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ABSTRACT 

Despite the rapid advancement in the development of hybrid ensemble Machine Learning 

(ML) techniques in malignancy management, recurrence and mortality from Head and Neck 

Squamous Cell Carcinoma (HNSCC) subtypes have not significantly improved in recent 

decades due to poor prognosis. Moreso, the recurrent HNSCC prognoses increase in patients 

with HNSCC due to the metastatic stage of the tumor at diagnosis, but studies providing 

promising prognostic models as a supporting tool for recurrence classification and prediction 

in HNSCC are lacking. As a supporting tool for identifying the most accurate prognosis and 

a robust prognostic classification model for classifying HNSCC recurrence patterns, this 

study presents a hybrid stacked ensemble classifier model when the same ML classifiers for; 

feature selectors, base classifiers, and meta classifiers are used, that could accurately predict 

recurrence outcomes and identify the most newly accurate prognostic features in HNSCC 

recurrence. Retrospective data of 125 HNSCC patients treated with curative intent between 

2016 and 2020 at KBTH and who had a follow-up within this calendar period are collected. 

Data is pre-processed using mode imputation and one-hot encoding. The proposed Hybrid 

Ensemble Super Classification Algorithm (HESCA) model uses the ML classifier models 

including Gradient Boosting Machine (GBM), Distributed Random Forest (DRF), Deep 

Neural Network (DNN), Generalised Linear Model (GLM), and Naïve Bayes (NB) for 

stacked ensemble learning. These classifier models are employed in constructing feature 

subsets, base classifiers, and with each as a meta-classifier in a stacking ensemble. The 

performances of the HESCA model on various feature subsets are compared. Next, the 

performance of the HESCA model on 8-input features is compared with the HESCA model 

on full-input features. Then, based on gradient-boosted features, the performance of the 

HESCA model is compared with the established stacked ensembles. Thus, the two baseline 

stacked ensemble models, and one state-of-the-art stacked ensemble model. The results show 

that when the GBM classifier is used as a meta-classifier in a stacking ensemble consisting 

of five base classifiers on gradient-boosted features (GBM-input features) including 

concurrent chemoradiotherapy treatment, age at diagnosis, p63, cervical lymph/neck nodes, 

tumor size, smoking habit, pathological tumor staging at T4, and stage IV of tumor at 

diagnosis achieves higher accuracy (90.63%) with the least log loss (0.2959) compared to 

that achieved by base models and the established stacked ensemble models on the same 

gradient boosted features of recurrent HNSCC prognostic data. This gives a hybrid stacked 

ensemble model termed the HESCA model, which consists of five base models under study 
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and a GBM meta-model. It is also observed that this HESCA model on GBM-input features 

achieves better classification evaluation measures than that achieved on any other input 

feature subsets as well as the full-input feature subset considered in this study. The study 

shows that using the GBM classifier as a meta-classifier model in a stacking ensemble having 

five base classifiers with its gradient-boosted features results in better performance than base 

models and any other established stacked ensemble model used in this study; and using the 

HESCA model with gradient boosted features is clinically appropriate as a supporting tool 

for identifying, classifying and predicting patients' recurrent HNSCC prognostic data. 
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CHAPTER 1 

INTRODUCTION 

1.1       Background of the Study  

The problem of Head and Neck Squamous Cell Carcinoma (HNSCC) and its associated 

relapse is continuously increasing for patients with locally metastatic stage tumors and for 

years now, has globally increased medical attention; particularly in the developing countries 

without the exclusion of Ghana. Increased knowledge in ensemble Machine Learning (ML) 

techniques that are predisposed to provide the most protuberant prognostic features that are 

associated with the progressions and treatments of cancer under study, the prognosis deemed 

most accurate for early primary cancer detection and treatment outcomes can be generated 

to improve the recurrence patterns of locally advanced stage patients that minimises HNSCC 

recurrences. 

On the one hand, machine learning (ML) is a subfield of artificial intelligence (AI) that 

enables algorithms to automatically learn from a prior set of training data and improve upon 

it by utilising statistical, probabilistic, and optimisation tools that categorise new data, 

identify novel patterns, and/or prognosticate novel trends without being explicitly 

programmed. Mitchell (2006). Ensemble ML is a technique that combines multiple of either 

homogeneous or heterogeneous base learners into a strong learner. ML techniques are 

becoming versatile as an alternate approach to conventional statistical methods in medical 

diagnosis and prognosis as the algorithms can handle noisy and incomplete data and despite 

the small sample size, significant results can be obtained. The vital goal of ML techniques 

in modelling cancer prognosis focuses on producing a well optimally prognostic model for 

classification, prediction, estimation, and/or related tasks for the progression and treatment 

of cancer subtypes. ML techniques can be divided into two main categories. According to 

Mitchell (1997) and Duda et al. (2001): supervised learning, where a set of training data is 

labeled to produce a function that maps input data to the desired output, and unsupervised 

learning, where a set of examples is given but no labels are provided and the notion of output 

during the learning process is unknown. Surprisingly, the majority of machine learning 

(ML) techniques used to predict and diagnose cancer typically involve supervised learning, 

including Deep Neural Networks (DNN) or Artificial Neural Networks (ANNs), Bayesian 

Neural Networks (BNNs), Naïve Bayes (NB), Gradient Boosting Machine (GBM), Support 
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Vector Machines (SVMs), Distributed Random Forest (DRF), Decision Trees (DTs), K-

Nearest Neighbours (KNNs), and others. 

On the other hand, a variety of conditions can change the Deoxyribonucleic acid (DNA) in 

cells, which ultimately leads to the sickness known as cancer. Oncogene activation and 

tumor suppressor gene inactivation can cause unchecked cell division and rapid aberrant 

cell development, resulting in the formation of a mass of tissue known as a tumor. According 

to Anon (2016), this tumor may be benign (non-cancerous) or malignant (cancerous). 

According to this, cancer is a heterogeneous group of connected diseases rather than a single 

illness, with hereditary and environmental factors both contributing to the development and 

progression of the disease. Head and Neck Cancer (HNC) develops from functional areas 

such as the pharynx, mouth cavity, and larynx, among others (Stewart and Wild, 2016; 

Argiris et al., 2008; Boyle and Levin, 2008; Jemal et al., 2007). Squamous cell carcinomas 

make up about 90% of these HNCs. The term Squamous Cell Carcinoma (SCC) refers to 

cancer that develops from squamous cells. These squamous cells are moist tissues that line 

bodily cavities and are present in both the mucous membranes and the epidermis of the skin. 

It turns out that HNC, which develops from these squamous cells, is simply referred to as 

Head and Neck Squamous Cell Carcinoma (HNSCC) or Squamous Cell Carcinoma of Head 

and Neck (SCCHN). In a nutshell, SCC prognosis is simply the estimate of the likely course 

and outcome of the disease; the chance of recovery or recurrence (Anon, 2020). Cancer 

susceptibility prediction (the likelihood of developing a cancer type before the disease 

occurs), cancer recurrence prediction (the likelihood of redeveloping a cancer type 

following the complete remission of the disease), and cancer survivability prediction (the 

outcome; life expectancy, survivability, progression, and tumor-drug sensitivity following 

cancer) are the three main predictions that Cruz and Wishart (2006) state are the focus of 

cancer prediction and prognosis. 

Specifically, when the primary tumor is successfully treated and reaches its state of 

remission; a patient is well thought-out cancer-free, such a patient in remission state turns 

out to have about a 25%-48% probability of cancer recurrence as a result of the metastatic 

stage at diagnosis of the primary tumor (Mucke et al., 2009). According to Worsham (2011), 

HNSCC recurrences are strongly linked to the tumor stage. Tumors staged at I and II have 

about 60-95% probability of being treated successfully unlike those with advanced stages 

(III and IV) of tumor at diagnosis. Nonetheless, World Health Organisation (WHO) 
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anticipates a future wide-reaching increase in HNSCC recurrence as a result of poor 

prognosis.  

In Ghana, Commeh (2019), in an interview; specified and inveterate that, “cancer cases in 

Ghana are not decreasing including that of HNSCC.” She indicated that, 16 000 cancer 

cases were registered at the Korle-Bu Teaching Hospital (KBTH) and Komfo Anokye 

Teaching Hospital (KATH) between the years 2016 and 2018, and it is projected to increase 

to around 22 000. It was further indicated that more than 90 percent of cancer subtypes 

diagnosed at cancer centres are at the stage of metastasis because patients wait to see the 

cancer symptoms before they are presented to the hospital. As a result of this, the recurrent 

rate is high and its associated death tends to be one of the highest among other deaths in the 

country and even worldwide. Yarney et al. (2017) observed HNC to be the third most 

common cancer diagnosed at KBTH, Accra, with nasopharyngeal cancer being the most 

common in this regard.  

Cancer prognoses typically involve multiple surgeons from various specialties, using a 

variety of subsets of clinical and histopathological parameters, such as tumor type, size, 

grade, location of the malignant tumor, and metastatic lymph nodes. Risk factors including 

alcohol consumption, and smoking; staging from I to IV; and treatments including 

chemotherapy, surgery, radiotherapy or a combination of these treatments (Catto et al., 

2006; Reichart, 2001; Fielding et al., 1992). Medically, these factors exclusively might not 

offer enough information on a patient to make robust prognostications. Colozza et al. (2005) 

had theoretically demonstrated that the combination of some specific molecular 

information, either about the tumor or the genetic markers, would yield enough information. 

Typically, in cancer prognosis research, socio-demographic information about the patient is 

combined with clinical data (patient-based), histopathological data (tissue-based), genomic 

or microarray data (molecular-based), or any combination of these. In the meantime, 

numerous research (Alabi et al., 2019; Ribeiro et al., 2017; Chang et al., 2013) on HNSCC 

have been carried out in various domains, including both theoretical medicine and medical 

statistics, taking into account the integration of genetic, clinical, and pathological indicators. 

Now, given the rapid development of these medical pieces of information (clinical, 

pathologic, and genomic) and the growing trend and reliance on the application of ML 

techniques, it is worthwhile that, if the genomic markers of patients are combined with 

clinicopathological information (Chang et al., 2013; Exarchos et al., 2011a) under some 
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variant studies such as ensemble Machine Learning (ML) techniques (Akinbohun, 2021; 

Akinbohun et al., 2020; Adeyemi et al., 2019), which are associated with the evolvements 

and treatments of the primary tumor, the prognosis deemed the most newly accurate that aid 

early detection and treatment results may be enhanced (Lavanya & Chandra, 2019; Colozza 

et al., 2005; Mitchell, 2006). But according to Yaliang et al. (2015), if by ensemble learning, 

a robust prognostic model that generates the most accurate prognosis can be obtained for 

the improvement of treatment outcomes of cancer, then compared with the ensembles; 

bagging and boosting, stacking or stacked generalisation is the most effective and efficient 

technique. This is a technique that combines multiple different base learners into a strong 

learner in their combination using a meta-learning algorithm. This assertion is supported by, 

Ragunthar and Selvakumar (2019); Warsinske et al. (2019) that; indeed, this technique 

(stacked ensemble learning) has been observed to yield the most accurate outcomes in 

several studies for which it has been employed. 

The study seeks to investigate how stacked ensemble learning technique of base classifiers 

can be employed in the prognosis of HNSCC recurrence by formulating a prognostic model 

termed a Hybrid Ensemble Super Classification Algorithm (HESCA) model that learns the 

recurrent HNSCC data based on genomic and clinicopathological markers. 

1.2  Statement of the Problem  

The HNSCC subtypes with their relapses globally pose clinical challenges to all clinicians, 

especially in the developing countries such as Ghana. The country Ghana records a high rate 

of recurrence and mortality, as a result of inaccurate identification of prognostic markers 

(Commeh, 2019; Bray et al., 2018; Yarney et al., 2017).  

In cancer diagnosis and prognosis including HNSCC, traditional statistical methods (Log-

rank test, Kaplan-Meier, Cox PH, etc.) are the most extensively used methods for feature 

selection and training of prognostic models. However, existing studies (Kourou et al., 2015; 

Chang et al., 2013; Cruz and Wishart, 2006) have shown that most of these methods are not 

suitable for complex and noisy cancer data. Thus, when used for a prognostic model where 

biological markers (genomic) are usually nonlinear, and some features are conditionally 

dependent, leads to model overfitting thereby yielding unstable prognostic results. As a 

result, ML techniques are currently the most extensively used technique in cancer studies. 

Meanwhile, existing studies (Kabir and Ludwig, 2019; Kwon et al., 2019; Yaliang et al., 
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2015) have shown that it is not that easy to obtain a single (standalone) classification model 

that has a good generalisation ability to be considered a robust classifier model, whereas 

stacking that combines different weak classifiers may well transform such classifiers into a 

robust one. According to Yaliang et al. (2015), analysis had theoretically and practically 

proven that the error expectation of stacking (heterogeneous ensemble) models is usually 

less compared to the error expectation of a single (or homogeneous ensemble) model; 

thereby yielding more accurate, reliable, and stable results. 

To address the weakness of statistical and standalone ML models, previous studies have 

focused on stacked ensemble classification models in the prognosis of HNC subtypes; 

relating to HNC susceptibility, and HNC survivability. Akinbohun (2021); Akinbohun et al. 

(2020) in HNC susceptibility, and Chang et al. (2013); Chi-Chang et al. (2021) in HNC 

survivability. Information gathered from these studies shows that stacked ensemble ML 

techniques can produce more stable, unbiased, and reliable prognosis and prediction results 

at a higher level of accuracy compared to statistical and standalone ML techniques 

(Akinbohun, 2021; Chi-Chang et al., 2021; Akinbohun et al., 2020). There is currently no 

much exploration on the stacked ensemble models for recurrent HNSCC prognosis leaving 

a gap in recurrent HNC predictive foci to be filled (Chi-Chang et al., 2021; Kwon et al., 

2019; Yarney et al., 2017).  

In Ghana, there are currently limited studies on any form of the implementation of stacked 

ensemble ML techniques on the combination of genomic and clinicopathologic makers for 

recurrent HNSCC prognosis that is prone to provide unbiased, reliable, and stable 

prognostic outcomes (Commeh, 2019; Yarney et al., 2017). Therefore, due to this medical 

gap in the domain of HNC prediction, this study seeks to adapt baseline stacked ensemble 

ML techniques and state-of-the-art stacked ensemble technique used in breast cancer by 

Kabir and Ludwig (2019) and Kwon et al. (2019) respectively for recurrent HNSCC 

prognosis in Ghana to address the issue of poor and contradictory prognostic results 

produced by biased, unreliable, and unstable prognostic models that are in existence. This 

technique is believed to identify, classify and prognosticate the most stable, reliable, and 

accurate prognosis for recurrent HNSCC patients being the first study ever. 

The study however differs from the previous studies in that, it falls in the domain of recurrent 

HNSCC prognosis, extending a stacked ensemble model having a maximum of four base 

classifiers to that having five base classifiers (Kabir and Ludwig, 2019) with (gradient 
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boosted features) GBM ensemble feature selection technique (Xu et al., 2019), with the 

regularisation technique that improves the prognosis accuracy as well as the stability and 

generalisation ability of a classification model. The gradient boosting feature selection 

learns an ensemble of classification trees that can reliably extract relevant features, naturally 

discover nonlinear interactions between features and labels, scale linearly with the number 

of features and dimensions, and allow the incorporation of known sparsity structure (Xu et 

al., 2019). 

1.3 Aim of Study 

The main aim of the study is to develop a hybrid stacked ensemble-based model on the 

combination of clinicopathologic and genomic optimal features for recurrent HNSCC 

prognosis that is prone to generate unbiased, reliable, and stable prognostic outcomes. 

1.4 Research Objectives 

The objectives of the study are to; 

i. identify the most accurate prognosis associated with recurrent HNSCC in Ghana. 

ii. develop a hybrid stacked ensemble classification model for recurrent HNSCC 

prognosis. 

iii. validate the developed model with existing data and compare it with three existing 

models in a stacking ensemble learning. 

iv. investigate that the prognosis for recurrent HNSCC is more robust when gradient-

boosted features are used. 

1.5 Methods Used 

The methods employed in achieving research objectives include; 

i. GBM, DRF, DNN, GLM, and NB to develop a hybrid stacked ensemble 

classification model for recurrent HNSCC prognosis.  

ii. GBM ensemble feature selection to identify the optimum subset of prognostic 

features having significant main effects on the target feature. 

iii. V-fold Cross Validation (CV) technique to validate the developed model. 

iv. GBM as an ensemble feature selection technique to prove its robustness based on 

the first objective. 
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1.6 Facilities and Resources used for the Study 

The facilities and resources used for the study include; 

i. Secondary data on patients with recurrent HNSCC at KATH, Kumasi, and KBTH, 

Accra. 

ii. Library and internet facilities at the University of Mines and Technology (UMaT), 

Tarkwa, and the University of Cape Coast (UCC), Cape Coast. 

iii. H2O package in R programming language. Technical advice from supervisors and 

experts in the field of the study. 

1.7 Scope of the Study 

The study is delimited to patients with recurrent HNSCC and nonrecurrent HNSCC only, 

that were diagnosed of any of the HNSCC subtypes specifically the laryngeal, 

hypopharyngeal, oropharyngeal, or nasopharyngeal cancer and were treated with curative 

intent only. Though there are several types of HNC cancer cases as well as their treatment 

intents. Also, the study focuses on the identification of the most accurate combination of 

prognostic markers, and the development, and validation of the developed hybrid stacked 

ensemble classification model for recurrent HNSSC prognosis based on the GBM feature 

selection technique using multiple ML techniques for comparative analysis.  

1.8 Organisation of the Thesis 

The thesis is organised into six (6) chapters as follows. Chapter 1 presents the background 

of the study, the statement of the problem, research objectives, methods used, facilities and 

resources to be used for the study, and the scope of the Study. Chapter 2 presents the general 

review of relevant literature pertinent to ML techniques, feature selection methods, and 

ensemble learning in recurrent HNSCC prognosis research, a review of HNSSC cases in 

Ghana, risk factors of HNSCC, and cancer management. Chapter 3 presents the 

methodological framework of the study. This chapter has two sections. The first section 

specifies the study area, research design, study population, sample size, data collection 

instrument and procedures, and data handling/control. And the second section presents the 

theoretical background of the base classifiers. Chapter 4 presents the mathematical 

formulation of a hybrid stacked ensemble classification model. Chapter 5 presents the data 

analysis and discussion of results. Chapter 6 presents the conclusions and recommendations 

of the study.  
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CHAPTER 2 

REVIEW OF RELEVANT LITERATURE 

2.1 Overview  

This chapter discusses the general review of relevant literature pertinent to ML techniques 

and feature selection techniques in recurrent HNSCC prognosis research, a review of 

HNSSC cases in Ghana, risk prognostic factors of HNSCC, and cancer management. 

2.2 History of Cancer and Machine Learning 

2.2.1 Early History of Cancer 

Throughout recorded history, both humans and other animals have experienced cancer. 

Ancient Egyptian mummies and fossilized bone tumors were where the disease's first signs 

of existence were found. Both the destruction of the bony skull of the head and neck and 

evocative growths of the malignant bone known as osteosarcoma (osteogenic sarcoma) have 

been observed in mummies. In a nutshell, cancer was discovered in Egypt in about 3 000 

BC, which was called the “Edwin Smith Papyrus.”  The Greek physician Hippocrates, often 

referred to as the "Father of Medicine," lived from 460 to 470 BC and is credited with 

coining the term "cancer." Hippocrates used the terms carcinoma and carcinomas to denote 

both tumors that cause ulcers and those that do not. Because the finger-like progression of 

cancer reminded people of the shape of a crab, these two phrases are used in Greek to mean 

a crab. Well, the Roman physician Celsus (28–50 BC) changed the Latin word for cancer 

from the Greek word for crab. Also, the word oncos in Greek which means swelling (the 

growth nature of the malignant tumor) was used by another Greek physician, Galen (130-

200 AD), to describe tumors. In as much as the crab analogy of Hippocrates and Celsus is 

still applied to describe malignant tumors, the term Galen is now mostly used to describe 

cancer-causing genes (as oncogenes), cancer management (as oncology), and as part of the 

name for cancer specialists (as oncologists). 

2.2.2 History of Machine Learning 

In a word, ML employs mathematical algorithms to learn from and analyze data in order to 

make future predictions and judgments. Today, ML algorithms let computers to interact 

with people, drive themselves, forecast natural disasters, and identify terrorist suspects. One 

of the terms that has been used a lot recently is ML. When pioneering computer scientist 
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Alan Turing wrote a paper in 1950 addressing the subject "Can Machines Think?" the idea 

of ML first came to mind. He put up the idea that machines with Artificial Intelligence (AI) 

might be able to persuade people that they are not actually machines. "Turing Test" was the 

name given to this. 

The first computer learning software, which was the game of checkers, was created in 1952 

by IBM's Arthur Samuel. The longer it played, the IBM computer improved the game by 

observing the plays that comprised winning tactics and adding such moves to its program. 

Frank Rosenblatt created the Perceptron model, or the first neural network for computers, 

in 1957. The perceptron algorithm was created to activate the brain's classification abilities 

so that individuals may be divided into one of two groups based on the visual inputs they 

were given.  

The "nearest neighbour" technique, created in 1967, later made it possible for computers to 

do fundamental pattern recognition. A robot called the Stanford Cart was created in 1979 

by Stanford University students and can autonomously move around obstacles in a space. 

In 1981, Gerald Dejong established the idea of explanation-based learning, which uses data 

analysis and general rules to weed out irrelevant knowledge. The work of machine learning 

(ML) changed from a knowledge-driven method to a more data-driven approach during the 

1990s (Baiju, 2019). Scientists started developing computer algorithms that could analyze 

massive amounts of data and make inferences or "learn" from the outcomes. Since the dawn 

of the twenty-first century, numerous academic disciplines, including the study of medicine, 

have dabbled in the use of inventive ML approaches. In other words, as data production 

increases, so does the computers' capacity to process and analyse it. 

2.3 Prediction and Prognosis of Cancer  

The prediction of cancer susceptibility, cancer recurrence, and cancer survivability are the 

three predictive foci that are the focus of cancer prognosis and prediction. Cancer 

susceptibility makes an effort to predict the likelihood that cancer will develop based on 

some risk factors. Recurrence of cancer refers to the attempt to predict whether a certain 

cancer type will return after an apparent or complete remission. After then, cancer survival 

prediction attempts to forecast the course of events, including life expectancy, survival, 

progression, and tumor-drug sensitivity following cancer diagnosis and therapy (Cruz and 

Wishart 2006). The accuracy of the diagnosis affects the prognosis of cancer survival and 
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recurrence (Hagerty et al., 2005). Cancer recurrence can be classified by its location: local 

recurrence; when cancer occurs in the same place as the original cancer, regional recurrence; 

when cancer grows into lymph nodes (tissues) near original cancer, or distant or metastatic 

recurrence; when cancer spread to tissues or organs far from original cancer (Anon, 2016).  

With the speedy growth of molecular-scale information (genomic, proteomic, and imaging 

technologies) about tumors or patients, this information can now be readily acquired. That, 

combining any of such molecular information with clinical and pathologic markers, a robust 

prognostic accuracy of cancer may be enhanced (Cruz and Wishart, 2006). 

There is also a growing trend and reliance on the applications of ML techniques in medical 

studies to make prognostications. This is the fact that ML techniques perform well in several 

domains of research even where data has a small number of instances, for which the 

conventional statistics oppose but require a large number of instances to perform well for 

significant outcomes (Mitchell, 1997). Sampling a large amount of medical data is hard as 

it is costly and requires a longer time, and the samples when obtained are usually either 

noisy or incomplete. It is here that ML techniques are needed to still achieve more accurate 

diagnostic or prognostic results.  

With ML introduction to medical research, there has been a design of several techniques 

that have been implemented in this field for cancer cases diagnostic or prognostic results. 

Meanwhile, these techniques are usually supervised learning including ANN, BNN, SVM, 

DT, DRF, and other hybrid methods. Most of the studies focused on the comparison between 

ML methods and statistical ones by proving how effective and efficient are their methods 

given specific data and this will further be discussed in Section 2.9. But this present study 

focuses only on a comparison between some selected supervised ML techniques for study 

and not with statistical ones,  

2.4 Squamous Cell Carcinoma of Head and Neck Subtypes 

Squamous cells, which are present in the epidermis of the skin and the mucous membranes 

of the nose, mouth, and throat, are the source of the cancer known as head and neck 

squamous cell carcinoma (HNSCC). According to its location or region, HNSCC can be 

categorised as follows:  
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2.4.1 Oral Cavity 

The hard plate, which is the bony top of the mouth, the gingiva (gums), the buccal mucosa, 

the floor of the mouth beneath the tongue, and the small area of gum behind the wisdom 

teeth (retromolar trigone) are all places where cancer can develop (Anon, 2017).  

2.4.2 Pharyngeal Cancer  

if a pharyngeal (throat) cancer begins to grow. The pharynx is a short, hollow tube that 

extends from behind the nose to the esophagus, measuring little under 5 inches. Pharyngeal 

cancer describes cancer that develops in the pharynx. Based on the area of the pharynx that 

has developed, there are three different types of pharyngeal cancer: nasopharyngeal 

carcinoma (cancer that develops in the upper region of the pharynx, behind the nose); 

oropharyngeal carcinoma (cancer that develops in the middle region of the pharynx, which 

includes the base of the tongue, the soft palate [the back of the mouth], and the tonsils); and 

hypopharyngeal carcinoma (when cancer evolves in the hypopharynx, the lower region of 

the pharynx) (Anon, 2017). 

2.4.3 Laryngeal Cancer 

Laryngeal cancer refers to cancer that has spread to the larynx. The larynx, often known as 

the voice box, is a small neck tunnel formed by cartilage directly below the pharynx. The 

vocal cords are located in the larynx, along with the epiglottis, a little piece of tissue that 

moves to cover the larynx's food route in order to prevent food from entering the airways. 

Laryngeal carcinoma is a type of cancer that develops in the larynx (Anon, 2017). 

2.4.4 Paranasal Sinuses and Nasal Cavity 

Cancer can also emerge in the paranasal sinuses, the bones of the head containing small 

hollow spaces; and surrounding the nose, and this cancer is called sinus carcinoma. Inside 

the nose, there is a hollow space called the nasal cavity (Anon, 2017). 

2.4.5 Salivary Glands 

Cancer can also develop in the salivary glands, which produce saliva. Salivary glands are 

the on the floor of the mouth and close to the jawbone (Anon, 2017). 
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Figure 2.1 Head and Neck Cancer Regions 

2.5 Head and Neck Squamous Cell Carcinoma Statistics  

Based on the Ghanaian Cancer Statistics; National Strategy for Cancer Control in Ghana, 

HNC at the KBTH Oncology department in 2009 is listed as the third top most common 

leading cancer cases, with 14% of total cases in Ghana. Data from the Oncology Directorate 

of KATH and KBTH indicated that sinuses and laryngeal cancers were the commonest male 

cancers with 5.2% and 3.7% respectively of total cancers reported at KATH. According to 

Owusu-Afriyie et al. (2020), pharyngeal cancer (7.4%) and laryngeal cancer (3.5%) of total 

malignancies seen at the National Hospital respectively represent the 2nd and 7th most 

common cancers in Ghana. The estimated number of new HNC cases in Ghana based on 

GLOBOCAN data for the year 2012, was 889 (589 in males and 300 in females) and 901 in 

the year 2018 indicating that there had been an increase in the number of cases, as 

respectively shown in Figure 2.2 and Figure 2.3. In Ghana, males are more susceptible to 

HNCs as compared to their counterpart females as shown in Figure 2.4 and Figure 2.5. Even 

though HNC has not been viewed to be the foremost case of cancer in Ghana, its rate of 

mortality continues to rise as the number of incident cases increases. This is evident from 

the estimated number of incidences and deaths by GLOBOCAN, 2018 as respectively 

shown in Figure 2.6 and Figure 2.7. 

There are over 40 000 and 800 000 new HNC cases reported annually in Africa and 

worldwide respectively. The rate of incidence of HNC subtypes differs from region to 

region. In Africa, based on GLOBOCAN, 2018 data, the annual age-standardized incidence 

rates per 100 00 for lip, and oral cavity in Western Africa was 1.1, in Middle Africa (1.5), 

North Africa (1.5), Eastern Africa (2.2), and Southern Africa (2.9). Also, Western Africa 
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(0.57), Middle Africa (0.88), North Africa (0.36), Eastern Africa (0.62), and Southern Africa 

(0.35) for salivary gland cancer. Again, Western Africa (0.25), Middle Africa (0.42), North 

Africa (0.20), Eastern Africa (0.34), and Southern Africa (0.79) for oropharyngeal cancer.  

More so, Western Africa (0.55), Middle Africa (0.75), North Africa (1.6), Eastern Africa 

(1.3), and Southern Africa (0.34) for nasopharyngeal cancer. Furthermore, Western Africa 

(0.12), Middle Africa (0.33), North Africa (0.32), Eastern Africa (0.28), and Southern Africa 

(0.29) for hypopharyngeal cancer. 

HNC subtypes have percentages of about 80 to 90 of complete remission if their diagnoses 

are at the early stage (Foundation, 2010). HNCs have 17% and 22% locoregional and distant 

recurrence respectively when diagnosed at stage IV (Brockstein et al., 2004). This cancer 

simply has a high recurrent mortality rate not that its diagnosis is impossible, but because 

the development of the disease is normally detected lately when it is in its advanced stage. 

HNCs are most dangerous as their carcinogenesis (progression) may not inform the patient 

earlier. As such, recurrence rates of HNCs vary widely between individuals, and within 

cancer types according to the stage, histology, genetic factors, patient-related factors, and 

treatments. HNCs are of several types, but approximately 90% are SCCs (Foundation, 

2010). According to WHO statistics 2018, almost two-thirds of HNCs are experienced in 

underdeveloped nations like Ghana, and its incidences as well as deaths are expected to rise 

in the next decades as shown in Figures 2.6 and 2.7. 
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Figure 2.2 Ten Most Frequent Cancers in Ghana 2012; Both Sexes, All Ages 

Source: GLOBOCAN (2012) 

 
Figure 2.3 Ten Most Frequent Cancers in Ghana 2018; Both Sexes, All Ages  

Source: GLOBOCAN (2018) 
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Figure 2.4 Cancer Cases Recorded Among Ghanaian Males 

Source: GLOBOCAN (2012) 

 

Figure 2.5 Cancer Cases Recorded Among Ghanaian Females 

Source: GLOBOCAN (2012) 

*Figures 2.2-2.5 Gynecological (cervix uteri, corpus uteri, vulva, vaginal, and ovarian); 

Urological (bladder, kidney, prostate, testes, and testis), Hematological malignancies 

(Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, and leukemia), and Head 

and Neck (lip, oral cavity, larynx, salivary glands, nasopharynx, oropharynx, 

hypopharynx). 
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Figure 2.6 Estimated Number of HNCs Incidences in Ghana from 2018 to 2040        

Source: GLOBOCAN (2018) 

 

 Figure 2.7 Estimated Number of HNCs Deaths in Ghana from 2018 to 2040                 

Source: GLOBOCAN (2018) 
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HNCs have low incidences as well as recurrences relative to other cancers but are possibly 

dangerous if identified lately. Therefore, identifying its possible associated risk factors of 
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recurrence. Several factors have been identified as possible risks associated with HNCs 

recurrence as listed below.  

2.6.1 Gender and Age 

Previous studies (Razak et al., 2010; Oliveira et al., 2008; Chen et al., 2007) have shown 

that increasing age is associated with HNCs incidences. About 90% of HNC cases are 

diagnosed more often among persons aged 50 years and above than they are among those 

less than age 50 (Anon, 2017). From a gender viewpoint, twice as males are susceptible to 

these cancer cases as females (Siegel et al., 2017). In Ghana, males are still more susceptible 

to HNCs than females, as this might be a result of smoking. From the adapted Globocan 

2012, Ghana Cancer Statistics, as shown in Figures 2.4 and 2.5, HNC is ranked as the 4th 

top most cancer in Ghanaian males (12%) and is ranked the 5th in Ghanaian females (4%). 

Among the HNC subtypes based on Globocan 2018, the lip-oral cavity has the highest 

incident rate and hypopharyngeal cancer has the least incident rate as shown in Figure 2.6. 

2.6.2 Smoking, Tobacco, and Alcohol 

The use of alcohol and tobacco accounts for most HNCs. Around 90% of HNC cases, 

particularly, oral and pharyngeal cancers have been attributed to smoking in the United 

States ((Reichart, 2001). HNCs are Alcohol and cigarettes or pipe smoking (including 

smokeless tobacco called snuff or chewing tobacco) contribute to the majority of risk factors 

of HNCs, particularly cancers of the hypopharynx, oropharynx, oral cavity, and larynx 

(Exarchos et al., 2012b; Boffetta et al., 2008; Gandini et al., 2008; Hashibe et al., 2007). In 

spite of the fact that alcohol and tobacco use are risk factors for salivary gland cancer, people 

who use both have a higher risk of acquiring HNCs than people who only use one of the 

two (at least 75% of HNCs are linked to both, according to Hasibe et al., 2009). This risk 

factor's contribution to the development of cancer is categorized by the International Agency 

for Research on Cancer (IARC). Smoking is the leading preventable cause of laryngeal 

cancer (64%), pharyngeal cancer (37%), nasopharyngeal cancer (25%) and oral cavity 

cancer (17%), according to Brown et al. (2018). 

2.6.3 Virus Infection 

Oncoviruses (cancer-causing viruses) play a key role in some human cancers. These viruses 

are known to induce cancers by way of causing proliferative mutations/alterations of the 
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DNA in cells as well as cells of chromosomal structures. Human Papilloma Virus (HPV) is 

a small circular DNA virus that infects basal cells in the squamous epithelium.  More than 

40 HPV types are termed "genital type", which sometimes can infect the genital area of a 

man or woman, and can also infect the areas of the head and neck. HPV types can be 

cancerous or noncancerous. HPV-6 or HPV-11 strains which are noncancerous are called 

low-risk HPV, whereas HPV-16 or HPV-18 strains which are cancerous are called high-risk 

HPV. HPV causes cancers through viral oncoproteins E6 and E7, which inactivate two 

tumor suppressor genes, p53 and RB (Kennedy et al., 2014). Studies have shown that certain 

strains of HPV infection; HPV-16 and HPV-18, which are well known to be 70% potential 

oncoviruses for cervical cancer are also 80% linked to the progression or redevelopment of 

HNSCC (Anon, 2020; Reichart, 2001).  

2.6.4 Genes Mutation 

HNSCC has been linked to a number of oncogenes and tumor suppressor genes through 

research (Oliveira et al., 2008; Mehrotra and Yadav, 2006; Reichart, 2001). Therefore, it is 

now understood that a number of different groups of cellular genes, including tumor 

suppressor genes and mismatch repair genes, may be implicated in the multi-step process 

that might result in human cancer. The most often altered tumor suppressor genes are p16 

and p53, which are found on chromosomes 9p and 17p respectively and have been regularly 

seen in HNSCC (Liu et al., 2013), with p53 likely being the gene that has been investigated 

the most. In contrast to other human-related malignancies, HNSCC instances have been 

shown to be associated with p53 over-expression or mutation in 40% to 90% of examined 

cases. Another tumor suppressor gene, known as p63, has also been researched and may 

offer a better outlook for HNSCC (Oliveira et al., 2008). 

2.7 Clinical, Pathological, and Genomic Markers 

Several markers can be considered when determining the cancer prognosis. Here, three 

types; clinical markers, pathological markers, and genomic markers are considered. 

Conventionally, clinicians use clinical and pathological markers in determining the 

prognosis of a patient with cancer. Meanwhile, even the most skillful clinician may not find 

it easy in coming out with an accurate prognosis where only clinical and pathological 

markers are used. It is this that makes it necessary to combine biomarkers or genomic 

markers to obtain an improved prognostic accuracy result.  
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Investigations on tumor markers, being oncogenes as well as mutations of tumor suppressor 

genes have been conducted as prognosis outcomes of such molecular alterations to clinical 

and pathologic information. The study of these markers could induce proper treatment that 

is highly tailored to the patient's tumor.  

2.7.1 Clinical Markers of HNSCC 

The clinical staging of HNCs is a core part and necessary in cancer studies as it enables the 

clinicians to; determine a treatment plan, assess treatment modalities, and internationally 

compare cancers of various aspects. The staging system looks at the size and depth of the 

malignant tumor and whether it has metastases (Mehrotra and Yadav, 2006).  

2.7.2 Histopathological (Pathological) Markers of HNSCC 

Histopathological data defines the results the histopathologists obtain from the microscopic 

examination of tissues and/or cells removed termed a biopsy, and parameters being; tumor 

grade, size, depth of invasion, and other post-surgical pathologic margins (Mehrotra and 

Yadav, 2006).  

2.7.3 Genomic Markers of HNSCC 

The core challenge with the Tumor, Node, Metastasis (TNM) staging system is its failure 

to consider the biological and molecular characteristics of the tumor, and as such, might not 

offer accurate outcomes for the patient (Oliveira et al., 2008). Cancer evolves via multiple 

stages, so that, the clonal expansion which follows the chronological simulation of 

additional genetic defects characterizes each stage for which it occurs (Mehrotra and Yadav, 

2006). For one to better identify genetic alterations to HNSCC subtypes, a comparison 

between progressing and non-progressing subtypes of HNC lesions, which are genetically 

different from each other be taken into consideration (Mehrotra and Yadav, 2006). 

Oncogene activation and tumor suppressor genes (example; p53, p63) inactivation 

(impairment) are the main cause of genetic alterations (example cyclin, ras) observed in 

HNSCC, leading to cell proliferation in an uncontrolled manner (Anon, 2015; Mehrotra and 

Yadav, 2006). 

2.8 Management of Head and Neck Cancers 

The classification of cancer management focuses on three main foci as discussed below. 

Digitized by UMaT Library



20 

2.8.1 Diagnosis  

A cancer diagnosis is a process where the cancer is recognized by its signs and symptoms. 

The doctors then need to perform a number of medical examinations, which may include a 

biopsy, laboratory testing (blood tests, urine tests), and imaging techniques (micro-CT scan, 

X-rays, ultrasound). Most often, doctors use the biopsy to identify malignancy. This is done 

by taking a sample tissue with a needle/endoscope following surgery, which is taken to the 

pathologists to be viewed and examined under a microscope. The patient then has to go 

through treatment and procedures of prognosis upon cancer confirmation (Foundation, 

2010).  

2.8.2 Treatment 

The most effective treatment options for head and neck malignancies include surgery, 

radiation, chemotherapy, targeted therapy, or a combination of these (Gangil et al., 2022). 

The choice of a treatment plan for this cancer varies depending on the stage, site, tumor 

grade, and age of the patient including baseline medical condition. 

Surgery 

The usual treatment for head and neck cancer for curative intent is mostly surgery, which is 

normally performed on less invasive tumors. The surgery can be very complex depending 

on where the tumor is located, its size, and what other structures it invades. If surgery is an 

option, the goal of the surgeon is usually to remove the entire tumor including some healthy 

tissue around it (this process is termed as achieving negative or clean margins). In effect, 

surgery can remove the entire tumor if that tumor is localised, however, complete surgical 

excision is somewhat not possible if cancer has metastasised to other sites. Sometimes, 

lymph nodes can be removed for the pathologist to perform a further evaluation. Surgery 

may be used in combination with chemotherapy or radiotherapy as a cancer treatment option 

(Foundation, 2010).  

Radiation Therapy (Radiotherapy) 

Treatment of cancer by radiotherapy is the use of ionizing radiation (high-energy x-rays) to 

kill the tumor. Two different methods of radiation can be given; external beam or 

brachytherapy (internal radiation). A machine called a linear accelerator is used to 

administer external beam radiation, which points beams of radiation from many angles 
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toward the tumor. In an attempt to target all cancer, the nearby healthy cells are hit by 

radiation, leading to damaging the DNA in those cells. Brachytherapy (also known as 

internal radiation) on the other hand, involves internally implanting radioactive 

material/source in the tumor and/or around the site of the tumor. The radiation is released 

slowly by this source over time, delivering it to a small tissue or tumor area. There is a 

decrease or fewer side effects as only a small area is being treated, but this can also increase 

the likelihood of cancer recurrence. Thus, ionising radiation kills both healthy 

(noncancerous) and cancerous cells in the treated area in which the DNA in such healthy 

cells are damaged, restricting them from continuously growing. Meanwhile, these healthy 

cells can repair themselves. Localised tumors (oral cancer) and lymphatic cancer 

(lymphoma cancer and leukemia) are suitably treated with radiotherapy (Anon, 2019; 

Foundation, 2010).  

Chemotherapy  

Chemotherapy is a medication that is used to destroy cancer cells in the body. Typically, 

chemotherapy is used in more advanced tumors of the head and neck. Sometimes, 

chemotherapy is targeted to shrink a tumor to make its removal very easy. Chemotherapy 

as the best in treating metastatic cancer (widespread cancer) can be given either before or 

after surgery. Chemotherapy that is given before and after surgery is respectively called 

neoadjuvant and adjuvant chemotherapy. Depending on the subtype of HNC a patient has 

chemotherapy medications to be given. The most common chemotherapy medications used 

for the treatment of HNC include cisplatin, carboplatin, paclitaxel, docetaxel, epirubicin, 

gemcitabine, and methotrexate. Chemotherapy is usually given in conjunction with 

radiation therapy, referred to as chemoradiation therapy. In this situation, the chemotherapy 

performs two functions: to induce the radiation to work better and to treat/kill cancer cells. 

This is termed radio-sensitization, where the cells are made more sensitive to radiation 

damage in the presence of relatively low chemotherapy doses because the healthy cells also 

become sensitized, causing more severe side effects compared to radiation alone. 

Chemoradiotherapy has been proven best choice for HNC patients and to improve the 

treatment of laryngeal cancer but comes with more toxicity (Anon, 2019).  

Targeted Therapy  

Targeted therapy is used to treat the majority of HNSCC subtypes that have an 

"overexpression" of the Epidermal Growth Factor Receptor (EGFR). These subtypes might 
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produce too many of these receptors, which may be a key factor that induces their growth. 

In turn, targeted therapies were developed to block these receptors, with the main intention 

of slowing the growth of tumors. The two most commonly used EGFR inhibitors in HNCs 

are cetuximab and afatinib. Other two types of targeted therapies are: nivolumab and 

pembrolizumab, and are used to treat certain advanced HNCs. These medications stimulate 

the immune system to destroy cancerous cells, and so, are called immunotherapies (Anon, 

2019).  

2.8.3 Prognosis 

Prognosis is when the outcome of the disease as well as its recurrence and the patient's status 

of survival can be predicted, in the presence or absence of the treatment either. Prognosis, 

is thus, simply the estimate of the likely course and treatment of the disease; the chance of 

either recurrence or survival. Prognoses are mostly predicted and grounded on several 

medical factors including cancer type, stage at diagnosis, treatment type, and patient's age 

at diagnosis etcetera.   

2.8.4 Follow-Up/Recurrence 

Cancer recurrence is when cancer comes back. When cancer cells were not fully removed 

or destroyed by the first treatment, the disease recurs; and this does not mean that the first 

treatment a patient received was wrong. It simply means that a small number of cancer cells, 

which were too small to show up during follow-up tests survived the treatment. Over time, 

these cells grew into cancer or tumors that can now be detected, which is termed recurrent 

cancer (cancer relapse). Cancer may recur in the same place as the original cancer (called a 

local recurrence) or by growing into lymph nodes (tissues) near the original cancer (called 

regional recurrence) or by metastasis (spread) to tissues (organs) far from original cancer 

(called distant recurrence) (Anon, 2016). 

2.9 Works Related to ML Techniques in Recurrent HNSCC Prognosis  

Some current research including (Alabi et al., 2019; Cai et al., 2019; Tang et al., 2019; 

Singh et al., 2019; Ribeiro et al., 2017; Su et al., 2017; Yang et al., 2017; Exarchos et al., 

2011a; 2012b) employed ML techniques on markers of clinicopathologic and/or that of 

genomic for HNSCC (subtypes) prognosis. There are not many published articles that 

employed several supervised ML classifiers to train these classifiers on the combination of 
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clinicopathologic and genomic information for prognosis. Nevertheless, the findings from 

studies by Duda et al. (2001); Mitchell (1997) proved that a way to generate more accurate 

prognosis in the domain of cancer study is by the use of ML and that Kourou et al. (2015); 

Cruz and Wishart (2006) also proved that several ML techniques be trained for an optimum 

prognostic model. 

Early-stage oral tongue squamous cell carcinoma (OTSCC) locoregional recurrence was 

predicted by Alabi et al. (2019). Their trained classifier (ANN), which was a feedforward 

neural network type, was used to analyze the usage of ANNs and Logistic Regression (LR) 

on 311 patients with OTSCC treated between 1979 and 2009. Numerous prognostic factors, 

such as WHO grade, tumor budding, depth of invasion, worst pattern of invasion, 

lymphocytic host response, and perineural host response, were examined in order to 

determine their effects on the prognostic result. Tumor budding and depth of invasion were 

revealed to be the two most important variables that can best predict locoregional recurrence 

of early-stage OTSCC, according to their findings, which demonstrated that an ANN 

classifier surpassed LG with an accuracy of 92.7%.  

Another study that applied ML techniques in recurrent HNSCC regions was done by 

Exarchos et al. (2011a; 2012b). They formulated a Decision Support System (DSS) and 

Dynamic Bayesian Network (DBN) in their first and second study respectively, where 

clinical, imaging and genomic data were used to identify the prognosis that dictates the 

progression of Oral Squamous Cell Carcinoma (OSCC), and subsequently predict its 

potential recurrence (local versus metastatic). Even though both studies employed ANN, 

BNN, SVM, RF, and DT classifications, their first study trained these algorithms on clinical, 

imaging, and genomic data on 41 patients whereas these algorithms were trained on clinical, 

imaging, tissue genomic, and blood genomic data on 86 patients in their second study. 

Initially, in both studies, each classification considered was trained separately on various 

datasets used, where the respective predictions were integrated to produce a consensus 

classifier model, discriminating between patients with and without disease recurrence. 

Following feature selection and 10-fold cross-validation, clinicopathological markers 

(lymphoplasmacytic reaction, lymphovascular invasion, family history of malignancy, 

smoking, duration of smoking, ex-smoker, alcoholism, drinking habits, infection, physical 

agents, eating habits, precancerous lesions, tumor thickness, grade differentiation, and 

surgical margins) and genomic features (THC2339617, CTAG1A, LPO, CLDN8, SCGB3A1, 

Digitized by UMaT Library



24 

MSLN). In their second study, clinicopathological features (tumor thickness, grade 

differentiation, N staging, depth of invasion, smoking, p16ink4a, and eating habit) and 

genomic features (for example p53 stain), were the significant predictors of the prognostic 

outcome, with DBN accuracy of 100%. 

For the purpose of predicting the unique pattern of recurrence for locally advanced 

Nasopharyngeal Carcinoma (NPC), Cai et al. (2019) introduced molecular decision tree 

algorithms. A decision tree classifier was used as their prediction method, which was created 

to forecast the patient recurrence pattern (with versus without recurrence) for locally 

progressed NPC. It was trained on the integration of numerous genetic and 

clinicopathological variables. 13 molecules (AKT1, Aurora-A, Bax, Bcl-2, N-Cadherin, 

CENP-H, HIF-1, LMP-1, C-Met, MMP-2, MMP-9, Pontin and Stathmin, and N stage) with 

different expression levels in tumor specimens were chosen using these data on 136 patients 

to build the decision tree classifier. By employing a 10-fold cross-validation technique, their 

prognostic model was developed in the training subset and tested (validated) in the 

validation subset. They were able to predict individual recurrence patterns with an overall 

prognostic model accuracy of 84.5–95.2%. The DT classifier was shown to be an 

independent prognostic tool in predicting individual recurrence by multivariate analysis, 

which also supported the prediction of the DT. 

Another study that applied ML (KNN, SVM, and Bagged Trees (BT)) techniques in 

recurrent HNSCC was that of Singh et al. (2019) which examined whether or not disease 

treatment with radiation therapy may be followed by recurrence. Their study was actually 

to determine whether the markers present in the heterogeneous regions of tumor in the pre-

treatment PET scans of patients with HNSCC can serve as prognoses for disease recurrence. 

Information on the patient's gene mutation as an additional feature was included to 

determine its efficacy for radiation therapy treatment. The Cancer Genome Atlas (TCGA) 

identified PIK3CA, CDKN2A, and TP53 genes to be mutated genes in HNSCC. It was then 

found that, when gene expression features (dataset from TCGA) were combined with texture 

features (from The Cancer Imaging Archive (TCIA)) on 11 patients, there was an increase 

in the classification accuracy from 80% for texture features used only to 100% when gene 

expression features were combined for patients with recurrence, and from 60% to 100% for 

patients with nonrecurrence. Models were trained and tested using a 50-fold cross-validation 
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method. It was concluded that gene-expression features which, when combined with tumor 

texture, prediction of therapy response for recurrent HNSCC patients can be improved. 

Further, Yang et al. (2017) employed an SVM classifier and Cox regression analysis on an 

80-gene set potentially to identify the prognosis that predicts recurrence in Laryngeal 

Carcinoma (LC). After relevant genes were identified by Cox regression analysis as being 

associated with tumor relapse, the Protein-Protein Interaction (PPI) network was built using 

these genes. Then, using genes in certain PPI networks, an optimal SVM classifier was 

created that could categorize samples of recurrent LC. Their classifier determined the top 

ten (10) genes in certain PPI networks by ranking them according to their BC (betweenness 

centrality) values: APP, NTRK1, TP53, PTEN, FN1, ELAVL1, HSP90AA1, XPO1, LDHA, 

and CDK2. The SVM classifier demonstrated 100% accuracy for classifying recurrent cases 

from LC samples. Later, the effectiveness of the SVM classifier was evaluated using 

separate datasets to predict the recurrence or relapse of specific patients, and the results 

indicated a 97.47% accuracy rate. 

2.10 Works Related to Stacked Ensemble Techniques in Cancer Study  

Some current research including (Akinbohun, 2021; Akinbohun et al., 2020) employed a 

stacked ensemble on head and neck cancer data, whilst (Adeyemi et al., 2019; Kabir and 

Ludwig 2019; Kwon et al., 2019) employed a stacked ensemble learning technique on breast 

cancer data. There is currently no published article that employed a stacked ensemble 

learning technique on recurrent head and neck cancer data. Nevertheless, the findings from 

studies by Kabir and Ludwig (2019); Kwon et al. (2019) proved that a way to generate the 

most accurate prognosis and promising prognostic model in the domain of cancer study is 

by the use of stacked ensemble technique. 

Akinbohun (2021); Akinbohun et al. (2020) both proposed a stacked ensemble technique 

having three single base classifiers; KNN, NB, and DT (C4.5), where GLM was used as a 

meta-learner to stack these base classifiers in stacking ensemble in the diagnosis of HNC 

susceptibility able to; facilitate prompt referral and predict the cancer types around the 

regions of HNC (Sinonasal, nasopharyngeal, laryngeal, and thyroid) respectively. For 

Akinbohun et al. (2020), the accuracies of DT (93.21%), KNN (94.80%), and NB (94.12%) 

are less than the accuracy of the stacked ensemble model (95.11%). Both investigations 

concluded that, in regards to Akinbohun, a stacked ensemble gave outcomes that were more 
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accurate than those of the basic learners. As a result, healthcare systems can employ the 

layered model to diagnose HNC.  

Adeyemi et al. (2019) proposed a stacked ensemble model (with 10-fold CV) having two 

single base classifiers; NB and SVM (with DT as a meta classifier), NB and DT (with SVM 

as a meta classifier) and SVM and DT (with NB as a meta classifier) for the classification 

of recurrence of breast cancer prognosis. The results showed that the performance of the 

stacked ensemble models that used SVM and NB as the meta-classifiers did not differ from 

one another; however, the stack ensemble model that used NB and SVM as base classifiers 

and the DT as a meta-classifier had the best performance overall. As a result, using the DT 

as a meta-classifier shown a greater ability to classify recurrent breast cancer than SVM and 

NB classifiers. 

Kabir and Ludwig (2019) proposed a stacking ensemble-based algorithm, a technique that 

found the best-weighted average of varied base learners for the classification of various 

healthcare datasets including the Wisconsin Breast Cancer dataset, using GBM and DRF as 

base classifiers in one case and GBM, DRF, and DNN as base classifiers in another case. 

GLM was used as a meta-classifier in each case to obtain the best combination of base 

classifiers. It was concluded that the stacking ensemble having three base classifiers (with 

an accuracy of 99.29%) outperformed that of the stacking ensemble having two base 

classifiers (with an accuracy of 98.57%), but both had the same AUC (0.998) on breast 

cancer. The accuracy for the State-of-the-Art (SA) was 97.57%. Based on the same data set, 

accuracies of 99.29%, 98.57%, 99.29%, and 97.90% were obtained for GBM, DRF, DNN, 

and baseline ensemble techniques respectively; and with their respective AUC of 0.997, 

0.997, 0.998, and 0.996. Their experimental results showed that the stacked ensemble model 

consisting of three base classifiers had the best performance accuracy compared to that with 

two base classifiers as well as single base and baseline ensemble models. 

Kwon et al. (2019) also proposed a stacking ensemble-based algorithm, a method for 

classifying breast cancer that used GBM, DRF, DNN, and GLM as base learners in a 

stacking ensemble, and each of them as a meta-learner to stack the base learners. Based on 

the experimental findings, they came to the conclusion that utilising specific models as a 

meta-learner produced higher performance than using single classifiers, and that using GBM 

or GLM as a meta-learner is suitable as a supporting tool for categorising breast cancer data. 
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Table 2.1 Summary of Stacked Ensemble Techniques in the Cancer (Subtypes) Studies 

 

Cancer Type Base-learner Meta-learner Accuracy 

Validation 

method Reference 

HNC KNN, NB, DT GLM (LMT) 95.11% 5-fold CV Akinbohun (2021) 

HNC KNN, NB, DT GLM (LMT) 95.11% 5-fold CV Akinbohun et al. (2020) 

Breast cancer 

(NB & SVM), 

(NB & DT), 

(DT & SVM) 

DT, SVM & NB 

respectively 

72.38%, 70.98%& 

83.0% respectively 10-fold CV Adeyemi et al. (2019) 

Breast cancer 

(GBM & DRF), 

(GBM, DRF & 

DNN) GLM 

98.57%, 99.29% 

respectively 10-fold CV 

Kabir and Ludwig 

(2019) 

Breast cancer 

GBM, DRF, 

DNN & GLM 

GBM, DRF, 

DNN & GLM 

97.96%, 97.37%, 

97.96% & 97.96% 

respectively 5-fold CV Kwon et al. (2019) 
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Table 2.2 Summary of ML Techniques in the Prognosis for Recurrent HNSCC (Subtypes) 

Cancer Type 

HNSCC 

(subtypes) 

ML 

Technique 

Benchmark Accuracy Validation 

method 

Training 

Data 

Important 

Features 

Reference 

Locoregional 

(oral tongue) 

ANN LR 92.7% Cross-

entropy 

Clinical & 

histopatho

logical 

Tumor budding, 

depth of invasion 

Alabi et 

al. (2019) 

Nasopharyngeal DT 

algorithm 

Statistics 84.5–95.2% & 

AUC = 91.3% 

10-fold 

cross-

validation 

Clinicopat

hological

& 

molecular 

AKT1, Aurora-A, 

Bax, Bcl-2, N-

Cadherin, CENP-

H, HIF-1α, LMP-1, 

C-Met, MMP-2, 

MMP-9, Pontin 

and Stathmin, and 

N stage 

Cai et al. 

(2019) 

Laryngeal 

cancer 

SVM N/A 94.05%  Genomic  Tang et al. 

(2019) 

Nasopharyngeal 

carcinoma 

DT, KNN, 

LDA, LR, 

NB, RF & 

RBF-SVM 

N/A AUC= 88.3-

89.2% 

 Radiomic  Du et al. 

(2019) 
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HNSCC SVM, KNN 

& Bagged 

Trees 

N/A 100% 50-fold 

cross-

validation 

Clinical, 

imaging & 

genomic 

PIK3CA, 

CDKN2A and 

TP53 genes 

Singh et 

al. (2019) 

Nasopharyngeal 

Carcinoma 

ANN, 

KNN, SVM 

Statistics ANN:81.2%, 

KNN:77.5%, 

SVM:73.2% 

AUC=72.7-

83.5% 

10-fold 

cross 

validation 

Radiomic  Li et al. 

(2018) 

Laryngeal 

cancer 

SVM N/A   Genomic PDIA3, MYH11, 

PDK1, SDC3, 

RPE65, LAMC3, 

BTK, and 

UPK1B 

Su et al. 

(2017) 

Laryngeal 

cancer 

SVM Cox 

Regression 

100%  Genomic APP, NTRK1, 

TP53, PTEN, FN1, 

ELAVL1, 

HSP90AA1, 

XPO1, LDHA and 

CDK2 

Yang et 

al. 

(2017) 

HNSCC SVM N/A 87.0% Cross 

validation 

Clinic-

pathologic 

 Ribeiro et 

al. (2017) 
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& 

genomic 

Oral Cancer BN ANN, 

SVM, DT, 

RF 

100% 10-fold 

cross 

validation 

Clinical, 

imaging 

tissue 

genomic, 

blood 

genomic 

Smoking, p53 

stain, depth of 

invasion, extra-

tumor 

spreading, grade 

differentiation, N 

staging 

Exarchos 

et al. 

(2012b) 

and 

Exarchos 

et al. 

(2011a) 

Oral Cancer SVM N/A 98% Cross 

Validation 

Clinicopat

hologic, 

molecular 

 Rosado et 

al. (2013) 

Throat ANN Statistics 86%  Genomic  Kan et al. 

(2004) 
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2.10.1 Identified Gaps in the Review of Related Literature 

Table 2.1 provides a summary of the stacked ensemble techniques based on ML algorithms 

that have been employed in developing stacked ensemble models on various cancer datasets. 

Table 2.2 provides a summary of ML techniques that have been employed in the prognosis 

for recurrent HNSCC subtypes. Though previous studies provide some useful results, there 

is still some area of cancer study that currently needs to be explored. The aspects that have 

not been explored can be put into two phases. In the first phase, there is currently no much 

exploration on a stacked ensemble technique for recurrent HNSCC prognosis (Chi-Chang 

et al., 2021; Yarney et al., 2017). Information gathered from the previous studies shows that 

the stacked ensemble ML techniques can produce more stable, unbiased, and reliable 

prognosis and prediction results at a higher level of accuracy compared to the statistical and 

standalone ML techniques (Akinbohun, 2021; Chi-Chang et al., 2021; Akinbohun et al., 

2020). In the second phase, no standalone ML techniques in the literature is considered a 

generalised prognostic model for recurrent HNSCC prognosis based on the integration of 

clinicopathologic and genomic markers, being the domain of prognostic model development 

(Chi-Chang et al., 2021; Yaliang et al., 2015). Nonetheless, no prior study employed stacked 

ensemble ML techniques in the prognosis for recurrent HNSCC based on the integration of 

clinicopathologic and genomic markers. As a result, none of the previous studies has carried 

out the study of possibility of developing a classification model with a good generalisation 

ability to be considered a robust prognostic model for recurrent HNSCC prognosis (Chi-

Chang et al., 2021; Yarney et al., 2017).  

Based on these aftermaths, the present study proposes a Hybrid Ensemble Super 

Classification Algorithm (HESCA) model with the ability of learning the stacked 

generalisation on the integration of clinicopathologic and genomic markers. 
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CHAPTER 3 

METHODS USED 

3.1 Overview 

This chapter is in two sections: the first section discusses the methodological framework of 

the study which specifies the study area, research design, study population, sample size, data 

collection instrument and procedures, and data handling/control. The second section 

discusses the theoretical background for the development of the models. This specifies the 

theories and techniques used to develop the existing models. 

3.2 Methodological Framework 

3.2.1 Study Area 

The National Centre for Radiotherapy and Nuclear Medicine division of the KBTH is the 

study area. KBTH, which opened its doors on October 9th, 1923, is situated inside the Accra 

Metropolitan Assembly. The hospital, which is today the third-largest hospital in Africa, is 

well-known as the top national referral centre in Ghana. It contains more than 2000 beds, 

21 clinical and diagnostic Departments, and three Centres: National Cardiothoracic Centre, 

the National Centre for Radiotherapy and Nuclear Medicine, and the Reconstructive Plastic 

Surgery and Burns Centre. The radiotherapy and oncology departments of the National 

Centre for Radiotherapy and Nuclear Medicine are responsible for the treatment of cancer. 

The center uses ionizing radiation and chemotherapy to treat solid (malignant) cancers as 

well as benign tumors. The statistics section of the radiotherapy department, from which the 

study's data was acquired, maintains a database of every cancer case. The facility employs 

at least 60 people, including physicians, nurses, oncologists, treatment radiologists, and 

biological scientists.   
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Figure 3.1 Study Location (Source: Map Data, 2022) 

3.2.2 Study Design 

The study makes of a retrospective cohort design of HNSCC patients based on their cancer 

records at the medical facilities, who had curative intent treatment at KBTH in Accra, but 

had or had no relapse within the 2016 – 2020 periods inclusive. These patients were either 

originally diagnosed of HNSCC at KBTH or KATH but those that were diagnosed at KATH 

had referrals to KBTH for treatment plan. Therefore, data on patients with referrals from 

KATH to KBTH is collected at KBTH for the analysis. 

3.2.3 Study Population 

The study population consists of 185 patients with ages ≥15 years who reported at KBTH 

and KATH and were previously diagnosed of HNSCC and all had curative intent treatment 

at KBTH between 2016 and 2020 calendar period. This calendar period is chosen because 

the required information on patients that were diagnosed of HNSCC before the year 2016 

are insufficient. Patients below 15 years are mostly lost to follow-up and so there is not 

much medical information on them.  

Inclusion Criteria  

All patients of at least 15 years, that reported at the department of Radiotherapy and 

Oncology (KBTH) and KATH, and were initially diagnosed with primary HNSCC at the 
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site; larynx, nasopharynx, oropharynx, or hypopharynx between the studied calendar 

periods, and had curative intent treatment only, and had been followed-up until the end of 

2020, and experienced cancer recurrence or no recurrence are included in the study.  

Exclusion Criteria 

All patients of any age that formerly had a diagnosis of HNSCC subtypes at these 

departments between the period under study but had palliative intent treatment are excluded 

from the present study. 

3.2.4 Sample Size Determination 

The population size of 185 for the calendar period 2016 to 2020 has 60 instances with no 

much information as these patients were lost to follow-up. As a result, convenience 

sampling technique is used to withdraw such instances from the dataset at hand. Thus, a 

sample size of the original study is computed using the Cochran (2007) formula: 

𝑛 = 𝑁 ×

𝑍2 × 𝑝(1 − 𝑝)
𝜀2

[𝑁 − 1 +
𝑍2 × 𝑝(1 − 𝑝)

𝜀2
]
                                                       (3.1) 

where 𝑛 = sample size, 

𝑁 = population size 

𝑍 = the z-value attributed to a 95% confidence interval (1.96), 

𝑝 = proportion of patients with versus without recurrent HNSCC, 

the 𝑞 = 1 − 𝑝 = proportion of HNSCC patients with a second primary tumor, and 

𝜀 = precision (margin of error) set at 95% CI = 0.05.  

Given population size, N = 185, Z = 1.96,  𝜀  = 5% or 0.05, and since p is unknown, let us 

assume p = 0.5. 

𝑛 = 185 ×

(1.96)2 × 0.5(1 − 0.5)
(0.05)2

[185 − 1 +
(1.96)2 × 0.5(1 − 0.5)

(0.05)2
]
 

                                       = 125.087 ≈ 125  

The simulation in excel file is shown in appendix J. 
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3.2.5 Data Collection Instruments 

Due to the nature of research objectives, the secondary data entered in the folders of patients 

with or without the recurrence at KATH and KBTH during their diagnoses and follow-up 

tests is collected and used. 

3.2.6 Data Collection Procedures 

The source of (Hospital electronic) database for recorded data of years 2016 – 2020 on 

patients with HNSCC is first accessed. Data points on patients' possible prognostic factors 

associated with versus without recurrent HNSCC as shown in Table 3.1 below are then 

extracted from folders based on a distinctive identification number assigned to each of them, 

using data extraction form as well as Microsoft Excel. Data points are finally reviewed for 

analysis. 

Table 3.1 Demographic, Clinical, Pathological and Genomic Features 

 Name of Features Description 

i Gen Gender 

ii Age Patient’s age 

iii Alc Alcoholism 

iv Smoke Smoking 

v Chew Quid/Tobacco usage 

vi Site Site of primary tumor 

vii Stage Stage of tumor at diagnosis 

viii Grade Pathological grade 

ix Size Size of tumor 

x Inv Depth of invasion 

xi Node Lymph nodes 

xii PaT Pathological stage of tumor 

xiii PlN Lymph nodes pathologically 

xiv FHx Family of cancer hereditary 

xv HPV Human papillomavirus level 

xvi p16 p16 level 

xvii p63 p63 level 

xviii Treat Treatment modality 
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3.2.7 Data Handling and Quality Control 

To guarantee the uniformity and dependability of the data to collected, the researcher hired 

and educated research assistants with prior experience in a comparable project. To make 

sure that all the necessary data had been properly gathered and entered, there was a daily 

check of data points and duplicate data entry. Before cleansing and editing of the data to 

remove the effects of inconsistencies or incompleteness, the data is loaded into the R 

software to verify for completeness. This ensures the data's quality. Since there are few 

missing values in the dataset, the data are cleaned using the imputing approach. The modes 

or high frequency-category values of the missing value in the categorical characteristics are 

used to fill the gap. This technique is useful because it is easy and fast, it changes the 

statistical nature of the data. A few missing values and outliers in the output feature are also 

replaced by the modal value. Information gathered on patients is saved on a computer and 

is classified as confidential information. Instead of the patient's name, a code number is 

assigned, which is kept a secret. Also, the data collected is anonymised. 

The study considers numerous input features under various medical information that can be 

used to model medical cases. These include demographic features, clinicopathologic 

features, and genomic features. Each of these types of medical information may have several 

input features ranging from ten to as far as hundreds. However, in medical research, the 

number of instances of the dataset is usually small as much time is required to collect 

sufficient samples. Large training feature sizes will initially result in a high classifier 

performance for small-sized training examples with insufficiently large training data, but 

they will eventually degrade this high performance because there may be irrelevant and/or 

redundant features that could confuse the learner and cause model over-fitting, especially 

when there are few training examples and computational resources. In the face of avoiding 

the problem of model over-fitting, there is the need to perform feature selection techniques 

to select the input features that are most significant to the classifiers or clinical outcomes in 

the classification process. This process is required since the volume of data consists of more 

computational resources and is much more time-consuming. In this study, the vital goal of 

implementing the ensemble feature technique is to find the most accurate number of 

prognostic features for the small number of training examples of the HNSCC prognosis 

dataset. 
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3.2.8 Data Pre-processing 

Data pre-processing is a technique that transforms raw data into a more effective space for 

easy learning. Several data pre-processing techniques mentioned in Section 3.2.7 are used. 

The prediction accuracy of a classifier model largely rests on the data quality. This makes 

it very important to pre-process the data at hand before the feature selection technique 

implementation. 

The primary phase in data pre-processing is cleansing the data. It is discovered in the data 

collected that there is some missing and incomplete information in some instances. The 

missing values are mostly on chew, invasion, nodes, history, and HPV, and the incomplete 

examples are usually information on recurrence due to lost follow-up on a patient for which 

incomplete information was recorded. Several techniques can be used to handle missing 

training examples, such as mean, median or mode imputation, and case deletion. The latter 

deletes the instance that has missing examples under any feature; therefore, this technique 

is considered not feasible for this study as the size of training instances is very small. 

Categorical (nominal) data use mode imputation whereas continuous data uses either mean 

or median imputation (Acuna and Rodriguez, 2004). Based on Clark et al. (2003), and 

looking at the data at hand which is a categorical data, this study uses mode imputation. 

Thus, the accounted-for bias is less likely to occur, as the number of incomplete instances 

is small.   

Once the data under study has been cleansed, the required format of categorisation and 

coding for predictive training is implemented. Here, there is a transformation of continuous 

features into nominal features. One-hot encoding technique is applied to features having 

more than two classes for normalisation of the dataset to learn, test, and prognosticate 

HNSCC recurrence. Based on this technique, the original 18 features as shown in Table 3.1 

under study now give 35 features in the dataset as shown in Table 3.2. The label or target 

feature is also discretised into a factor consisting of two classes.  
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Table 3.2 Description of Features for 125 Instances 

Feature Description Level 

(No.) 

 Feature Description Level 

(No.) 

Gen (𝑥1) Male 

Female 

1 (92) 

0 (33) 
 Inv (𝑥10) Cohesive 

Non-cohesive 

NA 

1 (47) 

0 (74) 

   (4) 

Age (𝑥2) 15-45 

> 45 

1 (51) 

0 (74) 
 Node 

(𝑥11) 

Positive 

Negative 

NA 

1 (61) 

0 (44) 

   (20) 

Alc (𝑥3) Yes 

No 

1 (48) 

0 (77) 
 PaT (𝑥12) T1 

T2 

T3 

T4 

   0 (5) 

1 (14) 

2 (28) 

3 (78) 

Smoke 

(𝑥4) 

Yes 

No 

1 (38) 

0 (87) 
 PlN (𝑥13) N0 

N1 

N2  

N3 

0 (34) 

1 (14) 

2 (43) 

3 (34) 

Chew 

(𝑥5) 

Yes 

No 

1 (24) 

0 (93) 
 FHx (𝑥14) Yes 

No 

1 (16) 

0 (84) 

Site (𝑥6) Larynx 

Nasopharynx 

Oropharynx 

Hypopharynx 

0 (40) 

1 (70) 

2 (12) 

3 (3) 

 HPV 

(𝑥15) 

High-risk  

Low-risk 

NA 

0 (38) 

1 (15) 

   (72) 

Stage 

(𝑥7) 

I 

II 

III 

IV 

0 (7) 

1 (23) 

2 (33) 

3 (62) 

 p16 (𝑥16) Positive 

Negative 

NA 

1 (74) 

0 (36) 

   (15) 

Grade 

(𝑥8) 

G1 

G2 

G3 

0 (18) 

1 (31) 

2 (76) 

 p63 (𝑥17) Positive 

Negative 

NA 

1 (60) 

0 (56) 

   (9) 

Size (𝑥9) 

 

0-4cm 

> 4cm 

NA 

0 (75) 

1 (46) 

   (4) 

 

 Treat 

(𝑥18) 

Chemotherapy (Chemo) 

Radiotherapy (RT) 

ChemoRT (CRT) 

Concurrent ChemoRT (CCRT) 

Surgery+RT 

Surgery+CRT 

Surgery+CCRT 

0 (9) 

1 (33) 

2 (47) 

3 (26) 

4 (4) 

5 (2) 

6 (4) 

NB: tumor invasion ≤10mm:cohesive, and tumor invasion >10mm:non-cohesive. G1, G2, and 

G3:Well, Moderately, and Poorly differentiated respectively, N2:(N2a,b,c), N3:(N3a,b), High-risk 

if HPV16 or HPV18, Low-risk if HPV6 or HPV11 

Now, if compared to the training set of 125 instances, the 35 input features (of which there 

are 35 in total), are deemed to be excessive. To lessen the quantity of training features, a 

feature selection technique is therefore required. Thus, the ensemble feature selection 

technique only chooses the aspects that have been determined to be important to the HNSCC 
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prediction. Chapter 4, Section 4.2.1 provides an explanation of the specifics of how the 

ensemble feature selection technique was used in this study. 

 

 
Figure 3.2 Graphs for Prognostic Features 

 

Figure 3.2 shows the graphs of number of categories of each of the features considered in 

the study. 
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Figure 3.2 Graphs for Prognostic Features (continued) 
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Figure 3.3 Plot of Linearity or Nonlinearity of the HNSCC Dataset 

In order to check the linearity or nonlinearity of the HNSCC dataset, the linear SVM 

classifier that separates the training instances into two respective classes as positive and 

negative examples is used. It can be observed in Figure 3.3 that some training instances have 

been misclassified; some instances denoted by black colour belonging to the class 0 are 

misclassified among those instances belonging to class 1, and some instances denoted by 

red colour belonging to the class 1 are misclassified among those instances belonging to 

class 0. This shows that the HNSCC dataset under study is not linear or is nonlinear. This 

informs the choice of the classification algorithms that can be employed to learn the 

nonlinear dataset of the recurrent HNSCC prognosis. 

3.3 Theoretical Background of Classifiers 

Classification or supervised learning is one of the important tasks of the ML that tries to 

infer a function that maps feature values into class labels from the training data, and applies 

the function to the data with unknown class labels. In general, the classification learning 

aims at finding the model that attains good performance when predicting the unseen labels. 

To achieve good performance of a classification model on the available dataset, various 
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studies are using standalone (single) or homogeneous ensemble classifiers (classification 

models). Nevertheless, it is a complex task in the selection of a single data mining or ML 

classification model that achieves good generalisation ability for a given task. As result of 

this, the ensemble learning of multiple different learners were usually employed in the study 

for a given task in order to achieve good performance and generalisation ability of a 

classification model. This section discusses the theories behind the development of baseline 

stacked ensemble classification models, specifically baseline ensemble algorithms, 

supervised machine learning classification algorithms, and base feature selection 

algorithms.   

3.3.1 Ensemble Learning 

Ensemble learning offers credence to the ideas of the “wisdom of crowds,” which suggests 

that the decision-making of a larger group of learners is emphatically better compared to 

that of a single proficient learner. Meanwhile, ensemble learning defines a group of base 

learners, that works in an ensemble to achieve a strong and accurate final prediction. A 

single learner might not accurately perform well as they can be prone to overfitting or 

underfitting of the training data. However, combining these base learners can produce a 

strong one, as the bias or variance is reduced by their combination.  

Ensemble techniques are often illustrated using decision trees but this technique may be 

prone to overfitting (high variance and low bias) when its pruning has not been performed, 

and it can also lend itself to underfitting (low variance and high bias) when it is very small 

like a decision stump, which is a decision tree with one level. It is important to note that a 

learner cannot generalise well to new or unexplored datasets when the training data is either 

overfitted or underfitted. Ensemble approaches are used to prevent this behavior and enable 

the learner to generalise to fresh training samples. Whereas decision trees can exhibit high 

variance or high bias, it is worth noting that it is not only the modelling technique that 

leverages ensemble learning to find the "sweet spot" within the tradeoff of bias variance. 

Thus, two main approaches are considered when selecting base learners:  

The first approach is creating a single base learner or learning algorithm to create a set of 

homogeneous base learners that are learned with different techniques resulting in a 

homogeneous ensemble model. Homogeneous ensemble classifiers pool the predictions of 

multiple individual learners. The category of this ensemble learning can broadly be 
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highlighted in two techniques; bagging and boosting. The second approach is to employ 

different types of base learners or learning algorithms, forming a set of heterogeneous base 

learners to create a heterogeneous ensemble model, used in the stacking method. In general, 

three major meta-algorithms that provide effective techniques for combining base or weak 

learners can be considered (Singh et al., 2020): 

Bagging  

Bagging, also known as Bootstrap Aggregation, is an ensemble ML technique. The idea of 

drawing at random, dataset with replacement and then using these different random subsets 

of the data to learn independent or different classifiers is what is called bootstrapping. If this 

technique is used to combine individual classifiers, this process is called bagging. Therefore, 

bagging is the process of building each classifier or tree using a unique random subset of 

the data that was drawn via replacement. The final prediction might be created by averaging 

(regression) or majority voting (classification) the predictions from each independent 

classifier. Random Forest is a frequently used algorithm or approach. Both feature selection 

and the training of the classification model in this work use the RF approach. A technique 

for ensemble learning called RF aims to simplify models that overfit the training set. Unlike 

random forest, which is an extension of bagging and also randomly selects subsets of 

features used in each data sample, bagging is an ensemble algorithm that fits multiple 

models on various subsets of a training dataset before combining the predictions from all 

models (Singh et al., 2020; Breiman, 2001). 

Boosting  

Boosting is a homogeneous ensemble learning that ensembles weak decision tree learners 

into a robust one by minimising bias. Here, learning is sequential, where any weaknesses of 

predecessor learners are compensated by each successor learner in an ensemble. At every 

iteration, there is a combination of weak rules from every learner to produce a single robust 

prediction rule. Boosting techniques are focused on three popular methods including 

Adaptive Boosting (AdaBoost), Gradient Boosting (GradientBoost), and Extreme Gradient 

Boosting (XGBoost). For the study, GradientBoost or GBM is discussed and used for both 

feature selection and learning a classification model (Singh et al., 2020).  

The primary distinction between the two main forms of ensemble learning approaches, 

boosting and bagging, is the technique for which they are trained. Weak learners are learned 
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sequentially in boosting as opposed to parallel learning in bagging. This merely explains 

how a succession of learners is created, and how the weights of the misclassification data in 

each successive learner are enhanced. The learner can determine the factors it has to 

concentrate on to increase performance accuracy with the help of this redistribution of 

weights (Singh et al., 2020).  

Stacking  

The stacking technique combines a heterogeneous of multiple base learners into a more 

robust one than base learners. This technique combines the predictions of different 

individual base learners to make a final robust prediction. Where weak or base learning 

algorithms are rightfully blended, a meta-learner with lower variance and bias can be 

developed (Singh et al., 2020). The use of this ensemble learning has been observed to yield 

more robust outcomes in various studies in which they have been applied (Zang et. al., 2014; 

Cai et. al., 2019; Ragunthar and Selvakumar, 2019; Warsinske, et al., 2019). By training a 

final meta-learner on the output predictions given by many base learners, base learners are 

simultaneously learnt and integrated. When the models being fit disagree, ensembles 

frequently perform better. Additionally, the idea of integrating several models seems to 

work well in practice, frequently outperforming single method implementations. Cross-

validation is used in stacking to gauge the effectiveness of various base learning algorithms 

(Gremmell, 2018). The meta-learning method (Singh et al., 2020) takes as input the output 

from the base learners, which is referred to as "level-one" data in the stacking technique 

(Wolpert, 1992). Table 3.3 (Zhou, 2012) provides an illustration of how stacking typically 

learns through the three basic processes listed below: 

Step 1: Learn first-level classifiers based on the original training data set.  

Step 2: Construct a new data set based on the output of base classifiers. It is assumed 

that for each example in 𝐷𝑠 as {𝐱𝒊, y𝒊}, the corresponding example {𝒙𝑖 
′ , y𝒊} in the new 

dataset is constructed, where x𝑖 
′ = {ℎ1(𝐱𝒊), ℎ2(𝐱𝒊),… , ℎ𝑇(𝐱𝒊)}. 

Step 3: Learn a second-level classifier based on the newly constructed data set. For 

an unseen example x, its predicted class label of stacking is 

ℎ′(ℎ1(𝐱), ℎ2(𝐱),… , ℎ𝑇(𝐱)), where {ℎ1, ℎ2, … , ℎ𝑇} are first-level classifiers and ℎ′ is 

the second-level classifier.  
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Table 3.3 Stacking Algorithm 

Input Dataset 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑛  (𝐱𝑖 ∈ ℝ

𝑚 , 𝑦𝑖 ∈ 𝑌) 

Output A stacked ensemble classifier model H 

1 Step 1: Learn first-level classifiers 

2 for t ← 1 to T do 

3 Learn a base classifier ℎ𝑡 based on D 

4 end for 

5 Step 2: Construct new data sets from D 

6 for i ← 1 to n do 

7 Construct a new data set that contains {𝒙𝑖 
′ , y𝒊}, where x𝑖 

′ =

{ℎ1(𝐱𝒊), ℎ2(𝐱𝒊),… , ℎ𝑇(𝐱𝒊)}. 

8 end for 

9 Step 3: Learn a second-level classifier 

10 Learn a new classifier ℎ′ based on the newly constructed data set 

11 return 𝑯(𝐱) = ℎ′(ℎ1(𝐱), ℎ2(𝐱),… , ℎ𝑇(𝐱)) 

 

3.3.2 Base Learners (Classifiers) 

Base learners are those who make up an ensemble's component or individual learners and 

who are strategically blended. While firmly avoiding over-fitting, the base (weak) learner 

concentrates on accurately categorising the examples with the highest weights. For the 

purposes of this study, five base learners are taken into account, as follows: 

Random Forest (RF) Classifier 

Decision trees in the Bagging family are combined to form Random Forest. When building 

a base classifier, RF uses a variety of decision tree algorithms. Aside from the bootstrap 

sampling and majority voting used in bagging, RF integrates random feature space selection 

into the generation of learning sets to promote the diversity of base classifiers. The algorithm 

on Table 3.4 specifically describes the general rule of RF algorithm: 
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Table 3.4 Random Forest Algorithm 

Input  Dataset 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑛  (𝐱𝑖 ∈ ℝ

𝑛, 𝑦𝑖 ∈ 𝑌) 

Output  A stacked ensemble classifier model H 

1 for t ← 1 to T do 

2 Construct a Bootstrap dataset 𝐷𝑡 by randomly sampling with replacement in D 

3 Learn a decision tree ℎ𝑡 by applying 

LearnDecisionTree(data=𝐷𝑡 iteration = 0, ParentNode = root): 

4 If stop criterion is satisfied, return 

5 Randomly sample features in the whole feature space ℝ𝑛 to get a new data set 

 �́�𝑐𝑢𝑟𝑟𝑛𝑡 = RandomSubset(𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

6 Find the best feature 𝑞∗ according to impurity gain 

7  Split data (𝐷𝐿 , 𝐷𝑅) = 𝑠𝑝𝑙𝑖𝑡(𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑞
∗) 

8 Label the new parent node 𝑣 = 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑛𝑒𝑤𝑐ℎ𝑖𝑙𝑑(𝑞∗) 

9 Conduct LearnDecisionTree(𝐷𝐿 , 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 +

1, 𝑃𝑎𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 = 𝑣) and LearnDecisionTree(𝐷𝑅 , 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1, 𝑃𝑎𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 = 𝑣) 

10 end for  

11 return 𝑯(𝐱) = argmax
𝑦=𝑌

∑ 1(ℎ𝑡(𝐱) = 𝑦)
𝑇
𝑡=1  

 

Gradient Boosting Machine (GBM) Classifier 

A machine learning method called gradient boosting is applied to tasks like classification 

and regression, among others. Gradient Boosting Classifier is used when the problem is a 

classification problem and Gradient Boosting Regressor when the label is continuous. 

According to Piryonesi and El-Diraby (2020) and Hastie et al. (2009), it provides a 

prediction model in the form of an ensemble of weak decision tree learners. The "Loss 

function" is the only distinction between the two. By employing gradient descent to add 

weak learners, the goal is to reduce this loss function. Since it is based on a loss function, 

alternative loss functions, such as Mean Squared Error (MSE), can be employed for 

regression problems. For classification tasks, different loss functions, such as log-

likelihood, are used. Similar to other boosting methods, the gradient boosted trees 

methodology is constructed stage-by-stage, but it generalizes the other algorithms by 

enabling optimization for any arbitrary differentiable loss function. It frequently offers 
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predicted scores that are much higher than those of other algorithms and can manage missing 

data without the need for imputation. Despite its benefits, it has the following drawbacks: it 

might take a while to train and is sensitive to outliers and overfitting if there are too many 

trees. Table 3.5 below illustrates the algorithm of GBM. 

Table 3.5 Gradient Boosting Algorithm 

Input Dataset 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑛  (𝐱𝑖 ∈ ℝ

𝑛, 𝑦𝑖 ∈ {+1,−1}) 

Output A stacked ensemble classifier model H 

1 Weight initialisation distribution 𝑊1 

2 for t ← 1 to T do 

3 Learn base classifier ℎ𝑡 on D and 𝑊𝑡 

4 Evaluation of base classifier ε(ℎ𝑡) 

5 Updating distribution of weight 𝑊𝑡+1 based on ε(ℎ𝑡) 

6 end for 

7 return 𝑯 = 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛({ℎ1, … , ℎ𝑇}) 

 

Naïve Bayes (NB) Classifier 

The simplest Bayesian classifier, known as the naive Bayes classifier, has grown into a 

significant probabilistic model and has proved astonishingly successful in practice despite 

its high independence assumption. The naive Bayes model is a hypothetical example of a 

conditional probability model. Considering a problem instance represented by a vector 𝐱 =

(𝑥1, … , 𝑥𝑛) to be classified, where there are 𝑛 features (independent features), it assigns to 

this instance probabilities  𝑝(𝐶𝑘|𝑥1, … , 𝑥𝑛) for each of K possible outcomes or classes 𝐶𝑘 

(Narasimha and Susheela 2011). 

The problem with the above formulation is that building such a model using probability 

tables is impractical if there are many characteristics (n) or if each feature has a wide range 

of possible values. In order to make the model more manageable, it must be reformulated. 

The conditional probability can be broken down as follows using Bayes' theorem gives as 

Equation (3.1). 

𝑝(𝐶𝑘|𝐱) =
𝑝(𝐶𝑘) 𝑝(𝐱|𝐶𝑘)

𝑝(𝐱)
                                               (3.1) 
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Using Bayesian probability terminology, Equation (3.1) can be written as Equation (3.2). 

posterior =
prior ×  likelihood

evidence
                                    (3.2) 

Since the denominator of that fraction does not depend on C and the values of the 

characteristics 𝑥𝑖 are known, the denominator is virtually constant in practice, and only the 

numerator is of relevance. The joint probability model serves as the numerator's equivalent. 

𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑛), and using the chain rule for repeated applications of conditional 

probability, this may be written as Equation (3.3). 

𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑛 ) = 𝑝(𝑥1, … , 𝑥𝑛, 𝐶𝑘) 

= 𝑝(𝑥1|𝑥2, … , 𝑥𝑛, 𝐶𝑘)𝑝(𝑥2, … , 𝑥𝑛, 𝐶𝑘)

= 𝑝(𝑥1|𝑥2, … , 𝑥𝑛, 𝐶𝑘)𝑝(𝑥2|𝑥3, … , 𝑥𝑛, 𝐶𝑘)𝑝(𝑥3, … , 𝑥𝑛, 𝐶𝑘)

= ⋯ 

                           = 𝑝(𝑥1|𝑥2, … , 𝑥𝑛, 𝐶𝑘)𝑝(𝑥2|𝑥3, … , 𝑥𝑛, 𝐶𝑘) 

…𝑝(𝑥𝑛−1|𝑥𝑛, 𝐶𝑘)𝑝(𝑥𝑛|𝐶𝑘)𝑝(𝐶𝑘)                        (3.3) 

Now the "naïve" conditional independence assumptions come into play. Assume that all 

features in 𝐱 are mutually independent, conditional on the category 𝐶𝑘. Under this 

assumption,  

𝑝(𝑥𝑖|𝑥𝑖+1, … , 𝑥𝑛, 𝐶𝑘) = (𝑥𝑖|𝐶𝑘) 

and can be written as Equation (3.4). 

⟹ 𝑝(𝑥1, … , 𝑥𝑛|𝐶𝑘) =∏𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

                                (3.4) 

Thus, the joint model can be expressed as Equation (3.5). 
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𝑝(𝐶𝑘|𝑥1, … , 𝑥𝑛)  ∝ 𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑛 )          

∝ 𝑝(𝐶𝑘)𝑝(𝑥1|𝐶𝑘)𝑝(𝑥2|𝐶𝑘)𝑝(𝑥3|𝐶𝑘)…

∝ 𝑝(𝐶𝑘)∏𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

                                                            (3.5) 

where, ∝ denotes proportionality.  

This means that under the above independence assumptions, the conditional distribution 

over the class variable C is given as Equation (3.6). 

𝑝(𝐶𝑘|𝑥1, … , 𝑥𝑛) =
1

𝑍
𝑝(𝐶𝑘)∏𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

                                                   (3.6) 

where the evidence 𝑍 = 𝑝(𝐱) is given as Equation (3.7). 

𝑍 = 𝑝(𝐱) =∑𝑝(𝐶𝑘)

𝑘

𝑝(𝐱|𝐶𝑘)                                                                     (3.7) 

Where Equation (3.7) is a scaling factor dependent only on 𝑥1, … , 𝑥𝑛, that is, a constant if 

the values of the feature variables are known (Narasimha and Susheela 2011). 

Now, based on the maximum a posteriori (MAP) decision rule, the corresponding Bayes 

classifier, a function that assigns a class label �̂� = 𝐶𝑘 for some 𝑘 is given as Equation (3.8). 

�̂� = arg max
𝑘∈{1,…,𝐾}

𝑝(𝐶𝑘)∏𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

                                             (3.8) 

where �̂� is the 𝐱 class estimated based on its features 𝑥1, … , 𝑥𝑛. 

Recurrence HNSCC classification: Here is an illustration of an HNSCC classification 

problem using naive Bayesian classification. This is about the challenge of categorising the 

prognosis of HNSCC into recurrence and non-recurrence. Remember that the HNSCC 

prognosis are derived from a variety of classes of HNSCC that can be treated as sets of 

prognoses, and that the independent probability that the i-th prognosis of a specific HNSCC 

happens in an HNSCC patient D from classes C can be written as 
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𝑝(𝑥𝑖|𝐶) 

Thus, the probability that a given HNSCC contains all the prognosis 𝑥𝑖, given a class C is 

given as Equation (3.9). 

𝑝(𝐷|𝐶) =∏𝑃(𝑥𝑖|𝐶)

𝑖

                                                       (3.9) 

The question here is: “what is the probability that a given HNSCC patient D belongs to class 

C?” In other words, what is 𝑝(𝐶|𝐷)? By the definition, this is given as Equation (3.10). 

𝑝(𝐷|𝐶) =
𝑝(𝐷 ∩ 𝐶)

𝑝(𝐶)
                                                                        (3.10) 

and 𝑝(𝐶|𝐷) is also given as Equation (3.11). 

𝑝(𝐶|𝐷) =
𝑝(𝐷 ∩ 𝐶)

𝑝(𝐷)
                                                                        (3.11) 

By Bayes’ theorem, the results of the equations are resolved into a statement of probability 

in terms of likelihood given as Equation (3.12). 

𝑝(𝐶|𝐷) =
𝑝(𝐶)𝑝(𝐷|𝐶)

𝑝(𝐷)
                                                                    (3.12) 

Now, assume that there are only two mutually exclusive classes, 𝑟 (recurrence) and ¬𝑟 (non-

recurrence), such that every feature or prognosis is in either one or the other of Equation 

(3.13). 

𝑝(𝐷|𝑟) =∏𝑃(𝑥𝑖|𝑟)

𝑖

                                                                      (3.13) 

and equation (3.14). 

𝑝(𝐷|¬𝑟) =∏𝑃(𝑥𝑖|¬𝑟)

𝑖

                                                               (3.14) 

Using the Bayesian result above, these can be written as Equation (3.15) 
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𝑝(𝑟|𝐷) =
𝑃(𝑟)

𝑝(𝐷)
∏𝑃(𝑥𝑖|𝑟)

𝑖

                                                            (3.15) 

and Equation (3.16). 

𝑝(¬𝑟|𝐷) =
𝑃(¬𝑟)

𝑝(𝐷)
∏𝑃(𝑥𝑖|¬𝑟)

𝑖

                                                  (3.16) 

Dividing Equation (3.15) by Equation (3.16) gives: 

𝑝(𝑟|𝐷)

𝑝(¬𝑟|𝐷)
=

𝑝(𝑟)∏ 𝑃(𝑥𝑖|𝑟)𝑖

𝑝(¬𝑟)∏ 𝑃(𝑥𝑖|¬𝑟)𝑖
 

By re-factorisation, one obtains the equation below:  

𝑝(𝑟|𝐷)

𝑝(¬𝑟|𝐷)
=

𝑝(𝑟)

𝑝(¬𝑟)
∏

𝑃(𝑥𝑖|𝑟)

𝑃(𝑥𝑖|¬𝑟)
𝑖

 

Thus, the probability ratio 𝑝(𝑟|𝐷) 𝑝(¬𝑟|𝐷)⁄  can be expressed in terms of a series of 

likelihood ratios. The actual probability 𝑝(𝑟|𝐷) can be easily computed from log 

𝑝(𝑟|𝐷) 𝑝(¬𝑟|𝐷)⁄  based on the observation that 𝑝(𝑟|𝐷) + 𝑝(¬𝑟|𝐷) = 1. Taking the 

logarithm of all these ratios, this can be obtained as Equation (3.17). 

ln
𝑝(𝑟|𝐷)

𝑝(¬𝑟|𝐷)
= ln

𝑝(𝑟)

𝑝(¬𝑟)
+∑ln

𝑃(𝑥𝑖|𝑟)

𝑃(𝑥𝑖|¬𝑟)
𝑖

                                 (3.17) 

This technique of log-likelihood ratios is a common technique in statistics. A situation where 

there are two mutually exclusive alternatives as this example, the conversion of a log-

likelihood ratio to a probability takes the form of a sigmoid curve. Finally, the HNSCC 

patient can be classified as follows:  

It is a recurrence if 𝑝(𝑟|𝐷) > 𝑝(¬𝑟|𝐷) that is, 

ln
𝑝(𝑟|𝐷)

𝑝(¬𝑟|𝐷)
> 0, 

Otherwise, it is non-recurrence. 
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Equivalently, 

{
 

   ln
𝑝(𝑟|𝐷)

𝑝(¬𝑟|𝐷)
> 0, recurrence

     < 0,                          othrewise

 

Despite what appear to be oversimplified assumptions, naive Bayes classifiers have 

performed admirably in a variety of real-world applications, most notably the categorization 

of cancer and the filtering of spam and documents. To estimate the essential parameters, 

they only need a limited number of training instances. When compared to more complex 

methods, naive Bayes classifiers can be very quick. Each distribution can be individually 

estimated as a one-dimensional distribution due to the decoupling of the class conditional 

feature distribution. This in turn aids in resolving issues brought on by the dimensionality 

curse. 

Deep Neural Network (DNN) Classifier 

Deep neural networks (DNNs) are enhanced versions of multi-layered, ordinary ANNs. Due 

to their outstanding ability to learn both the underlying structure of the input data vectors 

and the nonlinear input-output mapping, DNN models have recently gained a lot of 

attention. Neural Networks (NNs) have vastly been used in cancer research over the last 

decades. It has been shown that neural network analysis is particularly suitable in situations 

for which there is ill defined task to be solved, and algorithmic solution development is 

difficult. This situation is exactly that which applies to cancer data analysis, which requires 

a highly nonlinear approach to computation (Zheng et al., 2022). 

Thus, a computational model of an artificial neuron is one that is influenced by biological 

neurons. Dendrites, cell bodies, axons, and synapses (output dendrites coupled to the 

dendrites of neighboring neurons) make up a neuron system. Signals are sent to the 

biological neurons through synapses located on the dendrites as shown in Figure 3.4 

(Chattopadhyay and Guha, 2004).  
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Figure 3.4 Biologically inspired Neural Network (Karparthy, 2016) 

The Architecture of ANN can be explained as the neurons (nodes) in the network that are 

connected in layers (input and output layers) by edges. According to a specific pattern, the 

neurons in various levels are connected to one another (Munakata, 2008). Neural network 

can be categorised into subgroups based on the connections of layers: single-layer network 

(single-layer perceptron) and multi-layer network (multi-layer perceptron). Mostly, the 

neural network may consist of at least one middle layer termed as hidden layer(s) (Abdul-

Kareem et al., 2001).  

Single-Layer Perceptron Feedforward Neural Networks: This ANN has only two layers: 

input layer and output layer without any hidden layer. Neurons are put in layers, where the 

outputs of neurons from one layer are connected to the inputs of neurons from the next layer 

as shown in Figure 3.5. 

 
Figure 3.5 An ANN Model Architecture  

Let (𝑥1, … , 𝑥𝑛) be the inputs and (𝑤𝑘1, … , 𝑤𝑘𝑛) be the corresponding weight, and still 

𝑤𝑘0 denote the bias in the learning process. Weight is assigned to every input in the layer 
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and their product 𝒘𝒙 are obtained as weighted input. Add 𝒘𝒙 and 𝑤𝑘0 to produce the 𝑛 

input. Sum the weighted inputs to produce 𝑣𝑘 parameter represented as Equation (3.18). 

𝑣𝑘 =∑𝑤𝑘𝑖𝑥𝑖

𝑛

𝐼=0

                                                                                 (3.18) 

Add 𝑣𝑘 to the bias 𝑥0, and pass the outcome via the Ψ(∙), to obtain Equation (3.19) 

Ψ(𝑥0+∑𝑤𝑘𝑖𝑥𝑖

𝑛

𝐼=0

) = �̂�𝑘                                                          (3.19)  

which is produced as the output (Beale and Hagan, 2012; Munataka, 2008; Graupe, 2007). 

The three activation functions that are most frequently employed to regulate the signal input 

are the linear transfer function, tangent-sigmoid function, and log-sigmoid function. These 

activation functions are chosen by trial and error based on the specific problem at hand.  

Multilayer Feedforward Perceptron Neural Networks: The Multilayer Perceptron (MLP) 

feedforward neural network, which is taken into consideration in this section and is depicted 

in Figure 3.6, is the most generally and often utilised ANN paradigm in many real-life 

applications. Let 𝑦𝑖 denote the label/target variable (quantitative or qualitative) of the 𝑖𝑡ℎ 

patient and let 𝑞𝑖 = {𝑞𝑖𝑗} denote a vector of inputs (features or predictor variables) or 

covariate of any measured for each 𝑖𝑡ℎ patient. Assume that the hidden layer has 𝑃 number 

of neurons. The input into neuron 𝑘(𝑘 = 1, 2, … , 𝑃) prior to activation, is the linear function 

𝑤′
𝑘𝑞𝑖𝑗 where 𝑤′

𝑘 = {𝑤𝑘𝑗} a vector of unknown connection weights peculiar to the 𝑘𝑡ℎ 

neuron, including a bias. In the hidden layer, each neuron performs weighted inputs 

summation (𝑛𝑖) prior to activation, then it is passed to a nonlinear activation function given 

below 

𝑓𝑘 (𝑏𝑘
(1)
+∑𝑤𝑘𝑗𝑞𝑗

𝑞

𝑗=1

) 

selecting hyperbolic tangent transformation as the hidden layer's activation function 

𝑓(𝑥𝑖) = (𝒆
𝒙𝒊  − 𝒆−𝒙𝒊) (𝒆𝒙𝒊 + 𝒆−𝒙𝒊)⁄  being the emission of neuron for input features (Okut 

et al., 2014). 
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Figure 3.6 A Multi-layer Perceptron Feedforward Model 

The Figure 3.6 is a designed ANN with 4 inputs (𝑞𝑖), where each input has up to 3 

connections with the neurons in a hidden layer via coefficients 𝑤(𝑙)
𝑘𝑗 (the 𝑙𝑡ℎ layer, 𝑗𝑡ℎ 

neuron, and 𝑘𝑡ℎ input feature) with each hidden and output neuron having a bias parameter 

𝑏𝑗
(𝐼)

. Now, X= inputs, IW = weights from input layer to hidden layer (being 12 weights), 

with hidden layer biases 𝑏1 (3 biases), HW  = weights from hidden to output layer (3 

weights), with output layer biases 𝑏2 (1 bias). So that, 𝑛1 = IWX+𝑏1 is the weighted input 

summation of the first layer, with 𝑐1 = 𝑓(𝑛1) as the output of the second/hidden layer, 𝑛2 = 

HW𝑐1 + 𝑏2 is the weighted input summation of the hidden layer, with �̂� = 𝑐2 = 𝑓(𝑛2) as 

the predicted output of the network. This ANN has 12+3+3+1= 19 total number of 

parameters.  

Outputs from neurons of the hidden layer become inputs to the neurons of the next layer. 

Here, after the activation function in the neuron of the hidden layer, outputs from these 

neurons are sent as inputs to the neuron of the output layer with weighted summation is 

given as below: 

∑𝑤𝑘
𝑖𝑓𝑘

𝑝

𝑘=1

(𝑏𝑘
(1)
+∑𝑤𝑘𝑗𝑞𝑗

𝑞

𝑗=1

) + 𝑏(2), 

where, 𝑤𝑘 = {𝑤𝑘𝑗} is the vector of unknown strengths of connections for 𝑘𝑡ℎ neuron, 

including a bias; 𝑤𝑘 are specific weights to 𝑗𝑡ℎ neuron, and 𝑏(1) and 𝑏(2) are respectively 

the parameters of biases in the hidden and output layers. Finally, given the same or another 
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activation function ℎ(∙), the label/target variable in the training set can be predicted as 

Equation (3.20)  

ℎ [∑𝑤𝑘
𝑖𝑓𝑘(∙)

𝑝

𝑘=1

+ 𝑏(2)] = 𝑐2 = �̂�                                                                (3.20) 

The predicted output �̂�𝑖 value from the output layer in Equation (3.20) as shown in Figure 

3.6 can then be estimated as Equation (3.21). 

�̂� = ℎ

[
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
(
𝑒(𝑏1

1+𝑤11
1 𝑞1+𝑤12

1 𝑞2+𝑤13
1 𝑞3+𝑤14

1 𝑞4) − 𝑒(−𝑏1
1−𝑤11

1 𝑞1−𝑤12
1 𝑞2−𝑤13

1 𝑞3−𝑤14
1 𝑞4)

𝑒(𝑏1
1+𝑤11

1 𝑞1+𝑤12
1 𝑞2+𝑤13

1 𝑞3+𝑤14
1 𝑞4) + 𝑒(−𝑏1

1−𝑤11
1 𝑞1−𝑤12

1 𝑞2−𝑤13
1 𝑞3−𝑤14

1 𝑞4)
)𝑤1

2 +

(
𝑒(𝑏2

1+𝑤21
1 𝑞1+𝑤22

1 𝑞2+𝑤23
1 𝑞3+𝑤24

1 𝑞4) − 𝑒(−𝑏2
1−𝑤21

1 𝑞1−𝑤22
1 𝑞2−𝑤23

1 𝑞3−𝑤24
1 𝑞4)

𝑒(𝑏2
1+𝑤21

1 𝑞1+𝑤22
1 𝑞2+𝑤23

1 𝑞3+𝑤24
1 𝑞4) + 𝑒(−𝑏2

1−𝑤21
1 𝑞1−𝑤22

1 𝑞2−𝑤23
1 𝑞3−𝑤24

1 𝑞4)
)𝑤2

2 +

(
𝑒(𝑏3

1+𝑤31
1 𝑞1+𝑤32

1 𝑞2+𝑤33
1 𝑞3+𝑤34

1 𝑞4) − 𝑒(−𝑏3
1−𝑤31

1 𝑞1−𝑤32
1 𝑞2−𝑤33

1 𝑞3−𝑤34
1 𝑞4)

𝑒(𝑏3
1+𝑤31

1 𝑞1+𝑤32
1 𝑞2+𝑤33

1 𝑞3+𝑤34
1 𝑞4) + 𝑒(−𝑏3

1−𝑤31
1 𝑞1−𝑤32

1 𝑞2−𝑤33
1 𝑞3−𝑤34

1 𝑞4)
)𝑤3

2     
)

 
 
 
 
 
 

+ 𝑏(2)

]
 
 
 
 
 
 
 
 

(3.21) 

Generalised Linear Model (GLM) Classifier 

The Generalised Linear Model (GLM) specifically the logistic regression (LR) with its 

weighting system (i.e., β-coefficients) is another popular binary classification model which 

also performs feature selection. To establish comparability between the various ranges of 

feature values, a Z-transformation is carried out as a preprocessing step. The essential 

features are represented by the -coefficients of the derived regression model, which acts as 

an importance measure (Neumann et al., 2017) is given by Equation (3.22) 

𝑙𝑛 [
𝑝(𝑦)

1 − 𝑝(𝑦)
] = 𝑙𝑛(𝑜𝑑𝑑𝑠) = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛                  (3.22) 

In terms of p as indicated in equation (3.23) 

𝑝(𝑦) =
𝑒(𝑎+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑛𝑥𝑛)

1 + 𝑒(𝑎+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑛𝑥𝑛)
                                                             (3.23) 

where, 𝑙𝑛[𝑝(𝑦) 1 − 𝑝(𝑦)⁄ ] = natural log of odds (logit), 

𝑝(𝑦) = event probability, 

𝑥1, 𝑥2, … , 𝑥𝑛 = training features, 
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𝑎 = 𝑦 intercept, 

𝑏1, 𝑏2, … , 𝑏𝑛 = gradient  

3.4 Feature Selection Stanzas Ensemble Feature Selection 

In some situations, FS techniques may provide instability and unreliability results based on 

several reasons; such as the nature of the complexity of multiple relevant features for the 

dataset with high dimensionality (Pyka et al., 2013; Dybowski et al., 2010; He and Yu, 

2010). It has been shown by some previous researchers that there is no single optimal FS 

technique (Yang et al., 2004). Gini-coefficient which is largely used in medical predictions 

(Llorca and Delgado-Rodríguez, 2002) has been proven to yield unstable results when given 

unbalanced training data (Boulesteix et al., 2012; Sandri and Zuccolotto, 2008). To correct 

the unreliable and unstable instability of FS techniques in training ML algorithms, a hybrid 

Ensemble Feature Selection (EFS) technique is proposed in regard to the ensemble learning 

intuition. The EFS combines multiple FS methods and their normalised outputs to 

quantitative ensemble importance; and thus, reimburses biases of individual FS techniques. 

3.4.1 The Feature Selection Technique 

Ensemble approaches may be used to increase the robustness of feature selection strategies, 

just like in the case of supervised learning. In fact, it is frequently noted that numerous 

different feature subsets may or may not produce equally optimal results in big feature/small 

sample size domains (Saeys et al., 2007), and EFS may lessen the chance of selecting an 

unstable subset. The optimal subset or ranking of features may be approximated more 

accurately by EFS than by other feature selection methods, which itself may produce feature 

subsets that can be regarded as local optima in the space of feature subsets. Last but not 

least, a feature selector's representational strength could limit the search space, making it 

impossible to find optimal subsets. By combining the results of various feature selectors, 

ensemble feature selection may help to solve this issue. 

Gradient Boosting Machine Feature Selection (GBM-FS) employs a Weighted Feature 

Importance (WFI) metric that is robust enough to receive the scores of each attribute 

according to importance after the boosted tree is constructed. The importance of each 

attribute is provided by the model that scores their importance, by its decision-making while 

decision trees are being constructed. In general, feature importance assigns a score to each 
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attribute defining its significance role. This feature importance is computed explicitly, 

where features are compared with one another and ranked in the dataset. This rank of 

features by each decision tree forms a feature subset of each tree model. The quantity of 

each attribute split point is used to determine each decision tree's relevance, which is then 

weighted by the quantity of observations coming from that node. The algorithm's 

effectiveness and performance are enhanced by using this split. (Upadhyay et al., 2021). 

Purity (Gini Index) is specifically used to choose the split points or to determine a more 

precise error function. An ensemble model of these decision trees aggregates the feature 

importance of each tree across all individual decision trees. The most promising 

characteristics from a dataset are utilized to create subsets using the model-based feature 

selection class. This method emphasizes using WFI to incorporate the preprocessing with 

the model, reducing the amount of training features by deleting redundant and unnecessary 

features from the dataset, and lengthening training times (Upadhyay et al., 2021). 

3.5 V-Fold Cross-Validation Technique  

The most significant and popular automatic model complexity optimisation technique is 

cross-validation. It fixes the overfitting issue. Blocks of v identical sizes make up the entire 

data collection X. After that, the algorithm is tested on the last block after being learned 𝑣 

times on 𝑣 − 1 blocks. The computed errors from 𝑉 are averaged, and the value of 𝜆𝑜𝑝𝑡 with 

the lowest mean error is selected to train the final model on the entire set of data X. This is 

illustrated as algorithm for V-fold cross-validation in Figure 3.7. 

𝑉 − 𝐹𝑜𝑙𝑑 𝐶𝑟𝑜𝑠𝑠 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐗, 𝑣)  
Divide learning set into 𝑣 equally sized blocks 𝐗 = 𝑿1, … , 𝑿𝑣 

For all 𝜆 ∈ {𝜆𝑚𝑖𝑛, … , 𝜆𝑚𝑎𝑥} 
For all 𝑖 ∈ {1,… , 𝑣} 

For each 𝑣, train a model of complexity 𝜆 on 𝐗 𝑿𝑖⁄  

Compute the error 𝐸(𝜆, 𝑿𝑖) on the test set 𝑿𝑖 

Compute the mean error 𝐸(𝜆) =
1

𝑣
∑ 𝐸(𝜆, 𝑿𝑖)
𝑣
𝑖=1  

Choose the value 𝜆𝑜𝑝𝑡 = argmin𝜆𝐸(𝜆) with smallest mean error 

Train the final model with complexity 𝜆𝑜𝑝𝑡 on the entire learning set 𝐗 

 

Figure 3.7 Algorithm for V-Fold Cross-Validation (Yaliang et al., 2015) 
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3.6 Detecting Multicollinearity using Variance Inflation Factor  

As the name suggests, a Variance Inflation Factor (VIF) quantifies how much the variance 

of an independent feature is inflated by its interaction or correlation with the other predictors 

in the dataset. If the VIF is 1, then there is no connection between the jth predictor and the 

other predictor variables, hence the variance of the jth coefficient is not inflated in any way. 

According to the common rule of thumb, VIF greater than 5 calls for additional examination, 

whereas VIF greater than 10 indicate substantial multicollinearity that needs to be corrected. 

The variance inflation factor for the jth predictor is specifically given as Equation (3.24). 

VIF𝑗 =
1

1 − 𝑅𝑗
2                                                                                    (3.24) 

where 𝑅𝑗
2 is the R-square value obtained by regressing the j-th predictor on the remaining 

predictors.  

3.7 Good Fit Learning Curves 

Goodness-of-fit learning curves is one of the core parts of any machine learning algorithm 

existing between model overfitting and underfitting. A good fit is achieved using the training 

loss on training dataset and validation/testing loss on validation dataset, both of which 

decrease to a point of stability leaving a negligible gap called “generalisation gap” between 

the values of the two final losses. The training loss value is almost always lower as compared 

to the validation loss value. Continued training of a good fit is likely to result into overfitting. 

Thus, good fit learning curves is achieved if 

(i) There is a decrease of training loss curve to a point of stability. 

(ii) There is a decrease of validation/testing loss to a point of stability leaving a small 

gap with the training loss. 

3.8 Model Evaluation Measurements, Validation and Comparison 

In evaluating the performance of the model, the predictions of that model are compared to 

the actual labels on set of examples. When the set of examples has been used to train the 

model, then the performance measurement is effectively on the training set. Meanwhile, if 

this set of (unseen or held-out) examples has not been employed to learn the model, then the 

performance measurement is on the test set. Classification predictive learning identifies the 
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class to which a given instance belongs. The classifier for binary classification task has two 

classes {-1, 1} or {0, 1} from which the classifier model chooses (Dom et al., 2008). The 

following metrics; accuracy, recall, specificity, precision, F1- score, Area Under Receiver 

Operating Characteristic (AU-ROC) curve, and logarithmic loss (log-loss) are considered 

under this study for model evaluation purpose.  

Predicting a patient with recurrence as recurrence signifies a true positive (TP), while 

predicting a patient with recurrence as nonrecurrence signifies a false negative (FN). 

Similarly, predicting a patient with nonrecurrence as recurrence is a false positive (FP), 

whereas predicting a patient with nonrecurrence as nonrecurrence is a true negative (TN). 

Table 3.6 below displays the confusion matrix table for the prognosis of HNSCC recurrence. 

Table 3.6 Confusion Matrix for Prognosis of HNSCC Recurrence 

Actual conditions 

  Recur (+) Nonrecur (-) 

Predicted 

outcomes 

Recur (+) True positive (TP) False positive (FP) 

Nonrecur (-) False negative (FN) True negative (TN) 

Recur: Recurrence, Nonrecur: Nonrecurrence 

Classification accuracy is simply the expression of correct predictions as a percentage of the 

total predictions and is represented as Equation (3.25). 

Accuracy =
TP+TN

TP+TN+FN+FP
× 100%                                                            (3.25) 

Specificity is the true negative rate that measures the ratio of true negative conditions to all 

patients with non-recurrence. The probability of classifying a patient as non-recurrent when 

actually he is non-recurrent is represented as Equation (3.26). 

Specificity =
TN

TN+FP
× 100%                                                                       (3.26) 

The probability of classifying a patient as a recurrent when actually he is a non-recurrent is 

1-specificity. 

Precision value is the expression of correct positive predictions as a percentage of all correct 

or incorrect positive predictions is represented as Equation (3.27). 

Precision (P) =
TP

TP+FP
× 100%                                                                 (3.27)  
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Recall or sensitivity is the expression of correct positive predictions as a percentage of all 

predictions that are actually positive. In this context, it is the expression of true positive 

conditions as a percentage of all the patients with recurrence. The probability of classifying 

a patient as a recurrent when actually he is a recurrent is represented as Equation (3.28).  

Recall (R) =
TP

TP+FN
× 100%                                                                     (3.28)  

It may be preferable to prioritise recall or precision more highly depending on the 

application. The need of recall and precision is crucial for many applications in the 

meanwhile. One popular metric that combines precision and recall into a single metric is 

called F1-Score, which is computed as the harmonic mean of precision and recall as 

Equation (3.31). 

F1 = (
Recall + Precision

2
)
−1

                                                          (3.29) 

=
2

1
Recall

+
1

Precision

                                                                  (3.30) 

= 2 ×
Recall × Precision

Recall + Precision
                                                         (3.31) 

The Receiver Operating Characteristic (ROC) curve plots the sensitivity as against the 

specificity aimed at threshold values changing. When all the examples are classified as 

negative, it means there is the highest value of threshold. So, the true negative rate is 1.0 

(100%) and the true positive rate is 0.0 (0%). Contrary, when all the examples are classified 

as positive, then the value of the threshold is at the lowest. So, the true positive rate is 1.0 

(100%) and the true negative rate is 0.0 (0%). The ROC curve can be viewed as single value 

called the Area Under the Curve (AUC). AUC calculates the area under the ROC curve. A 

single value that falls within [0, 1] interval. Better is the prediction as larger is the area under 

the curve (Adbul-Kareem, 2001). 

3.8.1 Binary Cross-Entropy/Logarithmic Loss  

The Logarithmic loss (log-loss) metric can be used to evaluate the performance of the 

binomial or multinomial classifier. The negative average of the log of the corrected 

projected probability for each case is referred to as log loss. In contrast to AUC, which 

measures a model's ability to correctly categorise a binary target, log-loss measures how 
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closely a model's predicted values match the actual/true value (in the case of binary 

classification, either 0 or 1). In other words, it gauges the degree of uncertainty in anticipated 

labels depending on how much they deviate from the actual labels. The higher the log loss 

value, the more the predicted probability deviates from the actual value. Thus, better 

predictions are indicated by a smaller log-loss value. When the model output provides the 

likelihood of a binary result, log-loss is a suitable performance metric. (Megha, 2020). The 

log-loss equation for binary classification is given as Equation (3.32). 

Log − loss = −
1

𝑁
∑𝑤𝑖

𝑁

𝑖=1

(𝑦𝑖 ln(𝑝𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑝𝑖))       (3.32) 

where: 

 N is the total number of rows (observations) of the corresponding data frame 

 w is the per row user-defined weight (default is 1) 

 p is the predicted value assigned to a given row (observation) 

 y is the actual target value  
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CHAPTER 4 

DEVELOPMENT OF HYBRID RECURRENT HEAD AND NECK 

SQUAMOUS CELL CARCINOMA PROGNOSTIC MODEL 

4.1 Overview 

This chapter confers the developing of a hybrid ensemble classification system for recurrent 

HNSCC prognosis. It specifies the techniques used to develop the hybrid stacked ensemble 

classification model. The base classifiers (GBM, DRF, DNN, GLM, and NB) are the 

frequent effective ML techniques that are mostly applied extensively to cancer study. In 

medical studies, different ML techniques including classification, clustering, and regression 

analysis are needed. The most common technique in ML that is used to classify and predict 

the predefined classes or categories of labels is the classification (supervised learning). The 

present study makes use of five supervised ML techniques in a stacking ensemble to 

identify, classify and predict the categories of the label HNSCC with levels of individual 

recurrence patterns (recurrence verses nonrecurrence). 

4.2 Development of Recurrent HNSCC Prognostic (HESCA) Model 

The proposed Hybrid Ensemble Super Classification Algorithm (HESCA) model is by a 

conjunction of five base classifiers (GBM, DRF, DNN, GLM, and NB), with 10-fold cross-

validation (10-CV), with GBM ensemble feature selection (GBM-FS). The HESCA model 

learning technique consists of a combination of two main components: one of these 

components is the ensemble of supervised feature selection algorithm; and the other 

component is the ensemble of supervised machine learning classification algorithms, with 

10-Cross-Valdation. The proposed HESCA model is a stacked ensemble model having all 

the individual base models and the GBM meta-model in a stacking ensemble (with 10-CV) 

based on the optimal feature subset (gradient boosted features) provided by the ensemble 

feature selection technique GBM-FS. The architecture of the feature selection techniques 

and the architecture of the proposed stacked ensemble model are shown in Figure 4.1 and 

Figure 4.2 respectively.  

4.2.1 Proposed Ensemble Feature Selection Technique 

Similar to feature selection, the Ensemble Feature Selection (EFS) by the HESCA model 

combines individual base feature selectors to select the most significant input features in the 
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training phase that produce improved robust outcomes for the HESCA model. The idea 

behind the EFS is to solve the instability and unreliability problem that can be accounted 

for using a single feature selector (Xu et al., 2019; Wang et al., 2019). Feature selection 

aims at overcoming the problem of dimensionality in the training data that improves the 

model’s accuracy compared to that consisting of full-input features. Undoubtedly, a cost-

effective model can be produced. This is considered crucial in clinical study in which fewer 

feature input implies lower diagnostic or prognostic cost as well as test.  

Meanwhile, the main purpose of GBM-FS (Xu et al., 2019) in the present study is to identify 

optimum feature subset (number of features) given the number of training instances under 

the study that the proposed HESCA model can learn to produce a robust prognostic model 

for recurrent HNSCC prognosis. The purpose for employing ensemble technique in 

selecting features is to enhance the overall selection of the optimal features to reduce 

instability that can be caused by a single feature selector. Five feature selection techniques 

are experimented: two of which are ensemble ML techniques (GBM and DRF) for 

homogeneous ensemble FS; and three of which are standalone ML techniques (DNN, NB, 

and GLM) for heterogeneous single FS, have been selected and implemented in this study. 

The weighted voting ensemble technique for ensemble feature selection assigns various 

weights to the features based on specific criteria and selects the features based on the weight. 

The information on HNSCC patients under study considered as training features range from 

gender denoted as Gen (𝑥1) to treatment type denoted as treat (𝑥18) as shown in Figure 4.1. 

Each technique; GBM, DRF, DNN, GLM, and NB is used to select features where each one 

provides a feature subset by sorting these features in order of their importance. Consider a 

labeled dataset D= {𝐱i, 𝑦𝑖}𝑖=1
𝑛  with 𝑛 instances and feature space 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛). 

Consider also FS = {𝐹𝑆1, 𝐹𝑆2, … , 𝐹𝑆t} consisting of t number feature selectors (FS). Each 

𝐹𝑆𝑖 offers a feature subset 𝐹𝑆𝑖 = {𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛−1
𝑖 }, and n-1 means the maximum features 

that the 𝐹𝑆𝑖 selects. For each feature in the 𝑖𝑡ℎ subset, a weight of importance is computed. 

Based on a given threshold, the 𝛼% features exceeding a threshold are selected from each 

ranked list of feature importance to form feature subsets. The optimal feature subset of the 

dataset as new dataset 𝐷𝑛𝑒𝑤 = {𝐱𝑖 
′ , 𝑦𝑖

′}𝑖=1
𝑛 based on various feature selection techniques is 

obtained using HESCA model to learn and evaluate on 𝐹𝑆𝑖. 

 

Digitized by UMaT Library



65 

 

        

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       
Figure 4.1 Architecture of Feature Selection Techniques 

4.2.2 The Proposed Stacked Ensemble Classification Model for HESCA 

This section presents a detailed description of the proposed stacked ensemble classification 

(HESCA) model for recurrent HNSCC. This classification model is based on stacking 

ensemble technique, and is called the HESCA model. By stacked ensemble technique, the 

HESCA model is developed on the optimal feature subset (gradient boosted features) using 

the model hyperparameter values.  

In general, two steps—Selection and Combination—are taken into consideration when 

creating a HESCA model. The choice of the component classifiers is thought to be crucial 

for the effectiveness of the HESCA model, and the diversity and accuracy of these classifiers 

are the key factors in this regard (Rokach, 2010; Dietterich, 2001). The predictions of the 

individual classifiers are combined using a variety of techniques with various philosophies. 
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This model is the adaptation of the two already existing models: Kabir and Ludwig (2019); 

Kwon et al. (2019).  

The stacked ensemble classification model; specifically stacked ensemble learning proposed 

by Kabir and Ludwig (2019) is a super learning ensemble model that found the optimal 

weighted average of diverse base learners for classification of various healthcare datasets. 

Kwon et al. (2019) likewise proposed a stacking ensemble model that found the best meta-

learner for classifying breast cancer. Note that both super learning ensemble and stacking 

ensemble mean the same learning process. Kabir and Ludwig (2019) employed three (GBM, 

DRF, and DNN) and two (GBM and DRF) different machine learning algorithms as base 

classifiers, and used GLM as the meta-classifier in each case to determine the final stacked 

ensemble result. Their best stacked ensemble model consisted of three base models and a 

GLM meta-model. The algorithm of this technique is shown in Table 4.1. In contrast, Kwon 

et al. (2019) used the machine learning (ML) algorithms GBM, DRF, GLM, and DNN as 

base classifiers. Each of these methods was then used as a meta-classifier to stack base 

classifiers in order to create a robust meta-classifier model in a stacked ensemble learning 

with four basis classifiers. Their best stacked ensemble model consisted of four base models 

and a GBM meta-model. The algorithm of this technique is shown in Table 4.2. In stacked 

ensemble learning, the meta-learning algorithm is specified in building a classifier with the 

purpose to enhance the overall performance (generalisation ability) of a classification 

model, to regularise the linear model, to minimise the cross-validated risk of a loss function 

of interest such as squared error loss or rank loss that a base learner may cause (LeDell, 

2016) so as to maximise the Area Under ROC Curve. The meta-learning algorithm takes 

predicted labels (predictions) made by the first-level classifiers as input feature space to 

learn meta-model. This study presents a stacked ensemble model having five base models 

(with 10-fold cross-validation) and GBM meta-model, and GBM ensemble feature selection 

(GBM-FS) model. This is where 10-fold cross-validation is performed on each base 

classifier using GBM-FS optimal feature subset, and the cross-validated predicted labels 

provided by the five base models along the original class labels serving the level-1 dataset, 

is used to learn meta-learning algorithm.  
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Table 4.1 Baseline Stacked Ensemble Algorithm with V-fold Cross Validation 

Input: Dataset 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑛 ; learning rate 𝛼 > 0 

 𝐶 = {ℎ1, ℎ2, … , ℎ𝐿} – classifiers set which constitute the ensemble. 

 ℎ′ = meta-learner 

Output: An ensemble classifier H 

Step 1: Adopt CV approach in preparing a training set for meta-classifier 

Randomly split 𝐷𝑠 into V equal-size subsets: 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑉} 

for 𝑣 ← 1 to V do 

         Step 1.1: Learn first-level classifiers  {ℎ1, ℎ2, … , ℎ𝐿}         

         for 𝑙 ← 1 to L do 

               Learn a classifier ℎ𝑣𝑙 from 𝐷 𝐷𝑣⁄  

         end for 

         Step 1.2: Construct a training set for second-level classifiers 

         for 𝐱𝑖 ∈ 𝐷𝑣 do 

               Get a record {𝐱𝑖 
′ , y𝑖}, where 𝐱𝑖 

′ = {ℎ𝑣1(𝐱𝑖), ℎ𝑣2(𝐱𝑖),… , ℎ𝑣𝐿(𝐱𝑖)} 

         end for 

end for 

Step 2: Learn second-level classifier  

      Learn a new classifier ℎ′ from the collection of 𝑍 = {𝐱𝑖 
′ ,  𝑦𝑖}𝑖=1

𝑛  

end for 

Return  𝐻(𝐱) = ℎ′ (ℎ1(𝐱), ℎ2(𝐱),… , ℎ𝐿(𝐱)) 

Step 3: Predict unseen example (testing set) 

for each 𝐱 ∈ 𝐷𝑡 do 

              Apply an ensemble classifier 𝐻(𝐱) on 𝐱. 

end for 
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Table 4.2 State-of-the-Art Stacked Ensemble Algorithm with V-fold Cross Validation 

Input: Dataset 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑛 ; learning rate 𝛼 > 0 

 𝐶 = {ℎ1, ℎ2, … , ℎ𝐿} – classifiers set which constitute the ensemble. 

Output: An ensemble classifier H 

Step 1: Adopt CV approach in preparing a training set for meta-classifier 

Randomly split 𝐷𝑠 into V equal-size subsets: 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑉} 

for 𝑣 ← 1 to V do 

         Step 1.1: Learn first-level classifiers  {ℎ1, ℎ2, … , ℎ𝐿}         

         for 𝑙 ← 1 to L do 

               Learn a classifier ℎ𝑣𝑙 from 𝐷 𝐷𝑣⁄  

         end for 

         Step 1.2: Construct a training set for second-level classifiers 

         for 𝐱𝑖 ∈ 𝐷𝑣 do 

               Get a record {𝐱𝑖 
′ , y𝑖}, where 𝐱𝑖 

′ = {ℎ𝑣1(𝐱𝑖), ℎ𝑣2(𝐱𝑖),… , ℎ𝑣𝐿(𝐱𝑖)} 

         end for 

end for 

Step 2: Learn second-level classifier  

      Re-learn first-level classifiers ℎ𝑙
′ from the collection of 𝑍 = {𝐱𝑖 

′ ,  𝑦𝑖}𝑖=1
𝑛  

end for 

Return  𝐻(𝐱) = ℎ′ (ℎ1(𝐱), ℎ2(𝐱),… , ℎ𝐿(𝐱)) 

Step 3: Predict unseen example (testing set) 

for each 𝐱 ∈ 𝐷𝑡 do 

              Apply an ensemble classifier 𝐻(𝐱) on 𝐱. 

end for 

 

To generate the HESCA model for better performance, the novel approach for recurrent 

HNSCC prognosis in cancer medical settings is proposed. For the purpose of the study, the 

system adapts to enhance the existing stacked ensemble models of Kabir and Ludwig 

(2019), and Kwon et al. (2019) as shown in Table 4.1 and Table 4.2 respectively above, by 

improving in the areas of:  

(i) More base classifiers against few as used by both studies. 

(ii)  More diverse meta-classifiers against few as used by both studies. 
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(iii) More base classifiers and each used as a meta-classifier against few used by 

Kwon et al. (2019) and where no such was used by Kabir and Ludwig (2019). 

(iv)  Incorporation of the regularisation technique as not done by both studies. 

The philosophy that inspires the study is that, “the learner is improved as it learns from 

more diverse of its co-learners when regularised.” 

Therefore, five selected ML classifiers: GBM, DRF, DNN, GLM, and NB are employed to 

learn and evaluate the performance of the proposed HESCA model based on the optimal 

feature subset generated by the GBM-FS technique. The steps to the proposed adapted 

learning technique are presented as follows: 

i. Classification model data 

Consider a labeled optimal feature subset data 𝐷𝑛𝑒𝑤 = {𝐱𝑖 
′ , 𝑦𝑖

′}𝑖=1
𝑛  with 𝑛 

instances and feature vectors 𝐱′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛−1
′ , 𝑦𝑛

′ ). Assume that the 

training set is comprised of n independent and identically examples, 

{𝑂1, 𝑂2 , … , 𝑂𝑛}, where 𝑂𝑖 = (𝑥𝑖
′, 𝑦𝑖

′); here, 𝑥𝑖
′ is vector of covariate or 

feature value and 𝑦𝑖
′ is the outcome. 

ii. Data sample for classification model 

Partition the new dataset 𝐷𝑛𝑒𝑤 into two subsets; 𝐷𝑠 as training set and 𝐷𝑡 as 

testing set, whereby the class information is known for the training set, and 

it is unknown for the testing set (unseen data). These data sets are referred to 

as level-0 data.  

iii. Set up the ensemble  

 Specify the library of L base learning algorithms, {𝜓1, 𝜓2, … , 𝜓𝐿}, each of 

which is indexed by an algorithm class as well as a specific set of model 

hyperparameters. 

 Specify meta-learning algorithms (classifiers). 

iv. Learn base classifiers 

Learn each of the L base classifiers on the training set 𝐷𝑠. That is, learn 

classifier 𝜓𝑘 on the training set. These classifiers learned on the entire 

training set are referred to as “full-fit” classifiers. 

v. Perform stacking with V-fold cross-validation: Create training set and validation set 

based on 𝐷𝑠. 
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 Randomly split the training set 𝐱′ into 𝑉 mutually exclusive and exhaustive 

equal-size folds 𝐷𝑠 = {𝐷𝑠1, 𝐷𝑠2, … , 𝐷𝑠𝑉}, where 𝑣 = 𝐱′
(1)
, 𝐱′

(2)
, … , 𝐱′

(𝑉)
. 

 Within each fold 𝑣, where  𝑣 = 1,2, … , 𝑉, 9 𝑉⁄  or (𝑉-1) and 1 𝑉⁄  of the 

dataset are used for training set (𝑇𝑟) and validation set (𝑉𝑑) respectively. 

(a) Learn first-level classifiers based on the training dataset. 

o Perform V-fold cross validation on each of L classifiers and collect the 

cross validated predicted labels from of these L classifiers. That is, for 

each base classifier in the ensemble 𝜓𝐿 , 𝑉-fold cross-validation is used 

to generate 𝑉 cross-validated predictions associated with 𝐼𝑡ℎ classifier. 

These 𝑉-dimensional vectors of cross-validated predictions become the 

L columns of Z. 

o within each fold 𝑣 and at each round, learn 𝜓𝑘 on  𝑇𝑟 and validate it on 

𝑉𝑑 to obtain meta-feature space or prediction functions {�̂�1, �̂�2, … , �̂�𝐿}, 

where �̂�𝑘 = {𝑧𝑣1𝑘, 𝑧𝑣2𝑘, … , 𝑧𝑣𝑛𝑘}, which constitute the input feature 

space for the meta classifiers. It is worth noticing that, each classifier is 

learned (fitted) V times. These classifiers learned across the V cross-

validation folds are referred to as “cross-validated fit” classifiers. 

o combine the cross-validated predictions (predicted labels or values) from 

all folds of all learners to generate the so-called L column (𝑛 × 𝐿) matrix 

of cross-validated predictions. This matrix is also commonly referred to 

as 𝑍 of k-fold cross-validated predictions.  

o combine (𝑛 × 𝐿) matrix with the original label (Y) of the training data to 

obtain Level-one data. 

As shown in Fig. 4.2, here, level-one dataset is the combination of the cross-validated 

predictions provided by first-level classifiers termed as meta-features and the original class 

labels (𝑦1
′ , 𝑦2

′ , … , 𝑦𝑛
′ ). It is assumed that for each example in 𝐷𝑠 as {𝐱𝑖 

′ , 𝑦𝑖
′}, the 

corresponding example {𝐱𝑖 
′′, 𝑦𝑖

′} in the new dataset is constructed, where x𝑖 
′′ =

{𝜓𝑣1(𝐱𝑖 
′ ), 𝜓𝑣2(𝐱𝑖 

′ ), … , 𝜓𝑣𝐿(𝐱𝑖 
′ )}.  

(b) Learn meta classifiers based on the newly constructed dataset 𝑍. 

o Stack first-level classifiers using each base classifier (re-learn 𝑘𝑡ℎ base-

classifier on the level-one data). 
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o Each provides a meta-feature space or prediction function 

{�̂�1
′ , �̂�2

′ , … , �̂�𝐿
′ }. 

The cross-validated predictions made by the L base classifiers become the inputs for the 

meta classifiers. Therefore, once the meta classifiers are generated, combine the first-level 

classifiers along with the original class labels. Learn the meta-classifiers based on the newly 

constructed dataset. The best meta-classifier ψbest, provides the output space ψ̂best. Each 

meta classifier provides a (meta-feature space) prediction function {�̂�1
′ , �̂�2

′ , … , �̂�𝐿
′ }, which 

then become the output. It is worth mentioning for stacked ensemble that, all base classifiers 

must have been learned with the same number of cross-validation folds, and they must all 

use the same fold assignment to ensure that the same observations are used.  

vi. Generate output/results 

Finally, use the hybrid ensemble super classification algorithm model to generate 

predictions on the test set 𝐷𝑡 (unseen example) to predict class label. Then, the 

HESCA model predicts the class label of an unseen example 𝐱′ as; 

𝐻( 𝐱′) = ψbest{𝜓1( 𝐱
′), 𝜓2( 𝐱

′),… , 𝜓𝐿( 𝐱
′)}                                (4.5) 

where, {𝜓1, 𝜓2, … , 𝜓𝐿} are the first-level classifiers and ψbest is the meta classifier. 

Assumptions of the HESCA model 

In the formulation of the HESCA model, the following assumptions are made. It is assumed 

that; 

a. all patients of at least 15 years were initially diagnosed with any of the HNSCC 

subtypes only under study between the 2016 and 2020 calendar period. 

b. all patients were treated with curative intent only and were followed up until the end 

of this calendar period.  

c. treatment is proportional to the stage of the tumor at diagnosis for all patients. 

d. all patients treated with curative intent can only experience either recurrence or non-

recurrence.  

e. sample items are all independent and identically distributed. 

f. the model does not allow patients treated with palliative intent. 
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g. the model does not allow patients treated with curative intent and later developed a 

second primary tumor. 

HESCA model learns through the algorithm presented in Table 4.3 and the architecture of 

the HESCA model is shown in Figure 4.2. 

Table 4.3 Proposed Hybrid Ensemble Super Classification Algorithm for HESCA 

Input: Dataset 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑛 ; 𝛼 > 0 

 GBM boosted feature subset 𝐷𝑛𝑒𝑤 = {𝐱𝑖 
′ , 𝑦𝑖

′}𝑖=1
𝑛  

 𝐷𝑠 - Training set 

 𝐷𝑡 - Testing set 

 𝑉𝑑 - Validation set from 𝐷𝑠  

 𝑇𝑟 – training set from 𝐷𝑠  

 EFS = {𝐹𝑆1, 𝐹𝑆2, … , 𝐹𝑆t}–feature selection algorithms which constitute EFS. 

 Early stopping – which constitutes the regularisation hyperparameter 

 𝐶 = {𝜓1, 𝜓2, … , 𝜓𝐿}–classifiers set which constitute the ensemble. 

Output: A HESCA classifier model H 

/*Phase I: Feature Selection*/ 

Step 1:   Obtain feature subsets from various feature selectors 

for algorithm 𝐹𝑆𝑖 in {𝐹𝑆1, 𝐹𝑆2, … , 𝐹𝑆t} 

        Use dataset D to do feature selection by feature selector 𝐹𝑆𝑖 

 for 𝑖 ← 1 to 𝑡 do        

        Get weight sequence of t feature selectors 

end for 

Step 2: Get best feature sequence according to α 

Sort FS base on 𝑊 

α% features in subset are put first 

Return SUBSETbest 

/*Phase II: Training*/ 

Step 3: Adopt CV approach in preparing a training set for meta-classifier 

Randomly split 𝐷𝑠 into V equal-size subsets: 𝐷𝑠 = {𝐷𝑠1, 𝐷𝑠2, … , 𝐷𝑠𝑉} 

for 𝑣 ← 1 to V do 

         Step 4.1: Learn first-level classifiers  {𝜓1, 𝜓2, … , 𝜓𝐿}         
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         for 𝑙 ← 1 to L do 

               Learn a classifier 𝜓𝑣𝑙 from 𝐷𝑠 𝐷𝑠𝑣⁄  

         end for 

         Step 4.2: Construct a training set for second-level classifier 

         for 𝐱𝑖
′ ∈ 𝐷𝑠𝑣 do 

               Get a record {𝐱𝑖 
′′, 𝑦𝑖

′}, where 𝐱𝑖 
′′ = {𝜓𝑣1(𝐱𝑖 

′ ), 𝜓𝑣2(𝐱𝑖 
′ ),… , 𝜓𝑣𝐿(𝐱𝑖 

′ )} 

         end for 

end for 

Step 4: Learn meta classifier 

for 𝑙 ← 1 to L do 

      Re-learn each first-level classifier 𝜓𝑙
′ from the collection of 𝑍 = {𝐱𝑖 

′′, 𝑦𝑖
′}𝑖=1
𝑛  

end for 

Return  𝐻( 𝐱′) = ψbest{𝜓1( 𝐱
′), 𝜓2( 𝐱

′),… , 𝜓𝐿( 𝐱
′)} 

/*Phase III: Evaluation*/ 

Step 5: Predict unseen example (testing set) 

for each 𝐱′ ∈ 𝐷𝑡 do 

              Apply an ensemble classifier 𝐻( 𝐱′) on 𝐱′. 

end for 
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Figure 4.2 Architecture of HESCA Model for Recurrent HNSCC Prognosis 

The architecture of the HESCA model for recurrent HNSCC prognosis in Figure 4.2 

explains from data pre-processing to model evaluation. The original data is subjected 

ensemble feature selection using GBM, which provides the gradient boosted features termed 

as the optimal feature subset of the original data. This feature subset becomes the new 

dataset which is split into training and testing sets on which the proposed hybrid model is 

learned and evaluated respectively. The training set is further partitioned into V-fold. At 

level-1, the V-fold cross-validation is performed on each base classifier model based on the 

training set, each of which provides the cross-validated predictions termed as the meta-

features. These meta-features are combined with the original class labels to form a level-1 

dataset for meta-classifiers. Here, each base classifier serves as a meta-learning classifier in 

order to determine the best meta-classifier model for recurrent HNSCC. At level-2 or layer-

1, each base classifier model is learned on the level-1 dataset. The outputs of each classifier 

model at the base-learning (level-1) and at the meta-learning (level-2) show that the GBM 
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is the best meta-classifier model. This indicates that the GBM can be used as a meta-

classifier model straightforward in a stacking ensemble consisting of five base classifier 

models in the learning of recurrent HNSCC data without verifying other base classifier 

models at the meta-learning or stacking stage. Now, based on the output of the GBM meta-

classifier model, the evaluation is performed to determine the final predictions of the 

HESCA model.    

HESCA Model Hyper-parameters Identification 

The HESCA model is developed based on the hyperparameters obtained by random grid 

search as shown in Table 4.4 below.   
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Table 4.4 The HESCA Model Hyperparameters for Recurrent HNSCC Prognosis  

Classifiers  Hyperparameters in grid 

search  

Hyperparameters fixed values 

GBM max_depth = c(7, 9), 

min_rows = c(1, 3, 5), 

learn_rate = c(0.01, 0.1), 

sample_rate=c(0.5, 0.75, 1), 

col_sample_rate=c(0.8, 0.9, 1) 

ntrees = 5000 

nfolds = 10 

fold_assignment = "Modulo" 

keep_cross_validation_predictions = 

TRUE 

stopping_metric = “logloss” 

stopping_tolerance = 0.0001 

stopping_round = 50 

DRF max_depth = c(9, 30),  

mtries = 3, 

min_rows = c(1, 5, 10), 

sample_rate = c(0.5, 0.75, 1), 

col_sample_rate = (0.8, 0.9, 1) 

ntrees = 5000 

nfolds = 10 

fold_assignment = "Modulo" 

keep_cross_validation_predictions = 

TRUE 

stopping_metric = “logloss” 

stopping_tolerance = 0.00001 

stopping_round = 50 

DNN activation=c("Rectifier", 

"Maxout", "Tanh"), 

hidden = list c(5, 5, 5, 5, by 10), 

epochs = c(50, 100, 200), 

l1 = c(0, 1e-3, 1e-5), 

l2 = c(0, 1e-3, 1e-5), 

rate =c(0, 0.1, 0.005, 0.001) 

epochs = 20 

nfolds = 10 

fold_assignment = "Modulo" 

keep_cross_validation_predictions = 

TRUE 

stopping_metric = “logloss” 

stopping_tolerance = 0.0001 

stopping_round = 10 

NB laplace=c(0, 5, by 0.5) nfolds = 10 

fold_assignment = "Modulo" 

keep_cross_validation_predictions = 

TRUE 

stopping_metric = “logloss” 

stopping_tolerance = 0.0001 

stopping_round = 10 

GLM alpha=c(0.1) nfolds = 10 

remove_collinear_columns = TRUE 

fold_assignment = "Modulo" 

keep_cross_validation_predictions = 

TRUE 

stopping_metric = “logloss” 

stopping_tolerance = 0.0001 

stopping_round = 10 
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Implementation of the HESCA Model  

First, using the training and testing datasets from the original dataset, the HESCA model is 

appropriately learned and tested. Figure 4.3 illustrates the poor performance of this model 

on training and testing sets, which is a full-input HESCA model made out of full-input 

features (redundant and irrelevant features). To improve the generalisation ability of the 

HESCA model on both training and testing sets, feature selection is performed using five 

ML classifiers under study, where each provides a feature subset and where each ranks its 

features based on their importance. Once the promising feature subsets are obtained through 

individual feature selection techniques, they are effectively used for training and testing 

using the HESCA model to identify the optimal feature subset for that feature selection 

technique (model).  

Meanwhile, based on this optimal feature subset provided by the best feature selection 

model, each base classifier is effectively trained and tested. To improve the generalisation 

ability of these base classification models, the stacked generalisation technique with 10-fold 

cross-validation is implemented; where stacked ensemble models are developed by using 

each base classifier as a meta classifier to stack base classifiers in a stacking ensemble 

consisting of five base classifiers. The best-stacked ensemble model is identified based on 

the outputs provided by the components of stacked ensemble models. Thus, the best-stacked 

ensemble model is the model with the best performance both at the base learning level and 

the meta-learning level with outperforming performance. Generally, the proposed Hybrid 

Ensemble Super Classification model for recurrent HNSCC is by far a conjunction of the 

Gradient Boosted Features (GBF)-GBM ensemble feature selection (GBM-FS) model, five 

base classification models (GBM, DRF, DNN, GLM, and NB), and a GBM meta-model 

with 10-fold cross-validation. 
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 Figure 4.3 Architecture of HESCA Model with Full-Input Features 

The Figure 4.3 explains the architecture of the HESCA model with full-input features. 

Having developed the HESCA model parameters as shown in Table 4.4, it can be applied 

to the original dataset that has no feature selection. Here, the original dataset is split into 

training and testing sets. The HESCA model is learned on the training set and evaluated on 

the testing set.   
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1 Overview  

This chapter presents the analyses and discussions of the proposed HESCA prognostic 

model for recurrent HNSCC prognosis that identifies, classifies, and predicts the recurrence 

patterns as recurrence or nonrecurrence of HNSCC patients after 1 to 5 years. Within this 

period, the patients had the diagnosis which was followed by treatment with curative intent.  

The dataset consisting of clinical, pathological, and genomic information under study are 

available from NCRNM at the Radiotherapy and Oncology Department (ROD). 15 

clinicopathologic features were identified with the aid of the HNC experts at ROD. 

Regarding the features of genomic data, only three features were identified and considered 

in the study, which are; p16, p63, and HPV as a result of time, cost, and the limitation to 

medical tissues. A total of 185 HNSCC instances were provided with the help from the staff 

of ROD, and based on the sample size of the study, 125 instances were selected and 

considered for the study. The mode imputation technique discussed in Chapter 3 is 

implemented in the original dataset as a way to cleanse the data. To normalise the features 

into the binary range [0, 1], one-hot encoding is implemented on features with multi-levels. 

The HESCA model is implemented on the normalised dataset. Next, the feature selection 

techniques are implemented on the normalised dataset for optimal feature subsets. This 

optimal feature subset of the HNSCC dataset is partitioned into two sets: training set (75%) 

and testing set (25%) based on the experimental model performance on the these sets if 

compared to its performance on the 70% (or 80%) training set and 30% (or 20%) test set. 

The proposed HESCA model is a classifier model with a 10-fold CV implemented on the 

gradient boosted feature training set generated from the GBM-FS ensemble feature selection 

technique to develop HESCA prognostic model and its prediction performance is evaluated 

on the test set. For the evaluation, the results of the HESCA model with full-input features 

are compared with that of the HESCA model with GBFs (8-input features) provided by the 

ensemble feature selection technique of GBM-FS. Also, the results of the HESCA model 

are compared with the results of five base models (GBM, DRF, DNN, GLM, and NB) as 

well as two baseline stacked ensemble models and one state-of-the-art stacked ensemble 

model. Finally, the HESCA model is used to classify and predict the 5-year recurrent 
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HNSCC prognosis pattern using a Partial Dependence Plot (PDP) and Individual 

Conditional Expectations (ICE). Thus, this chapter answers the four core objectives of the 

study.  

5.2 Multicollinearity check using Variance Inflation Factor Technique 

To check for multicollinearity of features in the recurrent HNSCC dataset, Variance 

Inflation Factor (VIF) is used and discussed as shown the Table 5.1. 

Table 5.1 Variance Inflation Factor (VIF) of Features 

SN Feature Name VIF Value 

1 Gender 3.998071 

2 Age 1.950284 

3 Alcohol 3.373524 

4 Smoke 3.823554 

5 Chew 2.017331 

6 Site 2.606477 

7 Stage 2.010550 

8 Grade 1.933437 

9 Size 1.973634 

10 Invasion 2.582278 

11 Nodes 1.283542 

12 PaT 4.122057 

13 PlN 3.984016 

14 FHx 2.410912 

15 HPV 3.010458 

16 p16 3.021032 

17 p63 3.295038 

18 Treat 1.758475 

 

Table 5.1 shows the Variance Inflation Factor (VIF) for each of the 18 independent features. 

It can be observed that the VIF of each feature is less than 5. For severe multicollinearity 

problems, the VIF should be greater than 10. Since the value for each of the 18 features is 

smaller; much less than 10, it can be concluded that there is no multicollinearity among the 
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features as far as this dataset is a concern. This is shown in Figure 5.1 and can be observed 

that VIF of every feature lies below the value of 5 along the vertical axis. Thus, it can further 

be concluded that these features in the dataset under consideration are independent and 

identically distributed; hence, one can proceed to build the classification model for recurrent 

HNSCC prognosis.  

 

Figure 5.1 Variance Inflation Factor Plot for Multicollinearity  

Table 5.2 Performance Metrics of HESCA Model with Full-Input Features 

Metrics  HESCA Model on Original 

Training Set 

HESCA Model on Original Test 

Set 

Accuracy 0.3441 0.3438 

Log-loss 0.8025 1.0435 

Recall  0.3023 0.3846 

Specificity  0.8571 0.1667 

Precision  0.9630 0.6667 

F1-Score 0.4602 0.4878 

AUC 0.4879 0.4364 

 

Table 5.2 shows the performance of the HESCA model with full-input features on both the 

training set and test set. It can be observed that the accuracies for training and test sets of 
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the HESCA model with full-input features are 34.41% (with a high log-loss value of 0.8025) 

and 34.38% (with a high log-loss value of 1.0435) respectively. It should be noted that these 

log-loss values are much higher than the accuracy of the model with full-input features, 

indicating that the model is not learning poorly. This calls for feature selection to reduce the 

number of features (remove irrelevant and/or redundant features) in the dataset given a fixed 

number of training instances. The log-loss value should between 0 and 1 inclusive. The log-

loss value (1.0435) for the HESCA model on test set exceeds 1, indicating that the predicted 

probability for a given class is less than exp(-1) or around 0.368. Therefore, looking at this 

log-loss value, it can be expected in the case that the model only give less than a 36% 

probability estimate for the actual class. 

5.3 Feature Selection Techniques 

To implement the feature selection technique, the HESCA model is implemented to the 

overall dataset and the performance metrics are recorded. This informs the choice of feature 

selection. Five classifiers under study GBM, DRF, DNN, NB, and GLM are commonly 

employed in this research and are used for feature selection. Each one provides a feature 

subset in which features are ranked according to their importance. A threshold of 60% is 

used to obtain feature subsets as presented in Table 5.3 and Table 5.4. To ascertain the 

optimal feature subset, each feature subset of the dataset is trained and validated using the 

HESCA model. This is achieved using the R programming language of the statistical 

software based on the H2O package to implement the proposed HESCA model. 

 
Figure 5.2 Boxplots for Features 
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Figure 5.2 shows a boxplot of training features, which has subplots and each of which has 

two blue plots representing the Yes and No categories of the label, indicating the region for 

which the training examples lie. The top and bottom of the box represent the 25th and 75th 

percentiles respectively with a black dot representing the mean. Considering the training 

feature TreatCCRT (concurrent chemotherapy treatment). The placement positions of the 

means in the two plots are different, indicating that the said feature TreatCCRT could be a 

significant prognosis that predicts the label as represented in Figure 5.2. 

 

 
Figure 5.3 Ranks of Features  
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Figure 5.3 shows the rank of top most 20 features provided by each FS technique. Each FS 

technique ranks the features according to their importance to the class label. Table 5.3 shows 

the selected features ranked in Figure 5.3. 

Table 5.3 Top 20 Most Important Features Selected 

Feature Selection Techniques 

DNN-FS, GLM-FS, and 

NB-FS 
GBM-FS DRF-FS 

Features Rank Features Rank Features Rank 

TreatCCRT 1.0000 Nodes 1.0000 HPV 1.0000 

p63 0.9900 Age 0.8548 TreatCCRT 0.9944 

Smoke  0.9568 Smoke 0.8350 Nodes 0.9586 

Nodes  0.9269 StageIV 0.7126 GradeG3 0.9565 

paTT3 0.9236 p63 0.6666 Drink 0.9510 

TreatRT 0.9136 TreatCCRT 0.6222 Smoke 0.9425 

Invasion  0.8605 PaTT4 0.6167 PlNN2 0.9267 

Age  0.7043 Size 0.6133 Age 0.9263 

GradeG3 0.5914 PaTT3 0.5212 TreatRT 0.9142 

PaTT2 0.5581 PlNN2 0.4753 Invasion 0.8545 

SiteNPC 0.5482 HPV 0.4382 p16 0.8276 

GradeG2 0.5216 PaTT2 0.3844 p63 0.8136 

HPV 0.4784 PlNN3 0.3662 StageIV 0.8105 

StageII 0.4751 Invasion 0.3440 PaTT4 0.8091 

Drink  0.3953 GradeG2 0.3079 Size 0.7503 

SiteOPC 0.3621 GradeG3 0.2994 Gender 0.6681 

StageIV 0.3488 Gender 0.2851 GradeG2 0.6534 

PlNN3 0.2857 TreatRT 0.2644 SiteNPC 0.6277 

Size  0.2791 p16 0.2170 PaTT1 0.5710 

PlNN1 0.2724 SiteNPC 0.1583 PaTT3 0.5473 

  

Table 5.3 shows the top 20 significant features using feature selection techniques. Based on 

default, the top 20 features are ranked based on their importance whilst ignoring the rest 15 

under this study which are far below the significance. Feature subsets provisionally 

considered optimal for each feature selector are obtained using the threshold that ranges 
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between 60% and 100% so that features lying within the threshold are potentially considered 

important. Thus, the feature is considered important in the feature subset if it is assigned 

60% to 100% weight of importance.  

Table 5.4 Optimal Feature Subsets by various Feature Selection Techniques 

FS Technique Feature Subsets 

GBM-FS Nodes, Age, Smoke, StageIV, p63, TreatCCRT, PaTT4, Size 

DRF-FS 

HPV, TreatCCRT, Nodes, GradeG3, Drink, Smoke, PlNN2, 

Age, TreatRT, Invasion, p16, p63, StageIV, PaTT4, Size, 

Gender, GradeG2, SiteNPC 

DNN-FS, GLM-FS, and 

NB-FS 

TreatCCRT, p63, Smoke, Nodes, paTT3, TreatRT, 

Invasion, Age 

  

Table 5.4 shows the provisional optimal feature subsets produced by various feature 

selection techniques under consideration. To identify the optimal feature subset of the 

prognosis for the recurrent HNSCC dataset, the HESCA model is used to learn on each 

feature subset that each feature selection technique provides, and the results are shown in 

Table 5.5.  

5.4 HESCA Model 

The HESCA model is implemented on the dataset consisting of an 8-input feature subset 

generated by the GBM-FS technique by the ensemble. The stacking technique with 10-fold 

cross-validation is applied to the training set of the optimal feature subset. Tables 5.6, and 

5.8 respectively show the performances (with different metrics) of the base classifiers, and 

meta-classifiers on the training set, while Table 5.7 shows the performance metrics of the 

10-fold cross-validation set on the first-level (base) classifiers. To evaluate the HESCA 

model, the testing dataset is used. Tables 5.10, and Table 5.12 respectively show the 

performance with different evaluation results of the base classifiers and meta-classifiers on 

the test set. 
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Table 5.5: Performance Metrics of HESCA Model on various Feature Subsets  

Dataset Metrics 
Feature Selectors 

GBM-FS DRF-FS DNN-FS GLM-FS NB-FS 

Training 

set  

Accuracy  0.9677 0.9140 0.9032 0.9032 0.9032 

Log-loss  0.1172 0.2854 0.2864 0.2864 0.2864 

AUC 0.9952 0.9677 0.9164 0.9164 0.9164 

Testing 

set 

Accuracy  0.9063 0.7813 0.7500 0.7500 0.7500 

Log-loss 0.2959 0.4046 0.5246 0.5246 0.5246 

AUC 0.9251 0.7536 0.7319 0.7319 0.7319 

 

Table 5.5 shows the best feature selection technique for recurrent HNSSC prognosis dataset 

using the accuracy, log-loss, and AUC on training and test data. The HESCA model with 8-

input features provided by the GBM ensemble feature selection technique has the best 

training accuracy of 96.77% with the least log-loss value (0.1172), and test accuracy of 

90.63% with the least log-loss value (0.2959) as compared to the accuracies and log-loss 

values of the HESCA model with different input features provided by other feature selection 

techniques used in the study. Similarly, the AUC values of (0.99523) and AUC (0.92512) 

obtained on the training and testing set respectively are best for the HESCA model with 

gradient-boosted features (8-input features provided by the GBM-FS technique) as 

compared to the AUC of the HESCA model with different input features provided by other 

feature selection techniques on both the training set and test set. This proves that the feature 

subset provided by the GBM ensemble feature selection (GBM-FS) technique becomes the 

optimal metrics for recurrent HNSCC prognosis datasets. Now, this optimal feature subset 

of the data becomes the experimental data on which all other analyses regarding this study 

were carried out. The training and evaluation results of the HESCA model on GBM-FS 

features are respectively shown in Table 5.8 and Table 5.12. Figures 5.4 and 5.5 below 

explain the feature selection technique for recurrent HNSSC prognosis based on the 

accuracy, log-loss, and AUC of the HESCA model for training and testing data respectively. 
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Figure 5.4 Plot of Performance of Feature Selection Techniques on Train Sets 

 
Figure 5.5 Plot of Performance of Feature Selection Techniques on Test Sets 
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5.4.1 HESCA Model Training on Training Data Set 

This section presents the training results of classification models and HESCA model 

analyses on the training set based on the optimal feature subset from the GBM-FS technique 

used in this study. 

Base Classifiers on Training Set without 10-fold Cross-validation 

The base classifiers are learned on the training set (75% of the dataset). Here, no 10-fold 

cross-validation is implemented on the training data. The accuracy, Area Under the ROC 

curve (AUC) and other performance metrics were determined. The results generated from 

each base classifier on training without 10-fold cross-validation are shown in Table 5.6, and 

the ROC plots of base classifiers without 10-fold cross-validation are shown in Figure 5.6. 

Table 5.6 Performance of Base Classifiers on Training Set based on GBM-FS Optimal 

Feature Subset  

Metrics 
Base Classifiers 

GBM DRF DNN GLM NB 

Accuracy  0.9140 0.8280 0.8387 0.7957 0.7957 

Log-loss 0.2838 0.5021 0.7200 0.4851 0.5926 

Recall  0.9000 0.7222 0.6552 0.6000 0.6000 

Specificity  0.9178 0.8533 0.9219 0.8677 0.8788 

Precision  0.7500 0.5417 0.7917 0.6250 0.6667 

F1-Score 0.8100 0.6191 0.7170 0.6122 0.6316 

AUC 0.9330 0.7416 0.8795 0.7769 0.7298 

 

Table 5.6 shows the performance of five base classifiers with GBM-FS optimal feature 

subset based on the training set used in the study. The results in Table 5.6, shows that the 

stacked ensemble techniques gave best result.  The accuracy, log-loss, and AUC analysis on 

the hand shows that the GBM base classifier has the highest accuracy value (91.40%) with 

the least log-loss value (0.2838) and AUC analysis of (0.9330) compared to other base 

classifiers. Considering the recall, the GBM classifier has the best recall metric of 90.00%. 

By considering the specificity and precision, the DNN base classifier has the best specificity 

value (92.19%) and precision value (79.17%). The ROC curve analysis of each base 

classifier on the training set without 10-fold cross-validation is shown in Figure 5.6 below.  
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Figure 5.6 ROC Curve Analysis of Base Classifiers on Training Set 

First-Level Classifiers on Training Set with 10-fold Cross-validation 

The first-level classifiers are the five base classifiers on which a 10-fold cross-validation is 

implemented based on the training data set (75% of the dataset) used in this study. The 

cross-validated predictions made by these classifiers serve as input features to the meta-

classifiers in a stacking ensemble. These predictions made by these base classifiers along 

with the original class labels give the level-one data, on which meta-classifiers are learned. 
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The accuracy, log loss, area under the ROC curve (AUC), and other performance metrics 

were determined, and the results generated from each first-level classifier models are shown 

in Table 5.7. 

Table 5.7 Performance Metrics of Base Classifiers on 10-Fold Cross-Validation Set 

Metrics 
10-fold Cross-Validation on Base Classifiers 

GBM DRF DNN GLM NB 

Accuracy  0.8280 0.8172 0.5484 0.7527 0.6667 

Log-loss 0.4564 1.5120 1.7216 0.4683 0.6167 

Recall  0.8630 0.8714 0.8462 1.0000 0.9130 

Specificity  0.7000 0.6522 0.3333 0.9855 0.4255 

Precision  0.9130 0.8841 0.4783 0.6000 0.6087 

F1-Score 0.8873 0.8764 0.6112 0.7500 0.7304 

AUC 0.7947 0.7597 0.6051 0.7023 0.7289 

 

Table 5.7 shows the performance of the cross-validated predictions of 10-fold cross-

validation set on first-level classifiers used in this study. The results in Table 5.6, shows that 

the stacked ensemble techniques gave best result.  The accuracy, log-loss, and AUC analysis 

on the hand shows that the GBM classifier had the highest accuracy value (82.80%) with 

the least log-loss value (0.4564) and AUC analysis of (0.7947). Considering the recall, the 

GLM classifier has the best recall metric (100%). Best precision (0.9130) and specificity 

(0.9855) were obtained for GBM and GLM classifiers respectively. The log-loss values for 

DRF and DNN exceed 1, indicating that the predicted probability for a given class is less 

than exp(-1) or around 0.368. Therefore, looking at the log-loss of DRF and DNN greater 

than 1, can be expected in the case that these models only give less than a 36% probability 

estimate for the actual class. 

As a supporting tool for classifying the prognosis of HNSCC recurrence, the cross-validated 

predictions of these five base classifiers were stacked using each of them as a meta-classifier 

in a stacking ensemble. The results of each meta classifier on the training set are shown in 

Table 5.8.  
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Meta Classifiers on Training Set 

Here, each of the base classifiers serves as a meta classifier, each of which is learned on the 

level-one dataset provided by the base classifiers as the first-level classifiers at the first-level 

of training stacked ensemble. Here, the first-level classifiers were stacked at layer-one of 

stacking using each base classifier as a meta classifier. Again, here, no 10-fold cross-

validation was implemented on meta-classifiers in learning the level-one dataset. The 

predictions made by these meta-classifiers became the output of the stacked ensemble 

classification model. The accuracy, area under the ROC curve (AUC), and other 

performance metrics were determined. The results generated from each meta classifier 

training are shown in Table 5.8, and their respective ROC plots are shown in Figure 5.7. 

Table 5.8 Performance Metrics of Meta Classifiers on Level-one Training Set 

Metrics 
Meta Classifiers 

GBM DRF DNN GLM NB 

Accuracy  0.9677 0.9140 0.9247 0.9355 0.9355 

Log-loss 0.1172 0.3139 0.5123 0.2986 0.2038 

Recall  0.9000 0.8333 0.8400 0.9091 0.9091 

Specificity  1.0000 0.9420 0.9559 0.9437 0.9437 

Precision  1.0000 0.8333 0.8750 0.8333 0.8333 

F1-Score 0.9474 0.8333 0.8571 0.8696 0.8696 

AUC 0.9952 0.9134 0.9200 0.9834 0.9671 

 

Table 5.8 shows the performance metrics of meta classifiers using each base classifier as a 

meta classifier and by learning each on the level-one training set used in this study. 

Considering the performance metrics of these meta-classifiers on the predictions made by 

the base classifiers in the stacking ensemble consisting of five base classifiers along with 

the original class labels of the training set in Table 5.8, the best results were obtained using 

stacked ensemble techniques. The best accuracy (96.77%), log loss (0.1172), specificity 

(100%), precision (100%), F1-Score (0.9474), and AUC (0.9952) were obtained for the 

GBM meta-classifier. The best recall value (0.9091) was obtained for GLM meta-classifier 

and also for the NB meta-classifier. The ROC curves of each meta-classifier on the training 

set are shown in Figure 5.7 below.  
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Figure 5.7 ROC Curve Analysis of Meta Classifiers on Training Set  

5.4.2 HESCA Model Evaluation on Test Set 

This section presents the evaluation results of classification models and the HESCA model 

analyses on the test set based on the optimal feature subset from the GBM-FS technique. 
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Base Classifiers on Testing Set 

The base classifiers are learned on the training set (75% of the data) and are evaluated on 

the test data set (25% of the dataset). The accuracy, log-loss, area under the ROC curve 

(AUC), and other evaluation metrics were determined. The results generated from the 

evaluation of each base classifier are shown in Table 5.9 and Table 5.10, and their respective 

ROC plots are shown in Figure 5.8. 

Table 5.9 Performance Matrix of Base Classifiers on Test Set 

Classifiers Predicted Outcomes 
Actual conditions 

Recurrence Non-Recurrence 

GBM 
Recurrence 8 1 

Non-Recurrence 4 19 

DRF 
Recurrence 7 2 

Non-Recurrence 6 17 

DNN 
Recurrence 8 1 

Non-Recurrence 8 15 

GLM 
Recurrence 4 5 

Non-Recurrence 2 21 

NB 
Recurrence 8 1 

Non-Recurrence 7 16 

 

Table 5.9 shows the classification or prediction of HNSCC patients as recurrence or 

nonrecurrence made by base classifiers. The classification prediction by the GBM model 

shows that, 8 patients were diagnosis of HNSCC and had curative intent treatment but had 

recurrence after treatment based on the actual data, and the model also predicts or classifies 

them as belonging to the recurrence category so they should be considered recurrent patient. 

Thus, this is a correct prediction or classification. Similarly, 19 means that, there were 19 

patients that were diagnosed and treated with curative intent and had nonrecurrence based 

on the reference data, and the model also classifies them as nonrecurrence. This is also 

correct prediction or classification. It can also be observed based on the Naive Bayes 

classification that, the model classifies 8 patients as recurrence and they actually had 

recurrence; giving correct classification. Similarly, the model classifies or predicted 16 

patients to be nonrecurrence and actually; they had nonrecurrence, giving correct 
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classification. Meanwhile, the NB model predicts 1 patient to have recurrence when actually 

he/she had nonrecurrence; giving a misclassification. Similarly, the model predicts or 

classifies 7 patients as nonrecurrence when actually they had recurrence; giving a 

misclassification. And so on.  

Table 5.10 Performance Metrics of Base Classifiers on Test Set 

Metrics 
Base Classifiers 

GBM DRF DNN GLM NB 

Accuracy  0.8438 0.7500 0.7188 0.7813 0.7500 

Log-loss 0.4686 0.5156 0.7310 0.5038 0.4948 

Recall  0.6667 0.5385 0.5000 0.6667 0.5333 

Specificity  0.9500 0.8947 0.9375 0.8077 0.9412 

Precision  0.8889 0.7778 0.8889 0.4444 0.8889 

F1-Score 0.7619 0.6364 0.6400 0.5333 0.6667 

AUC 0.8285 0.7536 0.7778 0.8140 0.8019 

 

Table 5.10 shows the performance of each of the five base classifiers on test set used in this 

study. The results in Table 5.10, shows that the stacked ensemble techniques gave best 

result. The accuracy, log-loss, specificity, and AUC analysis on the other hand shows that 

the GBM classifier had the highest accuracy of (84.38%) with the least log-loss value 

(0.4686), specificity value (95.00%), and AUC analysis of (0.8285) compared to other base 

classifiers. Considering the recall, GBM and GLM classifiers have the same best recall 

metric (0.6667), and the same best precision metric (88.89%) was recorded for GBM, DNN 

and GLM classifiers. ROC curve of each base classifier on test set are shown in Figure 5.8 

below.  
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      GBM      DRF 

 
   DNN      GLM 

 
      NB 

Figure 5.8 ROC Curve Analysis of Base Classifiers on Test set  

Meta Classifiers on Test Set 

As a tool supporting the classification of the prognosis of HNSCC recurrence; to improve 

the generalisation ability of the classification model, the cross-validated predictions 
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provided by each of the five base classifiers are stacked along with the original class labels 

using each base classifier as a meta-classifier in a stacking ensemble. The meta classifiers 

are evaluated on the test set (25% of the dataset) to assess the performance of each meta-

model on an unseen class labels based on their evaluation metrics. The accuracy, area under 

the ROC curve (AUC), and other evaluation metrics were determined. The results generated 

from the evaluation of each meta classifier are shown in Table 5.11 and Table 5.12, and 

their respective ROC curve analysis are shown in Figure 5.9. 

Table 5.11 Classification Matrics of Meta Classifiers on Test Set 

Classifiers Predicted Outcomes 
Actual conditions 

Recurrence Non-Recurrence 

GBM 
Recurrence 9 0 

Non-Recurrence 3 20 

DRF 
Recurrence 9 0 

Non-Recurrence 7 16 

DNN 
Recurrence 6 3 

Non-Recurrence 1 22 

GLM 
Recurrence 8 1 

Non-Recurrence 6 17 

NB 
Recurrence 8 1 

Non-Recurrence 3 20 

  

Table 5.11 shows the prediction or classification made by second-level classifiers on 

HNSCC patients as recurrence and nonrecurrence. The classification prediction by the GBM 

model shows that, 9 patients were diagnosis of HNSCC and had curative intent treatment 

but had recurrence after treatment based on the actual data. The model also predicts or 

classifies them as belonging to the recurrence category so that they are considered recurrent 

patient. This confirms that the prediction is indeed correct. On the other hand, a 

classification prediction of 20 patients signifies that, there were 20 patients that were 

diagnosed and treated with curative intent and had nonrecurrence based on the reference 

data, and the model also classifies them as nonrecurrence, indicating that the patients are 

correctly classified. It can also be observed based on the DNN classification that, the model 

classifies 6 patients as recurrence and they actually had recurrence; giving correct 

classification. Similarly, the model classifies or predicted 22 patients to be nonrecurrence 
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and actually; they had nonrecurrence, giving correct classification. However, the DNN 

model predicts 3 patients to have recurrence when actually they had nonrecurrence; giving 

a misclassification. Similarly, the model classifies 1 patient as nonrecurrence when the 

patient actually had recurrence; giving a misclassification.  

Table 5.12 Performance Metrics of Meta Classifiers on Test Set  

Metrics 
Meta Classifiers 

GBM DRF DNN GLM NB 

Accuracy  0.9063 0.7813 0.8750 0.7813 0.8750 

Log-loss 0.2959 0.5095 0.5854 0.4406 0.4208 

Recall  0.7500 0.5625 0.8571 0.5714 0.7273 

Specificity  1.0000 1.0000 0.8800 0.9444 0.9524 

Precision  1.0000 1.0000 0.6667 0.8889 0.8889 

F1-Score 0.8571 0.7200 0.7500 0.6957 0.8000 

AUC 0.9251 0.7150 0.8937 0.9179 0.8961 

 

On the test set employed in the work, the performance of the stacked ensemble of meta-

classifier models is displayed in Table 5.12. Here, all the five base classifiers are stacked 

using each of them as a meat-classifier. The results in Table 5.12, shows that the stacked 

ensemble techniques gave best result. The accuracy, log-loss, F1-Score, and AUC analysis 

on the other hand shows that the GBM classifier had the highest accuracy of (90.63%) with 

the least log-loss value (0.2959), F1-Score (85.71%), and AUC analysis of (0.9251) 

compared to other meta-classifiers. Considering the specificity and precision metrics, the 

GBM and the DNN meta-classifiers both have the same best metric (100%), and the best 

recall metric (85.71%) is recorded for the DNN meta-classifier. ROC curve of each meta 

classifier on test set is shown in Figure 5.9 below.  
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   GBM-meta      DRF-meta 

  
    DNN-meta       GLM-meta 

  
    NB-meta 

Figure 5.9 ROC Curve Analysis of Meta Classifiers on Test set  

5.5 Baseline Stacked Ensemble Classification Techniques 

The recurrent HNSCC dataset is tested using the baseline stacked ensemble classification 

techniques in existence. Two baseline stacked ensemble techniques; which are the stacked 

ensemble consisting of two base classifiers, and the stacked ensemble consisting of three 
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base classifiers, including one state-of-the-art stacked ensemble technique which is a multi-

level stacked ensemble technique consisting of four base classifiers are adapted, trained and 

tested on the training and the testing set used in this study, and their results are verified, 

compared and discussed in Section 5.6.  

5.5.1 Stacked Ensemble Model (GBM & DRF) with GLM Meta-Classifier 

A baseline stacked ensemble technique having two base classifiers (GBM and DRF) is 

learned with 10-fold cross-validation on the training set (75% of the dataset) and evaluated 

on the testing set (25% of the dataset). Here, the GBM and DRF serve as base classifiers 

and are stacked using the GLM as a meta-classifier. The accuracy, area under the ROC curve 

(AUC), and other evaluation metrics were determined. The metrics or results generated from 

this baseline stacked ensemble model (here, termed stacked ensemble-GLM1) based on the 

training set and the test set are shown in Table 5.14, and its performance matrix is shown in 

Table 5.13. 

Table 5.13 Classification Matrix for Stacked Ensemble_GLM1 on Training and Test 

Sets: Stack GBM and DRF using GLM  

Classifiers Predicted Outcomes 
Actual conditions 

Recurrence Non-Recurrence 

Training set 
Recurrence 20 6 

Non-Recurrence 4 65 

Test set 
Recurrence 9 0 

Non-Recurrence 15 8 

  

Table 5.13 shows the prediction or classification made by baseline stacked ensemble-GLM1 

on HNSCC patients as recurrence and nonrecurrence. Based on the training output, it can 

also be observed that the classification model classifies 20 patients as recurrence and 

actually they had recurrence; giving correct classification or prediction. On the other hand, 

the model classifies or predicts 65 patients to have nonrecurrence and actually they had 

nonrecurrence; giving correct classification. However, the model predicts 6 patients to have 

recurrence when actually they had nonrecurrence; giving a misclassification. Similarly, the 

model classifies 4 patients as nonrecurrence when actually they had recurrence; giving a 

misclassification. Similar interpretation goes for classification matrix based on the test 

output. 
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Table 5.14 Performance Metrics of Stacked Ensemble_GLM1on Training and Test 

Set: Stack GBM and DRF using GLM 

Metrics 
Stacked Ensemble_GLM1 

Training Set Test Set 

Accuracy  0.9140 0.5313 

Log-loss 0.3450 0.7880 

Recall  0.8333 0.3750 

Specificity  0.9420 1.0000 

Precision  0.8333 1.0000 

F1-Score 0.8333 0.5455 

AUC 0.9073 0.4493 

  

Table 5.14 shows the performance of the training and evaluation metrics of the Stacked 

Ensemble-GLM1 model having two base classifiers (GBM and DRF) with the GLM as a 

meta-classifier on training and testing sets. The model recorded the accuracy (91.40%), log-

loss (0.3450), recall (83.33%), specificity (94.20%), precision (83.33%), F1-Score 

(83.33%), and AUC analysis of (0.90731) approximately on training set. The evaluation 

metrics of the model on test set were determined, with the accuracy (53.13%), log-loss 

(0.7880), recall (37.50%), specificity (100%), precision (100%), F1-Score (54.55%), and 

the AUC analysis of (0.4493) approximately.  

5.5.2 Stacked Ensemble Model (GBM, DRF & DNN) with GLM Meta-Classifier 

A baseline stacked ensemble technique having three base classifiers (GBM, DRF, and DNN) 

is learned on the training set (75% of the dataset) with 10-fold cross-validation and evaluated 

on the test set (25% of the dataset). Here, the GBM, DRF and DNN serve as base classifiers 

and are stacked using the GLM as a meta-classifier. The accuracy, area under the ROC curve 

(AUC), and other evaluation metrics were determined. The results generated from this 

baseline stacked ensemble model (here, termed stacked ensemble-GLM2) based on the 

training set and the test set are shown in Table 5.16, and its classification matrix is shown 

in Table 5.15. 
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Table 5.15 Classification Matrix for Stacked Ensemble_GLM2 on Training and Test 

Sets: Stack GBM, DRF and DNN using GLM 

Classifiers Predicted Outcomes 
Actual conditions 

Recurrence Non-Recurrence 

Training set 
Recurrence 18 6 

Non-Recurrence 1 68 

Test set 
Recurrence 7 2 

Non-Recurrence 1 22 

 

Table 5.15 shows the prediction or classification made by baseline stacking ensemble-2 on 

HNSCC patients as recurrence and nonrecurrence. Based on the training results, it can also 

be observed that the classification model classifies 18 patients as recurrence and actually 

they had recurrence; giving correct classification or prediction. On the other hand, the model 

classifies or predicts 68 patients to have nonrecurrence and actually they had nonrecurrence; 

giving correct classification. Meanwhile, the model predicts 6 patients to have recurrence 

when actually they had nonrecurrence; giving a misclassification. Similarly, the model 

predicts or classifies 1 patient as nonrecurrence when actually he/she had recurrence; giving 

a misclassification or incorrect prediction. 

Table 5.16 Performance Metrics of Stacked Ensemble_GLM2 on Training and Test 

Sets: Stack GBM, DRF and DNN using GLM 

Metrics 
Stacked Ensemble_GLM2 

Training Set Test Set 

Accuracy  0.9247 0.9063 

Log-loss 0.3075 0.4267 

Recall  0.9474 0.8750 

Specificity  0.9189 0.9167 

Precision  0.7500 0.7778 

F1-Score 0.8372 0.8235 

AUC 0.9043 0.8623 

  

Table 5.16 shows the performance of training and evaluation metrics of the Stacked 

Ensemble-GLM2 model having two base classifiers (GBM, DRF and DNN) with GLM as 

a meta classifier on the training and testing sets. The model records the accuracy (92.47%), 
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log-loss (0.3075), recall (94.74%), specificity (91.89), precision (75.00%), F1-Score 

(83.72), and the AUC analysis of (0.9043) approximately on the training set. The evaluation 

metrics of the model on test set were determined, with accuracy (90.63%), log-loss (0.4267), 

recall (87.50%), specificity (91.67%), precision (77.78%), F1-Score (82.35), and the AUC 

analysis of (0.8623) approximately.  

5.5.3 State-of-the-Art (SA) Stacked Ensemble Model 

The State-of-the-Art (SA) stacked ensemble technique having four base classifiers (GBM, 

DRF, DNN and GLM) is learned on the training set (75% of the dataset) with 10-fold cross-

validation and evaluated on the test set (25% of the dataset). Here, the GBM, DRF, DNN 

and GLM serve as base classifiers, and each of which serves as a meta-classifier in a stacking 

ensemble. The accuracy, area under the ROC curve (AUC), and other evaluation metrics 

were determined. The results generated from this SA stacked ensemble model based on the 

training set and the testing set are shown in Table 5.18 and Table 5.19 respectively, and its 

performance matrix is shown in Table 5.17. 

Table 5.17 Classification Matrix for State-of-the-Art (SA) Stacked Ensemble Model on 

Test Set 

Classifiers Predicted Outcomes 
Actual conditions 

Recurrence Non-Recurrence 

GBM 
Recurrence 8 1 

Non-Recurrence 4 19 

DRF 
Recurrence 9 0 

Non-Recurrence 11 12 

DNN 
Recurrence 5 4 

Non-Recurrence 3 20 

GLM 
Recurrence 4 5 

Non-Recurrence 1 22 

 

Table 5.17 shows the prediction or classification made by State-of-the-Art (SA) for 

classifying HNSCC patients as recurrence and nonrecurrence. It can also be observed that 

the stacked ensemble model with GBM meta-model classifies 8 patients as recurrence and 

actually had recurrence; giving correct classification or prediction. Similarly, the model 

classifies 19 patients to have nonrecurrence and actually they had nonrecurrence; giving 
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correct classification. Meanwhile, the model predicts 1 patient to have recurrence when 

actually he/she had nonrecurrence; giving a misclassification or incorrect prediction. 

Similarly, the model predicts or classifies 4 patients as nonrecurrence when actually they 

had recurrence; giving a misclassification or incorrect prediction. Also, the classification 

model with DRF meta-model classifies 9 patients as recurrence and actually had recurrence; 

giving correct classification or prediction. Similarly, the model classifies or predicts 12 

patients to have nonrecurrence and actually they had nonrecurrence; giving correct 

classification. Meanwhile, the model classifies 0 (or no) patient as recurrence when actually 

0 or no patient are classified as nonrecurrence; giving a misclassification or incorrect 

prediction. Similarly, the model predicts or classifies 11 patients as nonrecurrence when 

actually they had recurrence; giving a misclassification or incorrect prediction. And similar 

interpretation goes for other meta models. 

Table 5.18 Performance Metrics of State-of-the-Art (SA) Stacked Ensemble Model on 

Training Set 

Metrics 

Meta Classifiers  

GBM DRF DNN GLM 

Accuracy  0.9355 0.9032 0.8602 0.8925 

Log-loss 0.2667 0.3449 2.5134 0.2993 

Recall  0.9091 0.8261 0.6897 0.7333 

Specificity  0.9437 0.9286 0.9375 0.9683 

Precision  0.8333 0.7917 0.8333 0.9167 

F1-Score 0.8696 0.8085 0.7547 0.8148 

AUC 0.9816 0.9058 0.8693 0.9164 
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Table 5.19 Performance Metrics of State-of-the-Art (SA) Stacked Ensemble Model on 

Test Set 

Metrics 

Meta Classifiers  

GBM DRF DNN GLM 

Accuracy  0.8438 0.6563 0.7813 0.8125 

Log-loss 0.4406 0.5917 0.8348 0.4888 

Recall  0.6667 0.4500 0.6250 0.8000 

Specificity  0.9500 1.0000 0.8333 0.8148 

Precision  0.8889 1.0000 0.5556 0.4444 

F1-Score 0.7619 0.6207 0.5883 0.5714 

AUC 0.9179 0.6208 0.6715 0.8333 

 

Table 5.18 and Table 5.19 respectively show the performance of the State-of-the-Art (SA); 

a stacking ensemble having four base classifiers, including GBM, RF, DNN, and GLM on 

the training and the testing data used in this study. Here, each base classifier is used as a 

meta-classifier in a stacking ensemble of four base classifiers. Looking at the results in Table 

5.18 and Table 5.19, for the training and the testing sets used in this research, the best results 

were obtained using stacking ensemble techniques. Based on the training set in Table 5.18, 

the best accuracy (93.55%) with the least log-loss (0.2667), recall (90.91%), F1-Score 

(86.96%), and the AUC analysis of (0.9816) were recorded for the GBM meta-classifier 

compared to other meta-classifiers. The best specificity (96.83%) and precision (91.67%) 

were obtained for the GLM meta-classifier. Considering the testing set in Table 5.20, the 

GBM meta-classifier has the highest accuracy value (90.63%) with the least log-loss metric 

(0.4406), F1-Score (76.19%), and AUC analysis of (0.9179) compared to that of other meta-

classifiers. The DRF meta-classifier has the best metric (100%) for both specificity and 

precision; and the best recall metric (80.00%) was recorded for the GLM meta-classifier. 

The log-loss values for DNN meta-classifier is 2.5134, which does not lie between 0 and 1 

inclusive, indicating that the predicted probability for a given class is less than exp(-1) or 

around 0.368. Therefore, it can be expected in the case that this model only gives less than 

a 36% probability estimate for the actual class. 
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5.6 Comparative Analysis of the Results  

Here, the results obtained from base models, the HESCA models, and the stacked ensemble 

models on both the training and testing sets as discussed in Section 5.4 and Section 5.5 

respectively are compared and discussed. Table 5.20 compares performance metrics of the 

HESCA model with the full-input features and the HESCA model with the 8-input features. 

Table 5.21, and Table 5.22 compare performance metrics of base classifiers and the HESCA 

model all with the GBM-FS features (8-input features) on the training data and the testing 

data respectively. Table 5.24 compares performance metrics of baseline stacked ensemble 

models and the HESCA Model with the GBM-FS features on the training and the testing 

sets. Table 5.24 compares performance metrics of the state-of-the-art (SA) stacked ensemble 

model and the HESCA model with the GBM-FS features performance on the training and 

testing sets. And Table 5.25 summarises the comparison of baseline stacked ensemble 

models and the state-of-the-art model with the HESCA model based on the GBM-FS 

features. 

Table 5.20 Comparison of HESCA model with full input features and HESCA model 

with GBM-FS features 

Metrics 

Training Set Testing Set 

HESCA Model 

on Original 

Training Set 

HESCA 

Model on 

GBM-FS 

HESCA Model 

on Original 

Test Set 

HESCA Model 

on GBM-FS 

Accuracy 0.3441 0.9677 0.3438 0.9063 

Log-loss 0.8025 0.1172 1.0435 0.2959 

Recall  0.3023 0.9000 0.3846 0.7500 

Specificity  0.8571 1.0000 0.1667 1.0000 

Precision  0.9630 1.0000 0.6667 1.0000 

F1-Score 0.4602 0.9474 0.4878 0.8571 

AUC 0.4879 0.9952 0.4364 0.9251 

 

Table 5.20 shows the performance of the HESCA model with full-input features and the 

HESCA model with 8-input features. The performance metrics including the accuracy, log-

loss, recall, specificity, precision, F1-Score, and AUC were obtained on both the training 

set (to assess model training performance) and the testing set (to evaluate model 

performance on an unseen labels). In terms of accuracy, the accuracy of (96.77%) with the 

log-loss (0.1172) on the training set and (90.63%) with the log-loss (0.2959) on test set were 
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obtained for the HESCA model with 8-input features (optimal feature subset) as compared 

to the accuracy of (34.41%) with the log-loss (0.8025) on the training set and (34.38%) with 

the log-loss (1.0435) on the testing set obtained for HESCA model with full-input features. 

Similar to AUC analysis, the value of (0.9952) on the training set and the value of (0.9251) 

on the testing set were obtained for the HESCA model with 8-input features, compared to 

the AUC value of (0.4879) on the training set and the value (0.4364) on the testing set 

obtained for the HESCA model with full-input features. The recall value (90.00%), 

specificity value (100%), precision value (100%) and F1-Score (94.74%) were obtained for 

the HESCA model with 8-input features based on the training set, as compared to the recall 

value (30.23%), specificity value (85.71%), precision value (96.30%) and F1-Score 

(46.02%) obtained for the HESCA model with full-input features based on the training set. 

Similarly, the recall value of (75.00%), specificity value (100%), precision value (100%) 

and F1-Score (85.71%) were obtained for the HESCA model with 8-input features based on 

the testing set as compared to the recall value (38.46%), specificity value (16.67%), 

precision value (66.67%) and F1-Score (48.78%) obtained for the HESCA model with full-

input features based on the testing set. It can be deduced that the HESCA model with 8-

input on gradient-boosted features outperforms the HESCA model with full-input features. 

Table 5.21 Comparison of Base Models and HESCA Model Performance on Training 

Data based on GBM-FS 

Metrics 
Base Models Stacked Model 

GBM DRF DNN GLM NB HESCA Model 

Accuracy  0.9140 0.8280 0.8387 0.7957 0.7957 0.9677 

Log-loss 0.2838 0.5021 0.7200 0.4851 0.5926 0.1172 

Recall  0.9000 0.7222 0.6552 0.6000 0.6000 0.9000 

Specificity  0.9178 0.8533 0.9219 0.8677 0.8788 1.0000 

Precision  0.7500 0.5417 0.7917 0.6250 0.6667 1.0000 

F1-Score 0.8100 0.6191 0.7170 0.6122 0.6316 0.9474 

AUC 0.9330 0.7416 0.8795 0.7769 0.7298 0.9952 

 

Table 5.21 shows the comparative performance metrics of base (standalone) models and the 

HESCA model on the training data based on the 8-input dataset. It can be observed that the 

HESCA model had the best accuracy (96.77%) with the least log-loss value of (0.1172), 

specificity (100%), precision (100%), F1-Score (94.74%), and AUC (0.9952) compared to 
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the base models. It is interesting to observe that the best recall value of (90.00%) was 

recorded for both the GBM base model and the HESCA model. The information in Table 

5.21 is presented graphically in Figure 5.10 below. In general, it can be deduced that the 

HESCA model outperforms base models, based on the 8-input dataset of the training data 

used in the study. 

 
Figure 5.10 Graph of Base Models versus HESCA Model on Training Set 

Table 5.22 Comparison of Base Models and HESCA Model Performance on Test Data 

based on GBM-FS 

Metrics 
Base Models Stacked Model 

GBM DRF DNN GLM NB HESCA Model 

Accuracy  0.8438 0.7500 0.7188 0.7813 0.7500 0.9063 

Log-loss 0.4686 0.5156 0.7310 0.5038 0.4948 0.2959 

Recall  0.6667 0.5385 0.5000 0.6667 0.5333 0.7500 

Specificity  0.9500 0.8947 0.9375 0.8077 0.9412 1.0000 

Precision  0.8889 0.7778 0.8889 0.4444 0.8889 1.0000 

F1-Score 0.7619 0.6364 0.6400 0.5333 0.6667 0.8571 

AUC 0.8285 0.7536 0.7778 0.8140 0.8019 0.9251 

 

Table 5.22 shows the comparative performance metrics of base models and the HESCA 

model on the 8-input testing data. It can be observed that the HESCA model has the best 
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accuracy value (90.63%) with the least log-loss value (0.2959), recall (75.00%), specificity 

(100%), precision (100%), F1-Score (85.71%), and AUC analysis of (0.9251) as compared 

to the base models. The information in the Table 5.22 is presented graphically in the Figure 

5.12 below. In effect, it can be deduced that the HESCA model outperforms the base models 

based on the 8-input testing set of the dataset used in this study, indicating better predictions 

on patients with recurrent HNSCC prognosis. 

 
Figure 5.11 Plot of Base Models compared with HESCA Model on Test Set 

Table 5.23 Comparison of Baseline Stacked Ensemble Models and HESCA Model 

Performance on Training and Test Sets 

Metrics 

Training Set Test Set 

Model-

GLM1 

Model-

GLM2 

HESCA 

Model 

Model-

GLM1 

Model-

GLM2 

HESCA 

Model 

Accuracy  0.9140 0.9247 0.9677 0.5313 0.9063 0.9063 

Log-loss 0.3450 0.3075 0.1172 0.7880 0.4267 0.2959 

Recall  0.8333 0.9474 0.9000 0.3750 0.8750 0.7500 

Specificity  0.9420 0.9189 1.0000 1.0000 0.9167 1.0000 

Precision  0.8333 0.7500 1.0000 1.0000 0.7778 1.0000 

F1-Score 0.8333 0.8372 0.9474 0.5455 0.8235 0.8571 

AUC 0.9073 0.9043 0.9952 0.4493 0.8623 0.9251 
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Table 5.23 compares the training and evaluation metrics of baseline stacked ensemble 

models and the HESCA model based on the training and the testing data used in this study. 

Considering the performance metrics of stacked ensemble models obtained on the training 

data, it can be observed that, the HESCA model has the best accuracy (96.77%) with the 

least log-loss value (0.1172), specificity (100%), precision (100%), F1-Score (94.74%), and 

AUC of (0.9952) as compared to the baseline stacked ensemble models. However, the best 

recall value (94.74%) was obtained for the baseline stacked ensemble model (Model-

GLM2) having three base classifiers with the GLM meta-classifier.  

Then, considering the performance metrics obtained on the test data, it can be observed that 

the HESCA model has the best F1-Score (85.71%) and AUC (0.9251) with the least log-

loss value (0.2959) as compared to the baseline stacked ensemble models. Meanwhile, the 

best specificity value of (100%) and precision (100%) were obtained for both the HESCA 

model and the baseline stacked ensemble model (Model-GLM1) having two base classifiers 

with the GLM meta-classifier. The best recall value of (87.50%) was obtained for the 

baseline stacked ensemble model (Model-GLM2) having three base classifiers with the 

GLM meta-classifier. Considering the accuracy value for the HESCA model and the 

baseline stacked ensemble model (Model-GLM2), both obtained the best accuracy of 

(90.63%), but the HESCA model had the least log-loss value of (0.2959) as compared to the 

high log-loss value (0.4267) for the Model-GLM2. The selection of the best model is based 

on the test error (model with the least test error). Thus, based on the log-loss values of all 

the models in the Table 5.23, the HESCA model that had the least log-loss is considered the 

best model. 

In effect, using the GBM a as meta-classifier in a stacking ensemble having five base 

classifiers provides the best accuracy (90.63%) with least log-loss value (0.2959) on the test 

set as used in the study. The graph of this is shown in Figure 5.12 below in red line. 

 

 

 

 

Digitized by UMaT Library



110 

Table 5.24 Comparison of State-of-the-art (SA) Stacked Ensemble Model and 

HESCA Model Performance on Training and Test Sets 

Metrics 

Training Set Testing Set 

State-of-the-art 

(SA) 

HESCA 

Model 

State-of-the-art 

(SA) 

HESCA 

Model 

Accuracy 0.9355 0.9677 0.8438 0.9063 

Log-loss 0.2667 0.1172 0.4406 0.2959 

Recall  0.9091 0.9000 0.6667 0.7500 

Specificity  0.9437 1.0000 0.9500 1.0000 

Precision  0.8333 1.0000 0.8889 1.0000 

F1-Score 0.8696 0.9474 0.7619 0.8571 

AUC 0.9816 0.9952 0.9179 0.9251 

 

Table 5.24 compares the training and evaluation metrics of the state-of-the-art (SA) stacked 

ensemble model and HESCA model based on the training and test data used in this study. 

Here, the SA stacked ensemble model is a stacked ensemble model having four base 

classifiers including GBM, DRF, DNN, and GLM, with GBM meta-classifier whereas 

HESCA model is a stacked ensemble model having five base classifiers including GBM, 

DRF, DNN, GLM, and NB with the GBM meta-classifier. Considering the performance 

metrics obtained for each model on the training data, it can be observed that the HESCA 

model had the best accuracy (96.77%) with the least log-loss value (0.1172), specificity 

(100%), precision (100%), F1-Score (94.74%), and AUC analysis of (0.9952) as compared 

to the SA stacked ensemble model having the accuracy (93.55%) with a high log-loss value 

(0.2667), specificity (94.37%), precision (83.33%), F1-Score (86.96%), and AUC (0.9816). 

Meanwhile, the best recall value (90.91%) was obtained for the SA stacked ensemble model 

as compared to the HESCA model with (90.00%). Based on the accuracy and log-loss 

metrics obtained for each model on the training set, HESCA model outperforms the SA 

stacked ensemble model.  

On the other hand, considering the performance metrics obtained for each model on the test 

data, it can be observed that, the HESCA model had the best accuracy (90.63%) with the 

least log-loss value (0.2959) compared to the SA stacked ensemble model whose accuracy 

is (84.38%) with a high log-loss value (0.4406). The best recall (75.00%), specificity 

(100%), precision (100%), F1-Score (85.71%), and AUC (0.9251) were obtained for the 

HESCA model as compared to those of the SA stacked ensemble model with the recall 
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(66.67%), specificity (95.00%), precision (88.89%), F1-Score (76.19%), and AUC of 

(0.9179). 

In effect, using the GBM a as meta-classifier in a stacking ensemble having five base 

classifiers provides the best accuracy (90.63%) with the least log-loss value (0.2959) on the 

test set as used in the study. The graph of this is shown in the Figure 5.13 below. 

Table 5.25 Summary of the comparison of Baseline Stacked Ensemble Models and 

State-of-the-Art Model with HESCA Model on Test Set 

Metrics 
Model-GLM1 Model-GLM2 

State-of-the-

Art Model HESCA Model 

Accuracy 0.5313 0.9063 0.8438 0.9063 

Log-loss 0.7880 0.4267 0.4406 0.2959 

Recall 0.3750 0.8750 0.6667 0.7500 

Specificity 1.0000 0.9167 0.9500 1.0000 

Precision 1.0000 0.7778 0.8889 1.0000 

F1-Score 0.5455 0.8235 0.7619 0.8571 

AUC 0.4493 0.8623 0.9179 0.9251 

 

Table 5.25 shows the summary of the comparison of baseline stacked ensemble models and 

the state-of-the-art model with the HESCA model on the testing set. It can be observed that 

the performance metrics in terms of the accuracy (90625) with the least log loss value 

(0.2959) and AUC of (0.9251) were obtained for the HESCA model, indicating its 

outperformance compared to other stacked ensemble models considered in the study. The 

information in the Table 5.25 is presented graphically in the Figure 5.13 below. 
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Figure 5.12 Graph of Stacked Ensemble Models compared with HESCA Model on 

Training Set  

 
Figure 5.13 Graph of Stacked Ensemble Models compared with HESCA Model on Test 

Set  

5.7 HESCA Classification Model Prediction 

The classification model’s predictions based on the optimal feature subset are compared 

with the actual predictions of the dataset. This is shown in the Table 5.33 below, and the 

goodness of fit-test of the model shown in the Figure 5.14.  
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Table 5.26 HESCA Classification Model Prediction 

Recurrence (1) Non-Recurrence (0) Label max_prob 

0.6831017 0.3168983 1 1 

0.8927578 0.1072422 1 1 

0.9091983 0.0908017 1 1 

0.7803982 0.2196018 0 1 

0.9188790 0.0811210 1 1 

0.9086598 0.0913402 1 1 

 

Table 5.26 shows the predictions made by the HESCA model; where the nonrecurrence 

column and recurrence column show the probability of having nonrecurrence and the 

probability of having recurrence respectively. The label column is the actual class label in 

the test data, and the max_prob column indicates the maximum probability predicted by the 

model. The cut-off or threshold value is 0.5 indicating that, when the probability value is 

greater than the cut-off value, the model is predicting class 1 (recurrence) otherwise, it is 

predicting class 0 (nonrecurrence). The ‘0’ indicated that patients have no recurrence and 

‘1’ indicates that patients have recurrence. Now, based on the data, the model finds that the 

maximum probability (0.6831017) is for the first class where the recurrence is ‘1’and that 

is why it takes the value ‘1’. That is, the model predicted for class 1 that, the patient be 

classified to have recurrence and actually the patient is classified to have recurrence. 

Similarly, the maximum probability (0.9086598) is higher for the class 1 and that is why the 

model predicted ‘1’. That is, the model predicted for class 1 that, the patient be classified to 

have recurrence and actually the patient is classified to have recurrence. But a clear look at 

the fourth prediction, where the maximum probability (0.7803982) is for the first column 

and that is why the value is ‘1’, which means the model predicted that patients be classified 

to have recurrence when actually the patient is classified to have nonrecurrence. So, this in 

the way, is a misclassification.    
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Figure (a)      Figure (b) 

 
Figure (c)      Figure (d)  

 

Figure 5.14 A Plot of Good Fit Learning Curves  

Figure 5.14 shows the plot of good-fit learning curves of the HESCA model. It can be 

observed that both the training loss (blue curve) and validation (red curve) loss gradually 

decrease to a point of stability (upon adding training examples) with a minimal gap called 

the generalisation gap between the two final loss curves. This suggests that addition of more 

training examples does not improve the (HESCA) model’s performance on the training data 

(for training loss) and on the unseen data (for validation loss). Thus, the HESCA model 

achieves a good fit. Figure (a) is a learning curve with 1 000 trees indicating that addition 

of more training examples can improve the performance of the model both on training set 

and testing set. Figures (b), (c), and (d) are learning curves with maximum of 2 000, 3 000, 

and 5 000 trees respectively, indicating that addition of more training examples does not 

improve the performance of the model both on training set and testing set. Both losses on 

training set and testing set had attained the level of stability with minimal error.  
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5.7.1 Partial Dependence Plot and Individual Conditional Expectations 

The Partial Dependence Plot (PDP) is similar to Individual Conditional Expectation (ICE), 

and shows the marginal effect a feature has on the predicted outcome (binary classification 

in this case) of a machine learning model (Friedman, 2001). A PDP or ICE can show 

whether the relationship between the target and a feature is linear, monotonic or more 

complex. The yellow curves indicate the PDP while the black curves represent the ICE. The 

PDP shows how the average prediction of all instances are associated with the feature while 

the ICE shows the prediction of each instance is associated with the feature. Having fitted 

the HESCA classification model, where GBM is a meta classifier; to predict the recurrent 

HNSCC prognosis, the partial dependence plot and ICE are used to visualise the 

relationships the model has learned. The influence of prognostic features on the predicted 

recurrent binary class is visualised in the Figures 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20 

below. 

 
Figure 5.15 Individual Conditional Expectations on Feature Nodes 

Figure 5.15 shows the PDP and ICE marginal effect of the feature Nodes on recurrent 

HNSCC prognosis. The PDP shows that, the recurrent HNSCC probability increases when 

the number of neck or cervical nodes exceeds 50% than when it is less than 50%. That is, 

the prediction of recurrent HNSCC is centered at “0” until the number of neck or cervical 

lymph nodes exceeds 50%. It can be observed that recurrent HNSCC probability increases 

around 50% of the presence of lymph nodes, but does this apply to every patient (instance) 

in the dataset? The ICE plot reveals that for most patients the cervical lymph nodes effect 

follows the average pattern of an increase at lymph nodes 50%, but there are some 

exceptions: For some patients that have a high predicted probability at a less presence of 

lymph nodes, the predicted recurrent HNSCC probability does not change with much 

presence of lymph nodes. 
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Figure 5.16 Individual Conditional Expectations on Feature Age 

Figure 5.16 shows the PDP and ICE marginal effect of the feature Age on recurrent HNSCC 

prognosis. The PDP shows that, the recurrent HNSCC probability increases at around age 

of 55. That is, the prediction of recurrent HNSCC is centered at “0” until around the age of 

55. It can be observed that recurrent HNSCC probability increases around the age of 55, but 

does this apply to every patient (instance) in the dataset? The ICE plot reveals that for most 

patients the age effect follows the average pattern of an increase at age 55, but there are 

some exceptions: For some patients that have a high predicted probability at a young age, 

the predicted recurrent HNSCC probability does not change with age. 

 
Figure 5.17 Individual Conditional Expectations on Feature Smoke 

Figure 5.17 shows the PDP and ICE marginal effect of the feature Smoke on recurrent 

HNSCC prognosis. The PDP shows that, more recurrences are likely to occur as the rate of 

smoking habit of patients increases at around 52% and vice versa. The prediction of 

recurrent HNSCC is centered at “0” until the rate of habit of smoking goes up at around 

52%. It can be observed that, the recurrent HNSCC probability increases at around high 

smoking habit rate of 52%, but does this apply to every instance in the dataset? The ICE 

plot reveals that for most patients the smoking effect follows the average pattern of an 

increase at the smoking habit rate of 52%, but there are some exceptions: For some patients 
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that have a high predicted probability at a low rate of smoking habit, the predicted recurrent 

HNSCC probability does not change with high rate of smoking habit. 

 
Figure 5.18 Individual Conditional Expectations on Feature StageIV 

Figure 5.18 shows the PDP and ICE marginal effect of the feature Smoke on recurrent 

HNSCC prognosis. The PDP shows that, more recurrences are likely to occur as patients 

are diagnosis of HNSCC at the advanced or metastatic stage. The prediction of recurrent 

HNSCC is centered at “0” until the stage at diagnosis is beyond the stage II of the tumor at 

diagnosis. It can be observed that, the recurrent HNSCC probability increases at around 

stage II (around 55%) of metastasis, but does this apply to every instance in the dataset? The 

ICE plot reveals that for most patients the stage IV effect follows the average pattern of an 

increase at around 55% of metastasis, but there are some exceptions: For some patients that 

have a high predicted probability at a low stage (stage III), the predicted recurrent HNSCC 

probability does not change with stage IV. 

 
Figure 5.19 Individual Conditional Expectations on p63 Feature 

Figure 5.19 shows the ICE effect of the feature p63 on recurrent HNSCC prognosis. It 

explains that, patient whose tumor suppressor gene p63 is either positively weak or strong 

is likely to experience recurrence holding all other factors or features constant. 
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Figure 5.20 Individual Conditional Expectations on TreatCCRT Feature  

Figure 5.20 shows the PDP and ICE effect of Treatment with Concurrent 

Chemoradiotherapy (TreatCCRT) feature on recurrent HNSCC prognosis; the binary 

classification (prognosis for HNSCC recurrence verses nonrecurrence). The more or higher 

the Concurrent Chemoradiotherapy (CCRT) treatment is administered to patients with 

HNSCC cases for curative intent, the less recurrences or relapses are experienced or 

recorded and vice versa. The PDP plot can be observed that the probability of recurrent 

HNSCC decreases around when the treatment process is half-way (55%) to its completion, 

but does this apply to every instance in the dataset? The ICE plot reveals that for most 

patients, the TreatCCRT effect follows the average pattern of decrease at around 55% to its 

completion, but there are some exceptions: For some patients that have low predicted 

probability at the half-way of treatment with CCRT, the predicted recurrent HNSCC 

probability does not change with TreatCCRT completion. This feature has a positive 

marginal effect on the target binary class. 

 
Figure 5.21 Individual Conditional Expectations on Feature PaTT4 

Figure 5.21 shows the PDP and ICE marginal effect of the feature PaTT4 (pathological 

tumor staging at T4) on recurrent HNSCC prognosis. The PDP shows that, more recurrences 

are likely to occur as pathological tumor staging of patients’ head and neck tumor is staged 

at either T3 or T4 at diagnosis. The prediction of recurrent HNSCC is centered at “0” until 
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the pathological tumor staging at diagnosis is beyond T2. It can be observed that, the 

recurrent HNSCC probability increases at around stage T2 (around 55%) of pathological 

tumor staging, but does this apply to every instance in the dataset? The ICE plot reveals that 

for most patients the PaTT4 effect follows the average pattern of an increase at around 55% 

of pathological tumor staging, but there are some exceptions: For some patients that have a 

high predicted probability at a low staging (T2), the predicted recurrent HNSCC probability 

does not change with PaTT4 (pathological tumor staging T4). This feature has a positive 

marginal effect on the target binary class. 

 
Figure 5.22 Individual Conditional Expectations on Feature Size 

Figure 5.22 shows the PDP and ICE marginal effects of the feature “Size” on recurrent 

HNSCC prognosis. The ICE explains that, with low tumor size (that is, when the tumor size 

equals 2 cm or less), the possibility of experiencing recurrence is zero. But larger tumor size 

greater than 2 cm, the possibility of experiencing HNSCC recurrence is around 0.09. 

Interestingly, the predicted probability of experiencing recurrence does not fall when the 

size of tumor is greater than 2 cm. It can further be observed from the PDP that, the recurrent 

HNSCC probability increases at around 0.55 (around 2 cm) of the tumor size, but does this 

apply to every instance in the dataset? The ICE plot reveals that for most patients the tumor 

size effect follows the average pattern of an increase at around 2 cm, but there are some 

exceptions: For some patients that have a high predicted probability at a smaller tumor size 

(2 cm), the predicted recurrent HNSCC probability does not change with size (tumor size 2 

cm or greater). This feature has a positive marginal effect on the target binary class. 

In summary, the present study focuses on improving the classification performance on the 

face of accuracy, log loss, recall, precision, specificity, F1-Score, and AUC based on 

HNSCC prognosis dataset for recurrence. To do this, a hybrid stacked ensemble technique 

that identifies a robust meta-classifier model when the classifiers employed as base 
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classifiers are as well as employed as meta-classifiers. Here, GBM, DRF, DNN, GLM, and 

NB were first used as base classifiers. To find the optimal meta-classifier model consisting 

of the combination of these base classifiers used in this study, each base classifier was used 

as the meta-classifier. Meanwhile, the overall aim of the study is to formulate a hybrid 

ensemble super classification algorithm (HESCA) model that can be applied in recurrent 

HNSCC for accurate prognosis based on clinical, pathological, and genomic markers. As a 

result, a hybrid prognostic classification model for recurrent HNSCC using ML techniques 

based on optimum features has been developed with very promising results. The findings 

for developing the recurrent HNSCC prognostic classification model are summarised as 

according to the research objectives.  

Chapter three (3) explains the overall methods used in this study. The study identified the 

most accurate prognosis for recurrent HNSCC using the GBM for ensemble FS. Chapter 4 

discusses the details of this technique and Chapter 5 discusses the results and discussions. 

The study developed a hybrid stacked ensemble prognostic classification model for the 

recurrent HNSCC using stacked ensemble technique that proves this classification model is 

well optimally and can serve as a supportive tool for the prognosis HNSCC recurrence. For 

this, a stacked ensemble technique was proposed to cater for the need to improving the 

generalisation ability of a classification model. This is described in Chapter 4 in terms of 

the methods, preparations, and procedures adopted to acquire the prognosis for HNSCC data 

described in Chapter 3. The study also validated the developed HESCA model with the 

existing data and compare the performance results with two baseline stacked ensemble 

classification models and one SA classification model using the existing data used for the 

study. This is discussed in Chapter 5 where the baseline stacked ensemble techniques and 

the state-of-the-art technique are also applied to learn the recurrent HNSCC dataset as done 

for the proposed the HESCA model. Further, the study proved that the prognosis of recurrent 

HNSCC is more robust when gradient boosted features are used. This is discussed in 

Chapter 5 where various feature selection techniques considered in this study were applied 

to the original training data; and, where the optimality of each feature selector being verified 

using the HESCA model. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

This concluding chapter discusses further about the research work. The conclusions, 

research contributions to knowledge, recommendations, and limitation of the study are 

discussed in subsequent sections.  

6.1  Conclusion 

The proposed hybrid HESCA model is a stacked ensemble-based technique. The pre-

processing techniques were implemented on recurrent HNSCC prognostic dataset consisting 

the markers of clinicopathological and that of genomic. From there, feature selection 

techniques were implemented with the aims to reduce the number of training features; to 

avoid overfitting, and to find out the optimal feature subset for recurrent HNSCC prognostic 

model. Five feature selection techniques were implemented which are GBM, DRF, DNN, 

GLM, and NB. The proposed hybrid HESCA model was implemented on the feature subsets 

selected from each FS technique. Then, the proposed hybrid HESCA model was developed 

on the 8-input optimal features that the GBM-FS as an ensemble FS technique generated. 

Thus, the proposed HESCA model was developed for the classification of whether patients 

had recurrence or nonrecurrence after subsequence years of diagnosis, treatment, and 

follow-up; here, one-year to five-year. Due to the small number of training instances, in 

order to learn the proposed stacked ensemble classification model, a v-fold (v=10) CV was 

implemented. The generated results from the proposed HESCA model were compared with 

individual base ML models (GBM, DRF, DNN, GLM, and NB). Furthermore, the 8-input 

HESCA model was validated and tested using the existing test data and the results were 

compared with two baseline stacked ensemble classification models, and state-of-the-art 

classification model used in the study.  These compared existing stacked ensemble models 

were learned and tested on the same existing training and test data respectively. Also, the 8-

input HESCA model was compared with the HESCA model with full-input features based 

on training set and test set. Findings obtained from the analysis of the recurrent HNSCC 

prognostic dataset for the HESCA model are; 

i. The optimal feature subset for the recurrent HNSCC prognosis is a composition of 

Nodes, Age, Smoke, StageIV, p63, TreatCCRT, PaTT4, and Size being the most 
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accurate prognosis which is in accordance with the findings in the literature of 

similar previous studies. 

ii. The performance of the GBM as a meta-classifier is better than other classifiers used 

as meta classifiers in a stacking ensemble having five base classifiers.  

iii. A stacked ensemble classification (HESCA) model having five base classifier 

models achieves the best performance accuracy in recurrent HNSCC prognosis 

compare to the individual ML classification models and other stacked ensemble 

classification models considered in the study.  

iv. The prognostic result is more accurate with the GBM-FS ensemble feature selection 

technique compared to the prognostic result with other base feature selection 

techniques considered in the study.  

v. The HESCA prognostic model with 8-input features based on the GBM-FS optimal 

features performs well optimally than the HESCA model with the full-input features 

in a 5-year recurrent HNSCC prognostic data.  

Surely, the 8-input HESCA model with the training features being; Nodes, Age, Smoke, 

StageIV, p63, TreatCCRT, PaTT4, and Size, achieved better performance accuracy that can 

be considered feasible and be adopted as a supporting tool by clinicians as the prognosis for 

recurrent HNSCC subtypes. The gender, alcoholism, chewing quid, tumor site, tumor grade, 

invasion font, pathological lymph nodes, family history, HPV, and p16 features had no 

significant effect on the class label. In summary, patient with much lymph nodes, old age, 

high rate of smoking habit, negative p63, the proposed HESCA prognostic model based on 

the GBM-FS feature selection with 10-fold cross-validation in a stacked ensemble provides 

a machine learning-based approach to recurrent HNSCC prognosis based on a combination 

of only three medical information: clinical, pathological, and genomic markers.  

6.2 Research Contributions to Knowledge 

The contribution of this study to the development of science can be structured in four parts. 

i. First, the most precise and reliable features as the prognosis for recurrent HNSCC 

have been developed by an ensemble feature selection technique based on GBM-FS. 

Using the HESCA model, a comparison analysis with the other four feature selection 

techniques that were taken into consideration in the study was done to determine 

how robust this feature selection methodology is. Data from multiple feature 
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selection techniques was fed into the HESCA model, which was then used to train 

different feature subsets. The GBM-FS technique was found to be adaptable and to 

have the greatest outcomes across all training and test performance parameters, 

providing the most accurate prognosis for the recurrent HNSCC subtypes, according 

to the results analysis. The GBM-FS technique also has a propensity to reduce 

feature redundancy and dimensionality, enabling effective consideration of pertinent 

features for improving classification accuracy and training efficiency. The versatility 

of the GBM-FS gives it a further benefit in determining the most precise prognosis 

for data on recurrent HNSCC. With the right combination and size of feature subsets, 

the GBM-FS increased classification accuracy while lowering computing costs, 

overfitting, training time, and modeling uncertainty. But it was noted that the GBM-

FS method was task-specific. The feature selections under comparison have fairly 

comparable prognoses. As a result, the most reliable prognostic indicators for 

recurrent HNSCC subtypes were found to be the GBM-FS characteristics Nodes, 

Age, Smoke, Stage IV, p63, TreatCCRT, PaTT4, and Size.  

ii. The HESCA model, a novel hybrid stacked ensemble technique, has been 

established as the second novelty for learning a classification of the prognosis for 

recurrent HNSCC patterns. The suggested hybrid ensemble super classification 

algorithm (HESCA) model's generalisability was evaluated using the good-fit 

learning curves. It was discovered that the validation loss (red curve) and training 

loss (blue curve) both steadily decreased to a point of stability (upon adding training 

instances), with a narrow gap between the two final loss curves known as the 

generalisation gap. This implies that increasing the number of training instances 

does not enhance the (HESCA) model's performance when applied to training data 

(for training loss) and test data (for validation loss). The HESCA model has good 

fit, which led to good generalisation. The suggested HESCA model successfully 

classified all recurrent HNSCC data, demonstrating its generalisability and 

flexibility. Instead of devoting resources to figuring out which stacked ensemble 

classifier to choose for a given task since the impact of the base classifiers varied 

with different datasets, the proposed classification technique can be adopted for 

medical applications due to its generalisability and adaptability.  

iii. Third, three pre-existing stacked ensemble models have been used to validate and 

contrast the HESCA model that has been constructed. Using the current HNSCC 

data, a comparison study with two baseline stacked ensemble classification models 
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and one state-of-the-art stacked ensemble classification model was carried out in 

order to determine the superiority of the proposed hybrid ensemble super 

classification algorithm (HESCA) model. In terms of training and test accuracy as 

well as other assessment criteria, it was found that the suggested HESCA model 

excelled all compared adaptations. It was found that the stacked ensemble model 

with the base classifier functioning as the meta-classifier produced superior 

classification accuracy than the two baseline stacked ensemble models proposed by 

Kabir and Ludwig (2019), where no base classifier functioned as the meta-classifier. 

Furthermore, it was found that the state-of-the-art stacked ensemble model with 

GBM meta-classifier proposed by Kwon et al. (2019) with a maximum of four base 

classifier models performed worse in terms of classification accuracy than the 

proposed HESCA model, which is a stacked ensemble model consisting of five base 

classifier models with GBM meta-classifier. 

iv. Fourthly, the most reliable predictor for recurrent HNSCC has been determined to 

be the gradient boosted features. The HESCA model was used in a comparison 

analysis using the four feature subsets taken into consideration in the study to 

determine the robustness of these features. The data generated by various feature 

selection techniques were utilised to train the HESCA model on various feature 

subsets. Gradient boosted features were shown to be adaptable and to have the 

greatest outcomes across all training and test performance parameters, providing the 

most accurate prognosis for the recurrent HNSCC subtypes, according to the 

findings analysis. 

6.3 Recommendation 

This study recommends that the developed hybrid prognostic model could be used as a 

supporting tool for classifying the prognosis for recurrent HNSCC patterns in clinical 

domain. Meanwhile, other tests with large dataset may be required for further verification 

of the outputs generated in the study. In as much as the number of the training instances is 

small, optimistically, the study serves as a groundwork to embark on more similar research 

in Ghana. However, the proposed technique still has more room for improvement, which 

suggests that the future work should; 
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i. consider other ML classifiers like SVM, DT etc that might improve the prediction 

accuracy, which were not considered in this study due to limited computational 

resources. 

ii. Employ heterogeneous feature selection techniques for ensemble feature selection 

with the investigation on more diverse base classifiers and meta-classifiers for 

stacked generalisation.  

iii. Policy makers of cancer awareness should educate Ghanaians on HNC awareness to 

frequently and should visit various healthcare facilities frequently for medical 

checkup.  

iv. Finally, apply this technique to other real-world cancer problems, and other problem 

domains such as cyber security, agriculture, geographic information system, and 

transportation. 

6.4 Limitation of the Study 

Ghana's research in medical informatics is still in its infancy, hence there are not many 

medical databases to choose from. Due to the lack of sufficient medical samples or tissues 

for the study experiments, this has restricted the research activity in this area. However, it 

takes time to prepare the medical tissues for the goal of obtaining genomic data. Moreso, 

getting the genomic data came at a considerable cost. In addition, the majority of medical 

records now in existence are preserved in hardcopy (paper format), so converting these data 

into a computerised format took some time. Depending on the quantity of samples, the entire 

process took several months. The study only had data up to a maximum 5-year prognosis. 

This is because the records for instances older than five years are incomplete. For records 

older than five years, an additional year or two are required to gather enough data for the 

prognostic model that has been proposed. Hence, only 1-year to 5-year recurrence were 

included in the study due to time and financial constraints, and only the genetic data for p16 

and p63 were chosen. 
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APPENDICES 

 

APPENDIX A GRAPHS FOR PROGNOSTIC FEATURES R CODE 

# Define vectors 

Drink <- c(48, 77, 0) 

Smoke <- c(38, 87, 0) 

Chew <- c(24, 93, 8) 

History <- c(16, 84, 25) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Drink, Smoke, Chew, History) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Drink, type = "o", col="orange", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:3, 

     lab=c("Yes", "No", "NA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(Smoke, type = "o", pch=22, lty=2, col="red") 

lines(Chew, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Features:Drink, Smoke, Chew, History", 

col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Drink", "Smoke", "Chew", "History"), 

       cex = 0.7, col = c("orange", "red", "green", "pink"), pch = 21:22, lty = 1:2); 

 

####################################### 

# Define vectors 

p16 <- c(74, 36, 15) 

p63 <- c(60, 56, 9) 
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# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, p16, p63) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(p16, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:3, 

     lab=c("Yes", "No", "NA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Chew, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Features:p16, p63", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("p16", "p63"), 

       cex = 0.7, col = c("red", "blue"), pch = 21:22, lty = 1:2); 

 

################################# 

# Define vectors 

p16 <- c(74, 36, 15) 

p63 <- c(60, 56, 9) 

Nodes <- c(61, 44, 20) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, p16, p63, Nodes) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(p16, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:3, 
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     lab=c("Positive", "Negative", "NA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Features:p16, p63, Nodes", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("p16", "p63", "Nodes"), 

       cex = 0.7, col = c("red", "blue", "green"), pch = 21:22, lty = 1:2); 

 

################################# 

# Define vectors 

Site <- c(3, 40, 70, 12) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Site) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Site, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:4, 

     lab=c("HPC", "Larynx", "NPC", "OPC")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 
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lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Site", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

 

############################# 

# Define vectors 

Stage <- c(7, 23, 33, 62) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Stage) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Stage, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:4, 

     lab=c("I", "II", "III", "IV")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Stage", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 
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############################### 

# Define vectors 

Grade <- c(18, 31, 76) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Grade) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Grade, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:3, 

     lab=c("G1", "G2", "G3")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Tumor Grade", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

 

############################ 

# Define 2 vectors 

PlN <- c(34, 14, 43, 34) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, PlN) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(PlN, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 
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# Make x axis using base selectors labels 

axis(1, at=1:4, 

     lab=c("N0", "N1", "N2", "N3")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:PlN", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

############################ 

# Define vectors 

HPV <- c(13, 27, 11, 2, 72) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, HPV) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(HPV, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:5, 

     lab=c("HPV11", "HPV16", "HPV18", "HPV6", "NA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

Digitized by UMaT Library



144 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:HPV", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

 

############################ 

# Define vectors 

Treat <- c(26, 9, 47, 33, 4, 2, 4) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Treat) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Treat, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:7, 

     lab=c("CCRT", "Chemo", "CRT", "RT", "Surg+CCRT", "Surg+CRT", "Surg+RT")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Treat", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 
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############################### 

# Define vectors 

Gender <- c(92, 33) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Gender) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Gender, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:2, 

     lab=c("Male", "Female")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Gender", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

 

############################### 

# Define vectors 

Invasion <- c(47, 74, 4) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Invasion) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Invasion, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 
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# Make x axis using base selectors labels 

axis(1, at=1:3, 

     lab=c("Cohesion", "Non-cohesion", "NA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Invasion", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

 

############################### 

# Define vectors 

Age <- c(51, 74) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Age) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Age, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:2, 

     lab=c("15-45 yrs", ">45 yrs")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 
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lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Age", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

 

############################### 

# Define vectors 

Size <- c(75, 46, 4) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Size) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Size, type = "o", col="red", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:3, 

     lab=c("0-4cm", ">4cm", "NA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Feature:Size", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 
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       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 

 

############################### 

# Define vectors 

Recurrence <- c(61, 60, 4) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Recurrence) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Recurrence, type = "o", col="blue", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:3, 

     lab=c("Yes", "No", "NA")) 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=1*10:g_range[2]) 

 

# Create box around plot 

box() 

lines(p63, type = "o", pch=22, lty=2, col="blue") 

lines(Nodes, type = "o", pch=22, lty=2, col="green") 

lines(History, type = "o", pch=22, lty=2, col="pink") 

lines(Recurrence, type = "o", pch=22, lty=2, col="blue") 

 

title(main = "Label Feature:Recurrence", 

      col.main="black", font.main=1) 

 

title(xlab = "Categories", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "No. of Instances", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(2.5, g_range[2], c("Site"), 

       cex = 0.7, col = c("red",), pch = 21:22, lty = 1:2); 
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APPENDIX B DATA CLEANSING R CODE 

library(dummies) 

library(Hmisc) 

 

# Data 

library(data.table) 

data <- fread(file.choose(), data.table = T) 

str(data) 

View(data) 

print(data) 

 

# Single dummy Features 

data$Drink[data$Drink == "No"] = "0" 

data$Drink[data$Drink == "Yes"] = "1" 

 

data$Smoke[data$Smoke == "No"] = "0" 

data$Smoke[data$Smoke == "Yes"] = "1" 

 

data$Chew[data$Chew == "No"] = "0" 

data$Chew[data$Chew == "Yes"] = "1" 

 

data$Invasion[data$Invasion=="Non cohesive"]="0" 

data$Invasion[data$Invasion=="Cohesive"]="1" 

 

data$Gender[data$Gender=="F"]="0" 

data$Gender[data$Gender=="M"]="1" 

 

data$Nodes[data$Nodes=="neg"]="0" 

data$Nodes[data$Nodes=="pos"]="1" 

 

data$History[data$History=="No"]="0" 

data$History[data$History=="Yes"]="1" 

 

data$HPV[data$HPV=="HPV11"]="0" 

data$HPV[data$HPV=="HPV16"]="1" 

 

data$p16[data$p16=="neg"]="0" 

data$p16[data$p16=="pos"]="1" 

 

data$p63[data$p63=="neg"]="0" 

data$p63[data$p63=="pos"]="1" 

 

data$Recurrence[data$Recurrence=="No"]="0" 

data$Recurrence[data$Recurrence=="Yes"]="1" 

 

data$Age <- ifelse(data$Age < 45, 0, 1) 

 

data$Size <- ifelse(data$Size < 4, 0, 1) 

 

# Mode imputation: Impute the missing values 
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data$Drink <- impute(data$Drink, 0) 

data$Smoke <- impute(data$Smoke, 0) 

data$Chew <- impute(data$Chew, 0) 

data$Nodes <- impute(data$Nodes, 1) 

data$Size <- impute(data$Size, 0) 

data$Invasion <- impute(data$Invasion, 0) 

data$History <- impute(data$History, 0) 

data$HPV <- impute(data$HPV, 1) 

data$p16 <- impute(data$p16, 1) 

data$p63 <- impute(data$p63, 1) 

data$TreatCCRT <- impute(data$TreatCCRT, 0) 

data$TreatChemo <- impute(data$TreatChemo, 0) 

data$TreatCRT <- impute(data$TreatCRT, 0) 

data$TreatRT <- impute(data$TreatRT, 0) 

data$`TreatSurg+CCRT` <- impute(data$`TreatSurg+CCRT`, 0) 

data$`TreatSurg+CRT` <- impute(data$`TreatSurg+CRT`, 0) 

data$`TreatSurg+RT` <- impute(data$`TreatSurg+RT`, 0) 

data$Recurrence <- impute(data$Recurrence, 0) 
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APPENDIX C BASE MODELS SELECTION R CODE 

# Load and split the data 

library(data.table) 

data <- fread(file.choose(), data.table = T) 

str(data) 

summary(data) 

################### 

# Spliting training set into two parts based on outcome: 70% and 30% 

indexb <- createDataPartition(datab$Class, p=0.70, list = FALSE) 

trainSetb <- datab[indexb,] 

testSetb <- datab[-indexb,] 

dim(trainSetb) 

dim(testSetb) 

 

# Number of CV folds (to generate level-one data for stacking) 

nfolds <- 10 

 

# Example of stacking algorithms 

# Create sub_models 

seed <- 7 

control <- trainControl(method = "repeatedcv", number = 10, repeats = 1, 

                        savePredictions = TRUE, classProbs = TRUE, 

                        preProcOptions = c("center", "scale")) 

 

set.seed(seed) 

algorithmList <- c("knn", "rpart", "naive_bayes", "svmLinear") 

 

models <- caretList(Class~., data=trainSetb, trControl = control, 

                    methodList = algorithmList) 

summary(models) 

result <- resamples(models) 

summary(result) 

dotplot(result) 
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APPENDIX D MODELS LEARNING R CODE 

library(tidyverse) 

library(h2o)       # for fitting stacked models 

library(rsample)   # for creating our train-test splits 

library(recipes)   # for minor feature engineering tasks 

library(xgboost) 

library(dplyr) 

library(plotROC) 

library(pROC) 

library(lime) 

library(plotly) 

library(devtools) 

library(h2oEnsemble) 

library(ggthemes) 

library(rio) 

library(knitr) 

library(viridis) 

library(ggplot2) 

library(ROCR) 

library(Hmisc) 

library(MASS) 

library(hier.part) 

library(car) 

 

# Load and split the data 

library(data.table) 

data <- fread(file.choose(), data.table = T) 

str(data) 

summary(data) 

 

# Single dummy Features 

data$Age <- ifelse(data$Age < 45, 0, 1) 

data$Size <- ifelse(data$Size < 4, 0, 1) 

data$Recurrence <- as.factor(data$Recurrence) 

str(data) 

 

#################################### 

split <- initial_split(data, strata = "Recurrence") 

data_train <- training(split) 

data_test <- testing(split) 

 

# Make sure we have consistent categorical levels 

blueprint <- recipe(Recurrence ~., data = data_train) %>% 

  step_other(all_nominal(), threshold = 0.05) 

 

h2o.init() 

####################### 

# Convert data to H2OFrame 

data_h2o <- as.h2o(data) 
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# Create training & test sets for h2o 

train_h2o <- prep(blueprint, training = data_train, retain = TRUE) %>% 

  juice() %>% 

  as.h2o() 

test_h2o <- prep(blueprint, training = data_train) %>% 

  bake(new_data = data_test) %>% 

  as.h2o() 

 

# Get response column and feature names 

Y <- "Recurrence" 

X <- setdiff(names(data_train), Y) 

 

################################## 

# Learn base learners 

# Train & cross-validate a GBM model 

best_gbm <- h2o.gbm( 

  x = X, y = Y, training_frame = train_h2o, ntrees = 5000, learn_rate = 0.01, 

  max_depth = 10, min_rows = 3, sample_rate = 0.9, nfolds = 10, 

  fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE, 

  seed = 123, stopping_rounds = 50, stopping_metric = "logloss", 

  stopping_tolerance = 0.0001 

) 

######################################## 

# Train & cross-validate a RF model 

best_rf <- h2o.randomForest( 

  x = X, y = Y, training_frame = train_h2o, ntrees = 5000, mtries = 3, 

  max_depth = 10, min_rows = 3, sample_rate = 0.8, nfolds = 10, 

  fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE, 

  seed = 123, stopping_rounds = 50, stopping_metric = "logloss", 

  stopping_tolerance = 0.00001 

) 

######################################### 

# Train & cross-validate Deep Neural Network model 

best_dl <- h2o.deeplearning( 

  x = X, y = Y, training_frame = train_h2o, nfolds = 10, activation = "rectifier", 

  fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE, 

  seed = 123, stopping_rounds = 50, tweedie_power = 1.5, stopping_metric = "logloss", 

stopping_tolerance = 0.0001 

) 

############################################## 

# Train & cross-validate naiveBayes model 

best_naiv <- h2o.naiveBayes( 

  x = X, y = Y, training_frame = train_h2o, nfolds = 10, laplace = 0.2, 

  fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE, 

  seed = 123 

) 

################################# 

# Train & cross-validate a GLM model 

best_glm <- h2o.glm( 

  x = X, y = Y, training_frame = train_h2o, alpha = 0.1, 
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  remove_collinear_columns = TRUE, nfolds = 10, fold_assignment = "Modulo", 

keep_cross_validation_predictions = TRUE, seed = 123 

  ) 

##################################### 

# Train a stacked GBM ensemble 

metalearner_gbm <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "HESCA Model", 

  base_models = list(best_glm, best_rf, best_gbm, best_dl, best_naiv), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "gbm") 

####################################################### 

# Train a stacked randomForest ensemble 

metalearner_rf <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_rf_ensemble", 

  base_models = list(best_glm, best_rf, best_gbm, best_dl, best_naiv), 

  keep_levelone_frame = TRUE,metalearner_algorithm = "drf") 

########################################### 

# Train a stacked Deep Neural Network ensemble 

metalearner_dl <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_dl_ensemble", 

  base_models = list(best_glm, best_rf, best_gbm, best_dl, best_naiv), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "deeplearning") 

########################################### 

# Train a stacked naive_Bayes ensemble 

metalearner_naiv <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_naiv_ensemble", 

  base_models = list(best_glm, best_rf, best_gbm, best_dl, best_naiv), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "naiveBayes") 

########################################### 

# Train a stacked Logit ensemble 

metalearner_glm <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_glm_ensemble", 

  base_models = list(best_glm, best_rf, best_gbm, best_dl, best_naiv), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "glm") 

##################################################### 

##Train baseline stacked enesmble 

# stack GBM & RF using GLM 

meta_glm1 <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_glm1_ensemble", 

  base_models = list(best_gbm, best_rf), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "gbm") 

########################################### 

# Train a stacked GBM, DRF & DNN using GLM 

meta_glm2 <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_glm2_ensemble", 

  base_models = list(best_gbm, best_rf, best_dl), 

  keep_levelone_frame = TRUE,metalearner_algorithm = "drf") 

########################################### 

#Train State-of-the-art stacked enesmble 

# stack GBM, RF, DNN & GLM using GBM 

meta_gbm <- h2o.stackedEnsemble( 
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  x = X, y = Y, training_frame = train_h2o, model_id = "my_gbm_ensemble", 

  base_models = list(best_gbm, best_rf, best_dl, best_glm), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "gbm") 

########################################### 

# Train a stacked randomForest ensemble 

meta_rf <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_rf_ensemble", 

  base_models = list(best_glm, best_gbm, best_rf, best_dl), 

  keep_levelone_frame = TRUE,metalearner_algorithm = "drf") 

########################################### 

# Train a stacked Deep Neural Network ensemble 

meta_dl <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_dl_ensemble", 

  base_models = list(best_glm, best_gbm, best_rf, best_dl), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "deeplearning") 

########################################### 

# Train a stacked Logit ensemble 

meta_glm <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "my_glm_ensemble", 

  base_models = list(best_glm, best_gbm, best_rf, best_dl), 

  keep_levelone_frame = TRUE, metalearner_algorithm = "glm") 

####################################################### 

# Plot AUC for base learners on training set 

plot(h2o.performance(best_gbm)) 

plot(h2o.performance(best_rf)) 

plot(h2o.performance(best_dl)) 

plot(h2o.performance(best_naiv)) 

plot(h2o.performance(best_glm)) 

############################# 

#plot AUC for meta classifiers 

plot(h2o.performance(metalearner_gbm)) 

plot(h2o.performance(metalearner_rf)) 

plot(h2o.performance(metalearner_dl)) 

plot(h2o.performance(metalearner_naiv)) 

plot(h2o.performance(metalearner_glm)) 

######################################## 

# plot AUC for baseline stacked ensemble 

plot(h2o.performance(meta_glm1)) 

plot(h2o.performance(meta_glm2)) 

######################################## 

# plot AUC for state-of-the-art 

plot(h2o.performance(meta_gbm)) 

plot(h2o.performance(meta_rf)) 

plot(h2o.performance(meta_dl)) 

plot(h2o.performance(meta_glm)) 

############################## 

# Check model correlation 

data.frame( 
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  GBM_pred = 

as.vector(h2o.getFrame(best_gbm@model$cross_validation_holdout_predictions_frame_i

d$name)), 

  DRF_pred = 

as.vector(h2o.getFrame(best_rf@model$cross_validation_holdout_predictions_frame_id$

name)), 

  DNN_pred = 

as.vector(h2o.getFrame(best_dl@model$cross_validation_holdout_predictions_frame_id$

name)), 

  Naive_pred = 

as.vector(h2o.getFrame(best_naiv@model$cross_validation_holdout_predictions_frame_i

d$name)), 

  GLM_pred = 

as.vector(h2o.getFrame(best_glm@model$cross_validation_holdout_predictions_frame_i

d$name)) 

) %>% cor() 

######################################################## 

# Compare base learner performance on the test set 

perf_gbm_test <- h2o.performance(best_gbm, newdata = test_h2o) 

perf_rf_test <- h2o.performance(best_rf, newdata = test_h2o) 

perf_dl_test <- h2o.performance(best_dl, newdata = test_h2o) 

perf_glm_test <- h2o.performance(best_glm, newdata = test_h2o) 

perf_naiv_test <- h2o.performance(best_naiv, newdata = test_h2o) 

######################################################## 

# Compare metalearner performance on the test set 

perf_mgbm_test <- h2o.performance(metalearner_gbm, newdata = test_h2o) 

perf_mrf_test <- h2o.performance(metalearner_rf, newdata = test_h2o) 

perf_mdl_test <- h2o.performance(metalearner_dl, newdata = test_h2o) 

perf_mnaiv_test <- h2o.performance(metalearner_naiv, newdata = test_h2o) 

perf_mglm_test <- h2o.performance(metalearner_glm, newdata = test_h2o) 

################################################# 

# Performance of baseline stacked ensemble on test set 

perf_mglm1_test <- h2o.performance(meta_glm1, newdata = test_h2o) 

perf_mglm2_test <- h2o.performance(meta_glm2, newdata = test_h2o) 

########################################################## 

# Performance of state-of-the-art stacked ensemble on test set 

perf_mgbms_test <- h2o.performance(meta_gbm, newdata = test_h2o) 

perf_mrfs_test <- h2o.performance(meta_rf, newdata = test_h2o) 

perf_mdls_test <- h2o.performance(meta_dl, newdata = test_h2o) 

perf_mglms_test <- h2o.performance(meta_glm, newdata = test_h2o) 

##################################### 

# Plot ROC Curve for base learner on test set 

perf_gbm_roc <- h2o.performance(best_gbm, test_h2o) 

plot(perf_gbm_roc, type = "roc") 

perf_rf_roc <- h2o.performance(best_rf, test_h2o) 

plot(perf_rf_roc, type = "roc") 

perf_dl_roc <- h2o.performance(best_dl, test_h2o) 

plot(perf_dl_roc, type = "roc") 

perf_naiv_roc <- h2o.performance(best_naiv, test_h2o) 

plot(perf_naiv_roc, type = "roc") 
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perf_glm_roc <- h2o.performance(best_glm, test_h2o) 

plot(perf_glm_roc, type = "roc") 

# Plot ROC Curve for meta learner on test set 

perf_mgbm_rc <- h2o.performance(metalearner_gbm, test_h2o) 

plot(perf_mgbm_rc, type = "roc") 

perf_mrf_rc <- h2o.performance(metalearner_rf, test_h2o) 

plot(perf_mrf_rc, type = "roc") 

perf_mdl_rc <- h2o.performance(metalearner_dl, test_h2o) 

plot(perf_mdl_rc, type = "roc") 

perf_mnaiv_rc <- h2o.performance(metalearner_naiv, test_h2o) 

plot(perf_mnaiv_rc, type = "roc") 

perf_mglm_rc <- h2o.performance(metalearner_glm, test_h2o) 

plot(perf_mglm_rc, type = "roc") 

################################## 

# Plot ROC Curve for baseline stacked ensemble on test set 

perf_mglm1_rc <- h2o.performance(meta_glm1, test_h2o) 

plot(perf_mglm1_rc, type = "roc") 

perf_mglm2_rc <- h2o.performance(meta_glm2, test_h2o) 

plot(perf_mglm2_rc, type = "roc") 

################################ 

# Plot ROC Curve for state-of-the-art on test set 

perf_mgbms_rc <- h2o.performance(meta_gbm, test_h2o) 

plot(perf_mgbms_rc, type = "roc") 

perf_mrfs_rc <- h2o.performance(meta_rf, test_h2o) 

plot(perf_mrfs_rc, type = "roc") 

perf_mdls_rc <- h2o.performance(meta_dl, test_h2o) 

plot(perf_mdls_rc, type = "roc") 

perf_mglms_rc <- h2o.performance(meta_glm, test_h2o) 

plot(perf_mglms_rc, type = "roc") 

####################################### 

# Get results from base classifiers 

get_logloss <- function(model){ 

  results <- h2o.performance(model, newdata = test_h2o) 

  results@metrics$logloss 

} 

list(best_gbm, best_rf, best_dl, best_naiv, best_glm) %>% 

  purrr::map_dbl(get_logloss) 

 

# stacked results 

h2o.performance(metalearner_gbm, newdata = test_h2o)@metrics$logloss 

##################################################### 

# Define GBM hyperparameter grid 

hyper_grid_gbm <- list( 

  max_depth = c(7, 9), 

  min_rows = c(1, 3, 5), 

  learn_rate = c(0.01, 0.1), 

  sample_rate = c(0.5, 0.75, 1), 

  col_sample_rate = c(0.8, 0.9, 1) 

) 
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# Define random grid search criteria 

search_criteria <- list( 

  strategy = "RandomDiscrete", 

  max_models = 25, 

  seed = 123 

) 

 

# Build random grid search 

random_grid <- h2o.grid( 

  algorithm = "gbm", grid_id = "gbm_grid", x = X, y = Y, 

  training_frame = train_h2o, hyper_params = hyper_grid_gbm, 

  search_criteria = search_criteria, ntrees = 5000, 

  stopping_metric = "logloss", stopping_rounds = 10, stopping_tolerance = 0, 

  nfolds = 10, fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE, 

  seed = 123 

) 

 

# Sort results by Logloss 

random_grid_perf <- h2o.getGrid( 

  grid_id = "gbm_grid", 

  sort_by = "logloss", 

  decreasing = TRUE 

) 

 

# Grab the model_id for the top model, chosen by validation error 

best_model_id <- random_grid_perf@model_ids[[1]] 

best_model <- h2o.getModel(best_model_id) 

h2o.performance(best_model, newdata = test_h2o) 

##################################################### 

# Train a stacked ensemble using the GBM grid 

ensemble_gbm <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "ensemble_gbm_grid", 

  base_models = random_grid@model_ids, metalearner_algorithm = "gbm" 

) 

############################################################### 

# Evaluate performance 

perf_gbm <- h2o.performance(ensemble_gbm, newdata = test_h2o) 

################################ 

# Look at hyperparameters for best model 

print(best_model@model[["model_summary"]]) 

######################################################## 

# Generate a random grid of models and stack them together 

# GBM Hyperperameters 

learn_rate_opt <- c(0.01, 0.02, 0.03) 

max_depth_opt <- c(3, 4, 5, 6, 9) 

sample_rate_opt <- c(0.7, 0.8, 0.9, 1.0) 

col_sample_rate_opt <- c(0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) 

hyper_params <- list(learn_rate = learn_rate_opt, 

                     max_depth = max_depth_opt, 

                     sample_rate = sample_rate_opt, 
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                     col_sample_rate = col_sample_rate_opt) 

 

search_crit <- list(strategy = "RandomDiscrete", 

                        max_models = 25, 

                        seed = 123) 

 

gbm_grid <- h2o.grid(algorithm = "gbm", 

                     grid_id = "gbm_grid_binomial", 

                     x = X, 

                     y = Y, 

                     training_frame = train_h2o, 

                     ntrees = 50, 

                     seed = 1, 

                     nfolds = nfolds, 

                     keep_cross_validation_predictions = TRUE, 

                     hyper_params = hyper_params, 

                     search_criteria = search_crit) 

################################### 

# Sort results by Logloss 

random_grid_perf1 <- h2o.getGrid( 

  grid_id = "gbm_grid", 

  sort_by = "logloss", 

  decreasing = TRUE 

) 

############################################## 

best_model_id1 <- random_grid_perf1@model_ids[[1]] 

best_model1 <- h2o.getModel(best_model_id1) 

h2o.performance(best_model1, newdata = test_h2o) 

##################################### 

# Train a stacked ensemble using the GBM grid 

ensemble_gbm <- h2o.stackedEnsemble(x = X, y = Y, 

                                training_frame = train_h2o, 

                                base_models = gbm_grid@model_ids, 

                                metalearner_algorithm = "gbm") 

################################## 

# Evaluate performance 

per <- h2o.performance(ensemble_gbm, newdata = test_h2o) 

########################################### 

# Hyperparameters for DRF 

# set hyperparameter grid 

# Define DRF hyperparameter grid 

hyper_grid_drf <- list( 

  max_depth = c(9, 30), 

  min_rows = c(1, 5, 10), 

  sample_rate = c(0.5, 0.75, 1), 

  col_sample_rate_per_tree = c(0.8, 0.9, 1) 

) 

 

# Define random grid search criteria 

search_criteria_drf <- list( 
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  strategy = "RandomDiscrete", 

  max_models = 25, 

  seed = 123 

) 

 

# Build random grid search 

random_grid_drf <- h2o.grid( 

  algorithm = "randomForest", grid_id = "drf_grid", x = X, y = Y, 

  training_frame = train_h2o, hyper_params = hyper_grid_drf, 

  search_criteria = search_criteria_drf, ntrees = 5000, 

  stopping_metric = "logloss", stopping_rounds = 10, stopping_tolerance = 0, 

  nfolds = 10, fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE, 

  seed = 123 

) 

 

# Sort results by Logloss 

random_grid_perf_drf <- h2o.getGrid( 

  grid_id = "drf_grid", 

  sort_by = "logloss", 

  decreasing = TRUE 

) 

 

# Grab the model_id for the top model, chosen by validation error 

best_model_id_drf <- random_grid_perf_drf@model_ids[[25]] 

best_model_drf <- h2o.getModel(best_model_id_drf) 

h2o.performance(best_model_drf, newdata = test_h2o) 

##################################################### 

# Train a stacked ensemble using the GBM grid 

ensemble_drf <- h2o.stackedEnsemble( 

  x = X, y = Y, training_frame = train_h2o, model_id = "ensemble_drf_grid", 

  base_models = random_grid_drf@model_ids, metalearner_algorithm = "drf" 

) 

############################################################### 

# Evaluate performance 

perf_drf <- h2o.performance(ensemble_drf, newdata = test_h2o) 

############################################### 

# Hyperparameters for DNN 

# Define DRF hyperparameter grid 

hyper_grid_dl <- list( 

  activation = c("Rectifier", "Maxout", "Tanh"), 

  hidden = list(c(5, 5, 5, 5), c(10, 10, 10, 10), c(50, 50, 50, 50), c(100, 100, 100, 100)), 

  epochs = c(50, 100, 200), 

  l1 = c(0, 1e-3, 1e-5), 

  l2 = c(0, 1e-3, 1e-5), 

  rate =c(0, 0.1, 0.005, 0.001), 

  rate_annealing = c(1e-8, 1e-7, 1e-6), 

  rho = c(0.9, 0.95, 0.99, 0.999), 

  epsilon = c(1e-10, 1e-8, 1e-6, 1e-4), 

  momentum_start = c(0, 0.5), 

  momentum_stable = c(0.99, 0.5, 0), 
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  input_dropout_ratio = c(0, 0.1, 0.2), 

  max_w2 = c(10, 100, 1000, 3.4028235e+38) 

) 

 

# Define random grid search criteria 

search_criteria_dl <- list( 

  strategy = "RandomDiscrete", 

  max_models = 25, 

  max_runtime_secs = 900, 

  stopping_tolerance = 0.001, 

  stopping_rounds = 15, 

  seed = 123 

) 

 

# Build random grid search 

random_grid_dl <- h2o.grid(algorithm = "deeplearning", 

                           x = X, y = Y, training_frame = train_h2o, 

                           hyper_params = hyper_grid_dl, validation_frame = test_h2o, 

                           search_criteria = search_criteria_dl, 

                           nfolds = 10, fold_assignment = "Modulo", 

                           seed = 123, 

) 

 

# Sort results by Logloss 

random_grid_perf_dl <- h2o.getGrid( 

  grid_id = "dl_grid", 

  sort_by = "logloss", 

  decreasing = TRUE 

) 

# Grab the model_id for the top model, chosen by validation error 

best_model_id_dl <- random_grid_perf_dl@model_ids[[1]] 

best_model_dl <- h2o.getModel(best_model_id_dl) 

h2o.performance(best_model_dl, newdata = test_h2o) 

##################################################### 

# Grid search hyperparameters for Naive Bayes 

hyper_param_naiv <- list( 

  laplace = c(0, 0.5, 1, 1.5, 2) 

) 

 

threshold = c(0.001, 0.00001, 0.0000001) 

 

# performs the grid search 

grid_id_naiv <- "dl_grid" 

model_grid_naiv <- h2o.grid( 

  algorithm = "naivebayes", 

  grid_id = grid_id_naiv, 

  training_frame = train_h2o, 

  x = X, y = Y, 

  hyper_params = hyper_param_naiv 

) 
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# find the best model and eval its perf 

stopping_metric <- 'accuracy' 

sorted_models <- h2o.getGrid( 

  grid_id = grid_id_naiv, 

  sort_by = stopping_metric, 

  decreasing = TRUE 

) 

 

h2o.confusionMatrix(best_grid_naiv, valid = TRUE, metrics = 'accuracy') 

 

auc <- h2o.auc(best_grid_naiv, valid = TRUE) 

fpr <- h2o.fpr( h2o.performance(best_grid_naiv, valid = TRUE) )[['fpr']] 

tpr <- h2o.fpr( h2o.performance(best_grid_naiv, valid = TRUE) )[['tpr']] 

################################################## 

hyper_grid_rf <- list(ntree = seq(50, 500, by = 50), 

                      mtries = seq(3, 5, by = 1), 

                      max_depth = seq(10, 30, by = 10), 

                      min_rows = seq(1, 3, by = 1), 

                      nbins = seq(20, 30, by = 10), 

                      sample_rate = c(0.55, 0.632, 0.75)) 

 

# the number of models is 1620 

sapply(hyper_grid_rf, length) %>% prod() 

 

search_criteria_rf <- list(strategy = "RandomDiscrete", 

                           stopping_metric = "AUC", 

                           stopping_tolerance = 0.005, 

                           stopping_rounds = 10, 

                           max_runtime_secs = 30*60, 

                           seed = 123) 

 

#Turn parameters for DRF 

random_grid <- h2o.grid(algorithm = "randomForest", 

                                    grid_id = "rf_grid", 

                                    x = X, y = Y, 

                                    seed = 123, 

                                    nfolds = nfolds, 

                                    training_frame = train_h2o, 

                                    hyper_params = hyper_grid_rf, 

                                    search_criteria = search_criteria_rf) 

 

# collect the results and sort by my models 

grid_perf_rf <- h2o.getGrid(grid_id = "rf_grid", 

                            sort_by = "logloss", 

                            decreasing = TRUE) 

 

# Best DRF 

best_model_grid <- grid_perf_rf@model_ids[[1]] 

best_model_rf <- h2o.getModel(best_model_grid) 

h2o.performance(best_model, newdata = test_h2o) 
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APPENDIX E GRAPHS OF MODELS PERFORMOMANCE R CODE 

# Define vectors 

Accuracy <- c(0.91398, 0.82796, 0.83871, 0.79570, 0.79570, 0.96774) 

Logloss <- c(0.28381, 0.50211, 0.72000, 0.48505, 0.59259, 0.11718) 

Recall <- c(0.90000, 0.72222, 0.65517, 0.60000, 0.60000, 0.90000) 

Specificity <- c(0.91781, 0.85333, 0.92188, 0.86765, 0.87879, 1.00000) 

Precision <- c(0.75000, 0.54167, 0.79167, 0.62500, 0.66667, 1.00000) 

F1_score <- c(0.81000, 0.61905, 0.71698, 0.61224, 0.63156, 0.94737) 

AUC <- c(0.93297, 0.74155, 0.87953, 0.77687, 0.72977, 0.99523) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Precision) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Precision, type = "o", col="orange", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:6, 

     lab=c("GBM", "DRF", "DNN", "GLM", "NB", "HESCA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(Accuracy, type = "o", pch=22, lty=2, col="red") 

lines(AUC, type = "o", pch=22, lty=2, col="blue") 

lines(Logloss, type = "o", pch=22, lty=2, col="purple") 

lines(F1_score, type = "o", pch=22, lty=2, col="green") 

lines(Recall, type = "o", pch=22, lty=2, col="violet") 

lines(Precision, type = "o", pch=22, lty=2, col="orange") 

lines(Specificity, type = "o", pch=22, lty=2, col="brown") 

 

title(main = "Comparison of Base Models and HESCA Model Performance 

on Training Data", col.main="black", font.main=1) 

 

title(xlab = "Models", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "Performance value", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(5.05, g_range[2], c("Accuracy", "logloss", "Recall", "Specificity",   "Precision", 

"F1_score", "AUC"), 

cex = 0.7, col = c("red", "purple", "violet", "brown", "orange", "green", "blue"), pch = 21:22, 

lty = 1:2); 

################################################# 
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# Define vectors 

Accuracy <- c(0.84375, 0.75000, 0.71875, 0.78125, 0.75000, 0.90625) 

Logloss <- c(0.46861, 0.51558, 0.73101, 0.50379, 0.49484, 0.29591) 

Recall <- c(0.66667, 0.53846, 0.50000, 0.66667, 0.53333, 0.75000) 

Specificity <- c(0.95000, 0.89474, 0.9375, 0.84000, 0.94118, 1.00000) 

Precision <- c(0.88889, 0.77778, 0.88889, 0.44444, 0.88889, 1.00000) 

F1_score <- c(0.76191, 0.63636, 0.64000, 0.53333, 0.66666, 0.85714) 

AUC <- c(0.82850, 0.75362, 0.77778, 0.81401, 0.80193, 0.92512) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Precision) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Precision, type = "o", col="orange", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:6, 

     lab=c("GBM", "DRF", "DNN", "GLM", "NB", "HESCA")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(Accuracy, type = "o", pch=22, lty=2, col="red") 

lines(AUC, type = "o", pch=22, lty=2, col="blue") 

lines(Logloss, type = "o", pch=22, lty=2, col="purple") 

lines(F1_score, type = "o", pch=22, lty=2, col="green") 

lines(Recall, type = "o", pch=22, lty=2, col="violet") 

lines(Precision, type = "o", pch=22, lty=2, col="orange") 

lines(Specificity, type = "o", pch=22, lty=2, col="brown") 

 

title(main = "Comparison of Base Models and HESCA Model Performance 

on Test Data", col.main="black", font.main=1) 

 

title(xlab = "Models", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "Performance value", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(5.05, g_range[2], c("Accuracy", "logloss", "Recall", "Specificity", "Precision", 

"F1_score", "AUC"), 

cex = 0.6, col = c("red", "purple", "violet", "brown", "orange", "green", "blue"), pch = 21:22, 

lty = 1:2); 

################################################# 

# Define vectors 

Accuracy <- c(0.91398, 0.92473, 0.9355, 0.96774) 
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Logloss <- c(0.34495, 0.30749, 0.2667, 0.11718) 

Recall <- c(0.83333, 0.94737, 0.9091, 0.90000) 

Specificity <- c(0.94203, 0.91892, 0.9437, 1.00000) 

Precision <- c(0.83333, 0.75000, 0.8333, 1.00000) 

F1_score <- c(0.83333, 0.83721, 0.86955, 0.94737) 

AUC <- c(0.90731, 0.90429, 0.9816, 0.99523) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Precision) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Precision, type = "o", col="orange", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:4, 

     lab=c("Model_GLM1", "Model_GLM2", "SA Model", "HESCA Model")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(Accuracy, type = "o", pch=22, lty=2, col="red") 

lines(AUC, type = "o", pch=22, lty=2, col="blue") 

lines(Logloss, type = "o", pch=22, lty=2, col="purple") 

lines(F1_score, type = "o", pch=22, lty=2, col="green") 

lines(Recall, type = "o", pch=22, lty=2, col="violet") 

lines(Precision, type = "o", pch=22, lty=2, col="orange") 

lines(Specificity, type = "o", pch=22, lty=2, col="brown") 

 

title(main = "Comparison of Stacked Ensemble Models and  

HESCA Model Performance on Training Set", col.main="black", font.main=1) 

 

title(xlab = "Stacked Models", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "Performance value", col.lab=rgb(0.2,0.2,0.3)) 

legend(3.3, g_range[2], c("Accuracy", "logloss", "Recall", "Specificity", "Precision", 

"F1_score", "AUC"), 

cex = 0.7, col = c("red", "purple", "violet", "brown", "orange", "green", "blue"), pch = 21:22, 

lty = 1:2); 

################################################# 

# Define vectors 

Accuracy <- c(0.53125, 0.90625, 0.84375, 0.90625) 

Logloss <- c(0.78799, 0.42667, 0.4406, 0.29591) 

Recall <- c(0.37500, 0.87500, 0.6667, 0.75000) 

Specificity <- c(1.00000, 0.91667, 0.9500, 1.00000) 

Digitized by UMaT Library



166 

Precision <- c(1.00000, 0.77778, 0.8889, 1.00000) 

F1_score <- c(0.54545, 0.82350, 0.76193, 0.85714) 

AUC <- c(0.44928, 0.86232, 0.9179, 0.92512) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, Precision) 

 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(Precision, type = "o", col="orange", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:4, 

     lab=c("Model_GLM1", "Model_GLM2", "SA Model", "HESCA Model")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(Accuracy, type = "o", pch=22, lty=2, col="red") 

lines(AUC, type = "o", pch=22, lty=2, col="blue") 

lines(Logloss, type = "o", pch=22, lty=2, col="purple") 

lines(F1_score, type = "o", pch=22, lty=2, col="green") 

lines(Recall, type = "o", pch=22, lty=2, col="violet") 

lines(Precision, type = "o", pch=22, lty=2, col="orange") 

lines(Specificity, type = "o", pch=22, lty=2, col="brown") 

 

title(main = "Comparison of Stacked Ensemble Models and  

HESCA Model Performance on Test Set", col.main="black", font.main=1) 

 

title(xlab = "Stacked Models", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "Performance value", col.lab=rgb(0.2,0.2,0.3)) 

legend(3.3, g_range[2], c("Accuracy", "logloss", "Recall", "Specificity", "Precision", 

"F1_score", "AUC"), 

cex = 0.7, col = c("red", "purple", "violet", "brown", "orange", "green", "blue"), pch = 21:22, 

lty = 1:2); 

############################################ 

Accuracy <- c(0.9677, 0.9140, 0.9032, 0.9032, 0.9032) 

AUC <- c(0.9952, 0.9677, 0.9164, 0.9164, 0.9164) 

Logloss <- c(0.1172, 0.2854, 0.2864, 0.2864, 0.2864) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, AUC) 

 

# Graph autos using y axis that ranges from 0 to max 
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# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(AUC, type = "o", col="blue", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:5, 

     lab=c("GBM-FS", "DRF-FS", "DNN-FS", "GLM-FS", "NB-FS")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 

 

# Create box around plot 

box() 

 

lines(Accuracy, type = "o", pch=22, lty=2, col="red") 

lines(AUC, type = "o", pch=22, lty=2, col="blue") 

lines(Logloss, type = "o", pch=22, lty=2, col="purple") 

 

title(main = "Performance Metrics of Stacked Ensemble Model 

on various Feature Subsets on Training Set", col.main="black", font.main=1) 

 

title(xlab = "Feature Selectors", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "Performance value", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(4.1, g_range[2], c("Accuracy", "AUC", "logloss"), 

       cex = 0.7, col = c("red", "blue", "purple"), pch = 23:23, lty = 1:2); 

############################################ 

Accuracy <- c(0.9063, 0.7813, 0.7500, 0.7500, 0.7500) 

AUC <- c(0.9251, 0.7536, 0.7319, 0.7319, 0.7319) 

Logloss <- c(0.2959, 0.4046, 0.5246, 0.5246, 0.5246) 

 

# Calculate range from 0 to max value of accuracy and auc 

g_range <- range(0, AUC) 

# Graph autos using y axis that ranges from 0 to max 

# Value in accuracy or AUC vectors. Turn off axes and  

#annotations (axis labels) so we can specify them ourself 

plot(AUC, type = "o", col="blue", ylim = g_range, axes = FALSE, ann = FALSE) 

 

# Make x axis using base selectors labels 

axis(1, at=1:5, 

     lab=c("GBM-FS", "DRF-FS", "DNN-FS", "GLM-FS", "NB-FS")) 

 

# Make y axis with horizontal labels that display ticks at 

# every 4 marks. 4*0:g_range[2] is equivalent to c(0, .2, 0.4, 0.6, 0.8, 1, 1.2) 

axis(2, las=1, at=1*0:g_range[2]) 

axis(2, las=1, at=0.1*10:g_range[2]) 
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# Create box around plot 

box() 

 

lines(Accuracy, type = "o", pch=22, lty=2, col="red") 

lines(AUC, type = "o", pch=22, lty=2, col="blue") 

lines(Logloss, type = "o", pch=22, lty=2, col="purple") 

 

title(main = "Performance Metrics of Stacked Ensemble Model 

on various Feature Subsets on Test Set", col.main="black", font.main=1) 

 

title(xlab = "Feature Selectors", col.lab=rgb(0.2,0.2,0.3)) 

title(ylab = "Performance value", col.lab=rgb(0.2,0.2,0.3)) 

 

legend(4.1, g_range[2], c("Accuracy", "AUC", "logloss"), 

       cex = 0.7, col = c("red", "blue", "purple"), pch = 23:23, lty = 1:2); 

################################# 
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APPENDIX F PDP AND ICE R CODES 

library(caret) 

library(gridExtra) 

library(grid) 

library(ggridges) 

library(ggthemes) 

library(iml) 

library(partykit) 

library(rpart) 

library(tidyverse) 

library(data.table) 

 

theme_set(theme_minimal()) 

set.seed(88) 

 

kfolds <- 5 

 

load_data <- function() { 

  dataset <- fread(file.choose(), data.table = T) %>% 

    mutate(Recurrence=as.factor(ifelse(Recurrence== 1, "Yes", "No"))) 

  X = dataset[, 1:6] 

  Y = dataset$Recurrence 

  return(list(dataset, X, Y)) 

} 

 

str(dataset) 

 

compute_rf_model <- function(dataset) { 

  index <- createDataPartition(dataset$Recurrence, 

                               p=0.8, 

                               list = FALSE, 

                               times = 1) 

   

  dataset_train <- dataset[index,] 

  dataset_test <- dataset[-index,] 

   

  fit_control <- trainControl(method = "repeatedcv", 

                              number = kfolds, 

                              repeats = 1, 

                              classProbs = TRUE, 

                              savePredictions = TRUE, 

                              verboseIter = FALSE, 

                              allowParallel = FALSE, 

                              summaryFunction = defaultSummary) 

   

  rf_model <- train(Recurrence~., 

                    data=dataset_train, 

                    method="gbm", 

                    preProcess=c("center", "scale"), 

                    trControl=fit_control, 
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                    metric="Accuracy", 

                    verbose=FALSE) 

  return(list(rf_model, dataset_train, dataset_test)) 

} 

 

main <- function() { 

  data <- load_data() 

  dataset <- data[[1]] 

  X <- data[[2]] 

  Y <- data[[3]] 

   

  rf_model_data <- compute_rf_model(dataset) 

  rf_model <- rf_model_data[[1]] 

  dataset_train <- rf_model_data[[2]] 

  dataset_test <- rf_model_data[[3]] 

   

  X <- dataset_train %>% 

    select(-Recurrence) %>% 

    as.data.frame() 

   

  predictor <- Predictor$new(rf_model, data = X, Y = dataset_train$Recurrence, 

                             type = "prob") 

   

  ice <- FeatureEffect$new(predictor, feature = "TreatCCRT", 

                           center.at = min(x$TreatCCRT), method = "pdp+ice") 

  ice_plot_TreatCCRT <- ice$plot() + 

    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

   

  ice <- FeatureEffect$new(predictor, feature = "PaTT4", 

                           center.at = min(x$PaTT4), method = "pdp+ice") 

  ice_plot_paTT4 <- ice$plot() + 

    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

   

  ice <- FeatureEffect$new(predictor, feature = "p63", 

                           center.at = min(x$p63), method = "pdp+ice") 

  ice_plot_p63 <- ice$plot() + 

    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

   

  ice <- FeatureEffect$new(predictor, feature = "Nodes", 

                           center.at = min(x$Nodes), method = "pdp+ice") 

  ice_plot_nodes <- ice$plot() + 

    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

     

  ice <- FeatureEffect$new(predictor, feature = "Smoke", 

                           center.at = min(x$Smoke), method = "pdp+ice") 

  ice_plot_smoke <- ice$plot() + 
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    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

 

  ice <- FeatureEffect$new(predictor, feature = "Age", 

                           center.at = min(x$Age), method = "pdp+ice") 

  ice_plot_age <- ice$plot() + 

    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

   

  ice <- FeatureEffect$new(predictor, feature = "StageIV", 

                           center.at = min(x$StageIV), method = "pdp+ice") 

  ice_plot_stageIV <- ice$plot() + 

    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

 

  ice <- FeatureEffect$new(predictor, feature = "Size", 

                           center.at = min(x$Size), method = "pdp+ice") 

  ice_plot_size <- ice$plot() + 

    scale_color_discrete(guide = "none") + 

    scale_y_continuous("Predicted Recurrence") 

   

  grid.arrange(ice_plot_TreatCCRT, ncol = 1) 

  grid.arrange(ice_plot_paTT4, ncol = 1) 

  grid.arrange(ice_plot_p63, ncol = 1) 

  grid.arrange(ice_plot_nodes, ncol = 1) 

  grid.arrange(ice_plot_smoke, ncol = 1) 

  grid.arrange(ice_plot_age, ncol = 1) 

  grid.arrange(ice_plot_stageIV, ncol = 1) 

  grid.arrange(ice_plot_size, ncol = 1) 

} 
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APPENDIX G HNSCC PROGNOSIS DATASET 

 

S/N Gender Age Drink Smoke Chew Site Stage Grade Size Invasion

1 F 44 No No Yes NPC III G3 10 Cohesive

2 F 56 No No No NPC III G3 5.5 Non cohesive

3 M 52 No No Yes NPC III G2 5.8 Cohesive

4 F 45 Yes No Yes NPC II G2 1 Non cohesive

5 F 28 No No Yes NPC III G2 9.4 Non cohesive

6 M 55 No No No OPC IV G2 10.5 Cohesive

7 F 45 No No No NPC IV G3 1.2 Cohesive

8 M 37 No No No NPC III G3 1 Non cohesive

9 M 15 No No No NPC III G3 2 Non cohesive

10 M 29 No No No NPC IV G2 0.5 Non cohesive

11 M 72 No No No NPC IV G3 1 Cohesive

12 M 24 Yes Yes No NPC III G3 7.7 Cohesive

13 M 47 No No No NPC III G2 1.5 Cohesive

14 M 56 Yes Yes No NPC IV G2 3 Cohesive

15 M 47 No No No OPC III G3 1.3 Non cohesive

16 F 55 No No No Larynx II G1 1.5 Cohesive

17 M 28 No No No NPC II G2 10 Cohesive

18 M 64 No Yes No Larynx IV G3 2 Non cohesive

19 M 68 No No No NPC II G3 4 Non cohesive

20 M 56 Yes No No OPC IV G3 1.5 Non cohesive

21 M 59 Yes Yes No OPC III G2 1 Non cohesive

22 F 63 No No Yes NPC III G3 0.9 Non cohesive

23 M 51 No No No NPC I G3 2 Non cohesive

24 M 16 No No No NPC III G3 2 Non cohesive

25 F 27 No No No NPC IV G3 2 Non cohesive

26 M 57 Yes Yes No NPC IV G2 8 Cohesive

27 M 59 Yes Yes No NPC I G2 4.4 Cohesive

28 M 45 No No No NPC I G3 1.2 Cohesive

29 M 20 No No NA NPC IV G3 1.8 Non cohesive

30 M 36 Yes No No NPC IV G2 10 Cohesive

31 F 23 No No NA NPC III G3 1.5 Non cohesive

32 F 39 No No No OPC IV G3 1.3 Non cohesive

33 M 60 Yes Yes No Larynx II G2 13 Cohesive

34 M 52 Yes Yes No NPC III G2 1.3 Non cohesive

35 F 60 Yes Yes No NPC IV G2 1 Non cohesive

36 M 37 Yes Yes No HPC IV G3 10 Cohesive

37 M 35 Yes No No NPC IV G3 NA NA

38 F 18 No No No NPC II G3 0.8 Non cohesive

39 M 18 No No No NPC II G3 5.7 Cohesive

40 F 44 Yes No No NPC III G3 1 Non cohesive

41 M 52 Yes Yes No NPC IV G2 1.5 Non cohesive

42 F 58 Yes No No OPC III G1 1.2 Non cohesive

43 M 71 Yes Yes No NPC III G2 1 Non cohesive

44 M 65 Yes Yes No NPC III G3 1 Non cohesive

45 F 48 No No No NPC IV G3 7 Cohesive

46 F 56 No No No NPC III G3 1.5 Non cohesive

47 F 17 No No No NPC III G3 0.7 Non cohesive

48 M 62 Yes Yes No Larynx IV G1 NA NA

49 F 39 No No No Larynx III G2 8.5 Cohesive

50 M 60 No No No Larynx IV G1 6 Cohesive

51 M 59 Yes No No Larynx I G3 0.7 Non cohesive

52 M 49 No Yes No Larynx IV G1 2.6 Non cohesive

53 M 48 Yes Yes Yes OPC IV G3 5.5 Cohesive

54 F 40 No No NA NPC III G3 1 Non cohesive

55 M 73 No No Yes Larynx IV G1 4 Non cohesive

56 F 38 No No NA Larynx IV G3 10 Cohesive

57 M 38 Yes No No OPC III G3 5 Cohesive

58 F 58 No No Yes OPC IV G3 1.8 Non cohesive

59 M 49 No No Yes Larynx III G1 11 Cohesive

60 M 74 Yes No Yes Larynx IV G3 NA NA

61 F 55 No No Yes NPC II G3 5 Cohesive
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S/N Gender Age Drink Smoke Chew Site Stage Grade Size Invasion

62 M 57 Yes Yes No Larynx II G3 4 Non cohesive

63 M 20 No No No NPC IV G3 1 Non cohesive

64 M 14 No No No NPC III G3 NA NA

65 M 13 No No No NPC III G3 3 Non cohesive

66 M 66 Yes Yes No HPC II G3 7.3 Cohesive

67 M 13 No No No NPC IV G2 2 Cohesive

68 F 61 Yes Yes No Larynx IV G1 3 Non cohesive

69 M 36 No No No NPC IV G3 2 Non cohesive

70 F 19 No No No NPC III G3 0.6 Non cohesive

71 M 54 Yes Yes No NPC IV G3 2.3 Non cohesive

72 M 24 No No No NPC III G3 1.2 Non cohesive

73 M 19 No No No NPC IV G3 2.5 Non cohesive

74 M 73 Yes Yes No Larynx IV G3 10 Cohesive

75 M 54 No Yes No NPC IV G3 1.5 Non cohesive

76 M 72 No No No Larynx II G1 3 Non cohesive

77 M 50 Yes No No Larynx II G1 4.5 Cohesive

78 M 21 Yes No No OPC II G3 2.4 Non cohesive

79 M 32 No No No Larynx IV G3 2.5 Non cohesive

80 M 21 No No No NPC IV G3 7.6 Cohesive

81 M 53 No No No Larynx IV G3 4 Non cohesive

82 F 76 Yes Yes No Larynx II G3 3.5 Non cohesive

83 M 17 No No No NPC II G3 0.9 Non cohesive

84 M 53 Yes Yes No Larynx I G1 1.7 Non cohesive

85 M 76 Yes Yes No Larynx IV G1 1 Non cohesive

86 M 44 No No No NPC IV G3 4 Non cohesive

87 M 64 Yes Yes No Larynx IV G3 6.7 Cohesive

88 F 22 No No No NPC III G3 1.2 Non cohesive

89 M 52 No No No Larynx IV G3 9 Cohesive

90 M 18 No No No NPC II G2 5 Cohesive

91 M 18 No No No NPC II G3 1.2 Non cohesive

92 F 58 No No No Larynx II G2 1 Non cohesive

93 M 62 Yes Yes No Larynx IV G3 5 Cohesive

94 M 81 No Yes NA Larynx I G3 1.2 Non cohesive

95 M 36 No No Yes NPC III G3 3.5 Non cohesive

96 M 51 Yes No No Larynx IV G3 1 Non cohesive

97 M 83 No No Yes Larynx III G2 5 Cohesive

98 M 70 No No No Larynx IV G2 3 Non cohesive

99 M 66 Yes Yes Yes Larynx III G2 5 Cohesive

100 F 44 No No Yes NPC IV G3 10 Cohesive

101 M 32 Yes No NA NPC IV G3 6 Cohesive

102 M 56 Yes Yes Yes NPC II G2 1 Non cohesive

103 F 32 No No No NPC IV G2 16 Cohesive

104 M 61 No No Yes Larynx II G1 4 Non cohesive

105 M 42 Yes Yes Yes NPC III G2 4 Cohesive

106 M 57 Yes Yes No OPC IV G2 0.5 Non cohesive

107 M 67 No No No Larynx IV G1 1.4 Non cohesive

108 M 67 No Yes No Larynx II G2 2 Non cohesive

109 M 59 Yes Yes No NPC IV G3 0.7 Non cohesive

110 M 78 Yes Yes Yes Larynx II G3 0.63 Non cohesive

111 M 40 Yes Yes Yes HPC IV G1 5.6 Cohesive

112 M 64 Yes No No Larynx IV G2 10 Cohesive

113 M 48 No No NA Larynx IV G3 10 Cohesive

114 M 63 No Yes No Larynx IV G3 11 Cohesive

115 M 59 Yes No No Larynx IV G1 3 Cohesive

116 F 63 No No Yes OPC IV G3 1 Non cohesive

117 M 86 Yes Yes No NPC II G1 8.2 Cohesive

118 M 52 Yes No Yes Larynx IV G2 0.1 Non cohesive

119 M 44 No No No NPC IV G3 1 Non cohesive

120 M 15 No No NA NPC IV G3 2.4 Cohesive

121 F 25 No No Yes NPC IV G3 1 Non cohesive

122 M 26 No No No NPC I G3 2 Non cohesive

123 M 24 No No No NPC IV G1 2.5 Non cohesive

124 F 11 No No Yes NPC IV G3 1 Non cohesive

125 F 56 No No No NPC IV G3 1 Non cohesive
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S/N Nodes PaT PlN History HPV p16 p63 Treat Recurrence

1 pos T4 N3 No HPV16 pos pos Chemo No

2 pos T1 N2 No HPV16 pos pos CRT Yes

3 pos T4 N1 Yes HPV16 pos pos RT No

4 neg T2 N2 No NA neg pos CRT No

5 pos T2 N3 No NA NA neg CRT No

6 pos T4 N3 No NA pos pos Chemo No

7 pos T3 N2 No HPV16 pos neg RT Yes

8 pos T3 N2 No NA pos pos CRT Yes

9 NA T4 N3 No HPV11 pos pos CRT Yes

10 neg T4 N0 No NA pos neg CRT Yes

11 pos T4 N2 No HPV11 pos pos CRT Yes

12 NA T4 N3 No HPV6 pos pos CCRT No

13 pos T3 N3 No NA pos pos CCRT No

14 pos T4 N1 NA NA pos neg CCRT No

15 pos T3 N1 Yes HPV16 pos neg CRT Yes

16 neg T2 N2 No HPV11 pos pos CRT No

17 pos T2 N2 Yes HPV18 pos pos CCRT No

18 NA T4 N0 NA HPV6 pos neg CRT No

19 pos T2 N2 No HPV11 pos neg CCRT Yes

20 pos T4 N0 No HPV18 neg pos CRT Yes

21 pos T4 N2 No NA pos pos Chemo Yes

22 pos T4 N2 No HPV16 pos neg CRT Yes

23 neg T2 N1 No HPV16 pos pos CCRT Yes

24 pos T3 N3 No NA NA neg CCRT No

25 NA T4 N3 No NA neg pos CRT Yes

26 pos T2 N3 No NA neg pos CRT Yes

27 neg T2 N0 No HPV18 NA neg CRT Yes

28 neg T3 N0 No NA pos pos CRT No

29 neg T4 N2 No HPV18 NA neg CCRT No

30 pos T4 N2 No NA NA NA Surg+RT No

31 pos T3 N1 No NA pos pos CCRT No

32 NA T4 N2 No NA pos pos RT Yes

33 neg T3 N2 No NA pos pos CRT No

34 pos T3 N3 No NA pos pos CCRT No

35 pos T4 N2 No HPV18 pos neg Chemo NA

36 pos T4 N0 No NA pos neg Surg+CCRT No

37 pos T4 N2 No NA pos pos CCRT No

38 pos T3 N2 No HPV11 pos neg CCRT No

39 neg T3 N2 No NA NA pos CCRT No

40 pos T1 N3 No HPV18 pos pos Chemo Yes

41 NA T4 N2 Yes NA neg NA CRT Yes

42 NA T4 N2 No NA neg pos CRT No

43 NA T4 N1 NA HPV16 neg pos RT Yes

44 NA T4 N0 No NA NA neg CCRT Yes

45 neg T4 N0 NA NA neg neg RT Yes

46 pos T4 N3 No HPV18 NA neg RT Yes

47 pos T4 N2 No NA pos neg CRT No

48 pos T4 N2 No NA pos pos CRT Yes

49 neg T4 N0 No HPV11 pos pos CCRT No

50 pos T4 N2 NA NA pos neg CRT Yes

51 neg T2 N0 No NA pos neg RT No

52 neg T4 N0 NA NA pos pos Surg+CCRT Yes

53 pos T4 N2 NA HPV16 pos pos CRT Yes

54 pos T4 N3 Yes NA pos pos Chemo Yes

55 pos T4 N0 No NA pos neg RT Yes

56 neg T4 N0 No NA pos neg RT No

57 pos T3 N3 NA HPV16 pos pos CCRT Yes

58 pos T3 N3 NA NA pos neg CRT No

59 pos T4 N2 NA NA pos pos RT NA

60 pos T4 N3 No NA pos pos RT Yes

61 pos T3 N0 Yes HPV16 pos NA Surg+CCRT Yes
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S/N Nodes PaT PlN History HPV p16 p63 Treat Recurrence

62 NA T3 N0 Yes NA pos neg Surg+RT No

63 pos T4 N3 Yes NA neg neg CRT Yes

64 neg T4 N2 Yes HPV16 neg pos CCRT No

65 neg T4 N2 Yes NA neg pos CCRT No

66 neg T4 N0 Yes NA neg pos CCRT No

67 pos T4 N3 No HPV16 neg neg CCRT Yes

68 neg T4 N0 Yes NA neg pos RT No

69 NA T4 N3 NA NA pos neg CCRT No

70 pos T3 N2 NA HPV16 neg neg CCRT No

71 pos T3 N3 Yes NA neg pos CRT No

72 NA T4 N2 No NA pos neg CCRT Yes

73 pos T3 N3 No NA neg pos CRT No

74 neg T4 N0 No HPV11 neg pos RT Yes

75 neg T4 N3 No NA pos neg RT Yes

76 neg T3 N0 No NA pos neg RT Yes

77 pos T3 N0 No NA pos pos RT Yes

78 pos T4 N2 No HPV16 pos neg CRT Yes

79 neg T4 N0 No NA pos neg CRT Yes

80 pos T4 N2 NA NA pos pos CCRT Yes

81 neg T4 N1 No NA pos pos CCRT No

82 neg T2 N2 No NA NA neg RT No

83 neg T1 N0 NA HPV16 NA neg RT Yes

84 pos T4 N3 NA NA NA neg Surg+CCRT Yes

85 NA T4 N0 NA NA neg pos Chemo NA

86 pos T4 N2 No NA pos neg RT No

87 neg T4 N0 No HPV16 neg pos RT Yes

88 pos T3 N2 No NA pos neg CCRT No

89 NA T4 N0 No HPV18 neg pos CRT Yes

90 pos T4 N3 No NA pos neg CRT No

91 neg T3 N3 No NA neg pos CRT Yes

92 neg T4 N2 No HPV16 pos neg RT No

93 neg T4 N0 No NA neg NA RT No

94 neg T1 N0 No HPV11 NA neg RT No

95 pos T4 N2 No HPV16 pos NA RT Yes

96 pos T4 N0 No NA NA pos RT Yes

97 neg T3 N0 No HPV11 pos neg RT No

98 neg T3 N2 NA NA pos neg Surg+RT Yes

99 pos T4 N2 NA NA neg NA CRT No

100 neg T4 N3 No HPV16 pos pos CRT No

101 neg T4 N0 NA NA neg NA CRT Yes

102 pos T2 N1 NA NA neg pos CRT No

103 pos T4 N3 No HPV11 pos pos Chemo Yes

104 pos T3 N1 No HPV18 neg neg Surg+RT Yes

105 pos T2 N1 No HPV16 neg pos Surg+CRT Yes

106 NA T1 N2 No NA pos neg CRT No

107 neg T4 N1 No NA neg neg RT No

108 neg T3 N0 No HPV18 pos pos RT Yes

109 NA T4 N2 NA HPV11 neg neg RT No

110 NA T3 N1 Yes NA pos neg CRT No

111 NA T4 N3 NA HPV16 neg pos CRT No

112 neg T2 N0 No NA pos neg CRT No

113 neg T4 N0 NA HPV11 pos neg RT No

114 neg T4 N2 No NA NA neg Surg+CRT Yes

115 neg T4 N2 No HPV16 pos NA CRT No

116 neg T4 N2 No NA pos neg Chemo Yes

117 neg T4 N1 Yes HPV16 neg pos RT Yes

118 pos T4 N1 NA NA pos pos RT Yes

119 NA T4 N3 Yes HPV11 neg neg CRT No

120 pos T3 N3 No NA neg pos CRT No

121 neg T4 N3 NA HPV16 pos neg RT Yes

122 neg T2 N0 No HPV18 neg neg CRT Yes

123 pos T4 N3 No HPV16 neg pos CRT NA

124 NA T4 N3 No NA pos NA CRT No

125 pos T4 N3 No HPV16 NA neg CRT Yes
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APPENDIX H MEAN ACCURACY FOR BASE MODELS SELECTION 
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APPENDIX I FRAMEWORK OF SAMPLE SIZE DETERMINATION 
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APPENDIX J LIST OF ACRONYMS AND ABBREVIATIONS 

Acronym  Meaning  

10-CV 10-fold Cross-Validation 

AdaBoost Adaptive Boosting 

AI Artificial Intelligence 

ANN Artificial Neural Network 

AUC Area Under the Curve 

AU-ROC Area Under Receiver Operating Characteristic 

BNN Bayesian Neural Network 

BT Bagged Tree 

CCRT Concurrent Chemo Radiotherapy 

Chemo  Chemotherapy 

CRT Chemo Radiotherapy 

CV Cross Validation 

DBN Dynamic Bayesian Network 

DNA Deoxyribonucleic Acid  

DNN Deep Neural Network 

DNN-FS Deep Neural Network Feature Selection 

DRF Distributed Random Forest 

DRF-FS Distributed Random Forest Feature Selection 

DSS Decision Support System 

DT Decision Tree 

EGFR Epidermal Growth Factor Receptor 

EFS Ensemble Feature Selection 

FN False Negative 

FP False Positive 

FS Feature Selection  

GBM Gradient Boosting Machine 

GBM-FS Gradient Boosting Machine Feature Selection 

GLM Generalised Linear Model 

GLM-FS Generalised Linear Model Feature Selection 

HESCA Hybrid Ensemble Super Classification Algorithm 

HNC Head and Neck Cancer 
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HNSCC Head and Neck Squamous Cell Carcinoma 

HPV Human Papilloma Virus 

ICE Individual Conditional Expectations 

KATH Komfo Anokye Teaching Hospital 

KBTH Korle-Bu Teaching Hospital 

KNNs K-Nearest Neighbours 

LC Laryngeal Carcinoma 

LOGLOSS Logarithmic Loss 

LR Logistic Regression 

ML Machine Learning 

NB Naïve Bayes 

NB-FS Naïve Bayes Feature Selection 

OSCC Oral Squamous Cell Carcinoma 

OTSCC Oral Tongue Squamous Cell Carcinoma 

PDP Partial Dependence Plot 

PPI Protein-Protein Interaction 

RF Random Forest 

ROC Receiver Operating Characteristic 

RT Radiotherapy 

SA State-of-the-Art 

SCC Squamous Cell Carcinoma 

SCCHN Squamous Cell Carcinoma of Head and Neck 

SVM Support Vector Machine 

TCGA The Cancer Genome Atlas 

TCIA The Cancer Imaging Archive 

TNM Tumor, Node, Metastasis 

TN True Negative 

TP True Positive 

TreatCCRT Treatment with Concurrent Chemotherapy 

WHO World Health Organisation 

UCC University of Cape Coast 

UMaT University of Mines and Technology 

VIF Variance Inflation Factor 
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WFI Weighted Feature Importance 

XGBoost Extreme Gradient Boosting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digitized by UMaT Library



181 

APPENDIX K LIST OF PUBLICATIONS 

PAPER 1 
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PAPER 2 
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PAPER 3 
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APPENDIX L ETHICAL ISSUES 
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APPENDIX M INDEX 

A 

accuracy, 23, 25–26, 60, 81–82, 86, 88, 

90–91, 93–94, 96–97, 99–108, 110–11, 

138–48, 162–68, 170 

best training, 86 model’s, 64 prediction, 

37, 125 robust prognostic, 10 

accuracy value, 108–9 highest, 88, 90, 

104 accurate number of prognostic 

features, 36 accurate prognosis, 4–6, 

18, 23, 25, 120, 122–24 activation 

functions, 54–56 Akinbohun, 4–5, 25, 

27, 31, 126 alcohol, 17, 80 

algorithm for V-fold cross-validation, 58 

algorithm for V-fold cross-validation 

in 

Figure, 58 

algorithms, 1, 8, 23, 28, 31, 43, 45–47, 

57–58, 66, 72, 130, 154–55, 158–62 

Anon, 2, 10–11, 17–19, 21–22, 126–27 

Architecture of HESCA Model, 78 

Architecture of HESCA Model for 

Recurrent HNSCC Prognosis, 74 Area 

Under the Curve. See AUC 

assignment, 76, 153–54, 158, 160–61 

AUC (Area Under the Curve), 26, 28–

29, 

61, 81, 86, 88, 90–91, 93–94, 96–97, 99–

111, 138–48, 162–68 

AUC on training and test data, 86 

automatic model complexity 

optimisation 

technique, popular, 58 

 

B 

bagging, 4, 43–45 

base, 11, 43, 45, 85, 106, 119, 154–55, 

158–60 

base classifier models, 74–75, 124 

base classifiers, 4–5, 7, 25–26, 44–45, 66, 

68–71, 77, 85, 88–91, 93–96, 98–102, 

104–5, 109–10, 120, 123–25 

Base Classifiers on Training Set, 88–89 

base learners, 4, 26, 42–45, 66, 155–56 

  

base learning algorithms, 44, 69 baseline, 

5, 20, 42, 79, 98–100, 105, 109, 

111, 120–21, 123–24, 155–57 baseline 

ensemble models, 26 

Baseline Stacked Ensemble Classification 

Techniques, 98 

Baseline Stacked Ensemble Models, 108, 

111 

base models, 66, 105–8, 163–64 five, 66, 

79 

best accuracy, 91, 104, 106, 109–11 best 

feature selection model, 77 

best performance accuracy in recurrent 

HNSCC prognosis, 122 

boosting, 4, 43–44 Breast, 14–15 

breast cancer, 5, 26–27 recurrent, 26 

 

C 

calendar period, 33–34, 71 

cancer, 1–2, 4, 8–13, 16–22, 27–29, 32, 

52, 68, 126–30, 133, 136 

human, 17–18 

laryngeal, 11–12, 17, 21, 135 oral, 21, 30, 

130, 133 original, 10, 22 

pharyngeal, 11–12, 17 recurrent, 22 

cancer cases, 3, 10, 12, 17, 32 Cancer 

Cases Recorded, 15 cancer cells, 21–22 

The Cancer Genome Atlas (TCGA), 24, 

179 The Cancer Imaging Archive 

(TCIA), 24, 

179 

cancer management, 7–8, 19 cancerous, 2, 

18 

Cancer Prediction and Prognosis, 9, 129 

cancer prognosis, modelling, 1 
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cancer prognosis and prediction, 9, 132 

cancer recurrence, 2, 9–10, 21–22, 34 

laryngeal, 135 

cancer studies, 4, 19, 23, 25, 31, 63 cancer 

susceptibility, 9 

cancer susceptibility prediction, 2, 9 

cancer types, 2, 9, 13, 22, 25, 27 

Categories, 39, 42, 48, 63, 83, 138–48 

categorising breast cancer data, 26 

CCRT (Concurrent ChemoRT), 38, 

118, 

144, 174–75, 178 change, 2, 115–19 

chemotherapy, 3, 20–21, 32, 38, 136 Chi-

Chang, 5, 31, 128 

classes, 37, 41, 47, 49–50, 52, 60, 113, 

151 model-based feature selection, 58 

classification accuracy, 24, 60, 124 

classification algorithm, super, 120, 

123–24 classification algorithm model, 

super, 71 classification model, 5–6, 

41–43, 65–66, 69, 

81, 88, 92, 95, 99, 101, 103, 120, 122 

developed hybrid stacked ensemble, 7 

hybrid prognostic, 120 

hybrid stacked ensemble, 6–7, 63 hybrid 

stacked ensemble prognostic, 120 

recurrent HNSCC prognostic, 120 

classification model data, 69 

Classification model for recurrent 

HNSCC, 77 

classification model for recurrent HNSCC 

prognosis, 81 

classification prediction, 93, 96 classifier 

models, 37, 60, 74–75, 79 

five base, 75, 122, 124 

classifiers, second-level, 44–45, 67–68, 

73, 96 

clinicopathologic, 6, 22–23, 31, 128 

clinicopathologic and genomic 

markers, 31, 

128 Colorectal, 14–15 

combination, accurate, 7 combination of 

genomic and 

clinicopathologic makers for recurrent 

HNSCC prognosis, 5 

comparative performance metrics of base 

models, 107 

comparison of baseline stacked ensemble 

models, 105, 111 

 

Comparison of Baseline Stacked 

Ensemble Models and HESCA Model 

Performance, 108 

comparison of Baseline Stacked 

Ensemble Models and state-of-the-art 

model, 111 

Comparison of Base Models and HESCA 

Model Performance, 106–7 

Comparison of HESCA model, 105 

components of stacked ensemble 

models, 77 computers, 8–9, 36 

Concurrent ChemoRT. See CCRT 

control, 151, 169 

cross, 29–30, 70, 76, 153–54, 158–60 

cross-validated predictions, 70–71, 74, 

89–90, 95 

Cross Validation. See CV 

curative intent treatment, 33–34, 93, 96 

CV (Cross Validation), 6, 27, 67–68, 

70, 

121, 178 

 

D 

Decision Trees. See DT 

Deep Neural Network. See DNN depth, 

19, 76, 153, 157–59, 162 

depth of invasion, 19, 23–24, 28, 30, 35 

diagnosis, 2, 9, 13, 20, 22, 25, 34–35, 

71, 

117–19, 121, 126 disease, 2, 8, 13, 22 

Distributed Random Forest. See DRF 

DNN (Deep Neural Network), 1, 26, 

52, 

63–64, 66, 69, 76–77, 79, 82, 88–97, 100–

104, 106–7, 110, 120–21, 163–64 
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DRF (Distributed Random Forest), 2, 26–

27, 63–64, 66, 69, 76–77, 79, 88–97, 

99–104, 106–7, 110, 120–21, 154–56, 

159–60, 162–64 

DT (Decision Trees), 2, 10, 24–28, 30, 42, 

45, 57–58, 125 

 

E 

 

EFS. See Ensemble Feature Selection 

ensemble, 1, 4, 6, 42–44, 46, 63–64, 

67–70, 

72, 85, 154–55, 158–60 ensemble 

classifier, 67–68, 73 

ensemble feature selection, 57, 63–64, 

125 ensemble feature selection 

technique, 6, 

38–39, 63, 122 

ensemble feature technique, 36 

ensemble learning, 4, 7, 42–44, 131, 135–

36 

stacked, 4, 66 ensemble model 

best stacked, 66 best-stacked, 77 

equation, 47–51, 54, 56, 59–62 

evaluation metrics, 93, 96, 99–102, 109–

10 Exarchos, 3, 17, 22–23, 30, 130, 132 

exceptions, 115–19 

expression, 60–61, 134 

 

F 

 

false negative (FN), 60, 178 false positive. 

See FP Feature Age, 116 

feature Age on recurrent HNSCC 

prognosis, 116 

feature importance, 57–58, 64 feature 

Nodes on recurrent HNSCC 

prognosis, 115 

feature on recurrent HNSCC prognosis, 

118 features, 4, 6, 35, 37–39, 47–50, 

54, 56–58, 

64, 77, 79–85, 115, 117–19, 122, 124, 

170–71 

boosted, 6, 63, 65, 74, 120, 124 gene 

expression, 24 

texture, 24 

feature selection, 4, 23, 43, 56, 63–64, 72, 

77–78, 82, 123, 128, 178 

feature selection technique for recurrent 

HNSSC prognosis, 86 

feature selection techniques, 8, 36, 38, 57, 

63–65, 77, 79, 82, 84–86, 120–22, 124 

Feature Selection Techniques on Test 

Sets, 87 

 

Feature Selection Techniques on Train 

Sets, 87 

feature selectors (FS), 57, 64, 72, 84–85, 

120, 167–68, 178 

feature selectors, single, 64 Feature 

Smoke, 116–17 

feature Smoke on recurrent HNSCC 

prognosis, 116–17 

features of genomic data, 79 

feature subsets, 57–58, 64, 72, 74, 77, 82, 

84–86, 121, 123–24 

Feature Subsets Feature Selectors Dataset, 

86 

final predictions, accurate, 42 

first-level classifiers, 44–45, 66–68, 70–

73, 89–91 

five base classifiers, 5, 63, 77, 88–91, 94, 

96–97, 109–11, 122 

Five feature selection techniques, 64, 121 

FN (false negative), 60, 178 

focus of cancer prediction and prognosis, 

2 focus of cancer prognosis and 

prediction, 9 fold, 70, 76, 153–54, 158, 

160–61 Foundation, 13, 20–21, 130, 

137 

FP (false positive), 60, 178 FS. See feature 

selectors FS techniques, 57, 84, 121 

full-input features, 64, 77–79, 81–82, 

105–6, 121–22 

 

G 
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GBFs (Gradient Boosted Features), 77, 79 

gbm, 6, 26–27, 46–47, 63–64, 66, 72, 

74, 

76–77, 88–97, 99–102, 106–7, 109–11, 

120–22, 153–59, 163–64 

GBM ensemble feature selection 

technique, 6, 86 

GBM-FS, 57, 63–64, 66, 77, 79, 84–86, 

88, 105–7, 121–23, 167 

ensemble feature selection technique, 63 

GBM-FS ensemble feature selection 

technique, 79, 122 GBM-FS features, 86, 

105 

 

GBM-FS Optimal Feature Subset Base 

Classifiers, 88 

GBM-FS technique, 69, 85–86, 88, 92, 

123 GBM meta-classifier, 91, 104, 110, 

124 GBM meta-model, 63, 66, 77, 102 

Generalised Linear Model, 56 

generalised prognostic model for 

recurrent HNSCC prognosis, 31 

genomic, 3–6, 10, 22, 28–30, 121, 134–35 

genomic features, 23–24, 36 

genomic markers, 3, 18, 31, 120, 122, 128 

giving correct classification, 93, 96–

97, 99, 

101–3 

glm, 25–27, 56, 63–64, 66, 69, 76–77, 79, 

82, 88–97, 99–104, 106–7, 110, 120–

21, 153–57, 163–64 

glm1, 99–100, 108, 154–57, 165–66 

glm2, 101, 108, 154–57, 165–66 

GLM2 on Training and Test Sets, 101 

GLM classifiers, 90, 94 

GLM-FS, 84–86, 167 

GLM meta-classifier, 91, 99–100, 104, 

109 GLOBOCAN, 12, 14–17 

GradeG2, 84–85 

GradeG3, 84–85 

Gradient Boosted Features (GBFs), 77, 79 

Graph of Stacked Ensemble Models, 

112 Graphs for Prognostic Features, 

39–40 Gynecological, 14–15 

 

H 

 

Head and neck cancer, 2, 19, 126–28, 178 

Head and Neck Cancer. See HNCs 

Head and Neck Squamous Cell 

Carcinoma. See HNSCC 

Hematological, 14–15 

HESCA (Hybrid Ensemble Super 

Classification Algorithm), 4, 31, 63, 

65, 72, 105, 108, 110, 114, 120, 122–

24, 163–64 

HESCA Classification Model Prediction, 

112 

HESCA model, 63–65, 69, 71–72, 74–75, 

77–79, 81–82, 85–86, 105–7, 109–11, 

113–14, 120–24, 165–66 

input, 121–22 developed, 120 full-input, 

77 hybrid, 121 testing set, 105 

HESCA model analyses, 88, 92 

HESCA Model Evaluation on Test Set, 92 

HESCA model for better performance, 

68 HESCA model for training and 

testing data, 

86 

HESCA Model HESCA Model Metrics, 

105 HESCA Model Hyperparameters, 

76 

HESCA Model Hyperparameters for 

Recurrent HNSCC Prognosis 

Classifiers Hyperparameters, 76 

HESCA Model Hyper-parameters 

Identification, 75 

HESCA model learning technique, 63 

HESCA model on GBM-FS features, 

86 HESCA Model on Original Test 

Training 

Set, 81 

HESCA model on test set, 82, 108, 111–

12 HESCA Model on Training Set, 

107, 112 HESCA model outperforms, 

108, 110 HESCA model outperforms 

base models, 

107 
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HESCA model parameters, 78 

HESCA Model Performance on Test 

Data, 107, 164 

HESCA Model Performance on Test Set, 

166 

HESCA Model Performance on Training 

and Test Sets Training Set, 108, 110 

HESCA Model Performance on 

Training 

Data, 106, 163 HESCA model to learn, 64 

HESCA prognostic model, 79, 122 

HESCA prognostic model for recurrent 

HNSCC prognosis, 79 history, 37, 138–

48, 174–75 

HNSCC (Head and Neck Squamous Cell 

Carcinoma), 1–4, 7–8, 10, 12, 16, 18–

19, 22, 24, 29, 33, 35, 49, 126–27, 134, 

179 

 

HNSCC patients, recurrent, 5, 25 HNSCC 

recurrence, 1–4, 60, 90, 95, 119 

HNSCC recurrence verses 

nonrecurrence, 

118 

HNSCC subtypes, recurrent, 31, 122–24 

HPV (Human Papilloma Virus), 18, 35, 

37–38, 79–80, 84, 122, 143–44, 174–75 

Human Papilloma Virus. See HPV 

hybrid ensemble classification system, 63 

Hybrid Ensemble Super Classification 

Algorithm. See HESCA 

hybrid stacked ensemble-based model, 6 

 

 

I  

imaging, 23, 29–30 importance, 57, 64, 

77, 82, 84 

indicating, 12, 82–83, 90, 96, 104, 111, 

113–14 

input features, 36, 38, 54, 63, 86, 89, 105 

input features and HESCA model, 105 

inputs, 44–47, 53–55, 67–68, 71–72, 

161 instability, unstable, 57 

instances, 10, 34, 36–38, 41, 64, 69, 79, 

115–19, 125, 138–48 

International Agency for Research on 

Cancer (IARC), 17, 127 

invasion, 19, 23–24, 28, 30, 35, 37, 80, 

84–85, 145–46, 172–73 

 

K 

Kabir and Ludwig, 4–5, 25–27, 66, 68–69, 

124 

KNN (K-Nearest Neighbours), 2, 24–25, 

27–29, 151 

Kwon, 4–5, 25–27, 66, 68–69, 124, 132 

 

L 

Large training feature sizes, 36 

larynx, 2, 11, 15, 17, 34, 38, 140, 172–73 

layers, 53, 55 

 

hidden, 53–55 

least log-loss value, 86, 88, 90, 94, 97, 

106, 108–11 

locoregional recurrences, 23, 126 logloss, 

76, 100, 105, 153, 157–68 loss 

functions, 46, 66 

LR (Logistic Regression), 23, 28, 56, 133, 

179 

Ludwig, 4–5, 25–27, 66, 68–69, 124, 131 

lymph nodes, 10, 20, 22, 35, 115, 122, 

131 

 

M 

 

machine learning, 1, 8–9, 66, 127, 129–

30, 133, 179 

marginal effect, 115–19 

max, 49, 76, 113, 138–48, 153, 157–67 

Mehrotra, 18–19, 133 

meta-classifier models best, 74 

robust, 66, 119 

meta classifiers, 26, 70–71, 77, 90–91, 

96–97, 101, 115, 122 
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meta-classifiers, 26, 66–69, 71–72, 74, 85, 

89–91, 96–97, 99–100, 102, 104, 109, 

111, 120, 122, 124–25 

Meta Classifiers on Test set, 95, 97–98 

meta-features, 70, 74 

meta-learning algorithm, 4, 66 

methods for feature selection and training, 

4 methods for feature selection and 

training of 

prognostic models, 4 

metrics, 57, 60–61, 76, 85–86, 88, 99–

101, 153, 158, 160, 162, 170 

misclassification, 94, 97, 99, 101, 103, 

113 model for recurrent HNSCC, 65 

Model-GLM2, 109, 111 

model on test set, 100, 102 

model on training and testing sets, 77 
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