 99.957

Application 24 0.010% or 1 min 20 secs 8 0.022 99.978

Application 25 0.029% or 5 min 2 secs 25 0.110 99.890

Document Creation Software

Application 26 0% or 0 min 5 sec 1 0.000 100

Application 27 0% or 0 min 5 sec 1 0.000 100

Application 28 0% or 0 min 5 sec 1 0.000 100

All web applications according to Table 4.53, are seen to have performed well in the

maintainability test. The web applications under the Educational web application category

are seen to have Maintainability scores of 0.022, 0.150, 0.098, 0.073, and 0.008. Application

1 performed well with a total downtime of 1 min 20 secs with 8 number of failures and a

score of 0.022 representing 99.978%. Application 2 had a downtime of 5 mins 4 secs with

27 failures; its Maintainability rate was 99.850%. Application 5 recorded the highest

downtime of 5 mins 36 sec with 32 failures. Application 3 equally performed well with a

downtime of 1 min 59 secs and 10 failures. Application 4 also performed fairly well with 2

min 45 secs as its downtime with 13 failures. Although the web applications passed the

maintainability test, Application 5 and Application 2 recorded higher failure rates.

Three (3) applications under the Photo and Video editing category recorded a

Maintainability rate of 100%. Applications 7, 8, and 10 had downtimes of 5 sec with 1

failure and Maintainability scores of 0.00 each. Also, Application 6 had a downtime of 25

sec with 2 failures and a Maintainability rate of 99.996%. Lastly, Application 9 recorded

the lowest Maintainability rate under the category with 99.993% and 40 sec as the total

downtime with 3 failures.

153

The e-commerce software recorded three (3) applications with 1 failure and a

Maintainability rate of 100%. These applications were Applications 12, 13, and 15.

Application 11 had a downtime of 2 min 15 secs with 15 failures and a Maintainability rate

of 99.927% while Application 14 had a Maintainability rate of 99.945% with a total

downtime of 2 min 5 sec and 11 failures.

The online form creation and Document Creation Software had Maintainability rates of

100% with 1 failure each and downtimes of 5 sec. These applications can be said to be easily

modified to correct faults.

Web applications under the company web application category had downtimes ranging

between 5 min 2 sec and 1 min 5 sec. Application 25 recorded the highest downtime of 5

mins 2 sec with 25 failures and 99.890% as Maintainability rate. Application 22 was next

with 2 mins 48 sec as its downtime and 17 failures. Application 23 also had a downtime of

1 min 59 sec with 10 failures. Application 24 performed well with a downtime of 1 min 20

secs and 8 failures while Application 21 recorded the smallest downtime under the category

with 1 min 5 sec and 5 failures.

The average Maintainability rates under the Educational, Video editing, E-commerce,

Online form creation, Company, and Document Creation Software categories were

99.8768%, 99.9978%, 99.9744%, 100%, 99.9416%, and 100%, respectively.

4.4.7 Software Portability Test

Software portability test was carried out to assess the ease of porting the web applications

from one web browser to the other as shown in Table 4.54. The web browsers used for the

test were Google Chrome version 89.0, Mozilla Firefox version 87.0, Microsoft Edge

version 89.0, and Safari version 5.1.

The python script that was written allows the web applications to open in the listed web

browsers and records an average of the time it took to open in each web browser. It also

recorded the average speed with which the website opened in web browsers.

Acceleration was calculated by dividing the average speed over the average time.

Finally, rate of transfer was calculated by dividing the average time over the total number

of web browsers used for the evaluation.

154

Table 4.54 Software Portability Evaluation

Application

Name

Acceleration,

a (𝐦/𝐬𝟐)

Time, t

(sec)

Speed, v

(m/s)

Rate of

Transfer, 𝐏𝐨

Portability

Score (%)

Educational Web Applications

Application 1 0.550 10.0 5.50 60 92.50

Application 2 1.000 8.5 8.50 51 95.625

Application 3 0.611 9.0 5.50 54 99.00

Application 4 0.906 8.0 7.25 48 95.00

Application 5 0.722 9.0 6.50 54 96.75

Video editing Web applications

Application 6 0.554 11.0 6.00 66 99.00

Application 7 0.619 10.5 6.50 63 99.75

Application 8 1.017 8.5 8.65 51 99.66

Application 9 0.495 11.5 5.69 69 99.99

Application 10 2.623 6.0 15.74 36 99.72

E-commerce Software

Application 11 1.570 6.5 10.25 39 99.94

Application 12 1.538 6.5 10.00 39 91.00

Application 13 1.033 7.5 7.75 45 98.45

Application 14 0.765 8.5 6.5 51 95.63

Application 15 0.778 9 7 54 99.00

Online Form Creation Software

Application 16 1.493 7.5 11.20 45 99.94

Application 17 1.250 8.0 10.00 48 100.00

Application 18 0.936 9.0 8.42 54 99.99

Application 19 0.853 9.5 8.1 57 99.75

Application 20 0.471 12.0 5.65 72 99.90

155

Table 4.54 Software Portability Evaluation (cont’d)

Application

Name

Acceleration,

a (𝐦/𝐬𝟐)

Time, t

(sec)

Speed, v

(m/s)

Rate of

Transfer, 𝐏𝐨

Portability

Score (%)

Company Web applications

Application 21 0.889 9.0 8.00 54 99.00

Application 22 0.824 8.5 7.00 51 93.50

Application 23 0.906 8.0 7.25 48 91.00

Application 24 1.692 6.5 11.00 39 97.50

Application 25 1.500 7.0 10.50 42 99.75

Document Creation Software

Application 26 3.400 5.0 17.00 30 100.00

Application 27 2.167 6.0 13.00 36 99.00

Application 28 0.822 9.7 8.01 58 99.98

All web applications performed well in the test, according to Table 4.53, with a Portability

score ranging from 91% to 100%. The rate of porting from one web browser to the other

was seen to be fast without causing changes to the software’s features and design.

Under the Educational web application category, Application 3 had the highest score of

99.00% with an acceleration of 0.611m/s2, testing time of 9 sec, speed of 5.5m/s, and

transfer rate of 54 while Application 1 was seen to have the lowest score of 92.50% with an

acceleration of 0.550 m/s2, testing time of 10 sec, speed of 5.5 m/s, and transfer rate of 60.

Application 2 had a Portability score of 95.625% with an acceleration of 1.0 m/s2, testing

time of 8.5 sec, speed of 8.5 m/s, and transfer rate of 51. Also, Application 4 had 95.00% as

the score with an acceleration of 0.906 m/s2, testing time of 8 sec, speed of 7.25 m/s, and

transfer rate of 48. Finally, Application 5 had 96.75% as the score with an acceleration of

0.722 m/s2, testing time of 9 sec, speed of 6.5 m/s, and transfer rate of 54.

The video and photo applications recorded the highest Portability score of 99.99% and the

lowest of 99.00%. Application 9 had the highest score of 99.99% with an acceleration of

0.495m/s2, testing time of 11.5 sec, speed of 5.69 m/s, and transfer rate of 69 while

Application 6 was seen to have the lowest score of 99.00% with an acceleration of 0.554

156

m/s2, testing time of 11 sec, speed of 6 m/s, and transfer rate of 66. Application 7 had a

Portability score of 99.75% with an acceleration of 0.619 m/s2, testing time of 10.5 sec,

speed of 6.5 m/s, and transfer rate of 63. Also, Application 8 had 99.66% as the score with

an acceleration of 1.017 m/s2, testing time of 8.5 sec, speed of 8.65 m/s, and transfer rate

of 51. Finally, Application 10 had 99.72% as the score with an acceleration of 2.623 m/s2,

testing time of 6 sec, speed of 15.74 m/s, and transfer rate of 36.

Also, the e-commerce applications recorded the highest Portability score of 99.94% and the

lowest of 91.00%. Application 11 had the highest score of 99.94% with an acceleration of

1.570m/s2, testing time of 6.5 sec, speed of 10.25 m/s, and transfer rate of 39 while

Application 12 was seen to have the lowest score of 91.00% with an acceleration of 1.538

m/s2, testing time of 6.5 sec, speed of 10 m/s, and transfer rate of 39. Application 13 had a

Portability score of 98.45% with an acceleration of 1.033 m/s2, testing time of 7.5 sec, speed

of 7.75 m/s, and transfer rate of 45. Also, Application 14 had 95.63% as the score with an

acceleration of 0.765 m/s2, testing time of 8.5 sec, speed of 6.5 m/s, and transfer rate of 51.

Finally, Application 15 had 99.00% as the score with an acceleration of 0.778 m/s2, testing

time of 9 sec, speed of 7 m/s, and transfer rate of 54.

The online form creation applications recorded the highest Portability score of 100% and

the lowest of 99.75%. The acceleration also ranged from 0.471 m/s2 to 1.493 m/s2, testing

time ranged from 7.5 sec to 12 sec, speed ranged from 5.65 m/s to 11.20 m/s and transfer

rate ranged from 45 to 72.

The company applications recorded the highest Portability score of 99.75% and the lowest

of 91.00%. The acceleration also ranged from 0.824 m/s2 to 1.692 m/s2, testing time ranged

from 7 sec to 9 sec, speed ranged from 7 m/s to 11 m/s and transfer rate ranged from 39 to

54.

Finally, the Document Creation Software recorded the highest Portability score of 100%

and the lowest of 99.00%. The acceleration also ranged from 0.822 m/s2 to 3.40 m/s2,

testing time ranged from 5 sec to 9.7 sec, speed ranged from 8.01 m/s to 17 m/s and transfer

rate ranged from 30 to 58.

The average Portability score of Educational, Video editing, E-commerce, Online form

creation, Company, and Document Creation Software categories were 95.775%, 99.624%,

96.804%, 99.916%, 96.15%, and 99.66% respectively.

157

4.4.8 Software Functionality Test

The python script also performed the functionality test by accessing 30 functions on the web

application under review. The test was done by clicking on submission forms, live chat

feature buttons, social media tabs, internal links, site map aiding in user navigation, print

page feature, events calendar, and others to assess if they are functioning as expected. The

number of working and non-working functions were recorded for the software functionality

evaluation.

Table 4.55 Software Functionality Evaluation

Application

Name

Working

Functions

Non-working

Functions

Score Functionality

(%)

Educational Web Applications

Application 1 30 0 1 100

Application 2 30 0 1 100

Application 3 30 0 1 100

Application 4 30 0 1 100

Application 5 20 10 0.5 50

Video editing Web applications

Application 6 30 0 1 100

Application 7 30 0 1 100

Application 8 30 0 1 100

Application 9 30 0 1 100

Application 10 30 0 1 100

E-commerce Software

Application 11 30 0 1 100

Application 12 30 0 1 100

Application 13 30 0 1 100

Application 14 30 0 1 100

Application 15 30 0 1 100

158

Table 4.55 Software Functionality Evaluation (cont’d)

Application

Name

Working

Functions

Non-working

Functions

Score Functionality

(%)

Online Form Creation Software

Application 16 30 0 1 100

Application 17 30 0 1 100

Application 18 30 0 1 100

Application 19 30 0 1 100

Application 20 30 0 1 100

Company Web applications

Application 21 30 0 1 100

Application 22 30 0 1 100

Application 23 30 0 1 100

Application 24 30 0 1 100

Application 25 28 2 0.92 92

Document Creation Software

Application 26 30 0 1 100

Application 27 30 0 1 100

Application 28 30 0 1 100

According to Table 4.55, web applications under all categories performed the functionality

test with thirty (30) working functions except Application 5 in the Educational web

application category, which recorded twenty (20) functioning features with ten (10) non-

functioning features. Application 5 was seen to have some non-functioning tabs, some non-

functioning internal tabs, and other functional problems. Application 25 in the Company

web application category also had twenty-eight (28) functioning features with two (2) non-

functioning features. The other web applications had a Functionality score of 100% each.

The average Functionality score of Educational, Video editing, E-commerce, Online form

creation, Company, and Document Creation software categories were 90%, 100%, 100%,

100%, 98.40%, and 100%, respectively.

159

4.4.9 Software Availability Test

The quality assurance model evaluated the web applications for availability by calculating

the total downtime, the number of operational hours, and the number of failures to find the

MTBF and MTTF for Availability evaluation. The python script was automated to send

HTTP requests to the website being evaluated at every 10 seconds for a period of 3600

seconds. The time the web applications were unavailable for usage was recorded as the total

downtime This is as shown in Table 4.56.

Table 4.56 Software Availability Evaluation

Application

Name

Total Downtime Operational Time Number

of

Failures

Score

(%)

Educational Web Applications

Application 1 0.010% or 1 min 20 secs 3520 sec 8 97.93

Application 2 0.031% or 5 min 4 secs 3296 sec 27 91.29

Application 3 0.013% or 1 min 59 secs 3481 sec 10 97.61

Application 4 0.016% or 2 min 45 secs 3435 sec 13 97.38

Application 5 0.043% or 5 min 36 sec 3264 sec 32 90.87

Video editing Web applications

Application 6 0.004% or 25 secs 3575 sec 2 99.12

Application 7 0% or 0 min 5 sec 3595 sec 1 100

Application 8 0% or 0 min 5 sec 3595 sec 1 100

Application 9 0.005% or 40 secs 3560 sec 3 99.03

Application 10 0% or 0 min 5 sec 3595 sec 1 100

E-commerce Software

Application 11 0.019% or 2 min 15 secs 3465 sec 15 96.99

Application 12 0% or 0 min 5 sec 3595 sec 1 100

Application 13 0% or 0 min 5 sec 3595 sec 1 100

Application 14 0.014% or 2 min 5 secs 3475 sec 11 97.54

Application 15 0% or 0 min 5 sec 3595 sec 1 100

160

Table 4.56 Software Availability Evaluation (cont’d)

Application

Name

Total Downtime Operational Time Number

of

Failures

Score

(%)

Online Form Creation Software

Application 16 0% or 0 min 5 sec 3595 sec 1 100

Application 17 0% or 0 min 5 sec 3595 sec 1 100

Application 18 0% or 0 min 5 sec 3595 sec 1 100

Application 19 0% or 0 min 5 sec 3595 sec 1 100

Application 20 0% or 0 min 5 sec 3595 sec 1 100

Company Web applications

Application 21 0.006% or 1 min 5 secs 3535 sec 5 98.35

Application 22 0.021% or 2 min 48 secs 3432 sec 17 96.75

Application 23 0.013% or 1 min 59 secs 3481 sec 10 97.61

Application 24 0.010% or 1 min 20 secs 3520 sec 8 97.93

Application 25 0.029% or 5 min 2 secs 3298 sec 25 91.45

Document Creation Software

Application 26 0% or 0 min 5 sec 3595 sec 1 100

Application 27 0% or 0 min 5 sec 3595 sec 1 100

Application 28 0% or 0 min 5 sec 3595 sec 1 100

Table 4.56 shows that the applications had been available for use more than 90% of the time.

Web applications under the Educational web application category recorded eight (8)

failures, twenty-seven (27) failures, ten (10) failures, thirteen (13) failures, and thirty-two

(32) failures for Applications 1, 2, 3, 4, and 5, respectively. Application 1 recorded a

downtime of 1 minute 20 seconds, Application 2 recorded a downtime of 5 minutes 4

seconds, Application 3 recorded a downtime of 1 minute 59 seconds, Application 4 recorded

a downtime of 2 minutes 45 seconds, and Application 5 recorded a downtime of 5 minutes

36 seconds. Applications 5 and 2 experienced longer downtime than the other Educational

web applications. The average Availability score was seen to be 95.016%.

161

Applications in the Video editing category also recorded two (2) failures, one (1) failure,

one (1) failure, three (3) failures, and one (1) failure for Applications 6, 7, 8, 9, and 10,

respectively. Application 6 recorded a downtime of 25 seconds, Application 7 recorded a

downtime of 5 seconds, Application 8 recorded a downtime of 5 seconds, Application 9

recorded a downtime of 40 seconds and Application 10 recorded 5 seconds. The average

Availability score was seen to be 99.63%.

Three (3) applications under the e-commerce category experienced downtimes of 5 seconds

each with one (1) failure and were seen to have a higher Availability score of 100%.

Application 11 had a downtime of 2 minutes 15 seconds with 15 failures whiles Application

14 had a downtime of 2 minutes 5 seconds with 11 failures.

Under the online form creation software category, all the applications performed well in the

test with downtimes of 5 seconds each. They all had 1 failure and recorded 100% as the

Availability score.

Application 21 recorded a downtime of 1 minute 5 seconds, Application 22 recorded 2

minutes 48 seconds, Application 23 recorded 1 minute 59 seconds, Application 24 recorded

1 minute 20 seconds while Application 25 recorded 5 minutes 2 seconds under the company

web applications category. Application 21 was seen to have performed better than all

applications in the category and was seen to have been more available with an operational

time of 3535 seconds.

All applications under the Document Creation Software category performed well with 5

seconds of downtime and one (1) failure.

4.4.10 Software Reusability Test

The reusability rate of the web applications is shown in Table 4.57. The software delivery

time was calculated from the operational hours and downtime to get the overall reusability

rate.

162

Table 4.57 Software Reusability Evaluation

Application

Name

Operational

Time

Total Downtime Reusability

Score

Reusability

Scale (%)

Educational Web Applications

Application 1 3520 sec 0.010% or 1 min 20 secs 1.4015 96.77

Application 2 3296 sec 0.031% or 5 min 4 secs 1.2887 89.47

Application 3 3481 sec 0.013% or 1 min 59 secs 1.3939 95.15

Application 4 3435 sec 0.016% or 2 min 45 secs 1.3184 94.28

Application 5 3264 sec 0.043% or 5 min 36 sec 1.1265 85.03

Video editing Web applications

Application 6 3575 sec 0.004% or 25 secs 1.3852 90.04

Application 7 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 8 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 9 3560 sec 0.005% or 40 secs 1.3895 90.18

Application 10 3595 sec 0% or 0 min 5 sec 1.5184 100

E-commerce Software

Application 11 3465 sec 0.019% or 2 min 15 secs 1.1802 82.98

Application 12 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 13 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 14 3475 sec 0.014% or 2 min 5 secs 1.207 85.73

Application 15 3595 sec 0% or 0 min 5 sec 1.5184 100

Online Form Creation Software

Application 16 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 17 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 18 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 19 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 20 3595 sec 0% or 0 min 5 sec 1.5184 100

Company Web applications

Application 21 3535 sec 0.006% or 1 min 5 secs 1.5184 100

Application 22 3432 sec 0.021% or 2 min 48 secs 1.5184 100

Application 23 3481 sec 0.013% or 1 min 59 secs 1.3939 92.07

Application 24 3520 sec 0.010% or 1 min 20 secs 1.5184 100

Application 25 3298 sec 0.029% or 5 min 2 secs 1.0265 79.54

163

Table 4.57 Software Reusability Evaluation (cont’d)

Application

Name

Operational

Time

Total Downtime Reusability

Score

Reusability

Scale (%)

Document Creation Software

Application 26 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 27 3595 sec 0% or 0 min 5 sec 1.5184 100

Application 28 3595 sec 0% or 0 min 5 sec 1.5184 100

According to Table 4.57, web applications under the Educational web application category

had a Reusability scale ranging from 85% to 97% with Application 5 scoring the lowest

value and Application 1 scoring the highest value. Application 3 had the second-highest

score of 95.15% in the category. The average Reusability scale was 92.14%.

The Video editing applications also had three (3) applications scoring 100% with an average

Reusability scale of 96.044%. Application 6 had a downtime of 25 seconds and a Reusability

score of 1.3852 with a percentage of 90.04. Application 9 also had a downtime of 40 seconds

and a Reusability score of 1.3895 with 90.18% as the Reusability scale.

The e-commerce software also had an average Reusability scale of 93.742% with

Applications 12, 13, and 15 having 100% as the Reusability scale. Application 11 was seen

to have a downtime of 2 minutes 15 seconds with a Reusability scale of 82.98%. Application

14 had a downtime of 2 minutes 5 seconds and a Reusability scale of 85.73%.

All applications in the form creation software category had a Reusability scale of 100% with

downtimes of 5 seconds each and operational time 3595 seconds. The components of the

software were seen to be reusable. There was an average of 100% as the Reusability score.

The company web applications also had a Reusability score ranging from 100% to 79%.

Application 21, Application 22, and Application 24 had 100% reusable components;

Application 23 had 92.07% as the Reusability score with downtime of 1 minute 59 seconds

while Application 25 had 79.54% of reusable components. The average was an average

Reusability score of 94.322%.

The Document Creation Software also had an average Reusability score of 100% with a

downtime of 5 seconds.

164

4.4.11 Software Security Test

A security test was performed by the quality assurance software to assess the vulnerability

of the web applications and is as shown in table 4.58.

In testing for a vulnerability like injection (A1), the written python script looked for input

fields and URL parameters in the web application under review. It then sent an input

containing a single quotation mark, eg. id = ‘1’. Then, based on the response from the web

server, the application determined if it is vulnerable or not by checking to see if the response

contains SQL errors. The presence of these SQL errors makes it vulnerable to injection.

Also, in testing for Cross site request forgery (A8) attack, the session management of the

software was checked to see if it is vulnerable. This was done by checking if session

management relies only on client-side values, if so, then the web application was seen to be

vulnerable.

Table 4.58 Security Test Results

Application

Name
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Security

Score

(%)

Educational Web Applications

Application 1 10 10 10 10 10 10 10 0 10 10 90

Application 2 10 10 10 10 10 10 10 0 10 10 90

Application 3 10 10 10 10 10 10 10 10 10 10 100

Application 4 10 10 10 10 10 10 10 10 10 10 100

Application 5 10 10 10 10 10 10 10 0 10 10 90

Video editing Web applications

Application 6 10 10 10 10 10 10 10 10 10 10 100

Application 7 10 10 10 10 10 10 10 10 10 10 100

Application 8 10 10 10 10 10 10 10 10 10 10 100

Application 9 10 10 10 10 10 10 10 10 10 10 100

Application 10 10 10 10 10 10 10 10 10 10 10 100

165

Table 4.58 Security Test Results (cont’d)

Application

Name
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Security

Score

(%)

E-commerce Software

Application 11 10 10 10 10 10 10 10 10 10 10 100

Application 12 10 10 10 10 10 10 10 10 10 10 100

Application 13 10 10 10 10 10 10 10 10 10 10 100

Application 14 10 10 10 10 10 10 10 10 10 10 100

Application 15 10 10 10 10 10 10 10 10 10 10 100

 Online Form Creation Software

Application 16 10 10 10 10 10 10 10 10 10 10 100

Application 17 10 10 10 10 10 10 10 10 10 10 100

Application 18 10 10 10 10 10 10 10 10 10 10 100

Application 19 10 10 10 10 10 10 10 10 10 10 100

Application 20 10 10 10 10 10 10 10 10 10 10 100

Company Web applications

Application 21 10 10 10 10 10 10 10 0 10 10 90

Application 22 10 10 10 10 10 10 10 0 10 10 90

Application 23 10 10 10 10 10 10 10 0 10 10 90

Application 24 10 10 10 10 10 10 10 0 10 10 90

Application 25 10 10 10 10 10 10 10 0 10 10 90

Document Creation Software

Application 26 10 10 10 10 10 10 10 10 10 10 100

Application 27 10 10 10 10 10 10 10 10 10 10 100

Application 28 10 10 10 10 10 10 10 10 10 10 100

Results from Table 4.58 show that three applications under the Educational web application

category (Applications 1, 2, and 5) scored 90% while two other applications (Application 3

166

and Application 4) scored 100%. The applications that scored 90% failed the vulnerability

level A8 which represents the Cross-Site Request Forgery attack.

All applications under the company web application category also failed the vulnerability

level A8 and hence had a security score of 90%.

Applications under the other categories passed all the security vulnerability tests with an

overall score of 100%.

4.4.12 Software Cost Estimate Test

The web applications were grouped under each of the existing categories of web

applications namely retail, financial, news and information portals, and entertainment in

order to get the range of cost estimate. The grouping was done using a survey method that

was submitted to ten (10) experts in software development. The grouping was done as

follows: e-commerce was grouped under retail; educational, company, Document Creation

Software and online form software were grouped under news and information portals and

Video editing was grouped under entertainment. The cost estimate of the web applications

was calculated as shown in table 4.59. The line of codes, function points, labour, and effort

were employed to find the software cost estimate.

Table 4.59 Cost Evaluation based on software category

Application

Name

FP KLOC Effort Labour Software Cost

Estimate ($)

Score

Educational Web Applications

Application 1 457.96 23.81 71.35 500 35,677.16 100

Application 2 478.29 24.87 74.74 500 37,374.42 100

Application 3 474.01 24.64 74.03 500 37,016.68 100

Application 4 462.24 24.03 72.06 500 36,034.34 100

Application 5 435.49 22.64 67.61 500 33,807.38 100

Video editing Web applications

Application 6 550.80 31.94 97.71 500 48,855.41 100

Application 7 533.25 30.92 94.38 500 47,191.66 100

Application 8 526.50 30.54 93.10 500 46,552.76 100

167

Table 4.59 Cost Evaluation based on software category (cont’d)

Application

Name

FP KLOC Effort Labour Software Cost

Estimate ($)

Score

Video editing Web applications

Application 9 531.90 30.85 94.13 500 47,063.83 100

Application 10 521.10 30.22 92.08 500 46,042.06 100

E-commerce Software

Application 11 507.18 26.88 81.22 500 40,614.39 100

Application 12 518.95 27.50 83.24 500 41,623.70 100

Application 13 509.32 26.99 81.59 500 40,797.78 100

Application 14 513.60 27.22 82.32 500 41,164.72 100

Application 15 525.37 27.84 84.34 500 42,174.92 100

Online Form Creation Software

Application 16 531.90 30.85 94.13 500 47,063.83 100

Application 17 525.15 30.45 92.85 500 46,425.05 100

Application 18 518.40 30.07 91.57 500 45,786.85 100

Application 19 538.65 31.24 95.40 500 47,703.18 100

Application 20 544.05 31.55 96.43 500 48,215.06 100

Company Web applications

Application 21 440.84 22.92 68.50 500 34,251.96 100

Application 22 408.78 21.25 63.18 500 31,590.26 100

Application 23 436.56 22.70 67.79 500 33,896.26 100

Application 24 426.93 22.20 66.19 500 33,096.00 100

Application 25 391.62 20.36 60.35 500 30,176.59 100

Document Creation Software

Application 26 564.30 32.73 100.26 500 50,137.76 100

Application 27 550.80 31.95 97.71 500 48,855.41 100

Application 28 561.60 32.57 99.76 500 49,881.12 100

168

The table shows that all the web applications under the news and information portals

category had a 100% score for software cost estimate. The 100% score was achieved

because the cost estimate of news and information portals range between $2,500 and

$600,000 and none of the applications exceeded $600,000.

Also, the web applications under the retail web applications category had a score of 100%

because they did not exceed $210,000.

The web applications under the entertainment web applications category had a score of

100% because they ranged between $40,000 and $100,000.

4.5 Voting Method

The voting method was carried out by multiplying the criteria weights from the AHP

technique with the scores generated by each quality attribute in the software quality

assurance model. These are summed up at the summing junction and displayed to the user

as a percentage of software quality. The overall score from the voting method varies between

0 and 100% and shows the percentage of software quality for each evaluated web

application. The higher the score from the software quality evaluation, the higher quality of

the web application. Results for the voting method are shown in Figures 4.10 to 4.15.

The results from the voting model show scores for each of the eleven (11) software quality

attributes that have been extended to twenty-four (24) since there are thirteen (13) sub-

attributes in the proposed software quality assurance model.

169

Figure 4.10 Results for Educational Web Applications

Figure 4.10 shows the results from the voting model for each of the educational web

applications. Application 3 is seen to have the highest quality score of 95.79% while

Application 5 is seen to have the lowest score of 66.36%. Applications 1, 2, and 3 had

software quality scores that are greater than 90% while the remaining two (2) applications

had lesser scores.

50

55

60

65

70

75

80

85

90

95

100

Application 1 Application 2 Application 3 Application 4 Application 5

93.93 92.51

95.79

72.22

66.36S
co

re
s

Educational Web Applications

170

Figure 4.11 Results for Video editing Web Applications

It can be seen from Figure 4.11 that Application 8 had the highest software quality score of

96.74% from the voting model while Application 6 had the lowest score with 95.11%. All

the applications were seen to have a score greater than 95% and can be said to have

performed well.

Figure 4.12 Results for E-commerce Software

94

94.5

95

95.5

96

96.5

97

Application 6 Application 7 Application 8 Application 9 Application 10

95.11

95.71

96.74

95.41
95.62

S
co

re
s

Video Editing Web Applications

50

55

60

65

70

75

80

85

90

95

100

Application

11

Application

12

Application

13

Application

14

Application

15

94.41

70.69

95.51 95.99

72.89

S
co

re
s

E-commerce Software

171

It is illustrated in Figure 4.12 that quality scores for the e-commerce software are 94.41%,

70.69%, 95.51%, 95.99%, and 72.89% for Applications 11, 12, 13, 14, and 15, respectively.

Application 14 had the highest score while Application 12 had the lowest score.

Figure 4.13 Results for Online Form creation Software

Figure 4.13 shows a graphical view of the results for online form creation software after

being applied to the voting model. Application 16 had the highest score of 96.98% while

Application 18 had the lowest score with 73.11%. Four (4) applications had quality scores

greater than 95% while the score of one (1) of the applications was less than 95%.

60

65

70

75

80

85

90

95

100

Application

16

Application

17

Application

18

Application

19

Application

20

96.98 96.49

73.11

96.16 95.89

S
co

re
s

Online Form Creation Software

172

Figure 4.14 Results for Company Web Applications

It is illustrated in Figure 4.14 that two (2) of the company web applications had software

quality scores of 70.86% and 70.49% while the remaining three (3) had scores above 90%.

Application 24 had the highest score of 95.77% while Application 23 had the lowest score

of 70.49%.

Figure 4.15 Results for Document Creation Software

It is seen in Figure 4.15 that Application 27 had the highest score of 97.59% in the category

while Application 28 had the lowest score with 95.12%.

50

55

60

65

70

75

80

85

90

95

100

Application

21

Application

22

Application

23

Application

24

Application

25

95.16

70.86 70.49

95.77
92.52

S
co

re
s

Company Web Applications

94

94.5

95

95.5

96

96.5

97

97.5

98

Application 26 Application 27 Application 28

95.92

97.59

95.12

S
co

re
s

Document Creation Software

173

The average results from the voting model for each software category is shown in Figure

4.16.

Figure 4.16 Average Result of Web-Applications

Figure 4.16 shows that the category with the highest score is Document Creation Software

while the category with the lowest score is Educational web applications. It was seen from

the results that most of the web applications failed various tests due to numerous reasons

such as server downtime or breakdown, bad programming practices or coding issues,

network problems, among others.

When the selected Educational web applications were assessed for Reliability, some of the

web applications had failure rates of 120 and 130. This showed that the applications had

poor error handling capabilities when subjected to extremely heavy conditions. On assessing

the applications for Usability based on a survey approach, users gave higher scores to the

Document Creation applications because the applications were easy to navigate, had clearer

organisation of information, had lesser load time among others. Also, some of the

Educational web applications had non-working functions when assessed for functionality.

84.960%

85.898%

84.162%

95.718%

91.726%

96.210%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

Company Web

Applications

E-commerce

Software

Educational

Web

Applications

Video and

Photo Editing

Online Form

Creation

Document

Creation

Quality Scores

174

This resulted in the overall average score from the voting model leading to the low score for

Educational web applications and high score for the Document Creation Software.

4.6 Performance Evaluation

To evaluate the performance of the proposed software quality assurance model, the research

works by Bayu and Banowosari (2021), Kaur, Kaur and Kaur (2016) and Budiman et al.

(2018) were used. The three works were selected due to their recency and the use of standard

software quality models and attributes which were equally applied throughout this thesis.

Bayu and Banowosari (2021) used the attributes of the ISO 9126 model to propose a model

to evaluate the application of “PT Karya Prima Usahatama” with the URL of

http://sip.kpusahatama.id/. In Kaur, Kaur and Kaur (2016), the standard quality attribute,

Efficiency, was used to evaluate Punjab University, Chandigarh with the URL of

http://puchd.ac.in/. Also, Budiman et al. (2018) used Efficiency, Reliability, and Portability

to evaluate the performance of a student academic portal with the URL of https://sia-

dev.unmul.ac.id/. The proposed software quality assurance model was used to evaluate the

works done by the three authors and is represented in Tables 4.61, 4.62, and 4.63.

175

Table 4.61 Comparison of Proposed Model with Bayu and Banowosari (2021)

Software Quality

Attribute

Bayu and Banowosari

(2021)

Proposed Quality Assurance

Model

Functionality 100% 100%

Usability 85% 92%

Efficiency 74.5% 93%

Reliability 100% 100%

Portability 100% 100%

Maintainability 100% 100%

Security - 90%

Testability - 100%

Reusability - 85.79%

Availability - 95.78%

Cost - 100%

Average of Score 93.25% 96.05%

Table 4.61 shows an illustration of a comparison done between the model of Bayu and

Banowosari (2021) and the proposed software quality assurance model. The proposed model

outperformed the results from Bayu and Banowosari (2021) during evaluation. The software

named kpusahatama with the URL of http://sip.kpusahatama.id/ had a score of 100% for

Functionality in the proposed model and had 100% also in Bayu’s evaluation. It scored 92%

for Usability in the proposed model and had 85% in Bayu’s evaluation. Efficiency’s score

was 93% in the proposed model and 74.5% in Bayu’s evaluation. Reliability, Portability and

Maintainability scores were 100% in both evaluations. In the proposed model, Security,

Testability, Reusability, Availability, and Cost had scores of 90%, 100%, 85.79%, 95.78%,

and 100%, respectively. The average of the scores for the proposed model with six (6)

quality attributes comprising of Functionality, Usability, Efficiency, Reliability, Portability,

and Maintainability was 97.50% and that of Bayu’s evaluation with six attributes was

93.25%. When extended to eleven (11) attributes, the proposed model had an average score

of 96.05%.

176

Table 4.62 Comparison of Proposed Model with Kaur, Kaur and Kaur (2016)

Software Quality Attribute Kaur, Kaur and Kaur

(2016)

Proposed Quality

Assurance Model

Efficiency 85% 95.298%

Functionality - 100%

Usability - 85.10%

Availability - 92%

Reliability - 100%

Portability - 99.75%

Maintainability - 99.48%

Security - 90%

Testability - 100%

Reusability - 98.80%

Cost - 100%

Average Score 85% 96.40%

Table 4.62 illustrates the comparison made between the proposed software quality assurance

model and Kaur, Kaur and Kaur (2016). Kaur’s work evaluated the efficiency of Punjab

University, Chandigarh with the URL of http://puchd.ac.in/ and had a percentage score of

94%. The same software was evaluated with the proposed model for software quality

attributes such as Availability, Functionality, Usability, Efficiency, Reliability, Portability,

Maintainability, Security, Testability, Reusability, and Cost with scores of 95.298%, 100%,

85.10%, 92%, 100%, 99.75%, 99.48%, 90%, 100%, 98.80%, and 100%, respectively. The

proposed model had an average score of 96.40% when extended to eleven (11) attributes

while Kaur model had 85% for efficiency evaluation.

177

Table 4.63 Comparison of Proposed Model with Budiman et al. (2018)

Software Quality Attribute Budiman et al. (2018)
Proposed Quality

Assurance Model

Efficiency 66.5% 85%

Reliability 100% 100%

Portability 100% 100%

Usability 0 89.37%

Maintainability - 99.909%

Functionality - 100%

Reusability - 98.78%

Security - 90%

Cost - 100%

Availability - 97.259%

Testability - 100%

Average 88.83% 96.39%

Table 4.63 shows a comparison of an evaluation on “unmul software” done by Budiman et

al., (2018) with the URL of https://sia-dev.unmul.ac.id/ and the proposed software quality

assurance model. The proposed model is seen to have an average score of 96.39% when the

software was evaluated against the eleven (11) software quality attributes and 95% when

evaluated against three (3) attributes by Budiman’s model. There was a score of 66.5% for

Efficiency, 100% for Reliability and 100% for Portability in Budiman’s model while there

was 85% for Efficiency, 100% for Reliability, 100% for Portability, 89.37% for Usability,

99.909% for Maintainability, 100% for Functionality, 98.78% for Reusability, 90% for

Security, 100% for Software Cost Estimate, 97.259% for Availability and 100% for

Testability.

178

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The research reviewed standard and well-known software quality models and identified the

various attributes, leading to the achievement of the first objective. These attributes were

grouped under eleven (11) main attributes and thirteen (13) sub-attributes. Again, a multi-

criteria decision-making analysis of the main software quality attributes was carried out

using AHP to achieve the second objective. Results from the AHP evaluation ranked

maintainability with the highest score of 17.37% and cost with the lowest score of 4.73%.

This resulted in the development of a model for assessing the quality of software factoring

in the major attributes of software quality assurance. The developed model will assist

software developers and end-users greatly in developing and assessing software quality. The

research finally, evaluated the developed model using standard metrics.

The focus of this research was to develop a model to assess the quality of software, most

importantly, software used in safety-critical parts of organisations since the use of less

quality software in such organisations could lead to adverse effects. Moreover, clients

expect quality software to be developed for them, hence, the need for an evaluation

mechanism. It, therefore, became imperative to satisfy user’s needs by developing a model

to aid them in evaluating the quality of developed software. Web-based applications were

targeted in the research since they can be accessed by users over a network such as an

internet or intranet anywhere and at every time of the day.

The developed model was used to evaluate the quality of twenty-eight (28) web applications

grouped under six (6) categories: Educational, E-commerce, Company, Online Document

Creation Software, Video editing, and Form creation web applications. Results from the

evaluation showed that Document Creation software had the highest average quality score

of 96.21% while Educational web applications had the lowest average score of 84.16%.

The quality assurance model was developed using mathematical models of the eleven (11)

main attributes. The scores from the mathematical models were brought together with the

use of a voting model which assigns the criteria weights obtained from AHP evaluation to

the output in order to get the overall score for software quality. Furthermore, an access

179

control model comprising of BLP and Biba model was designed to secure the quality

assurance model to regulate who can access it. This was evaluated for accuracy, precision,

recall and F1 score and had values of 0.93, 0.96, 0.91, and 0.92, respectively.

The performance of the quality assurance model was evaluated using research works by

Bayu and Banowosari (2021), Kaur, Kaur and Kaur (2016), and Budiman et al., (2018) were

used. The three (3) studies were selected due to their recency and the use of standard

software quality models and attributes. The performance evaluation showed that the

proposed model outperformed the selected models when evaluated against the attributes

they used and when extended to the use of eleven (11) quality attributes.

5.2 Recommendations

Despite the performance of the quality assurance model, some web applications performed

poor when evaluated for some attributes. This poor performance could be due to numerous

reasons; hence, it is also recommended that future works investigate other reasons why

failure of some of the quality tests occurred.

Results from AHP showed that based on experts’ judgement, some attributes were ranked

and assigned higher weights. This may likely be due to the nine (9) point scale of comparison

employed by AHP. It is recommended that other methods of assigning weights to the

attributes be considered. Also, future works may consider assigning weights to all twenty-

four (24) quality attributes to determine the maximum weights of the attributes.

180

REFERENCES

Abrahamyan, S., Balyan, S., Muradov, A., Korkhov, V., Moskvicheva, A. and Jakushkin,

O. (2016), “Development of M-Health Software for People with Disabilities”,

International Conference on Computational Science and Its Applications, pp 468 - 479.

Alanazi, T. S., Akour, M., Anbar, M. and Alsadoun, A. (2019), “Enterprise Resource

Planning Quality Model ERPQM”, First International Conference of Intelligent

Computing and Engineering (ICOICE), IEEE, pp. 1–5.

Al-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din, J. and Turaev, S. (2011), “Software

Quality Models: A Comparative Study”, International Conference on Software

Engineering and Computer Systems (ICSECS), Vol. 179, pp. 46–55.

Aldabbas, M. and Teufel, B. (2016), “Human Aspects of Smart Technologies’ Security: The

Role of Human Failure”, Journal of Electronic Science and Technology, Vol. 14, No. 4,

pp. 311 - 318.

Alese, B. K., Olojo, O. J., Adewale, O. S., Adetunmbi, A. A. and Falaki, S. O. (2007),

“Factor Analytic Approach to Computer Network/ Information Security Awareness in

South-Western Nigeria”, Pacific Journal of Science and Technology, Vol. 8, No. 2,

pp.351 -366.

Ali, N., Daneth, H. and Hong, J. E. (2020), “A hybrid DevOps process supporting software

reuse: A pilot project”, Journal of Software: Evolution and Process, Vol. 32, No. 7, 16

pp.

Aliu, F., Ayeni, O. A., Thompson, A. F. and Alese, B. K. (2020), “Information Security

Risk Analysis Using Analytic Hierarchy Process and Fuzzy Comprehensive

Evaluation”, International Journal of Computer Science and Information Security, Vol.

18, No. 6, pp. 36 - 45.

Al-Khurafi, O. B. and Al-Ahmad, M. A. (2015), “Survey of Web Application Vulnerability

Attacks”, 4th International Conference on Advanced Computer Science Applications

and Technologies (ACSAT), pp. 154-158

181

Al-Nawaiseh, J. A., Helmy, Y. and Khalil, E. (2020), “A New Software Quality Model for

Academic Information Systems: Case Study E-Learning System”, International Journal

of Scientific and Technology Research, Vol. 9, No. 01, pp. 271–282.

Al-Obaithani, F. S. and Ameen, A. A. (2018), “Towards Customised Smart Government

Quality Model”, International Journal of Software Engineering and Applications

(IJSEA), Vol. 9, No. 2, pp. 41 – 51.

Al-Qutaish, R. E. (2010), “Quality Models in Software Engineering Literature: An

Analytical and Comparative Study”, Journal of American Science, Vol. 6, No. 2, pp.

166-175.

Anon., (2001), “Software Engineering - Product Quality - Part 1: Quality Model”, ISO/IEC

JTC 1/SC 7 Software and systems engineering, Vol. 1, 25 pp.

Anon., (2021a), “Difference between System Software and Application Software”,

https://www.guru99.com/difference-system-software-application-software.html,

Accessed: May 25, 2021.

Anon., (2021b), “System Software”, https://techterms.com/definition/systemsoftware,

Accessed: May 20, 2021.

Anon., (2021c), https://www.techopedia.com/definition/2953/mobile-application-mobile-

app, Accessed: May 20, 2021.

Anon., (2021d), “Web-Based Application: What It Is, and Why You Should Use It”,

https://lvivity.com/web-based-applications, Accessed: May 20, 2021.

Anon., (2021e), “How Much Should a Website Cost in 2021?”,

https://www.webfx.com/How-much-should-web-site-cost.html, Accessed: March 20,

2021.

Anon., (2021f), “OWASP Top 10 Security Risks and Vulnerabilities”,

https://sucuri.net/guides/owasp-top-10-security-vulnerabilities-2021/, Accessed: May

13, 2021.

182

Aull-Hyde, R. and Davis, K. A. (2012), “Military applications of the analytic hierarchy

process”, International Journal of Multicriteria Decision Making, Vol. 2, No. 3, 7 pp.

Ayachi, Y., Ettifouri, E. H., Berrich, J. and Toumi, B. (2019), “Modeling the OWASP Most

Critical WEB Attacks”, In Information Systems and Technologies to Support Learning,

Rocha, Á. and Serrhini, M. (eds), Proceedings of Smart Innovation, Systems and

Technologies, Vol 111. Springer, Cham, 420pp.

Balaji, N., Shivakumar, N. and Ananth, V. V. (2013), “Software Cost Estimation using

Function Point with Non-Algorithmic Approach”, Global Journal of Computer Science

and Technology, Software and Data Engineering, Vol. 13, No. 8, 7 pp.

Balamurugan, B., Gnana, S. N., Monisha V. and Saranya, V. (2015), “A Honey Bee

Behavior Inspired Novel Attribute - Based Access Control using Enhanced Bell-

Lapadula Model in Cloud Computing”, International Conference on Innovation

Information in Computing Technologies (ICIICT), Chennai, India, pp. 1 – 6.

Bayu, F. and Banowosari, L. Y. (2021), “Quality Analysis of Payroll Information System

Based on ISO 9126 In PT Karya Prima Usahatama”, International Journal of Research

Publications, Vol. 71, No. 1, 11 pp.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., and Merritt, M. (1978)

Characteristics of Software Quality, North Holland, 150 pp.

Buckleton, J. S., Curran, J., Taylor, D. and Bright, J. (2020), “What can forensic

probabilistic genotyping software developers learn from significant non-forensic

software failures?”, WIREs Forensic Science, Vol. 3, No. 2, 8 pp.

Budiman, E., Wati, M., Widians, J. A., Puspitasari, N., Firdaus, M. B. and Alameka, F.

(2018), “ISO/IEC 9126 Quality Model for Evaluation of Student Academic Portal”,

Proceeding of EECSI, Malang - Indonesia, pp. 78 – 83.

Bychkov, D. (2013), “Desktop verses Web Applications: A Deeper Look and Comparison”,

https://www.seguetech.com/desktop-vs-web-applications/, Accessed: May 25, 2021.

183

Campbell, D. (2019), “The many human errors that brought down the Boeing 737 Max”,

https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-

human-error-mcas-faa, Accessed: March 25, 2021.

Cankaya, E. C. (2011), “Bell-LaPadula Confidentiality Model”, In Encyclopedia of

Cryptography and Security, Van-Tilborg, H. C. A. and Jajodia, S. (ed.), 2nd edition, Vol.

1, Springer, Boston, MA, 1496 pp.

Chetan, K. (2017), Securing Node Applications, O'Reilly Media, Inc, 210 pp.

Choudhuri, P. K. (2014), “Application of Multi-Criteria Decision Making (MCDM)

Technique for Gradation of Jute Fibres”, Journal of The Institution of Engineers (India):

Series E, Vol. 95, pp. 63–68.

Choudhury, M. M. and Choudhury, A. M. (2010), “Identification of the characteristics of

E-commerce websites”, Webology Journal, Vol. 7, No. 1, 10 pp.

Christakis, M. and Bird, C. (2016), “What Developers Want and Need from Program

Analysis: An Empirical Study”, 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), pp. 332 - 343.

Crosby, P. B. (1979), “Quality is free- if you understand it”, Inc. Journal, 4 pp.

Deming, W. E. (1986), Out of the Crisis, Massachusetts Institute of Technology,

Cambridge.

Derisma, D. (2020), “The Usability Analysis Online Learning Site for Supporting Computer

programming Course Using System Usability Scale (SUS) in a university”,

International Journal of Interactive Mobile Technologies, Vol. 14, No. 9, pp. 182 – 195.

Djouab, R. and Bari, M. (2016), “An ISO 9126 Based Quality Model for the e-Learning

Systems”, International Journal of Information and Education Technology, Vol. 6, No.

5, 6 pp.

184

Dorri, A., Kanhere, S. S., Jurdak, R. and Gauravam, P. (2017), “Blockchain for IoT security

and privacy: The case study of a smart home”, IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops), 25 pp.

Dromey, G. R. (1995), “A Model for Software Product Quality”, IEEE Transaction on

Software Engineering, Vol. 21, No. 2, 9 pp.

Dubey, S. K. and Mishra, A. (2014), “Fuzzy Qualitative Evaluation of Reliability of Object-

Oriented Software System”, IEEE International Conference on Advances in

Engineering and Technology Research (ICAETR), pp. 1–6.

Dubey, S. K., Ghosh, S. and Rana, A. (2012), “Comparison of Software Quality Models:

An Analytical Approach”, International Journal of Emerging Technology and

Advanced Engineering, Vol. 2, No. 2, 9 pp.

Duke, S. O. O. and Obidinnu, J. N. (2010), “An improved COCOMO software cost

estimation model”, Global Journal of Pure and Applied Sciences, Vol. 16, No. 4, pp.

479 – 492.

Dwivedi, S. and Dubey, S. K. (2014), “Measurement of Web Usability: An Approach”,

International Journal of Computer and Communication System Engineering, pp. 59-65.

Fahmy, S., Haslinda, N., Roslina, W. and Fariha, Z. (2012), “Evaluating the Quality of

Software in E-Book using the ISO 9126 Model”, International Journal of Control and

Automation, Vol. 5, No. 2, 8 pp.

Fawareh, H. (2020), “Software Quality Model for Maintenance Software Purposes”,

International Journal of Engineering Research and Technology, Vol. 13, No. 1, pp. 158

– 162.

Febrero, F., Moraga, M. A. and Calero, C. (2017), “Software Reliability as User Perception

Application of the Fuzzy Analytic Hierarchy Process to Software Reliability Analysis”,

IEEE International Conference on Software Quality, Reliability and Security (QRS), pp.

224–231.

Feigenbaum, A. V. (1991), Total Quality Control, 3rd ed., McGraw‐Hill, New York.

185

Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu, R. and Pretschner, A. (2016),

“Security Testing: A Survey”, Journal of Advances in Computers, Vol. 101, pp. 1 - 51.

Fleischman, W. and Crawford, J. (2020), “Once Again, We Need to Ask, what have We

Learned from Hard Experience?”, In Societal Challenges in the Smart Society,

International Conference on the Ethical and Social Impact of ICT, Mario, A., Jorge, P.

Kiyoshi, M. and Palma, A. M. L. (ed.), pp. 561 – 571.

Galli, T., Chiclana, F. and Siewe, F. (2020), “Software Product Quality Models,

Developments, Trends, and Evaluation”, SN Computer Science, Vol. 1, No. 154, 24 pp.

Gambo, I., Soriyan, A. and Achimugu, P. (2011), “Software Architecture Performance

Quality Model: Qualitative Approach”, ARPN Journal of Systems and Software, Vol. 1,

No. 1, pp. 28-33.

Georgiadou, E. (2003), “GEQUAMO– A Generic, Multilayered, Customisable, Software

Quality Model”, International Journal of Cybernetics, Vol. 11, No. 4, pp. 313-323.

Ghezzi, C., Jazayeri, M. and Mandrioli, D. (1991), Fundamentals of Software Engineering,

Pearson Publishing, 604 pp.

Ghosh, N., Singhal, R. and Das, S. K. (2019), “A Risk Quantification Framework to

Authorise Requests in Web-based Collaborations”, Proceedings of the 2019 ACM Asia

Conference on Computer and Communications Security, pp. 247-254.

Gorrie, M. (2021), “Sensitive data exposure: What is it and how it’s different from a data

breach”, https://us.norton.com/internetsecurity-privacy-sensitive-data-exposure-how-

its-different-from-data-breach.html, Accessed: May 28, 2021.

Grady, R. B. (1992), Practical Software Metrics for Project Management and Process

Improvement, Prentice Hall, Englewood Cliffs, NJ, USA, 282 pp.

Gupta, S. and Gupta, B. B. (2017), “Cross-Site Scripting (XSS) attacks and defense

mechanisms: classification and state-of-the-art”, International Journal of System

Assurance Engineering and Management, Vol. 8, pp. 512 – 530.

186

Hamit, J. (2014), “Top Ten Web Security Risks: Missing Function Level Access Control

(#7)”, https://www.credera.com/insights/top-ten-web-security-risks-missing-function-

level-access-control-7, Accessed: May, 28, 2021.

Hana, R. I., Abeer, S. J. and Hana, E. (2019), “Software Engineering Cost Estimation Using

COCOMO II Model”, African Journal Online, 26 pp.

Hassan, M. M., Nipa, S. S. Akter, M., Haque, R., Deepa, F. N., Rahman, M., Siddiqui, A.

and Sharif, H. M. (2018), “Broken Authentication and Session Management

Vulnerability: A Case Study of Web Application”, International Journal of Simulation

- Systems, Science and Technology, Vol. 19, No. 2, 11 pp.

Henk, C. A. T. and Sushil, T. (2014), Encyclopaedia of Cryptography and Security, Springer

Science and Business Media, 1457 pp.

Hopkins, S., Henry, C., Bagui, S., Mishra, A., Kalaimannan, E. and John, C. S. (2020),

“Applying a Verified Trusted Computing Base to Cyber Protect a Vulnerable Traffic

Control Cyber-Physical System”, IEEE Southeast Conference, 8pp.

Hussain, S., Farid, S. and Mumtaz, I. (2019), “Is Customer Satisfaction Enough for Software

Quality?”, International Journal of Computer Science and Software Engineering

(IJCSSE), Vol. 8, No. 2, pp. 40-47.

Ibanga, I. (2021), “Steps to Build a School Management Portal in Nigeria, Things Needed,

Cost, Benefits”, https://infoguidenigeria.com/steps-to-build-a-school-management-

portal-in-nigeria/, Accessed: March 20, 2021.

Ishikawa, K. (1989), “How to apply companywide quality control in foreign countries”,

Quality Progress, Vol. 22, No. 9, pp. 70 ‐ 74.

Islam, A. and Tsuji, K. (2011), “Evaluation of Usage of University Websites in

Bangladesh”, DESIDOC Journal of Library and Information Technology, Vol. 31, No.

6, pp. 469 - 479.

Jamwal S. R. and Jamwal D. (2009), “Issues and Factors for Evaluation of Software Quality

Models”, Proceedings of the 3rd National Conference, INDIACom, 9 pp.

187

Johns, M., Engelmann, B. and Posegga, J. (2008), “XSSDS: Server-side Detection of Cross-

site Scripting Attacks”, Annual Computer Security Applications Conference, pp. 335 –

344.

Johnson, M. (2016), Cyber Crime Security and Digital Intelligence, Routledge Publishers,

2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN, 304 pp.

Johnston, P. (2021), “Historical Software Accidents and Errors”, https://embeddedartistry.

com/fieldatlas/historical-software-accidents-and-errors/, Accessed: 17 April, 2021.

Juran, J. M. (1988), Juran on planning for quality, New York free Press, London, 341 pp.

Justiniano, I. (2015), “Security Models: Integrity, Confidentiality and Protection of the

Data”, https://www.linkedin.com/pulse/security-models-integrity-confidentiality-

protection-data-justiniano/, Accessed: May 12, 2021.

Kabir, M. A., Rehman, M. and Majumdar, S. I. (2016), “An Analytical and Comparative

Study of Software Usability Quality Factors”, 7th IEEE International Conference on

Software Engineering and Service Science (ICSESS), pp. 800 - 803.

Kasisopha, N., Rongviriyapanish S. and Meananeatra, P. (2020), “Method Evaluation for

Software Testability on Object Oriented Code”, 2020 59th Annual Conference of the

Society of Instrument and Control Engineers of Japan (SICE), pp. 308 - 313.

Kassie, N. B. and Singh, J. (2020), “A study on software quality factors and metrics to

enhance software quality assurance”, International Journal of Productivity and Quality

Management, Vol. 29, No. 1, pp. 24–44.

Kaur, S. (2012), “Software Quality”, International Journal of Computers and Technology,

Vol. 3, No. 1, pp. 127 – 131.

Kaur, S., Kaur, K. and Kaur, P. (2016), “An Empirical Performance Evaluation of

Universities Website”, International Journal of Computer Applications, Vol. 146, No.

15, pp. 10 – 16.

188

Kelley, P. G., Komanduri, S., Mazurek, M. L., Shay, R., Vidas, T., Bauer, L. and Lopez, J.

(2012), “Guess Again (and Again and Again): Measuring Password Strength by

Simulating Password-Cracking Algorithms”, IEEE Symposium on Security and Privacy,

pp. 523 - 537.

Khwanruthai, B. (2012), “How to do AHP Analysis in Excel”, Division of Spatial

Information Science Presentation Slides for Graduate School of Life and Environmental

Sciences, University of Tsukuba, 21pp.

Kitchenham, B. and Pickard, L. (1989), “Towards a Constructive Quality Model. Part 2:

Statistical Techniques for Modelling Software Quality in the ESPRIT REQUEST

Project”, Software Engineering Journal, pp 114 -126.

Kokalitcheva, K. (2015), “Drivers’ Licenses and Social Security Numbers were leaked

online by Uber”, www.fortune.com, Accessed: June 26, 2018.

Kous, K., Pusnik, M., Hericko, M. and Polancic, G. (2018), “Usability Evaluation of a

Library Website with Different End User Groups”, Journal of Librarianship and

Information Science, pp. 1 – 16

Kudkar, I. (2021), “OWASP: Sensitive Data Exposure Attacks”, https://medium.

com/shallvhack/owasp-sensitive-data-exposure-attacks-7ef41e6b4a59, Accessed: May

28, 2021.

Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X. and Kumar, P. (2017) “A review of multi

criteria decision making (MCDM) towards sustainable renewable energy development”,

Journal of Renewable and Sustainable Energy Reviews, Vol. 69, pp. 596 - 609.

Kumar, P. and Singh, S. K. (2016), “A Comprehensive Evaluation of Aspect-Oriented

Software Quality (AOSQ) Model using Analytic Hierarchy Process (AHP) Technique”,

2nd International Conference on Advances in Computing, Communication, &

Automation (ICACCA) (Fall), 7 pp.

Kurt, S. (2011), “The accessibility of university web sites: the case of Turkish universities”,

Universal Access in Information Society, Vol. 10, No. 1, pp. 101 – 110.

189

Lai, V. S., Wong, B. K. and Cheung, W. (2002), “Group decision making in a multiple

criteria environment: A case using the AHP in software selection”, European Journal

of Operational Research, Vol. 137, pp. 134–144.

Lai, Y. and Ishizaka, A. (2019), “The application of multi-criteria decision analysis methods

into talent identification process: A social psychological perspective”, Journal of

Business Research. Elsevier, Vol. 109, pp. 637-647.

Lisa, C. (2001), “Is quality negotiable?”, STARWest Software Testing Conference, 2 pp.

Liu, G., Wang, C., Zhang, R., Wang, Q., Song, H. and Ji, S. (2017), “BTG-BIBA: A

Flexibility-Enhanced Biba Model Using BTG Strategies for Operating System”,

International Journal of Computer and Information Engineering, Vol. 11, No. 6, pp.

765–771.

Liu, H., Dai, Z., Li, J. and Zhou, Y. (2016), “An Improved MLS Policy Model”, 10th IEEE

International Conference on Anti-counterfeiting, Security, and Identification (ASID),

pp. 47–52.

Madan, A. and Dubey, S. K. (2012), “Usability Evaluation Methods: a literature review”,

International Journal of Engineering Science and Technology (IJEST), Vol. 4, No. 2,

pp. 590-599.

Mahmudova, S. and Jabrailova, Z. (2020), “Development of an algorithm using the AHP

method for selecting software according to its functionality”, Journal of Soft Computing,

Vol. 24, pp. 8495 - 8502.

Martin, S. (2020), “Create A Social Media App & How Much It Costs In 2021”,

https://medium.com/flutter-community/build-a-social-media-mobile-app-its-cost-

features-business-model-etc-62718c7d05e4, Accessed: March 20, 2021.

Martins, J., Bezerra, C., Uchoa, A. and Garcia, A. (2020), “Are Code Smell Co-occurrences

Harmful to Internal Quality Attributes? A Mixed-Method Study”, Proceedings of the

34th Brazillian Symposium on Software Engineering, pp. 52 – 61.

190

Maryoly, O., Perez, M. A. and Rojas, T. (2002), “A Systemic Quality Model for Evaluating

Software Products”, Investigative Laboratory and Information System, 6 pp.

McCall, J. A., Richards, P. K., and Walters, G. F. (1977), “Factors in Software Quality”,

RADC TR, US Rome Air Development Centre Reports, Vol. 1, pp. 77-369,

McMillin, B and Roth, T. (2017), Cyber-Physical Security and Privacy in the Electric Smart

Grid, Morgan and Claypool Publishers, 66 pp.

Mishra, A. and Otaiwi, Z. (2020), “DevOps and software quality: A systematic mapping”,

Computer Science Review, Vol. 38, 13 pp.

Moe, E. E. and Thwin, M. M. S. (2019), “Effective Security and Access Control Framework

for Multilevel Organisations”, Advances in Biometrics, pp 267-288.

Mohammed, A. A., Ruzaini, A. A., Emad, A. and Nabil, E. (2016), “The Effect of Security

and Privacy Perceptions on Customers Trust to Accept Internet Banking Services: An

Extension of TAM”, Journal of Engineering and Applied Sciences, Vol. 11, No. 3, pp.

545 - 552.

Mohino, J. V., Higuera, J. B., Higuera, J. R. B. and Montalvo, J. A. S. (2019), “The

Application of a New Secure Software Development Life Cycle (S-SDLC) with Agile

Methodologies”, State of the Art of Cyber Security, Vol. 8, No. 11, pp. 12-18.

Morgenstern, M., Marx, A. and Landesman, M. (2005), “Insecurity in Security Software”,

Virus Bulletin Conference, pp. 212-221.

Nasrabadi, M. Z. and Parsa, S. (2021), “Learning to Predict Software Testability”, 26th

International Computer Conference, Computer Society of Iran (CSICC), pp. 1 – 5.

Nielsen, J. (2003), “Usability 101: Introduction to Usability,”

http://www.ingenieriasimple.com/usabilidad/IntroToUsability.pdf, Accessed: March

22, 2021.

191

Nielsen, J. (2012), “Usability 101: Introduction to Usability,”

https://www.nngroup.com/articles/usability-101-introduction-to-usability/, Accessed:

March 22, 2021.

Nihal, K. and Abran, A. (2001), “Analysing Measuring and Assessing Software Quality

Within a Logic-Based Graphical Framework”, International Conference on Structural

Dynamics, 8 pp.

Nilson, M., Antinyan, V. and Gren, L. (2019), “Do Internal Software Quality Tools Measure

Validated Metrics?”, International Conference on Product-Focused Software Process

Improvement, pp. 637 – 648.

Nistala, P., Nori, K. V. and Reddy, R. (2019), “Software Quality Models: A Systematic

Mapping Study”, IEEE/ACM International Conference on Software and System

Processes, pp.125-134.

Noe, E. (2017), “Usability, Accessibility and Web Security Assessment of E-government

Websites in Tanzania”, International Journal of Computer Applications, Vol. 164, No

5, pp. 42 – 48.

O’Shea, M. (2017), “How does a web application work”, https://www.quora.com/What-is-

a-web-application-3, Accessed: April 8, 2021.

Ochaun, M. (2020), “Using Components with Known Vulnerabilities”,

https://securityboulevard.com/2020/04/using-components-with-known-vulnerabilities-

2/, Accessed: May 29, 2021.

Ogundele, L. A. (2018), “Software Quality Assurance using Adaptive Agent-based

Cleanroom Approach”, Unpublished PhD Thesis Report, Federal University of

Technology, Akure, 190 pp.

Okudan, O. and Budayan, C. (2020), “Assessment of Project Characteristics Affecting Risk

Occurrences in Construction Projects using Fuzzy AHP”, Sigma Journal of Engineering

and Natural Science, Vol. 38, No. 3, pp. 1447 – 1462.

192

Olav, L. (2018), The Huawei and Snowden Questions, Springer International Publishing,

123pp.

Omar, S. and Fahad, A. (2017), “Integrating Knowledge Life Cycle within Software

Development Process to Produce a Quality Software Product”, International

Conference on Engineering and Technology (ICET), pp. 1 – 7.

Osman T., Adballah, O. B., Reda, M. S. A., Mohammed, R. and Kabli, A. (2014),

“Construction Projects Selection and Risk Assessment by Fuzzy AHP and Fuzzy

TOPSIS Methodologies”, Applied Soft Computing, Vol. 17, pp. 105-116.

Ouissem, B. F., Omar, C., Moez, K., Habib, H. and Abdelouahib, D. (2021), “An OWASP

Top Ten Driven Survey on Web Application Protection Method”, International

Conference on Risks and Security of Internet and Systems, Vol. 34, No. 1, 16 pp.

Padayachee, I., Kotze, P. and Van-Der-Merwe, A. (2010), “ISO 9126 external systems

quality characteristics, sub-characteristics and domain specific criteria for evaluating E-

Learning systems”, Conference of the Southern African Computer Lecturers

Association, South Africa, 9 pp.

Panagiotou, D. and Mentzas, G. (2011), “Leveraging Software Reuse with Knowledge

Management in Software Development”, International Journal of Software Engineering

and Knowledge Engineering, Vol. 21, No. 5, pp. 693 – 723.

Pandya, D. and Patel, N. J. (2016), “OWASP Top 10 Vulnerability Analyses in Government

Websites”, International Journal of Enterprise Computing and Business Systems, Vol.

6, No. 1, pp. 1 - 18.

Parthasarathy, S., Sridharan, C., Chandrakumar, T. and Sridevi, S. (2020), “Quality

Assessment of Standard and Customised COTS Products”, International Journal of

Information Technology Project Management, Vol. 11, No. 3, pp. 1–13.

Patel, S. and Sahani, G. J. (2018), “A Survey on Different Type of Access Control Model

for Personal Health Record (PHR) System”, International Journal of Research in

Engineering, Science and Management, Vol. 1, No. 9, pp. 380 - 384.

193

Pedamkar, P. (2020), “What is Application Software and Its Types”,

https://www.educba.com/what-is-application-software-its-types/, Accessed: March 20,

2021.

Petersen, J. (2021), “The United States air accident investigator says metal fatigue is the

likely cause of an engine fire on a Boeing 777 aircraft last week”,

https://search.informit.org/doi/full/10.3316/TVNEWS.TSM202102230238, Accessed:

March 7, 2021.

Poggi, A. (2018), “Information Attacks and Defenses on the Social Web”, Global

Implications of Emerging Technology Trends, 20 pp.

Pohl, C., and Hof, H. J. (2015), “Secure scrum: development of secure software with

scrum”, The Ninth International Conference on Emerging Security Information, Systems

and Technologies – SECURWARE, 7 pp.

Polat, G., Damci, A., Turkoglu, H. and Gurgun, A. P. (2017), “Identification of root causes

of construction and demolition (C&D) waste: The case of Turkey”, Creative

Construction Conference, pp. 948 – 955.

Qui, Y. F. Chui, Y. P. and Helander, M. G. (2006), “Usability Analysis of Mobile Phone

Camera Software Systems”, IEEE Conference on Cybernetics and Intelligent Systems,

pp. 1–6.

Quirchmayr, G., Funilkul S. and Chutimaskul, W. (2007), “A Quality Model of E

Government Services Based on the ISO/IEC 9126 Standard”, Proceedings of

International Legal Informatics Symposium, IRIS, 8 pp.

Rahardjo, E., Mirchandani, D. and Joshi, K. (2014), “E-Government Functionality and

Website Features: A Case Study of Indonesia”, Journal of Global Information

Technology Management, pp. 31-50.

Ramkumar, M. (2017), Minimal TCB for System-Model Execution, The 2017 International

Conference on Security and Management, 7 pp.

194

Regan, G., McCaffery, F., Chandra, P. P., Reich, J., Armengaud, E., Kaypmaz, C., Guo, Z.

J., Zeller, M., Longo, S. and O’Carroll, E. (2020), “Quality improvement mechanism

for cyber physical systems - An evaluation”, Journal of Software: Evolution and

Process, Vol. 32, No. 11, 11 pp.

Rehman, A. (2019), “How Much Does It Cost to Build a Mobile-App like NatWest Online

Banking App?”, https://www.branex.co.uk/blog/how-much-does-it-cost-to-build-a-

mobile-app-like-natwest-online-banking/, Accessed: March 20, 2021.

Saaty, T. L. (1977), “A scaling method for priorities in hierarchical structures”, Journal of

Mathematical Psychology, Vol. 15, No. 3, pp. 234 – 281.

Saaty, T. L. (2008), “Decision making with the analytic hierarchy process”, International

Journal of Services Sciences, Vol. 1, No. 1, pp. 83 – 98.

Sahu, K. and Srivastava, R. K. (2018), “Soft Computing Approach for Prediction of

Software Reliability”, ICIC Express Letters ICIC International, Vol. 12, No. 12, pp.

1213–1222.

Saini, G. L., Panwar, D., Kumar, S. and Singh, V. (2020), “A systematic literature review

and comparative study of different software quality models”, Journal of Discrete

Mathematical Sciences and Cryptography, Vol. 23, No. 2, pp. 585 – 593.

Salleh, M. A., Bahari, M. and Zakaria, N. H. (2017), “An Overview of Software

Functionality Service: A Systematic Literature Review”, Procedia Computer Science,

Vol. 124, pp. 337–344.

Salman, O., Kayssi, A., Chehab, A. and Elhajj, I. (2017), “Multi-Level Security for the

5G/IoT Ubiquitous Network”, Second International Conference on Fog and Mobile

Edge Computing (FMEC), IEEE, pp. 188–193.

Salve, M. S., Samreen, S. N. and Khatri-Valmik, N. (2018), “A Comparative Study on

Software Development Life Cycle Models”, International Research Journal of

Engineering and Technology (IRJET), Vol. 5, No. 2, pp. 696 – 700.

195

Saravanan, N. and Umamakeswari, A. (2020), “Lattice Based Access Control for Protecting

User Data in Cloud Environments with Hybrid Security”, Journal of Computers and

Security, 23 pp.

Sarkar, B. (2011), “Fuzzy decision making and its applications in cotton fibre grading”, In

Woodhead Publishing Series in Textiles: Soft Computing in Textile Engineering,

Woodhead Publishing, Majumdar, A. (eds.), pp. 353 – 383.

Schinagl, S., Paans, R. and Schoon, K. (2016), “The Revival of Ancient Information

Security Models, Insight in Risks and Selection of Measures”, 49th Hawaii

International Conference on System Sciences, Vol. 1, pp. 4041 – 4050.

Sharma, A., Kumar, R. and Grover, P. S. (2020), “Managing Component-Based Systems

with Reusable Components”, International Journal of Computer Science and Security,

Vol. 1, No. 2, pp. 52 – 57.

Sharma, C. and Dubey, S. K. (2015), “A Perspective Approach of Software Reliability

Models and Techniques”, ARPN Journal of Engineering and Applied Sciences, Vol. 10,

no. 16, pp. 7300 - 7308.

Sharma, M. K. (2017), “A study of SDLC to develop well engineered software”,

International Journal of Advanced Research in Computer Science, Vol. 8, No. 3, pp.

520 – 523.

Shasha, S., Mahmoud, M., Mannan, M. and Youssef, A. (2019), “Playing with Danger: A

Taxonomy and Evaluation of Threats to Smart Toys”, IEEE Internet of Things Journal,

Vol. 6, No. 2, pp. 2986 - 3002.

Shewhart, W. A. (1931), Economic Control of Quality Manufactured Product, Van

Nostrand Publishing, New York.

Siavvas, M. G., Chatzidimitriou, K. C. and Symeonidis, A. L. (2017), “QATCH - An

adaptive framework for software product quality assessment”, Expert Systems with

Applications, Vol. 86, pp. 350 – 366.

196

Signore, O. (2005), “A comprehensive model for Web sites quality”, Seventh IEEE

International Symposium on Web Site Evolution, pp. 30-36

Singh, P., Thevar, K., Shetty, P. and Shaikh, B. (2015), “Detection of SQL Injection and

XSS Vulnerability in Web Application”, International Journal of Engineering and

Applied Sciences (IJEAS), Vol. 2, Issue 3, pp. 16 – 21.

Smith, J. (2021a), “Desktop Applications Vs. Web Applications”,

https://www.streetdirectory.com/travel_guide/114448/programming/desktop_applicati

ons_vs_web_applications.html, Accessed: May 20, 2021.

Smith, J. (2021b), “eCommerce Website Pricing: Determining Cost of an eCommerce

Build”, https://www.outerboxdesign.com/web-designarticles/ecommerce_website_ pricing,

Accessed: March 20, 2021.

Srinivasan, S. M. and Sangwan, R. S. (2017), “Web App Security: A Comparison and

Categorisation of Testing Frameworks”, IEEE Software Journal, Vol. 34, No. 1, pp. 99-

102.

Sudhodanan, A., Carbone, R., Compagna, L., Dolgin, N., Armando, A. and Morelli, U.

(2017), “Large-Scale Analysis & Detection of Authentication Cross-Site Request

Forgeries”, IEEE European Symposium on Security and Privacy (EuroS&P), pp. 350-

365.

Sukmasetya, P., Setiawan, A. and Arumi, E. R. (2020), “Usability evaluation of university

website: a case study”, Journal of Physics: Conference Series, Vol. 1517, 6 pp.

Sundar, V. (2014), “OWASP A9 Using Components with Known Vulnerabilities”,

https://www.indusface.com/blog/components-known-vulnerabilities/, Accessed: May

29, 2021.

Suveetha, K. and Manju, T. (2016), “Ensuring confidentiality of cloud data using

homomorphic encryption”, Indian Journal of Science and Technology, Vol. 9, No. 8, 7

pp.

197

Tabassum, A., Bhatti, N. S., Asghar, R. A., Manzoor, I. and Alam, I. (2017), “Optimised

Quality Model for Agile Development: Extreme Programming (XP) as a Case

Scenario”, (IJACSA) International Journal of Advanced Computer Science and

Applications, Vol. 8, No. 4, 9 pp.

Teknomo, K. (2017), “Analytic hierarchy process (AHP) tutorial”,

https://people.revoledu.com/kardi/tutorial/AHP/, Accessed: March 25, 2021.

Thamer, A. A., Mohammad, M. and Ahmad, A. (2013), “Evaluating the Quality of Software

in ERP Systems Using the ISO 9126 Model”, International Journal of Ambient Systems

and Applications (IJASA), Vol. 1, No. 1, pp. 1-9.

Thomas, M. (2020), “Software 101: A Complete Guide to the Different Types of Software”,

https://www.coderus.com/software-101-a-complete-guide-to-the-different-types-of-

software/, Accessed: March 20, 2021.

Tinnaluri, V. S, N. (2016), “A Panorama of Quality Assurance (QA) In Software

Appliances”, International Journal of Current Research and Academic Review, Vol. 4,

No. 6, 9 pp.

Toapanta, M., Nazareno, J., Tingo, R., Mendoza, F., Orizaga, A. and Mafla, E. (2018),

“Analysis of the Appropriate Security Models to Apply in a Distributed Architecture”,

IOP Conference Series: Materials Science and Engineering, Vol. 423, 6 pp.

Tomov, L. and Ivanova, V. (2015), “Software Quality from Systems Perspective”,

Proceedings of the 11th Annual International Conference on Computer Science and

Education in Computer Science, 10 pp.

Tripathi, S. (2014), “A Survey on Quality Perspective and Software Quality Models”, IOSR

Journal of Computer Engineering (IOSR-JCE), Vol. 16, No. 2, pp. 63-72.

Uska, M. Z., Wirasasmita, R. H. and Fahrurrozi, M. (2019), “The application of Usability

Testing Method for Evaluating the New Student Acceptance (NSA) System” Journal of

Physics: Conference Series, Vol. 1539, 6 pp.

198

Valenti, S., Cucchiarelli, A. and Panti, M. (2002), “Computer Based Assessment Systems

Evaluation via the ISO9126 Quality Model”, Journal of Information Technology

Education, Vol. 1, No. 3, pp. 157-175.

Verma, S. and Mehlawat, M. K. (2017), “Multi-criteria Optimisation model integrated with

AHP for evaluation and selection of COTS components”, Special Issue on Advances in

Optimisation Theory and Applications on the occasion of the International Conference

on Recent Advances in Optimisation Theory and Applications – RAOTA, Vol. 66, No.

11, pp. 1879 - 1894, pp. 1–16.

Waliaro, D. O., Omieno, K. and Ondulo, J. (2019), “Analysis of Software Quality Models

for ERP Software Use in University in Kenya”, International Journal of Advanced

Research in Computer and Communication Engineering, Vol. 8, No. 10, pp. 58–61.

Wang, C., Tsai, H., Ho, T., Ngugen, V. and Huang, Y. (2020), “Multi-Criteria Decision

Making (MCDM) Model for Supplier Evaluation and Selection for Oil Production

Projects in Vietnam”, Journal of Multi-Objective Optimisation of Processes, Vol. 8, No.

2, 13pp.

Weichbroth, P. (2018), “Usability Attributes Revisited: A Time-Framed Knowledge Map”,

Federated Conference on Computer Science and Information Systems (FedCSIS), 25 pp.

Weiss, A., Gautham, S., Jayakumar, A. V., Elks, C. R., Kuhn, R., Kacker, R. N. and

Preusser, T. B. (2021), “Understanding and Fixing Complex Faults in Embedded

Cyberphysical Systems”, Journal of Computers, Vol. 54, No. 1, pp. 49 – 60.

Westmacott, M. (2019), “Biba Security Model Inspired Social Media Security Controls”,

Conference for Truth and Trust Online, 2 pp.

Yadav, A. and Shah, R. (2015), “Review on Database Access Control Mechanisms and

Models”, International Journal of Computer Applications, Vol. 120, No. 18, 4pp.

Yadav, S. and Kishan, B. (2020), “Analysis and Assessment of Existing Software Quality

Models to Predict the Reliability of Component-Based Software”, International Journal

of Emerging Trends in Engineering, Vol. 8, No. 6, 17 pp.

199

Yujun, M., Lingli, L., Shuaijun, D. and Guofeng, L. (2019), “AHP-Based Software Quality

Risk Assessment Method for Information System”, Scientific Conference on Network,

Power Systems and Computing (NPSC), pp. 189–193.

Zeng, G. (2019), “On the confusion matrix in credit scoring and its analytical properties”,

Journal of Communications in Statistics - Theory and Methods, Vol. 49, No. 9, pp. 2080

– 2093.

Zhang, J., Hu, H. and Huo, S. (2021), “A Browser-based Cross Site Request Forgery

Detection Model”, 2nd International Conference on Electronics and Communication,

Network and Computer Technology (ECNCT), Chengdu, China, 5 pp.

Zhu, D., Yang, Y., Jin, H., Shao, J. and Feng, W. (2016), “Application of Modified BLP

model on Mobile Web Operating System”, IEEE TrustCom/BigDataSE/ISPA, pp. 1818-

1825.

200

APPENDICES

APPENDIX A CODES USED

<!doctype html>

<html>

<head>

 <base href="/">

 <meta charset="utf-8" />

 <link rel="icon" type="image/png" href="assets/img/favicon.ico">

 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />

 <title>Software Assurance Test</title>

 <!-- Animate -->

 <link href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/3.2.0/animate.min.css"

rel="stylesheet">

 <style media="screen">

 #loader { position: absolute;

 display: block;

 left: 0;

 right: 0;

 margin-left: auto;

 margin-right: auto;

 top: 50%; }

 </style>

</head>

<body>

 <app-root>

 <div id="loader"></div>

201

 </app-root>

</body>

</html>

import {Request, Response} from "express";

const axios = require("axios");

const webdriver = require("selenium-webdriver"),

 By = webdriver.By,

 until = webdriver.until;

const Key = require("selenium-webdriver");

const gtmetrix = require("gtmetrix")({

 email: "admin@rudefish.wtf",

 apikey: "0af802c318438f2783d59121d373a7a7",});

export const testComponent = {

 runTest: (req: Request, res: Response) => {

 const sites = [

 req.body.site1,

 req.body.site2,

 req.body.site3,

 req.body.site4,];

 let results: any = [];

 let sendRequest = (site: any) => {

 return new Promise((resolve: any, reject: any) => {

 const testDetails = {

 url: `${site}`,

 location: 1,

 browser: 3,};

202

 gtmetrix.test.create(testDetails).then((data: any) => {

 gtmetrix.test.get(

 data.test_id,

 5000,

 (error: Error, response: any) => {

 if (response) {

 results.push(response);

 resolve(response); } else {

 console.log(error.message);

 reject(error);}}

 });

let sendAllRequests = async () => {

 let i = 0;

 for (let site of sites) {

 try { await sendRequest(site);

 i += 1;

 if (i == 4) {

 return res.status(200).json(results); }

 } catch (e: any) {

 i += 1;

 return res.status(500).send(e);}} };

 sendAllRequests();},

 makeGetRequests: (req: Request, res: Response) => {

 const sites = [

 req.body.site1,

 req.body.site2,

203

 req.body.site3,

 req.body.site4,];

 let results: Array<any> = [];

 let sendRequest = (site: any, times: number) => {

 return new Promise((resolve: any, reject: any) => {

 let totalRequests = times;

 let sReq = 0;

 let sErr = 0;

 let miniPromise = () => {

 return new Promise((resolve: any, reject: any) => {

 for (let i = 0; i < totalRequests; i++) {

 axios

 .get(`${site}`)

 .then((response: any) => {

 if (response) {

 sReq += 1;

 } else {

 sErr += 1;}

 if (i == totalRequests - 1) {

 resolve(response);}

 })

 .catch((error: Error) => {

 sErr += 1;

 if (i == totalRequests - 1) {

 reject(error);}

 });

204

 let fireMiniPromise = async () => {

 try {

 await miniPromise();

 const dataToPush = {

 totalRequests: totalRequests,

 success: sReq,

 failure: totalRequests - sReq, };

 results.push(dataToPush);

 resolve(dataToPush);

 } catch (error: any) {

 reject(error);} };

 fireMiniPromise();

 }); };

 let sendGetRequests = async () => {

 let i = 0;

 for (let site of sites) {

 try {

 await sendRequest(site, Number(req.body.no_of_times));

 i += 1;

 if (i == 4) {

 return res.status(200).json(results); }

 } catch (error: any) {

 i++;

 return res.status(500).send(error); } };

 sendGetRequests(); },

