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ABSTRACT 

 

Transforming coordinates from the WGS84 datum to the Accra 1929 reference frame is still 

a problem for geospatial professionals in Ghana, as long as Ghana has not moved to the 

geocentric datum.  This research applied the Bursa-Wolf transformation model to determine 

transformation parameters, changed the World Geodetic System 1984 (WGS84) points to 

the Accra datum and then projected the transformed coordinates onto the Transverse 

Mercator 1o NW projection system being used in Ghana. The Bursa-Wolf results were 

compared to the Group Method of Data Handling (GMDH) and the Least Square Support 

Vector Machine (LS-SVM). For all methods, the geodetic coordinates of the global system 

were transformed to the geodetic coordinates of the War Office before projection. To get the 

optimal performance of the model, the K-fold cross-validation approach was applied. Thirty-

four points were used and divided into five folds. The average of the horizontal positional 

error of the five-folds gave the model the best output. The result reveals that the LS-SVM, 

GMDH and the Bursa-Wolf models average root mean square horizontal positional error of 

2.5541, 3.0312, 3.3396, respectively; average mean horizontal positional error of 2.1904, 

2.6191, 2.7578; and averaged standard deviation of 1.7, 2.139, 2.3563 respectively. It shows 

that LS-SVM is of best performance than the GMDH and the Bursa-Wolf model. Since the 

horizontal error of the LS-SVM is higher than the allowable ±0.9114 m standard for 

horizontal measurement in Ghana, the LS-SVM was recommended to be used for only low-

order surveys like data collection for GIS databases, and topographic surveys.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

 

It is noteworthy that the Global Navigation Satellite System (GNSS) technology, 

specifically the American Satellite system that is widely used, is configured to the World 

Geodetic System 1984 (WGS 84) datum; while Ghana adopts two local datums known as 

the Accra 1929 Datum and the Legon 1977 Datum (Kumi-Boateng and Ziggah, 2020a). The 

ellipsoid realised by the Accra datum is the War Office 1926, and the ellipsoid realised by 

the Legon 1977 Datum is the Clark 1880 (modified) (Kumi-Boateng and Ziggah, 2020a). 

The WGS84, which is a global datum, and the Accra 1929 datum are completely distant due 

to the difference in datum size, shape, and origin (Ayer, 2008). As Ghana utilises the GNSS 

technology for most of its survey works, it is imperative to change from the WGS84 

reference frame to Accra 1929 reference frame for data compatibility. In doing that, data 

associated with the global datum will be commensurate with the local geodetic datum. The 

transfer of coordinates between the universal and local datums is an age-old challenge in 

geoscience, with Ghana being affected. The geodetic framework of Ghana has been 

identified as extremely warped due to a variety of problems with the local geodetic networks' 

setting up and the quality of the data they produce in general (Ayer, 2008; Ayer and Fosu, 

2008; Poku-Gyamfi, 2009). 

 

Existing studies (Solomon, 2013; Laari et al., 2016; Ziggah and Yakubu, 2017;) have 

presented a series of numerical methods like the geocentric translation model, Abridged 

Molodesnky, Molodensky-Badekas, Bursa-Wolf, the Veis, and models for transforming 

coordinates. These mathematical models have helped geodesists and geospatial 

professionals to perform coordinate transformations between different reference datums. 

However, these aforementioned transformation models are limited because of their 

inadequacy in handling the distortion associated with spatial data having link with two 

unlike datums (Tierra et al., 2008). Moreover, the models cannot be implemented without 

the determination of transformation parameters. Hence, there is always the need to have a 

functional relationship between the datums before it can be applied.  
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Literature has revealed that geospatial scientists are adopting Artificial Intelligence (AI) as 

a modern alternative approach to numerical models for coordinate transformation (Kumi-

Boateng and Ziggah, 2020b).  This is due to its robustness, nonparametric form, and ability 

to handle the distortion associated with spatial data between different datums (Ziggah et al., 

2017). Moreover, AI methods allow users to significantly train the data to predict an output 

with a desired error without any parametric relationship established. Unlike the traditional 

transformation models, the AI do not need transformation parameters to perform coordinate 

transformation. Because of the strength of AI, its application could benefit the geospatial 

sector of Ghana with accurate positioning information that aids in good estimation of 

volumes and areas, accurate boundaries demarcation, and promotes proper planning, 

management, and decision-making about the land and natural resources. In the light of that, 

the study applied two AI methods to transform coordinates from the WGS84 to the Accra 

1929 datum. The methods employed include Group Method of Data Handling (GMDH) and 

Least Square Support Vector Machine (LS-SVM). 

 

1.2 Objectives of the Thesis 

 

The objectives of this study are to: 

 

i. Determine transformation parameters for the study area using a numerical approach; 

ii. Develop AI models to perform coordinate transformation; 

iii. Compare the results of the classical and AI models; and 

iv. Determine the best transformation model using statistical performance indicators. 

 

1.3 Methods Used  

 

The following methods were used to efficiently complete this research: 

 Literature review; 

 Numerical transformation model to determine the parameters and to perform the 

transformation; 

 Artificial intelligence approach to transform coordinate precisely, GMDH and LS-

SVM; 

 Compare the best results from the numerical model (Bursa-wolf) to the Artificial 

Intelligence models using some statistical indicators; and 
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 Analysis of the results. 

 

1.4 Resources Used 

 

The following were the resources used for this research: 

 Secondary data of common points of geodetic coordinates from Ghana Survey and 

Mapping Division of Lands Commission; 

 MATLAB 2022b from the Computer Science Department; 

 Internet facilities at UMaT. 

  

1.5 Organisation of Thesis 

 

This thesis is arranged into six chapters (1 – 6). Chapter One identifies the problem of 

coordination transformation in Ghana, the objectives of the study, research methods used 

for the study, and resources used. Chapter Two gives the overview of the study area in terms 

of its location, topography and climate. Relevant literatures on the topic are given in Chapter 

Three, where Ghana’s Geodetic Reference frame is reviewed, earth surfaces, Geodetic 

Datums, Coordinates Systems, Coordinates Operation and Map Projection are discussed. 

Chapter Four reveals the resources and details of the method used for this thesis. Chapter 

Five presents results obtained from the study, which include: determined parameters, tables, 

graphs of all models, and Performance metric as well as the discussion associated with them. 

Chapter Six summarises the entire research with conclusion and recommendation as the 

main component. 
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CHAPTER 2 

RELEVANT INFORMATION ABOUT THE STUDY AREA 

 

2.1 Location 

 

Ghana is a nation in West Africa that spans up to 536 km from east to west between 

longitudes 3o  W and 1o  E and 672 km from north to south between latitudes 4.5o  N and 11o 

N. Cote d’Ivore, on the west; Burkina Faso, to the north; and  Togo, to the south are its 

neighbors (Mugnier, 2000). The regional map of Ghana in Figure 2.1 shows covered and 

uncovered regions of the study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

2.2 Topography 

 

The landscape of Ghana consists of desert mountains, and the Kwahu plateau is located in 

the south-central region.  The highest point in the Kwahu plateau is 883 m above sea level, 

whereas half of Ghana is below 152 m.  The majority of the 537 km of coastline of sandy 

shore, support by grasslands and bush, and cut by a number of rivers and streams, that can 

be accessed by canoe.  A tropical rain forest that continues northward from the shore, close 

Figure 2.1 Map of Ghana (Author’s Construct)  
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to the Ivory Coast border, and is divided by highly forested hills and numerous streams and 

rivers.  The majority of Ghana's minerals, lumber, and cocoa are produced in this region, 

known as the "Ashanti."  Low bushes, park-like savanna, and grassy plains cover the height, 

between from 91 m to 396 m above sea level, north of this region.   

 

2.3 Climate 

 

The tropical climate of Ghana ranges in temperature from 21° C to 32° C. Rainy months 

include April through July and September through November. On the shore, annual rainfall 

surpasses 200 cm, with a decline inland.  For coastal west Africa, Accra's annual rainfall 

average of 76 cm is low.  Most of the year, the country's southern region is humid, whereas 

the northern region is quite dry.  

  

2.4 Ghana’s Geodetic Reference Frame 

 

In Ghana, the geodetic datums for cadastral activities are the Legon 1977 datum and Accra 

1929 datum (Poku-Gyamfi, 2009; Ziggah et al., 2019)]. The War Office 1926 ellipsoid 

serves as the basis for the Accra 1929 datum, while the Clarke 1880 (modified) ellipsoid 

serves as the basis for the Legon 1977 datum (Kumi-Boateng and Ziggah, 2020a). Sir 

Frederick Gordon Guggisberg, the Gold Coast Colony's previous governor started the 

nation's geodetic survey in June 1904. With a final estimated azimuth error of 0.360", the 

Governor's use of a zenith telescope to measure latitude from a pillar within the grounds of 

the Secretary of Native Affairs' home in Accra (Poku-Gyamfi, 2009) produced accurate 

results.  The Gold Coast Survey (G.C.S.) 547's longitude was determined by the 

transmission of telegraphic signals with Cape Town, South Africa, in November and 

December of that same year (Mugnier, 2000). Despite the fact that the effect of local 

attractions was noticed in subsequent monitoring, the G.C.S. 547 (Accra), with latitude 5o 

23' 43.33" N and longitude 0o 11' 52.3" W, was chosen as the beginning point for latitude 

and longitude for the then Gold Coast Colony. It was eventually discovered that a more 

practical system than geographic coordinates was required for the purpose of surveying and 

mapping. This led to adopting a Ghana Grid, a Transverse Mercator (TM) projection 

[(Mugnier, 2000) and (Poku-Gyamfi, 2009)]. Ghana’s adopted Transverse Mercator 

projection has a longitude of 10 00’ 00’’ as its central meridian and a latitude of 40 40’ N. 

Avoiding negative coordinates from being generated, a False Easting of 274319.736 m was 
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added to any Y coordinates with a False Northing of zero. It was observed that a scale factor 

of 0.99975 was better appropriate at the longitude of origin (Kumi-Boateng and Ziggah, 

2020b). 
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Figure 3.1 Earth Spherical Model (Bezdek and Sebera, 2013) 

CHAPTER 3 

LITERATURE REVIEW 

 

3.1 Earth Reference Surfaces 

 

Earth models are approximate sizes and shapes of the earth. An earth model is necessary to 

convert measurements obtained on the curved earth into maps or databases.  Each model 

has benefits and drawbacks. Each is usually to some extent erroneous. Some of these errors 

are due to the design of the model rather than the measurements used to generate it. The 

three commonly used models of the earth (Clynch, 2002) are: 

 

 The Spherical (globe) model 

 The ellipsoidal model 

 The Real Earth (Geoid) model 

 

3.1.1 The Spherical (globe) Model 

 

The globe is a fine representation of the earth in an elementary discussion of the earth. The 

sphere is the figure that lower the potential energy of the gravitational attraction of all the 

little mass elements for each other (Clynch, 2002). The spherical model shows how oblate 

the earth is; flatten at the poles and widen at the side. Figure 3.1 shows the earth spherical 

Model. 
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3.1.2 The Ellipsoidal Model 

 

The ellipsoid is a model of the earth because the earth rotates. The Earth's rotating and 

gravitational forces combine to cause it to be slightly flattened near the poles, and the Earth's 

gravity fields gently undulating equipotential surfaces share this trait. A better reference 

surface is an ellipsoid, which is defined in geodesy as a surface of revolution formed by 

rotating an ellipse about its minor axis. Ziggah (2017) claimed that ellipsoids with specific 

geometric qualities can be situated in specific ways to be approximations of the global geoid 

or approximations of regional portions of the geoid, giving rise to geocentric or local 

reference ellipsoids. 

 

Jessen (2009) stated that, “the geoid is computationally very complex, it is necessary to 

approximate it by a surface that can efficiently be handled mathematically, i.e. an ellipsoid 

of revolution (sometimes also called spheroid)”. Ellipsoids are characterized by two 

essential parameters, the size parameter, the semi-major axis, 𝑎 and the shape 

parameter, eccentricity 𝑒 or flattening 𝑓. A table of some common ellipsoids are given in 

Table 3.1. 

 

Table 3.1 Parameter of Some Ellipsoid In Use (Source: Jessen, 2009)  

Ellipsoid Semi-major axis a (m) Inverse flattening 

Airy 1830 6,377,563.396 299.3249646 

ANS 6,378,160.000 298.25 

Bessel 1841 6,377,397.155 299.1528128 

Clarke 1866 6,378,206.400 294.9786982 

Clarke 1880 6,378,249.145 293.465 

GRS80 6,378,137.00 298.257222101 

International 1924 6,378,388.00 297.0 

WGS84 6,378,137.00 298.257223563 

War Office 1926 6,378,299.99899832 296 

 

 

3.1.3 The Real Earth (Geoid) Model 

 

The geoid, a specific equipotential surface, represents the worldwide mean sea level, and 

because seas and oceans comprise roughly 70% of the Earth's surface, the geoid is a close 

approximation of the Earth's true shape (Ziggah, 2017). The real earth model is a smoothly 

undulating surface that is challenging to define mathematically, making it ineffective as a 
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Figure 3.2 Geoid Model of the Earth (Bezdek and Sebera, 2013) 

computational surface of reference. It is used for geodetic, geophysical, oceanographic and 

precise engineering applications (Mirghasempour and Joodaki, 2008). Figure 3.2 illustrates 

the geoid model. 

 

 

 

 

 

 

 

 

 

An important component in the position determination of any point is its height. The Global 

Positioning System (GPS) accurately derives the horizontal and vertical position of points 

on the earth's surface. The height captured by the GPS is the ellipsoidal height, which has 

its reference as the WGS84 ellipsoid, and is a global surface that represents the earth for 

geodetic computation since the geoid has an undulating nature. The geoid is used to estimate 

the physical shape of the Earth; it is the equipotential platform of the Earth’s gravity field 

(Borge, 2013). Using the geoid as a reference surface, the height obtained is the orthometric 

height. Vermeer (2019) term it as the height above sea surface. The geoidal and ellipsoidal 

heights are mathematically defined in Equation (3.1) as: 

                          𝐻 = ℎ − 𝑁                                                                    (3.1) 

where, H is the orthometric height, h is the ellipsoid height, and N is the geoidal 

height/geoidal undulation. The pictorial view of difference between the ellipsoid, earth 

surface and geoid are given in Figure 3.3. 

 

 

 

 

    

 

 

Figure 3.3 Ellipsoidal, Geoid and the Earth Surface Relationship (Eteje et al., 2018) 
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3.2 Geodetic Datum 

 

A datum is a reference surface and framework of the Earth's surface against which positional 

measurements are obtained for computing locations in geoscience (Dhungana and Lama, 

2014). A geodetic datum is primarily composed of horizontal and vertical datums, gravity 

datums as well as sounding datums. Geodetic datums serve as the framework and provide 

starting information for geospatial activities. 

 

To establish and maintain the elevation framework (vertical control network), coordinate 

framework (horizontal and satellite geodetic control networks), and gravimetric framework 

(gravity control network) geodetic datums are needed. Reasons for establishing a datum 

include defining a coordinate system, height system, and gravity reference system (Ziggah, 

2017). Traditional geodetic techniques use various datum to determine the horizontal 

coordinates and heights of locations on the Earth's surface.  Datum can be classified as: 

 Horizontal Datum 

 Vertical Datum 

 Geocentric Datum 

 Non-Geocentric Datum  

 

3.2.1 Horizontal Datum 

 

Horizontal datums consist of a network of control monuments whose horizontal positions 

have been determined by precise geodetic control surveys (Ghilani and Wolf, 2012). The 

establishment of a geodetic control network separates the horizontal from the vertical 

control network. The horizontal control network establishes the horizontal datum of a 

surface location. The datum itself is made up of a large number of survey markers that have 

been precisely surveyed and adjusted together to provide a consistent network of horizontal 

control from which all other horizontal measures can be derived. (Ghilani and Wolf, 2012). 
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Figure 3.4 Geocentric Datum (Dakhil, 2015) 

3.2.2 Vertical Datum  

 

Vertical datum serves as a foundation for elevation measurements and is used in a variety 

of spatial applications such as floodplain management, waterway navigation management, 

roadway and drainage design, agricultural management, and surveying in general (Jessen, 

2009). A vertical datum can also be defined as a base measurement point (or set of points) 

from which all elevations are referred.  

 

Vertical datum is important because all elevations need to be referenced to the same system. 

Without a vertical control framework, surveyors would calculate different elevation values 

for the same location. There are three kinds of vertical datums (geoid, quasi-geoid, reference 

ellipsoid) which are used in geodesy: the geoid, reference for orthometric and dynamic 

heights; the quasi geoid, reference surface for normal height; and the reference ellipsoid, 

reference surface for geodetic (geometric) height. A vertical datum is a zero-height surface 

of the national height system generally defined by mean sea level. 

 

3.2.3 Geocentric (Global) Datum 

 

The datum that most closely resembles the form and size of our planet is called the 

geocentric datum. Its ellipsoid's centre lines up with the mass axis of the Earth. In general, 

the geocentric datum is a decent fit for the earth as a whole, but not for a specific area. 

Figure 3.4 illustrates a Geocentric datum. 
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Figure 3.5 A Local Datum (Dakhil, 2015) 

3.2.4 Non-Geocentric (Local) Datum 

 

A local datum is defined by the International Federation of Surveyors as a datum that closely 

estimate the form and size of a specific section of the Earth's sea-level surface. It specifies 

a reference ellipsoid, the spatial location (coordinates) of an initial station and a direction 

(azimuth) from that station (Anon., 2014). Its ellipsoidal centre will never line up with the 

Earth's centre of mass and its z-axis is not parallel to the earth's rotational axis. Majority of 

the geodetic infrastructures established by countries were based on local datum until quite 

recently. Geocentric datums are used by Satellite Systems for spatial positioning. The 

Global satellite System used by the American Satellite system adopts the geocentric datum. 

A local datum is shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Coordinate System in Geodesy 

 

Points are very essential to Geoscientists as well as geospatial data users. From a 

geometrical perspective, a point is dimensionless and is designated by an order set of 

coordinates. Coordinates can be 1D (Height), 2D (Northing and Easting), or 3D (, λ, ℎ) or 

(𝑋, 𝑌, 𝑍). A coordinate system is described as a collection of numbers that specifically 

identify a point's location in space. To determine points attributes in space and depict them 

on maps, one must understand the principles of coordinate systems.  A coordinate system 

describing how coordinates are to be allocated to points, must be established to accurately 

represent the geographic location of features on a map (Ziggah et al., 2017).  
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Figure 3.6 Geodetic Coordinate System (Subirana et al., 2011) 

There are many coordinate system in use by geoscientists, but the most common used ones 

are: 

 Geodetic (ellipsoidal) coordinate system   

 Geocentric (Cartesian) coordinate system  

 GNSS Coordinate System 

 

3.3.1 Geodetic (Ellipsoidal) Coordinate System 

 

A geodetic coordinate system is a coordinate system that indicates the location of objects 

on the earth's surface based on the angle from the Greenwich meridian known as longitude, 

the angle from the equator known as latitude, and the height from the ellipsoidal surface of 

the meridian known as altitude (Eren and Hajiyev, 2013). This system is extremely accurate 

when it comes to locating an object near the Earth-space border. It is a three-dimensional 

coordinate system upon which all mapping systems are based, and it is widely used to store, 

organize, and communicate geographical data. Figure 3.6 shows the geodetic coordinate 

system. 

 

 

 

 

 

  

 

 

 

3.3.2 Geocentric (Cartesian) Coordinate System 

 

The Geocentric coordinate system refers to the Cartesian coordinate system with 3-

dimensions, (X, Y, Z); where Z axis runs parallel to the earth’s rotational axis northwards, 

The X axis runs across the intersection of the prime meridian and the equator, and the Y 

axis passing via the equator's junction with longitude 90oE the geodetic and geocentric 
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Figure 3.7 Geocentric Coordinate System (Eren and Hajiyev, 2013) 

systems are based on the same geodetic datum (Anon., 2022). For a specific geodetic datum, 

you find both geodetic and cartesian coordinate systems. Figure 3.7 gives a graphical 

definition of the Geocentric coordinate system. 

 

 

  

 

 

 

 

 

3.3.3 GNSS Coordinate System 

 

The World Geodetic System (WGS 84) is a universal coordinate system. This system is 

known as the earth-fixed Cartesian coordinates system. Definition of the origin and axis by 

Hassan et al., (2020) have the following description:  

 Its origin coincides with the centre of mass; 

 The X-axis is the intersection of the WGS84 reference meridian plane and the plane 

of the Conventional Terrestrial Pole (CTP) equator. 

 Y-axis completes a right-hand, earth-centred earth-fixed (ECEF) orthogonal 

coordinates system measured in the plane of CTP equator 90° east of the X-axis 

 the Z-axis is aligned parallel to the direction of the CTP for polar motion as initially 

defined by the Bureau International de I’ Heure (BIH) and in 1989 by the 

International Earth Rotation Service. 

 

The WGS 84 is a global coordinate system used by the GNSS-GPS and thus, provides a 

single, common, accessible three-dimensional coordinate system for geospatial data 

collection. Positions can be defined as X, Y, and Z or geographic coordinates of latitude, 

longitude and ellipsoidal height respectively. This system is graphically depicted in Figure 

3.8.  
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3.4 Coordinate Conversion  

 

The process of changing a coordinates system to another coordinate system is known as 

coordinate operation. A coordinate operation can be within the same datum or from one 

datum to another datum. Operation within the same datum is called Coordinate conversion. 

Conversion of coordinate can be termed as: 

 Forward Conversion (geodetic to cartesian); and  

 Reverse Conversion (Cartesian to geodetic)  

  

3.4.1 Forward Conversion 

 

Forward conversion is a coordinate operation within the same datum that changes the 

geodetic coordinate (𝜃, 𝜆, ℎ) to the cartesian coordinate(𝑋, 𝑌, 𝑍). This is the first step in 

coordinate transformation. A straight and easy to follow conversion of the geodetic 

coordinates (𝜃, 𝜆, ℎ) above a reference ellipsoid to the cartesian coordinates (X, Y, Z) could 

be carried out using the Bowring forward equation. 

 

3.4.2 Reverse Conversion 

 

The reverse conversion is simply transferring cartesian coordinates back to the geodetic 

coordinate of the same system. This is done to enable the coordinates to be projected onto 

the transverse Mercator. There is a clear and easy to follow relation that exists between the 

Universal Transverse Mercator (UTM) projected coordinates and the geodetic coordinates.  

Figure 3.8 The WGS 84 Coordinate System (Boon and Setan, 2007) 
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3.5 Coordinate Transformation 

 

Currently, the principal method for collecting geospatial information is the Global 

Navigation Satellite System (GNSS), which includes the Global Positioning System that is 

based on the WGS84. It is necessary to perform coordinate transformation in other to 

localize the GPS-derived datasets. The transformation of coordinates from one reference 

frame to another reference frame is a problem in spatial data processing (Ziggah and 

Yukubu, 2017). Coordinate transformation is defined as a mathematical approach that 

enables one to transfer coordinates of point from datum I to datum II and vice versa within 

the same geographic area (Ziggah and Laari, 2018).  

 

Coordinate transformations are used to bring spatial data into a common reference system. 

Most nations have established their universal frame of reference. For instance, since the 

GNSS-GPS, which uses the WGS 84 datum, is the extensively utilized instrument used for 

data collection, spatial data relating to the WGS 84 system must be transformed to the Local 

system so the data can be integrated into the local system. The Geocentric model, Abridge 

Molodensky model, Molodensky-Badekas model, Bursa-wolf model, Veis model are only 

a few of the three-dimensional (3D) conformal transformation models that can be used to 

transfer coordinates from one system of a datum to another. Factors that influence which 

model should be used include: 

 The size of the area. 

 The Magnitude of the distortion in both networks. 

 The Nature of the network; 1D, 2D or 3D. 

 The accuracy required. 

 

Since datum transformation had become so paramount because of the local datum adopted 

by countries, geodesists had categorized coordinate transformation into two as:  

 2D transformation 

 3D transformation 

The focus of this study is on the 3D transformation. 
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3.5.1 Three-Dimensional Transformation 

 

The 3D transformation model considers the X, Y, and Z axes in its formulation. A 3D 

transformation model has seven parameters that defines a functional relationship of 

coordinates in the two systems. These parameters include: three origin shift parameters (ΔX, 

ΔY, ΔZ) responsible to make the two origins to coincide, three rotation parameters (Rx, Ry, 

Rz) responsible to make the two-system axis parallel in all direction, and one scale 

parameter (sf) to account for any difference in scale between the two systems (Solomon, 

2013). 

 

Bursa – Wolf Model 

 

The 3D conformal coordinate transformation also known as the 3D similarity Model is 

widely used for geodetic applications by surveying, photogrammetry, and geodesy 

professionals (Ziggah, 2022). The Bursa-Wolf model has seven-parameters which include:  

scale change, three axes’ rotations and three origin- shifts to relates points in two different 

3D coordinate system (Ziggah et al., 2016a). The geometry of Bursa-Wolf model is 

presented in Figure 3.9  

 

 

      

 

 

 

 

 

 

 

 

The Bursa – Wolf Transformation model Equation (3.2) is expressed in vector form as  

𝐼2 = 𝑡2 + (1 + 𝑑𝑠)𝑅𝑠 𝐼1                                                      (3.2)  

this can be also expressed in matrix form Equation (3.3) as: 

Figure 3.9 Geometry of Bursa-Wolf Transformation (Deakin, 2006a) 
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[
𝑋
𝑌
𝑍
]

2

= (1 + ∆𝑆) [
1 𝑅𝑍 −𝑅𝑌

−𝑅𝑍 1 𝑅𝑋

𝑅𝑌 −𝑅𝑋 1
] [

𝑋
𝑌
𝑍
]

1

+ [

𝑡𝑋
𝑡𝑌
𝑡𝑍

]                                (3.3) 

 

3.5.2 Artificial Intelligence 

 

One of the most recent scientific and engineering disciplines is AI. After World War II, 

work began; and the name was first used in 1956 (Russell and Norvig, 2010). AI is of two 

words, Artificial, which means man-made and intelligence, means thinking power. Based 

on these two words, AI can be referred to as man-made thinking power.  

 

However, AI is an aspect of computer science that deals with the development of computers 

or machines that are as intelligent as humans. AI studies how the human brain works, how 

we learn, how we make judgement and how we solve real world problems (Shirkin, 2020); 

a technology which tries to mimic how the human being reasons, how animal reasons, how 

the trees reason, how we stay in our environment, how the trees mate to produce their 

offspring, all comes into AI.   

 

AI approaches are universal function approximation; they are applied in many disciplines 

such as biology, computer science, mathematics, Statistics, geosciences and etc. AI is an 

umbrella that covers Machine Learning (ML) and deep learning. However, to analyse data 

and learn from the input data, machine learning employs algorithms. There are three main 

types of ML: supervise Learning, unsupervised Learning and reinforced supervise learning. 

   

Artificial Neural Network (ANN) 

 

Based on our understanding of how the human brain responds to stimuli from sensory 

inputs, ANN that depicts the relationship between an input and an output signal (Lantz, 

2013). To solve issues, the ANN employs a network of artificial neurons, similar to how the 

brain employs a network of interconnected cells known as neurons to build a massively 

parallel processor. As a result, ANNs are motivated by the human being's occupational 

functionality and its capability of investigating and processing data to produce optimal 

results employing a network of interconnected artificial neurons. (Dutta et al., 2010). The 

following are the components of a mammalian neuron's basic structure: nucleus, cell body, 

dendrites, synapses or synaptic terminals and axon (Figure 3.10) which is artificially 

represented as (artificial neurons) in (Figure 3.10) as inputs (dendrites), interconnections 
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(synapses), node which is summing junction of the inputs, weight and bias (cell body) and 

the output (axon). The strength of AI is its ability to handle both linear and non-linear data; 

linear and non-linear regression problems.  

 

  

  

   

  

  

    

 

 

 

 

  

Group Method of Data Handling 

 

The Group Method of Data Handling (GMDH), a learning technique inspired by nature, 

uses polynomial transfer functions to generate a nonlinear mapping of consecutive neuron 

layers to approximate the relationship between inputs and outputs (Amiri and Soleimani, 

2021). This technique is useful for approximating function, recognising patterns, and 

identifying higher order non-linear systems (Kumi-Boateng and Ziggah, 2020b). 

Ivakhnenko designed the GMDH with the goal of reducing the difficulties involved with 

identifying system variables, that was required in other models but usually difficult to 

calculate (Ivakhnenko, 1971). Therefore, geoscience professional usually estimate the 

variable which are time consuming and unreliable predicted outcome. Hence, the GMDH 

became evolved to conquer such issues via its self-setting up nature (AlBinHassan and 

Wang, 2011). The GMDH is made up of a feed-forward multilayer network (Figure 3.11) 

of quadratic neurons to represent the functional connection between the input-output 

variables (Kumi-Boateng and Ziggah, 2020b).  

 

Figure 3.10 A Schematic Diagram of a Biological Neuron (Yegnanarayana, 2005) 
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The technique is known for its excellent prediction capabilities, speed in learning, and 

ability to convert to the best regression surface. This occurrence is possible as a result of the 

GMDH's optimization strategy, which regularly chooses the best shape by employing a 

pruning process in a layer-by-layer manner relying on the mean squared error (MSE) 

criterion (Assaleh et al., 2013). The system will automatically cease adding layers if the 

MSE of the next layer is greater than the MSE of the previous layer. In this case, the 

algorithm chooses the lowe MSE component in the top layer as its final model result (Kumi-

Boateng and Ziggah, 2020b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Least Square Support Vector Machine 

 

The Least Square Support Vector Machine (LS-SVM) is the least squares formulation of 

Support Vector Machine employed to provide solution to classification and function 

estimation related problems (Suykens et al., 2022). The LS-SVM used for this research was 

designed as a function approximator to perform coordinate transformation. The design 

involves solving a set of linear equations to find the model parameters. Given a model 

building data, 𝐷 = {(𝑥𝑚,𝑦𝑚,)|𝑚 = 1,2, … , 𝑛} with input data 𝑥𝑚  ∈ 𝑅𝑡 and its 

corresponding output 𝑦𝑚 ∈ 𝑟, where 𝑅𝑡 is the  𝑡 - vector space dimension and 𝑟 the one-

dimensional vector space. The rationale is to fit a functional model 𝑦(𝑥) on the model 

building data such that the model becomes useful to infer the 𝑦 target for a new input data 

Figure 3.11 Basic GMDH Structure (Kumi-Boateng and Ziggah, 2020b) 
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point 𝑟. The LS-SVM model is mathematically given by (Ziggah et al., 2019a) in Equation 

(3.4):   

𝑦(𝑥) = 𝑤𝑇(𝑥) + 𝑏                                                          (3.4) 

Where, w is the adjustable weighted vector; T, the transpose; (𝑥), the non-linear 

transformation that maps the input data into a higher dimensional space and 𝑏 is the scalar 

threshold.  Considering the structural Risk minimization rule, Equation 2.1 gives the LS-

SVM function approximation model for transforming coordinates (Ziggah et al., 2019a). 

 

3.6 Map Projection 

 

A map projection is a methodical conversion of a position's latitude and longitude on the 

surface of the Earth to a piece of paper (Ghaderpour, 2015). Specifically, a map projection 

is the process of converting a set of geodetic coordinates (the latitude and longitude) into a 

set of plane coordinates on a map (the Cartesian coordinates x and y); such that: (Lat, Long) 

= (Y, X) or (N, E).   Mapmakers attempt to convert the earth, a spherical, round globe, to 

flat paper. Cartographers use map projections to provide a spherical globe on a plane. When 

going from a curved surface to a plane, angles, areas, directions, and distances might 

deform.   However, distortion occurs whenever the Earth's surface is converted to a flat 

surface, and no map projection is flawless. Whether the earth is a sphere or a spheroid, its 

surface cannot be precisely developed into a plane, just as it is not possible to completely 

flatten a peel of an orange without shattering it. As a result, whatever method is employed 

to display a big area on a map, there will always be some deformation. Due to this, unlimited 

map projections have been developed for mapmaking (Solomon, 2013). Each map 

projection keeps certain spatial characteristics while losing others. 

 

Cartographer classified map projections based on property preserved (conformal, equal 

area, qual distance and azimuthal projections), Projection surface (Conical, cylindrical and 

Planar), geometrical (Gnomonic, stereographic, orthographic projections) or mathematical 

(Mercator projector), Aspect (Normal, transverse and oblique) and the relationship between 

the projection surface and the globe (tangent projection and Secant Projection) (Usery et al., 

2020). The conical, cylindrical and azimuthal projections are the three major projection 

classes that are named after the developable surface (Delmelle and Dezzani, 2015). They 

have linear or point contact with the sphere. 
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Figure 3.12 Projection Surfaces of Map Projection (Usery et al., 2020) 

The advantage of these shapes is that, their curvature is in one dimension only, they can be 

flattened to a plane without any further distortion (Delmelle and Dezzani, 2015). Some 

projection surfaces are shown in Figure 3.12. 

 

 

 

 

 

 

 

The scale factor of the projection and the map scale are two frequently misunderstood map 

projection-related numbers. In contrast to a map scale, which is an approximation for 

converting map distances to terrestrial distances and is typically printed on the map, a scale 

factor of the projection is used to calculate precise direction and distance using a map 

projection's coordinates. It is calculated as the ratio of the length of an arc along a 

differentially snail line in the projection plane to the length of an arc on the ellipsoid.  

 

3.6.1 Mercator Projection 

 

The point scale factor for the Mercator projection is one along the equator, and it is a 

cylindrical, conformal projection. The equator is known as the line y = 0.  At the poles, this 

projection is vague. Mercator developed it in 1569 as a result of his attempts to make the 

loxodrome, also known as the line of constant bearing on the globe, appear as a straight line 

on the map (Usery et al., 2020). Meridians and parallels are straight lines forming a 

rectangular grid. Meridians are equidistantly spaced; parallels are spaced at distances 

increasing rapidly away from the equator. To produce a true conformal projection, Mercator 

introduced exactly the right degree of north-south increase in scale needed to match the east-

west increase in scale resulting from maintaining parallel meridians. Thus, at 60°, the east-

west scale has been increased to twice that at the equator (Gomes and Hut, 2019). Thus, true 

scale is only at the equator. Meridians are vertical straight lines with equal spacing, while 
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Figure 3.13 Cylinder Orientation for the Transverse Mercator Projection (Gomes and Hut, 2019) 

parallels are horizontal lines with variable spacing (Usery et al., 2020). In this projection, 

the poles are at infinity on the map, therefore the parallel spacing gets wider as you get 

closer to them. The Mercator projection is unique in that, in addition to conformity, the 

rhumb line of the earth is depicted on the map as a straight line, making it extremely useful 

for navigation.  

 

3.6.2 Transverse Mercator Projection 

 

A transverse Mercator projection is a normal Mercator projection that has been rotated via 

a 90° angle so that it is related to a central meridian similarly to how a regular Mercator 

projection is related to the equator (Usery et al., 2020). The scale is accurate along a 

meridian known as the central meridian because the cylinder is tangent to the globe at that 

point. This projection is conformal, just like the standard Mercator, however it loses the 

Mercator's ability to project straight lines.   A cylindrical transverse Mercator projection is 

presented in Figure 3.13. 

 

The projection further characteristics include: 

  a straight line is used to symbolize the centre meridian and a line perpendicular to 

it;  

 parallels are complicated curves that are concave toward the pole, while other 

meridians are complicated curves that are concave toward the 0o longitude; and  

 only along the centre meridian is the scale accurate. 
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3.6.3 Universal Transverse Mercator Projection (UTM) 

 

The Universal Transverse Mercator (UTM) offers global georeferencing with high degrees 

of accuracy; it is an extension to Transverse Mercator (TM) projection system, formulated 

in 1936 by the International Union of Geodesy and Geophysics and later adopted by the US 

Army in 1947 (Ziggah, 2017). UTM coordinates define two dimensional horizontal 

positions. An equiangular transverse secant cylindrical projection is how the UTM 

projection can be conceptualized physically.   

 

There is a Sixty zone numbering system of the Universal Transverse Mercator projection 

labelled from one to sixty, starts at one hundred eighty degrees West longitude and ends at 

one hundred eighty degrees East longitude (Deakin, 2006b). The central meridian is place 

in the middle of each zone, with three degrees on both sides of the central meridian. 

Additionally, this projection technique places the true origin of coordinates for each zone at 

the point where the equator and the central meridian intersect, with a central meridian scale 

factor of 0.9996 (Deakin, 2006b). Each zone is further subdivided into strips of eight degrees 

latitude starting at eighty degrees S. The letters C through X are assigned, while O and I are 

left out in order to prevent distortion. In order to prevent negative coordinates, each zone is 

assigned a false Easting and a false Northing coordinate that are placed 500 000 meters west 

of the true origin for the northern hemisphere and 50 000 meters west and 10 000 000 meters 

south of the true origin for the southern hemisphere, respectively (Deakin, 2006b). 

 

3.6.4 Geography Coordinates to Projected Coordinates 

 

Projecting geographic coordinates for the curve earth surface to a plane (map) and vice versa 

is done with the help of mathematical models. This research presents the models for moving 

from geodetic coordinates to UTM projected coordinate as seen in Equations (3.5) and (3.6). 

 

𝑚 = 𝑎(𝐴𝑜𝜃 − 𝐴2𝑠𝑖𝑛2𝜃 + 𝐴4𝑠𝑖𝑛4𝜃 − 𝐴6𝑠𝑖𝑛6𝜃)                                           

                       𝐴𝑜 = 1 − (𝑒2 4⁄ ) − (3𝑒4 64⁄ ) − (5𝑒6 256⁄ )                                                 

                   𝐴2 = 3 8(𝑒2 +⁄    𝑒4 4 + 15𝑒6 128⁄⁄  )                                                             

 𝐴4 = 15 156(𝑒4 + 3𝑒6 4⁄⁄ )                                                                              

   𝐴6 = 35𝑒6 3072⁄                                                             
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 𝑚𝑜 is obtained by evaluating in using  𝜃𝑜 

𝑣 = 𝑎 (1 − 𝑒2 𝑠𝑖𝑛2∅)1 2⁄⁄                                            

                                         𝜌 = 𝑎(1 − 𝑒2) (1 − 𝑒2 𝑠𝑖𝑛2𝜃)3 2⁄   ⁄            

ѱ = 𝑣 𝜌⁄                                                                         

𝑡 = 𝑡𝑎𝑛 𝜃                                                                    

                                   𝜔 = 𝜆 − 𝜆𝑜                                                                                                   

𝑁 = 𝑁𝑜 + 𝑘𝑜(𝑚 − 𝑚𝑜 + 𝑇𝑒𝑟𝑚 1 + 𝑇𝑒𝑟𝑚 2                                                         

    +𝑇𝑒𝑟𝑚 3 + 𝑇𝑒𝑟𝑚 4)                                                                             (3.5) 

Where: 

                              𝑇𝑒𝑟𝑚 1 = 𝜔2 2(𝑣𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)  ⁄                                                       

  𝑇𝑒𝑟𝑚 2 = 𝜔4 24(𝑣𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃(4ѱ2 + ѱ + 𝑡2))                    ⁄     

          𝑇𝑒𝑟𝑚 3 = 𝜔6/ [𝑣𝑠𝑖𝑛𝜃𝑐𝑜𝑠5𝜃(8ѱ4(11 − 24𝑡2) − 28ѱ3(1 − 6𝑡2) 

+ѱ2(1 − 32𝑡2) ] −  ѱ(2 𝑡2) + 𝑡4]             

𝑇𝑒𝑟𝑚 4 = 𝜔6/40320 [𝑣𝑠𝑖𝑛𝜃𝑐𝑜𝑠7𝜃(1385 − 3111𝑡2             

+543𝑡4 − 𝑡6)]                                                

 

𝐸 = 𝐸𝑜 + 𝐾𝑜𝑉𝜔𝑐𝑜𝑠𝜃(1 + 𝑇𝑒𝑟𝑚 5 + 𝑇𝑒𝑟𝑚 6 + 𝑇𝑒𝑟𝑚 7                           (3.6) 

and

                              𝑇𝑒𝑟𝑚 5= 𝜔2 6(𝑐𝑜𝑠2𝜃(ѱ − 𝑡2) ⁄                                                                                   

                𝑇𝑒𝑟𝑚 6= 𝜔4 120[𝜃(4ѱ3(1 − 6𝑡2) + ѱ2(1 + 8𝑡2) − 𝑡2(ѱ2 + 𝑡2)] ⁄     

 

𝑇𝑒𝑟𝑚 7= 𝜔6 5040[𝑐𝑜𝑠6𝜃(61 − 479𝑡2 + 179𝑡4 − 𝑡6)]        ⁄  
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3.7  Review of Application of Artificial Intelligence in Coordinate Transformation  

 

The strength of AI is clearly spelt out and recorded in literatures. It had been applied in the 

geodetic sector of Ghana and other countries for coordinate transformation. Ziggah et al., 

(2016b) accessed the performance of the Back Propagation Neuron Network (BPNN), 

Radial Basis Function Neural Network (RBFNN) and Multiple Linear Regression (MLR) 

for converting coordinates; a study that was conducted on Ghana’s geodetic reference frame. 

These AI approaches followed the supervised learning technique. The findings indicated 

that the AI models performed satisfactory prediction of the cartesian coordinates with 

maximum three-dimension position error of 0.004, 0.011 and 0.627 for the RBFNN, MLR 

and the BPNN respectively. 

 

Ziggah et al., (2016c) compared the performance of the RBFNN and BPNN in terms of 

plane coordinate transformation to that of the conventional (four parameters and six 

parameters) models. This paper was the first to transform plane coordinates between the 

Accra and Legon datums. In the past, the tradition transformation methods have been an aid 

to geospatial data users. Nowadays, the ANN has been recommended for coordinate 

transformation because of its power to absorb the heterogeneities and deformation existing 

in Ghana’s two datums. The results showed that the RBFNN performs better than the BPNN 

and the classical methods when transforming plane coordinates from Legon datum to Accra 

datum; however, when transforming the same plane coordinate from Accra to Legon datum, 

both the RBFNN and BPNN are nearly identical but perform better than the classical 

methods. The study's key contribution was to access and evaluate ANN's usefulness as a 

tool for transforming plane coordinates between the Accra and Legon datums. It was 

concluded that ANN can be used for practical surveying activities 

 

The Geocentric Translation Model, is not a priority in-terms of model selection for 

coordinate transformation because of its low accuracy obtain as compare to the others 

models. 

Ziggah et al., (2017) developed, tested and compared a new technique potential enough to 

strengthen the accuracy of Geocentric Translation Model. The authors used official 

parameters (OP) and additional parameters found from the arithmetic mean (AM) model to 

move coordinates from the WGS datum to the Accra datum. With regard to the result, the 

maximum horizontal position error was not welcoming withe OP and AM values of 2.75 
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and 1.99 respectively. Interestingly, an Error Compensation Model (ECM) was developed 

that incorporates the BPNN, RBFNN and the Generalized Regression Neural Network 

(GRNN) to account for the GTM error relative to the AM parameter. The new model 

reduced the error by 1.06 m. it was shown clearly that the accuracy of the ECM was far 

better that the GTM models. 

 

Kumi-Boateng and Ziggah (2017) applied a novel approach, the RBFNN to transform plane 

coordinates between the Legon 1977 datum and Accra 1929. The RBFNN results was 

compared with the four-parameters and six-parameters models. The results shows that the 

RBFNN predicted accurate and trusted results than the four-parameter and six-parameter 

models. The writers spelt out the strength of the RBFNN in handling the distortion 

associated with the local datum, a task that the classical methods (four-parameter and six-

parameter) cannot do. It was concluded that the ANN is a good alternative tool for plane 

coordinate transformation because of its ability to compensate for the distortion in the local 

reference networks. 

 

Ziggah et al., (2018) investigated the applicability of the Extreme learning machine (ELM), 

a new modern approach to coordinate transformation. The ELM model was tested the 

Ghana’s geodetic network and compared to the BPNN, RBFNN and the 2D Affine and 2D 

conformal models. The findings indicated that the ELM can deliver a reliable transformation 

result as compared to the BPNN and RBFNN; the ELM method is preferred because of its 

lesser computational time. Besides, building the structure of the ELM is easy and direct.   

On the other hand, ELM performance was superior to 2D affine and 2D comformal models.  

 

In Ziggah et al., (2019a) the Least Square Support Vector Machine (LS-SVM), a coordinate 

transformation extension of the Support Vector Machine, was studied in 2019a to see how 

well it performed and how useful it was. The LS-SVM was for the first time tested on the 

Ghana geodetic reference frame.  The writers compared the SVM and the RBFNN, BPNN, 

2D conformal and 2D affine transformation models. The RMSE and SD were used to assess 

the performance of the various models. The findings revealed that the LS-SVM produced 

comparable result as the RBFNN, but the two models performed better than the other 

models.   It was determined that the LS-SVM should be employed as an alternative 

technique for transforming coordinates because it satisfies Ghana's cadastral survey's 

accuracy requirements. The LS-SVM exhibits outstanding predictive power. 
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Ziggah et al., (2019b) performed coordinate transformation between global and local datum 

based on artificial neural network using k-fold cross validation technique. This study was 

the first research to look at the potential of the K-fold cross validation method in the 

performances of the Bursa-Wolf model and radial basis function neural network under 

sparse data situation in the Accra datum. It was mentioned that the hold-out cross validation 

has its weakness of inappropriate data partitioning. Bias and large variance may result from 

incorrect data division. The outcomes demonstrated that inappropriate data division of the 

sparse dataset for the local geodetic reference network into a single train-test experiment 

could result in incorrect conclusions that only depend on how the data was divided and the 

split set selected. The results showed that the RBFNN outperformed the Bursa-Wolf model, 

with horizontal position errors of 0.797 and 1.188 m, respectively, for the root mean square. 

 

Kumi-Boateng and Ziggah, (2020a) conducted research on the application of the RBFNN 

and total least square (TLS) for coordinate transformation in Ghana. The primary goal of 

the authors was to enhance TLS-RBFNN, estimation performance in coordinate 

transformation. The geodetic reference frame for Ghana was subjected to this hybrid 

technique. The results showed that the TLS-RBFNN increased the root mean square 

horizontal residual transformation accuracy of TLS and RBFNN by 20.2% and 37.3%, 

respectively. The TLS-RBFNN increased the transformation precision by 0.37% and 8.52%, 

respectively, with respect to the Standard Deviation (SD).  In support of this, the Bayesian 

information criterion (BIC) showed that the hybrid technique is more effective than utilizing 

the TLS and RBFNN separately.  It was seen that the TSL-RBFNN has the ability to modify 

its learning behavior to learn the complex patterns of the dataset.  

 

Kumi-Boateng and Ziggah (2020b) assessed the effectiveness of coordinate transformation 

using the GMDH. The spatial position of the used data is in Accra 1929 and Legon 1977 

datums. In Kumi-Boateng and Ziggah (2020b), the RBFNN, BPNN, 2D conformal, and 2D 

affine models were contrasted with the GMDH. The suggested GMDH method converts 

coordinates from the Legon 1977 datum to the Accra 1929 datum very effectively. 

Additionally, it was discovered that GMDH can provide comparable and gratifying 

outcomes compared to those of the well-known BPNN and RBFNN. In comparison to the 

machine learning models, the classical models underperformed. These authors observed that 

the self-adaptive ability of machine learning models to identify patterns in a data collection 
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without taking into account any functional relationships between the input and output 

variables is credited with the computational strength of these models. Based on the results, 

the GMDH model has demonstrated interesting application potential for executing 

coordinate transformation and has broad implications as a supplement approach for the 

geospatial and built environment practitioners in Ghana. 
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CHAPTER 4 

RESOURCES AND METHODS USED 

 

This chapter gives detail on the materials used for the study as well as the methods and 

procedures. All computations that were not detailed in the Literature review are been 

captured here. 

 

4.1 Resources Used 

 

4.1.1 Data Description 

 

The data obtain for this thesis is a secondary data of 34 common points of coordinates 

(𝜃, 𝜆, ℎ) for the WGS system and (𝜃, 𝜆, ℎ)  for War Office system; the corresponding 

projected coordinates (Northing, Easting) were also obtained. These points were observed 

from thirteen regions by the Survey and Mapping Division of the Land Commission of 

Ghana.  The descriptive statistic of the dataset is given in Table 4.1. Figure 4.1 presents the 

data distribution.  

 

Table 4.1 Descriptive Statistic of Common Points 

WGS LONG, WGS LAT, WGS HGHT, WAR LONG, WAR LAT, WAR HGHT are WGS 

Longitude, WGS Latitude, WGS Height, WAR OFFICE Longitude, WAR OFFICE Latitude 

and WAR OFFICE Height. 

 

 

  Min Max Mean SD 

WGS LONG -2.8585 0.495148 -1.24893 0.973451 

WGS LAT 5.3157 10.88084 7.719204 1.817085 

WGS HGHT 51.55 681.632 350.7673 178.1253 

WAR LONG -2.85874 0.494838 -1.24919 0.973426 

WAR LAT 5.312912 10.87823 7.716478 1.817148 

WAR HGHT 50.99107 680.4475 342.5377 179.3322 

NORTHING 234410.9 2253931 1106678 659294.3 

EASTING 224631.2 1442408 810291.7 352118.2 
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4.2 Method Used 

 

A summary of the various methodologies employed are presented as follows: 

 

 Determining transformation parameters using the Bursa-wolf Model; 

 Transforming from (𝜃, 𝜆, ℎ)  𝑤𝑔𝑠 to (𝜃, 𝜆, ℎ)  𝑊𝑎𝑟; 

 Transformation using AI approach, precisely, the GMDH and the LS-SVM; 

Figure 4.1 Map of Ghana Showing the Research Points 
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 Project the transformed coordinates of Bursa-Wolf as well as the predicted 

geographic coordinates of the GMDH and the LS-SVM unto the Transverse 

Mercator used in Ghana. 

 Comparison of results, the AI and the classical model. 

 Determine the best transformation model based on statistical analysis. 

Figure 4.2 presents the flow chart of the coordinate transformation carried out. 

 

 

 

 

 

 

     

     

 

 

 

 

 

 

 

 

 

 

4.2.1 Forward Conversion Method 

 

Forward conversion was the first step of coordinate transformation when using the 3D seven 

parameter conformal model of Bursa-Wolf.  The geographic coordinates of the WGS84 and 

the Accra 1929 datums were converted to Cartesian coordinates using the Standard forward 

equation in Equation (4.1), (Ziggah and Yakubu, 2017). This is because the Bursa-Wolf 

model utilizes cartesian coordinates. 

Figure 4.2 The Study's Flow Chart 
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 X = (N +  h) cos ϴ cos λ 
𝑌 =  (N +  h)cos ϴ sinλ 

𝑍 =  [N (1 – 𝑒2) +  h] sin𝛳

                                              (4.1) 

                                                                                       

where ϴ = Latitude,  λ = longitude, f = flattening, e = eccentricity. The radius of curvature 

in the prime vertical plane 𝑁, and e2 the first eccentricity is given by:  

                                             

 𝑎 √(1 − 𝑒2𝑠𝑖𝑛2ϴ)⁄                                                                 (4.2) 

                                            𝑒2 = 𝑓 (2 –  𝑓)                                                                          (4.3)         

 

4.2.2 Bursa – Wolf Transformation  

 

After the conversion process, the thirty-four points given in the Appendix A were used to 

determine transformation parameters using the Bursa-wolf model. The ordinary least square 

technique was applied to the Bursa-Wolf model for determining the transformation 

parameter. The determined parameters were then used to carry on the transformation from 

the global to the Accra datum. The least square equation (Laari et al., 2016) is given in 

Equation (4.4) as 

𝐴𝑋 = V + 𝐿                                                                              (4.4)  

where                                   𝑋 = (𝐴′ ∗ 𝐴)′ ∗ (𝐴′ ∗ 𝐿)                                                                

and 𝐴  is the design matrix, 𝑋 is the matrix of unknown parameters, 𝐿 is the observation 

matrix, and V is the residual matrix.  Through Equation (4.5), the seven-parameter 

transformation model used for this study has relationship with rectangular coordinate 

(Ziggah et al., 2019b): 

[
𝑋
𝑌
𝑍
]

𝑊𝑎𝑟

= [
𝑇𝑋

𝑇𝑌

𝑇𝑍

] + s𝑅(𝛼1, 𝛼2, 𝛼3) [
𝑋
𝑌
𝑍
]

𝑊𝐺𝑠

                                        (4.5)  

 

Where, [
𝑋
𝑌
𝑍
]

𝑊𝐺𝑆

is the WGS coordinate, [
𝑋
𝑌
𝑍
]

𝑊𝐴𝑅

 is the War Office Coordinate, and  

  

[
𝑇𝑋

𝑇𝑌

𝑇𝑍

] are the respective translation parameters along the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 axis 
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𝑠 is the scale factor 

𝑅 is the matrix of total rotation given as: 

 

𝑅 = [
𝑐𝑜𝑠𝛼3 𝑠𝑖𝑛𝛼3 0
−𝑠𝑖𝑛𝛼3 𝑐𝑜𝑠𝛼3 0

0 0 1
] [

𝑐𝑜𝑠𝛼2 0 −𝑠𝑖𝑛𝛼2

0 1 0
𝑠𝑖𝑛𝛼2 0 𝑐𝑜𝑠𝛼2

] [
1 0 0
0 𝑐𝑜𝑠𝛼1 𝑠𝑖𝑛𝛼1

0 −𝑠𝑖𝑛𝛼1 𝑐𝑜𝑠𝛼1

] 

 

where 𝛼1, 𝛼2, 𝑎𝑛𝑑 𝛼3 are the angles of rotation around x, y and z - axes. Expanding Equation 

(4.5) gives Equation (4.6) given as  

[
𝑋
𝑌
𝑍
]

𝑊𝐺𝑆

= [
𝑇𝑋

𝑇𝑌

𝑇𝑍

] + [
1 + 𝑠ղ 𝑅𝑍 −𝑅𝑌

−𝑅𝑍 1 + ղ 𝑅𝑋

𝑅𝑌 −𝑅𝑋 1 + 𝑠
] [

𝑋
𝑌
𝑍
]

𝑊𝐴𝑅

                   (4.6)  

As indicated earlier, the unknown parameters were determined using least squares 

technique. 

𝑋 =

[
 
 
 
 
 
 
𝑇𝑋

𝑇𝑌

𝑇𝑍

𝑅𝑋

𝑅𝑌

𝑅𝑍

ղ ]
 
 
 
 
 
 

  ,           𝐴 = [
1 0 0
0 1 0
0 0 1

  

0 𝑍𝐶 𝑌𝐶

 𝑍𝐶 0 𝑋𝐶

𝑌𝐶 𝑋𝐶 0
  

𝑋𝐶

𝑌𝐶

𝑍𝐶

]    ,             𝐿 = [

𝑋𝑊 − 𝑋𝐶

𝑌𝑊 − 𝑌𝐶

𝑍𝑊 − 𝑍𝐶

]        

where 𝑋 is the transformation parameters, 𝐿 is the matrix of observation, and 𝐴 is the design 

matrix. The estimated transformation parameters were then used to perform transformation 

and to project the transformed estimated coordinates onto the Traverse Mercator 1o  NW 

used for surveying and mapping works in Ghana. 

 

4.2.3 Reverse Conversion Method 

 

The bowing inverse equation given by (Kumi-Boateng and Ziggah, 2016) in Equation 

(4.7), (4.8) and (4.9) was used to convert the calculated projected coordinates back to 

geodetic coordinates:  

𝛳 = 𝑇𝑎𝑛−1(𝑍 + 𝑏𝑒′2𝑠𝑖𝑛3ψ)/(𝑃 − 𝑎𝑒2𝑐𝑜𝑠3ψ)                       (4.7) 

ψ ≅ 𝑇𝑎𝑛−1(𝑎𝑍/𝑏𝑃)                              

𝑃 = (𝑋2 + 𝑌2)1/2                                   

                                           𝑒2 = 𝑓 (2 –  𝑓)                                           

𝑒′2 = 𝑒2/ (1 − 𝑒2)                                    
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Where 𝜓 is the parametric latitude, 𝑃 is the perpendicular distance from the rotational 

axis, 𝑒 is the first eccentricity, 𝑒’2 is the second eccentricity, 𝑎 is the semi-major axis, 𝑏 is 

the semi-minor axis, and 𝑋, 𝑌 and 𝑍 are the cartesian coordinates. 

The longitude is given as (Ziggah, 2017):  

   λ = 𝑇𝑎𝑛−1(𝑌 𝑋⁄ )            (4.8) 

ℎ = [𝑃 𝑐𝑜𝑠𝛳⁄ ] − N                                                                      (4.9) 

 

4.2.4 Group Method of Data Handling 

 

This study applied the GMDH as one of the AI methods.  In the GMDH model development, 

the supervised learning technique was considered. The training and testing datasets were 

both normalized. Given that the machine learning method utilized weren't scale invariant, 

this step was crucial. Kumi-Boateng and Ziggah, (2020b) give the normalized equation in 

Equation (4.10) as: 

𝑁𝑖 = 𝑁𝑚𝑖𝑛 + (𝑁𝑚𝑎𝑥 − 𝑁𝑚𝑖𝑛) ∗ (𝑂𝑖 − 𝑂𝑚𝑖𝑛) (𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛)                     (4.10)⁄  

Where 𝑁𝑖 is the normalized data, 𝑂𝑖 is the recorded coordinates, 𝑂𝑚𝑖𝑛 and 𝑂𝑚𝑎𝑥 are the 

lower and upper interval of the recorded coordinates with 𝑁𝑚𝑎𝑥 and 𝑁𝑚𝑖𝑛 values set at 1 

and -1. The GMDH structure contain an input, hidden, and output layer feedforward 

structure. The first layer of the network was created using the input variables 

(𝜑, 𝜆, ℎ𝑤)  𝑤𝑔𝑠to build the GMDH model. Each succeeding layer then draws input from the 

layer before. In this instance, the network neurons' interconnectivity is considered 

automatically during training to enhance the network rather than being stagnant. The 

number of layers in the network was picked automatically to prevent overfitting, resulting 

in superior esimation result.  These characteristics illustrate the self-organizing nature of the 

GMDH approach. The (𝜑, 𝜆, ℎ𝑤)  𝑤𝑔𝑠  was used as an input to predict the (𝜑, 𝜆, )  𝑊𝑎𝑟  

separately. The predicted coordinates were projected unto the Transverse Mercator of 

Ghana using the classical model defined in Equations (2.10) and (2.11). 

 

4.2.5 Least Square Support Vector Machine  

 

To utilize the Least Square Support Vector Machine for this research, thirty-four points with 

coordinates in both WGs 84 and Accra 1929 datum were used. The thirty-four points were 

divided into five-folds. The average of the statistical indicators of all the five folds 

represents the actual characteristics of the dataset. A MATLAB code that follows the LS-
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SVM algorithm was written to predict the geographic coordinates of the Accra 1929 datum 

using the WGS 84 datum. 

 

The LS-SVM model takes the (𝜃, 𝜆, ℎ𝑤)  𝑤𝑔𝑠  as input quantities and 𝜃, 𝜆 as separate output.  

Both training and testing data were normalized using Equation (4.10). 

The training model of the LS-SVM for this research incorporates the Radial Basis function 

(RBF) as the kernel function. The RBF predicted very well then, the polynomial and linear 

kernels. The predicted Accra datum coordinates were then projected unto the Transverse 

Mercator 1o NW using Equation (3.5) and (3.6). 

 

4.2.6 The K-Fold Cross Validation 

 

The K-fold Cross Validation (KCV) technique was used for the data portioning. The thirty-

four points were split into five folds such that each can participate in the training process. 

Fold-1 to fold-4 contain seven points each while fold-5 has six points. The average of all 

five folds gives the optimal performance of the model. The use of the K-fold Cross 

Validation is motivated by the weakness of Hold-out Cross Validation (HCV) in an 

inappropriate data partitioning circumstance. An incorrect data split could result in a large 

variation and bias in the results obtained. Furthermore, in the case of a sparse dataset, the 

HCV is ineffective (Ziggah et al., 2019). Table 4.2 gives a summary of the data partition.  

 

Table 4.2 Five Folds Cross Validation Technique Structure 

Numbers 

of points 

per Fold 

First Trial Second Trial Third Trial Forth Trial Fifth Trial 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

7 Testing Training Training Training Training 

7 Training Testing Training Training Training 

7 Training Training Testing Training Training 

7 Training Training Training Testing Training 

6 Training Training Training Training Testing 

 

4.3 Model Performance 

 

The usefulness of a model depends on how close the model’s prediction is, compared to the 

targeted value.  Checking the precision and quality of the transformation outcomes that were 
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produced, a statistical analysis of the residuals from all models were accessed.  The 

statistical indicators used in this study to determine the model of best performance are in the 

preceding sub-heading. 

 

4.3.1 Root Mean Square Error  

 

The Root Mean Square Error (RMSE) is a statistical tool that integrates the ideas of bias 

and standard deviation and is always positive (Ziggah et al., 2019). It is used to measure 

how much model predictions deviate from actual data in a system.  An RMSE value of 

zero indicates optimal model performance. However, depending on the projected 

variable's units, the RMSE may really be any value between zero and infinity. Equation 

(10) was used to estimate the RMSE, which is given as: 

 

𝑅𝑀𝑆𝐸 = √𝑛−1 ∑(𝑇𝑖 − 𝑃𝑖)2

𝑛

𝑖

                                                        (4.10) 

Where RMSE is the Root Mean Square Error in each direction, 𝑛 is the number of 

coordinates, 𝑇𝑖 𝑎𝑛𝑑 𝑃𝑖 are Targeted and predicted coordinates. 

 

4.3.2 Root Mean Square of the horizontal Position Error 

  

The Root Mean Square Error of the horizontal (RMSEHE) was taken into account to 

calculate the overall uncertainty in the used integrated data. The (RMSEHE) is expressed 

mathematically in Equation (4.11). 

 

𝑅𝑀𝑆𝐸𝐻𝐸 = √(𝑅𝑀𝑆𝐸𝐸)2 + (𝑅𝑀𝑆𝐸𝑁)2                                       (4.11) 

Where 𝑅𝑀𝑆𝐸𝐻𝐸 is the Root Mean Square Error of the horizontal error,  𝑅𝑀𝑆𝐸𝐸 and 

𝑅𝑀𝑆𝐸𝑁 are the Root Mean Square Error of the eastings and northings. 

  

4.3.3 Horizontal Position Error  

 

By comparing the transformed coordinates to the desired coordinates, the Horizontal 

Position Error (HE) was calculated to determine the horizontal correctness of the data. 

 

𝐻𝐸 = √((𝐸𝑇 − 𝐸𝑃)2 + (𝑁𝑇 − 𝑁𝑃)2)                                         (4.12) 
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Where 𝐻𝐸 is the Horizontal Positional Error, 𝐸𝑇 𝑎𝑛𝑑 𝐸𝑃 are the targeted and predicted 

eastings, and  𝑁𝑇 𝑎𝑛𝑑 𝑁𝑃 are the targeted and predicted northings. 

 

 

4.3.4 Standard Deviation  

 

The precision of the anticipated coordinates generated by the model is assessed by the 

Standard Deviation (SD). This Standard deviation shows the consistency and spread of the 

residual.  

𝑆𝐷 = √(𝑛−1 ∑(𝑒𝑖 − �̅�)2)

𝑛

𝑖=1

                                                        (4.13) 

Where 𝑛 𝑖𝑠 the number of coordinates, 𝑒𝑖 is the error between the predicted and targeted 

grid coordinates with �̅� as its mean. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

After a series of computations involving the thirty-four points, the results are presented and 

analysed in this chapter. 

 

5.1 Results 

5.1.1 Numerical Transformation Model Results 

 

This study applied the Bursa-wolf transformation where seven parameters were determined. 

The determined parameters are presented in Table 5.1. The individual standard deviations 

of the determined parameters have also been presented in Table 5.1.  In order to understand 

the dynamics in the residuals produced when the least squares approach was applied to the 

Bursa-Wolf model, the residual plot given in Figure 5.1 was utilised. 

 

            Table 5.2 Transformation Parameter from Bursa-Wolf Model 

 

 

 

 

  

 

 

 

 

 

        Figure 5.1 Diagram of The Training Residuals of Bursa-Wolf Model 

 

Parameter and unit Value 

Tx (m) -147.435572 ± 3.0123 

Ty (m) 30.54724145 ± 6.6271 

Tz (m) 328.385179 ± 3.5339 

Rx (rad) -7.20E-06 ± 4.90E-07 

Ry (rad) 9.07E-08 ± 5.55E-07 

Rz (rad) -1.12E-06 ± 1.03E-06 

Sf (rad) -7.70E-06 ± 4.71E-07 
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5.1.2 AI Models Developed 

 

In the AI model development, the k-fold cross-validation approach was applied. Here, the 

34-data points were divided into five subsets (five folds) where each fold served in the 

training data.  Tables 5.2 and 5.3 present the various k-fold horizontal positional assessments 

produced by GMDH and LS-SVM. A diagrammatic representation of the performance 

metrics for each fold is shown in Figures 5.2 to 5.11. the training value has the unit of 

decimal degree (dd) and the unit of the testing value is meters (m) 

 

Table 5.3 The Horizontal Residual's Performance Metric for Fold 1-3  

Statistical  

Indicator 

 

Fold 1 

Training Testing 

GMDH LS-SVM GMDH LS-SVM 

RMSE HE 6.97E-06 6.01E-06 3.294527254 2.65086 

Min HE -1.4E-06 -1E-06 -0.519554739 -0.43282 

Max HE 1.57E-05 1.17E-05 8.654837444 6.151843 

Mean HE 5.89E-06 5.13E-06 2.658029987 2.257798 

SD 5.01E-06 4.29E-06 2.298672148 1.86833 

Statistical  

Indicator 

 

Fold_2 

Training Testing 

GMDH LS-SVM GMDH LS-SVM 

RMSE HE 7.98E-06 6.54E-06 2.868324486 2.640839 

Min HE -1.8E-06 -1.8E-06 -0.653631067 -0.48488 

Max HE 1.74E-05 1.22E-05 6.302268839 5.305128 

Mean HE 7.09E-06 5.85E-06 2.565575293 2.324424 

SD 5.7E-06 4.7E-06 2.044930409 1.886544 

Statistical 

 Indicator 

 

Fold 3 

Training Testing 

GMDH LS-SVM GMDH LS-SVM 

RMSE HE 6.65E-06 5.5E-06 3.253287497 2.688191 

Min HE -1.4E-06 -2.9E-07 -0.518163563 -0.09511 

Max HE 1.08E-05 1.06E-05 6.849397678 5.359657 

Mean HE 5.96E-06 4.71E-06 2.80429698 2.278811 

SD 4.72E-06 3.89E-06 2.27719116 1.866066 
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Figure 5.2 Horizontal Position Residuals for Fold 1 (Training) 

Table 5.4 The Horizontal Residual's Performance Metric or Fold 4 and Fold 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical 

Indicator 

 

Fold 4 

Training Testing 

GMDH LS-SVM GMDH LS-SVM 

RMSE HE 7.48E-06 6.27E-06 2.869958834 2.437454 

Min HE -1.4E-06 -5.3E-07      -0.51592840 -0.20529 

Max HE 1.64E-05 1.41E-05 5.972639976 5.128392 

Mean HE 6.57E-06 5.44E-06 2.533801251 2.126099 

SD 5.32E-06 4.43E-06 2.037204686 1.711717 

     

Statistical 

Indicator 

 

Fold 5 

Training Testing 

GMDH LS-SVM GMDH LS-SVM 

RMSE HE 7.2E-06 5.6E-06 2.869958834 2.35321 

Min HE -1E-06 -1E-06 -0.51592841 -0.4415 

Max HE 1.4E-05 1.2E-05 5.972639976 5.09003 

Mean HE 6.2E-06 4.7E-06 2.533801251 1.96503 

SD 5.2E-06 4.1E-06 2.037204686 1.65959 
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Figure 5.3 Horizontal Position Residuals for Fold 2 (Training) 

Figure 5.4 Horizontal Position Residuals for Fold 3 (Training) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digitized by UMaT Library



43 
 
  

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

0.000016

0.000018

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

H
o
ri
zo

n
ta

l 
P
o
si

ti
o
n
 E

rr
o
r 

(d
d
)

Training Data

GMDH LS-SVM

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

0.000016

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

H
o
ri
iz

o
n
ta

l 
P
o
si

ti
o
n
 E

rr
o
r 

(d
d
)

Training Data

GMDH LS-SVM

Figure 5.5 Horizontal Position Residuals for Fold 4 (Training) 

Figure 5.6 Horizontal Position Residuals for Fold 5 (Training) 
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Figure 5.7 Horizontal Position Residuals for Fold 1 (Testing) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Horizontal Position Residuals for Fold 2 (Testing) 
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Figure 5.10 Horizontal Position Residuals for Fold 4 (Testing) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Horizontal Position Residuals for Fold 3 (Testing) 
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Figure 5.11 Horizontal Position Residuals for Fold 5 (Testing) 

 

 

5.1.3 AI and Numerical Transformation Performance Results 

 

In this Section, results produced by the AI models (GMDH, LS-SVM) and Bursa – Wolf 

are presented.  The essence is to understand the dynamics of the results produced by each 

method and their respective strength in coordinate transformation. Therefore, the overall 

average performance of the AI models and the Bursa – wolf are presented in Table 5.4 and 

Figures 5.12 and 5.13.   

 

Table 5.5  Performance Metric for All Folds and Models (Average) 

Statistical 

Indicator 

 

Average 

Training (dd) Testing (m) 

BURSA-

WOLF GMDH LS-SVM 

BURSA-

WOLF GMDH LS-SVM 

RMSE HE 9.32E-06 7.24805E-06 5.9896E-06 3.339601 3.031211 2.55411 

Min HE 1.06E-06 -1.46743E-06 -9.47106E-07 0.390546 -0.54464 -0.33193 

Max HE 2.29E-05 1.49608E-05 1.21529E-05 8.318771 6.750357 5.407009 

Mean HE 7.69E-06 6.33357E-06 5.17529E-06 2.757802 2.619101 2.190432 

SD 6.57E-06 5.19646E-06 4.27519E-06 2.356277 2.139041 1.79845 
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Figure 5.12 Statistical Indicators (Average) of All Folds and Model (Training) 

 

 

 

 

 

 

 

 

 

  

 

 

   

 

Figure 5.13 Average Plot of All Folds and Models (Testing) 
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5.2 Discussion 

 

5.2.1 Bursa-Wolf Model   

 

The seven parameters (Table 5.1) determined by the Bursa-Wolf model are three 

translational parameters (Tx, Ty, Tz) responsible for making the two origins coincide, three 

rotational parameters (Rx, Ry, Rz) responsible for making the axis of the two-datum parallel 

and one scale factor (sf) responsible for making the length of the axis equal in all direction. 

The residuals produced when estimating the parameters were the main focus of the 

assessment of the effectiveness of the datum transformation procedures. The (X, Y, Z) 

residuals are represented as Vx, Vy, and Vz (Figure 5.1).  The residual shows a fairly 

consistent rise and fall around the threshold of zero.  From visual inspection of the seven 

parameter conformal transformation graphs of Figure 5.1, it was seen that in the Vz 

component, there were a few points that were a little far from the benchmark of zero while 

the Vx residuals are relatively smaller than the Vy residuals which are very close to the zero.  

Furthermore, the standard deviation of each parameter in Table 5.1 indicates the precision 

of the parameter.  

 

5.2.2 GMDH and LS-SVM Models 

 

The instrument used to access the extent to which the GMDH and LS-SVM, transformed 

geodetic coordinates deviate from the actual is the horizontal positional error (HE). Tables 

5.2 and 5.3 confirm the LS-SVM was better trained than the GMDH in all five folds for the 

model building and also performed better than the GMDH in all five folds for the model 

validation (Tables 5.2 and 5.3) (testing). This means, for each fold the LS-SVM was superior 

to the GMDH in both the training and testing process. The kernel function the LS-SVM 

used to give optimal performance was the RBF Kernal. The RBF predicted very well than 

the polynomial and linear kernels. The obtained result spelt out that the LS-SVM perform 

transformation more accurately than the GMDH. To further visualise the prediction 

superiority of LS-SVM, Figures 5.2 to 5.11 are presented.  It is obvious that the LS-SVM 

has demonstrated greater adaptability to the different folds than the GMDH. 
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5.2.3 Comparison Between AI Models and Bursa-Wolf Models 

 

In order to assess a model's overall performance for the five folds, the average of the 

residuals as indicated by the performance measures was found. The LS-SVM performed 

better (Table 5.4, Figures 5.12 and 5.13) than the GMDH and Bursa-Wolf with the RMSEHE 

of 2.5541, 3.0312 and 3.3396 respectively. These RMSEHE (Table 5.4) computed values 

display all of the uncertainties that are present throughout the integrated horizontal 

coordinates. 

 

The lowest Mean HE of 2.1904 m was produced by the LS-SVM, this means that when the 

LS-SVM is applied to the study area, the mean horizontal position error of 2.1904 m will 

be obtained as compared to the GMDH of 2.6191 m and Bursa-wolf of 2.7578 m.  The Mean 

HE (Table 5.4) value gives the achievable average horizontal positional error when a model 

is used, in this case, Bursa-wolf, GMDH and LS-SVM. The maximum and minimum HEs 

give the extent of the interval of the errors produced by the three models in this study. It is 

clear from Table 5.4 that the LS-SVM obtained the best minimum (-0.33193) and maximum 

(5.407) HE tests result. Therefore, the LS-SVM is a good choice for coordinating 

transformation in Ghana because of its ability to predict satisfactorily.  

 

For the SD value, similar transformation precisions were determined for the five folds. The 

SD of each fold is not too far from each other within a fold. This means that the deviations 

were almost in the same range per model. The LS-SVM was the model with the lowest SD. 

This can be interpreted that the spread of the projected coordinates from the LS-SVM 

prediction is better as compared to the GMDH and the Bursa-Wolf models.  Based on Table 

5.4 and Figure 5.13, it can be deduced that the LS-SVM is preferable for coordinate 

transformation in the study area because of its best performances demonstrated in the study. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

Coordinate transformation is still a field of interest in geoscience in Ghana because of the 

difference in the Accra 1929 datum and GNSS datum (WGS 84). This study applied the 

least square adjustment technique to derive transformation parameters based on Bursa-Wolf 

model. The Busa-Wolf model was compared with the GMDH and the LS-SVM using the 

K-fold cross-validation for transforming coordinates. According to the results, the LS-SVM 

outperformed the GMDH and Bursa-Wolf models, with RMSE HE values of 2.55411, 

3.031211, and 3.339601, respectively. The optimal performance of a model is gained by the 

K-fold cross-validation technique and not a single hold out cross validation technique. From 

the performance metric, it can be concluded that the LS-SVM should be used to transform 

coordinates in the study area instead of the GMDH or Bursa-Wolf. The LS-SVM 

demonstrates its strength over the other two models by handling some of the uncertainties 

in the data related to the two distant datums. Even though the LS-SVM performs better; it 

is recommended for low-order surveys because its maximum horizontal error exceeds the 

±0.9114 m allowable error standard of the Survey and Mapping Division of the Lands 

Commission of Ghana for cadastral works. 

 

6.2 Recommendations 

 

The following recommendations are made from the research: 

 The survey fraternity of Ghana still uses the non-geocentric datum as its reference 

for surveying and mapping.  Because of that, the GNSS acquired data re transformed 

using classical transformation results.   Based on the results obtained, it is 

recommended that AI should be adopted for coordinate transformation specifically, 

the LS-SVM that produced the best results.  

 

 To further improve the coordinate transformation results obtained in this study, it is 

recommended that the LS-SVM model controlling parameters must be automatically 

fine-turned using bio-inspired optimization algorithms such as goat search, grey 
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wolf and whale optimization.  This will help eliminate the manual tasking involved 

in the fine-turning process during training.   
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PT ID WGS_LONG WGS_LAT WGS_HGHT WAR_LONG WAR_LAT WAR_HGHT Existing North Existing Esating

CFP 4034 -1.278364339 5.691733211 172.245 -1.278628925 5.688938547 174.7549695 370809.85 798758.83

GCS 291 -2.858503986 5.798711592 375.572 -2.858735278 5.795919167 378.2075909 410695.84 224631.19

GCS 313 -2.606816878 7.713151233 509.369 -2.607044444 7.710441111 501.7287917 1105133.69 318400.1

CFP T9/290 -1.479260414 7.436515256 331.905 -1.479520511 7.433788356 325.2248783 1003779.62 726367.84

GCST11 58 -0.009611903 9.388786756 236.907 -0.009882914 9.386104906 219.2542619 1712402.22 1256739.81

GCS T16/3 -2.465205197 9.208804411 356.025 -2.465425878 9.206138411 340.5041899 1647693.62 371706.42

T16 24 -2.468451497 10.37967958 389.293 -2.468659928 10.37705296 367.7293126 2072618.79 372393.01

GCS T17/16 -0.447144786 10.53006745 412.344 -0.447401603 10.52742752 389.0524414 2126130.92 1098404.52

GCS T19/1 -1.520396892 9.187221242 179.987 -1.52063485 9.184545456 164.1591918 1638915.4 712314.16

GCS T20 23 -2.381942175 10.02666255 392.906 -2.382152058 10.02402293 373.1211504 1944367.85 402928.87

GCS/T21/33 -0.834197997 9.405908331 212.937 -0.834446858 9.403234806 195.6376823 1718127.86 959643.22

GCS T23 3 -2.465920092 10.67266894 339.634 -2.466129292 10.67005184 316.5678728 2178947.08 373799.37

GCS T23 14 -2.090571122 10.88084132 374.835 -2.090790286 10.87822944 350.5455134 2253931.08 508797.05

CFP 200 -0.559314619 5.625800658 304.689 -0.5595975 5.623015 307.1850974 346933.94 1060041.45

GCS 101 -0.776406814 5.315700392 151.948 -0.77668 5.312912222 156.2250924 234410.91 981195.24

GCS 114 -0.202173433 5.594222708 74.978 -0.202476164 5.591432519 77.44958277 335614.88 1189840.65

GCS 145 -1.411894256 6.556918669 503.473 -1.412160556 6.554148056 501.4241249 684673.93 750479.52

GCS CFP 205 0.49514755 6.495626231 622.703 0.494838056 6.492844167 619.954899 663176.47 1442407.83

GCS CFP 206 0.268332914 6.813044558 565.984 0.2680325 6.810275 561.6815656 778120.12 1359800.69

GCS214 0.072658269 6.131262939 51.55 0.072357778 6.128476944 50.9910714 530601.49 1289360.11

GCS 215 0.008511892 6.127742308 90.775 0.008213056 6.124956667 90.27130506 529279.26 1266069.85

CFP 217 -0.729702328 5.943109353 311.542 -0.729977778 5.940330556 312.4272474 461992.4 998070.31

GCS CFP 219 0.226219136 7.813436464 159.96 0.225936389 7.810691667 150.3957605 1141049.08 1343545.59

CFP159 -0.341338758 6.291648572 681.632 -0.341623056 6.288871389 680.4475454 588541.08 1138967.75

GCS T19/29 -1.462061325 10.80620539 298.757 -1.462294086 10.80358686 274.5632819 2226272.82 734168.62

GCS T24/1 -0.515587872 8.44390185 186.639 -0.515844644 8.441194728 174.1798858 1369227.61 1074884.01

GCS 186 -1.918489572 6.581243053 536.924 -1.918741944 6.578472222 534.9816998 693741.68 566710.73

GCS 304 -1.445335186 6.992211036 621.024 -1.445590556 6.989461667 616.6785696 842589.26 738496.56

GCS311 -1.983642275 7.685043006 562.296 -1.983886667 7.682331667 554.5375737 1094250.99 543929.66

GCS T18/24 -1.560823381 8.807884817 187.463 -1.561067222 8.805198656 173.6274151 1501316.72 697527.39

GCS T20/12 -1.309380403 9.519088828 163.346 -1.309619322 9.516423161 145.6972063 1759225.61 788490.69

GCS 188 -2.352255867 6.431666969 591.945 -2.352508333 6.428902778 590.9893184 639831.96 409185.48

GCS 189 -2.093713133 6.306801236 573.85 -2.093962778 6.304021944 573.4483858 594302.37 502926.12

GCS 207 -1.966148986 5.849619928 400.65 -1.966403611 5.846824167 402.6362252 428353.9 548934.64

APPENDICES 

APPENDIX A 

COMMON POINT COORDINATES IN 

WGS84 AND WAR OFFICE 1926 
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APPENDIX B 

BURSA-WOLF CODE 

 

clc 

clear 

close all 

format long % results to be in 15 decimal places 0 

  

% Bursa-Wolf Model 

DATA = readmatrix('Full_DataBW1');  

  

% reading the WGS84 Ellipsoidal Data 

WGS_Long = DATA(:,1);  

WGS_Lat = DATA(:,2);  

WGS_h = DATA(:,3);  

  

% reading the War office 1926 Ellipsoid Data 

W_Long = DATA(:,4);  

W_Lat = DATA(:,5);  

W_h = DATA(:,6);  

  

%%Defining the ellipsoidal parameters of the War Office Ellipsoid 

awar = 6378299.99899832;  

fwar = 1/296; %  

ewar = sqrt((2*fwar)-fwar^2);  

bwar = 6356751.68824042;  

  

% conversion of War office geodetic coordinates to cartesian X, Y, Z coordinates 

for i = 1:34 

   nw(i,1)= (ewar*sind(W_Lat(i)))^2;  

    RP(i,1)= awar/(sqrt(1 - nw(i,1)));  

     

% computing the cartesian coordinates 

XWAR(i,1) = (RP(i) + _h(i))*cosd(W_Lat(i))*cosd(W_Long(i)) 

YWAR(i,1) = (RP(i) + h(i))*cosd(W_Lat(i))*sind(W_Long(i));  

ZWAR(i,1) = ((RP(i)*(1-(ewar)^2))+ W_h(i))*sind(W_Lat(i)); 

end 

  

%%Defining the ellipsoidal parameters of the WGS84 Ellipsoid  

aWGS = 6378137.000;              

fWGS = 1/298.257223563;          

eWGS = sqrt((2*fWGS)-fWGS^2);    

bWGS = 6356752.314245;           

  

% conversion of WGS84 coordinates to cartesian X, Y, Z coordinates 

for a = 1:34 

    ng(a,1) = (eWGS*sind(WGS_Lat(a)))^2;   

    gRP(a,1) = aWGS/(sqrt(1 - ng(a,1)));   

     

     % computing the cartesian coordinates    

XWGS(a,1)=(gRP(a)+WGS_h(a))*cosd(WGS_Lat(a))*cosd(WGS_Long(a)); 

YWGS(a,1)=(gRP(a)+WGS_h(a))*cosd(WGS_Lat(a))*sind(WGS_Long(a));  

ZWGS(a,1)=((gRP(a)*(1-(eWGS)^2))+WGS_h(a))*sind(WGS_Lat(a)); 

end 
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% formulating the design matrix (A) 

A = zeros(34*3,7); 

for i = 1:34 

    A(i*3-2,1)=1; 

    A(i*3-2,5)= -ZWAR(i); 

    A(i*3-2,6)= YWAR(i); 

    A(i*3-2,7)= XWAR(i); 

     

    A(i*3-1,2)= 1; 

    A(i*3-1,4)= ZWAR(i); 

    A(i*3-1,6)= -XWAR(i); 

    A(i*3-1,7)= YWAR(i); 

     

    A(i*3,3)= 1; 

    A(i*3,4)= -YWAR(i); 

    A(i*3,5)= XWAR(i); 

    A(i*3,7)= ZWAR(i); 

End 

 

L=zeros(34*3,1); 

for i = 1:34 

    L(i*3-2,1) = XWGS(i)-XWAR(i); 

    L(i*3-1,1) = YWGS(i)-YWAR(i); 

    L(i*3,1) = ZWGS(i)-ZWAR(i); 

End 

 

Qxx = inv(A'*A); 

x = Qxx*A'*L; 

  

%t = A'*L; 

%XX = (A'*A)\t; 

  

%X = (A'*A)\(A'*L); 

% definding the translation parameters 

Dx = x(1); 

Dy = x(2); 

Dz = x(3); 

 

% definding the rotation parameters 

Rx = ((180/pi)*3600)*x(4); 

Ry = ((180/pi)*3600)*x(5); 

Rz = ((180/pi)*3600)*x(6); 

 

% definding the scale factor 

Sf = 1000000*x(7); 

 

% calculate residuals 

V = (A*x)-L; 

 

% calculate for standard deviation 

n = 34; % number of observations 

u = 7; % number of unknown parameters 

SD = sqrt((V'*V)/(3*n-u)); 

 

% calculate for variance 

VAR = (SD)^2; 

 

%calculate the standard deviation for each transformation parameter 

S = SD*sqrt(diag(Qxx)); 
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% definig parameters 

parameters = [Dx;Dy;Dz;x(4);x(5);x(6);x(7)]; 

yI = A*parameters; 

  

% perform the transformation 

for i = 1:34 

    Xw(i,1)=XWGS(i)-yI(i*3-2,1); 

    Yw(i,1)=YWGS(i)-yI(i*3-1,1); 

    Zw(i,1)=ZWGS(i)-yI(i*3,1);     

End 

 

% Reverse Conversion 

for n = 1:34 

    n_Long(n,1) = atand(Yw(n) / Xw(n)); 

end 

  

for i = 1:34 

     pd(i,1) = sqrt(((Xw(i))^2)+((Yw(i))^2));   

     sec_ecc = ((ewar)^2)/(1 - (ewar)^2);   

     w(i,1) = atand((awar*Zw(i))/(bwar*pd(i))); 

     n_Lat(i,1) = atand((Zw(i) + (bwar*sec_ecc)*(sind(w(i))^3))/(pd(i)-(awar*((ewar)^2))*cosd(w(i))^3));   

     n_h(i,1) = (pd(i)/cosd(n_Lat(i))) - RP(i); 

end 

 

 Reverse = [n_Long,n_Lat] 

 Actual_War = [W_Long,W_Lat] 

  Residual_Transformtion = Reverse - Actual_War; 

for i=1:34 

delta_Long(i,1) = W_Long(i)-n_Long(i); 

delta_Lat(i,1) = W_Lat(i)-n_Lat(i); 

Projection_Residual = [delta_Long,delta_Lat] 

end  

RMSE_Long = sqrt(mean((delta_Long).^2)) 

RMSE_Lat = sqrt(mean((delta_Lat).^2)) 

  

%%Computing the Horizontal Displacement Error 

RMSE_Horizontal_Error =sqrt((RMSE_Lat^2)+(RMSE_Long^2)) 

 HE = sqrt((delta_Long).^2 +(delta_Lat).^2); 

Mim_HE = min(HE); 

Max_HE = max(HE); 

mean_HE = mean(HE); 

SD = std(HE); 
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APPENDIX C 

GROUP METHOD DATA HANDLING CODE 

 

clc 

clear all 

format short 

  

%%READING THE EXCEL DATA 

Training_Data = readmatrix('Training_Data1'); 

Testing_Data = readmatrix('Full_Data'); 

  

%%TRAINING DATA 

Xtr = Training_Data(:,1:3); 

Ytr = Training_Data(:,4); 

  

%%TESTING DATA 

Xts = Testing_Data(:,1:3);  

Yts = Testing_Data(:,4);  

  

  

%%FORMING THE GMDH TRAINING MODEL 

[model, time] = gmdhbuild(Xtr, Ytr); 

  

%%OUTPUTS THE EQUATIONS OF GMDH MODEL 

precision = 12; 

gmdheq(model, precision) 

  

%%TRAINING PERFORMANCE 

 Yq = gmdhpredict(model, Xtr);  

  

%%[MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtr, Ytr); 

training_error = gsubtract(Ytr,Yq); 

train_MSE = mean(training_error.^2); 

train_RMSE = sqrt(train_MSE); 

train_SD = std(training_error) 

  

%%TESTING PERFORMANCE 

Ytest = gmdhpredict(model, Xts);%%TESTING TARGET PREDICTIONS 

  

%%[MSE_test, RMSE_test, RRMSE_test, R2_test] = gmdhtest(model, Xts, Yts);  

test_error = gsubtract(Yts,Ytest); 

test_MSE = mean(test_error.^2); 

test_RMSE = sqrt(test_MSE); 

test_SD = std(test_error) 
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APPENDIX D 

LEAST SQUARE SUPPORT VECTOR MACHINE CODE 

 

clc 

format long 

  

%%READING THE EXCEL DATA 

Training_Data = readmatrix('Training_Data5') 

Testing_Data = readmatrix('Full_Data'); 

  

%%TRAINING DATA 

X = Training_Data(:,1:3) 

Y = Training_Data(:,5); 

  

%%TESTING DATA 

Xt = Testing_Data(:,1:3); 

Yobs = Testing_Data(:,5);  

 

%%FORMING THE LS-SVM TRAINED MODEL 

type = 'f';%%f means function estimation 

kernel = 'RBF_kernel';%%lin_kernel, poly_kernel, RBF_kernel 

  

%%Yp is the output and model contains descriptions  

[Yp,alpha,b,gam,sig2,model] = lssvm(X,Y,type,kernel); 

 

%%TRAINING PERFORMANCE ASSESSMENT 

training_error = gsubtract(Y,Yp); 

train_MSE = mean(training_error.^2); 

train_RMSE = sqrt(train_MSE); 

  

%%TESTING THE LS-SVR MODEL USING THE SIMULATION FUNCTION 

  

%Yt = simlssvm({X,Y,type,gam,sig2,kernel},Xt); 

Yt = simlssvm(model,Xt);%%Simulation test results is Yt 

  

%%TESTING PERFORMANCE ASSESSMENTS 

test_error = gsubtract(Yobs,Yt); 

test_MSE = mean(test_error.^2); 

test_RMSE = sqrt(test_MSE) 
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APPENDIX E 

PROJECTION CODE 

 

clc 

format long 

clear 

close all 

  

%Reading data 

DATA = readmatrix('Projection5'); 

  

Long = DATA(:,1); 

Lat = DATA(:,2); 

Actual_North = DATA(:,3); 

Actual_East = DATA(:,4); 

  

% conversion of new war office coordinates in degrees into radians 

N_Long = deg2rad(Long); 

N_Lat = deg2rad(Lat); 

%N_H = deg2rad(N_h); 

  

% transforming coordinates to projected grid coordinates based on 

% tranverse marcator of Ghana  

lat2 = dms2degrees([4 40 0]);  

long2 = dms2degrees([-1 00 0]); 

lat0 = deg2rad(lat2);  

long0 = deg2rad(long2);  

N0 = 0; %%False Northings 

E0 = 274319.7362; %False Eastings in metres  

  

M0 = 516011.5389; %% 

K0 = 0.99975;       %scale factor at central meridian 

ma = 6378299.996;    %major axis 

esq = 0.006745343;   %eccentricity squared  

feet = 0.304799706846; %%feet conversion factor 

lat2 = dms2degrees([4 40 0]); %%Latitude of origin  

long2 = dms2degrees([-1 00 0]);%%Meridian of origin 

lat0 = deg2rad(lat2);%%convert Latitude of origin to degree  

long0 = deg2rad(long2);%%convert median of origin to degree  

N0 = 0; %%False Northings 

E0 = 274319.7362; %False Eastings in metres  

M0 = 516011.5389; %% 

K0 = 0.99975;       %scale factor at central meridian 

ma = 6378299.996;    %major axis 

esq = 0.006745343;   %eccentricity squared 

feet = 0.304799706846; %%feet conversion factor 

  

  

for i = 1:34 

p(i,1) =(ma*(1-esq))/(((1-esq*(sin(N_Lat(i,1)))^2)))^(3/2); 

 

v(i,1) = ma/sqrt(1-esq*(sin((N_Lat(i,1))))^2); 

 

n(i,1) = v(i,1)/p(i,1); 

 

T(i,1) = tan(N_Lat(i,1)); 
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w(i,1) = N_Long(i,1)-long0; 

 

A0(i,1)= (1-(esq/4)-((3*esq^2)/64)-((5*esq^3)/256));  

 

A2(i,1)= (3/8)*(esq+((esq^2)/4)+((15*esq^3)/128)); 

  

A4(i,1) = (15/256)*(esq^2+((3*(esq^3))/4)); 

 

A6(i,1) = ((35*(esq^6))/3072); 

 

m(i,1) = ma*((A0(i,1)*N_Lat(i,1))-(A2(i,1)*sin(2*N_Lat(i,1)))+(A4(i,1)*sin(4*N_Lat(i,1)))-

(A6(i,1)*sin(6*N_Lat(i,1)))); 

  

I(i,1) = ((w(i,1)^2)/2)*(v(i,1)*sin(N_Lat(i,1))*cos(N_Lat(i,1))); 

 

II(i,1) = ((w(i,1)^4)/24)*(v(i,1)*sin(N_Lat(i,1))*((cos(N_Lat(i,1)))^3)*(4*(n(i,1)^2)+w(i,1)-T(i,1)^2)); 

 

III(i,1) = ((w(i,1)^6)/720)*(v(i,1)*sin(N_Lat(i,1))*((cos(N_Lat(i,1)))^5)*(8*(n(i,1)^4)*(11-(24*T(i,1)^2)) - 

(28*n(i,1)^3)*(1 - (6*T(i,1)^2)) + ((n(i,1)^2)*(1-(32*T(i,1)^2))) - (n(i,1)*(2*T(i,1)^2)) + (T(i,1)^2))); 

  

IV(i,1) = ((w(i,1)^8)/40320)*(v(i,1)*sin(N_Lat(i,1))*((cos(N_Lat(i,1)))^7)*(1385 - 

(3111*T(i,1)^2)+(543*T(i,1)^4)-(T(i,1)^6))); 

  

V(i,1) = ((w(i,1)^2)/6)*(((cos(N_Lat(i,1)))^2)*(n(i,1)-T(i,1)^2)); 

 

VI(i,1) = ((w(i,1)^4)/120)*(((cos(N_Lat(i,1)))^4)*((4*n(i,1)^3)*(1-6*(T(i,1)^2))+((n(i,1)^2)*(1 + 

8*(T(i,1)^2)))-(n(i,1)*2*(T(i,1)^2))+(T(i,1)^4))); 

  

VII(i,1) = ((w(i,1)^6)/5040)*(((cos(N_Lat(i,1)))^6)*(61-(479*T(i,1)^2)+(179*T(i,1)^4)-(T(i,1)^6))); 

  

Nm(i,1) = (N0 + K0 * (m(i,1) - M0 + I(i,1) + II(i,1) + III(i,1) + IV(i,1)));%%Northing coordinates in metres 

 

Em(i,1) = E0+K0*v(i,1)*w(i,1)*cos(N_Lat(i,1))*(1+V(i,1)+VI(i,1)+VII(i,1));%%Easting -metres 

 

Nf(i,1) = Nm(i,1)/feet;%%Northing coordinates in feet 

 

Ef(i,1) = Em(i,1)/feet;%Easting coordinates in feet 

end 

  

%%Computing the Error difference between the transformed and existing Easting and 

%%Northing 

for i=1:34 

delta_North(i,1) = Actual_North(i)-Nf(i);%%Error in feet 

delta_East(i,1) = Actual_East(i)-Ef(i);%%Error in feet 

Projection_Residual = [delta_North,delta_East] 

end 

  

%%Computing the Root Mean Squared Error of the Easting and Northing 

RMSE_N = sqrt(mean((delta_North).^2)) 

RMSE_E = sqrt(mean((delta_East).^2)) 

  

%%Computing the Horizontal Displacement Error 

HE = sqrt((delta_North).^2 +(delta_East).^2) 

Mim_HE = min(HE) 

Max_HE = max(HE) 

mean_HE = mean(HE) 

RMSE_Horizontal_Error =sqrt((RMSE_E^2)+(RMSE_N^2)) 
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28 
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