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ABSTRACT

This study aimed to propose the BSGARCH (1,1) model, a hybrid Basis Spline

GARCH-type model suitable for modelling the volatility of �nancial time series.

The proposed model was compared with other classical GARCH-type models such

as GARCH, EGARCH, GJR-GARCH, and APARCH models, and it was found to

outperform them in terms of predictive accuracy, as measured by RMSE, MAPE,

TIC, and QLIKE. The results showed that the BSGARCH (1,1) model had a superior

predictive ability compared to the other models. The study also compared the

performance of the BSGARCH (1,1) model with the Spline-GARCH model of Engle

and Rangel, which used the exponential quadratic spline to model the non-stationary

part of volatility. In this comparison, the Spline- GARCH model slightly outperformed

the proposed BSGARCH (1,1) model. However, the di�erence in performance was

negligible, and thus, the proposed BSGARCH (1,1) model can be considered a good

alternative to the Spline-GARCH model. The study demonstrates that the proposed

BSGARCH (1,1) model is a useful tool for modelling non-linear and non-stationary

�nancial time series data, with superior predictive ability compared to other classical

GARCH-type models.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter gives an overview of the study by presenting the background information,

stating the problem, de�ning the objectives, and outlining the structure of the thesis.

It serves as a foundation for the subsequent chapters and provides the reader with a

clear understanding of the context and scope of the research.

1.2 Background of study

The stock market serves as a public platform where stocks are issued, bought, and

sold, either through a stock exchange or over-the-counter. Stocks, also known as

equities, represent partial ownership in a company, and investors engage in trading

these assets within the stock market (Gregoriou, 2009). The e�cient functioning of

the stock market is crucial for economic development, as it enables companies to

access capital from the public quickly. Over time, the occurrence of various market

crashes and crises has prompted practitioners, researchers, and regulators to shift

their focus from traditional �nancial economics, which primarily examined the mean

of stock market returns, to exploring the volatility levels and stationarity of stock

prices. This shift has led to the development of econometric tools that better capture

and model stock market volatility (Matei, 2012).

Stock market volatility, which refers to the rate of price �uctuations in the

stock market over a given time period, has been a subject of intensive research in time

series econometrics for several decades. This is due to its signi�cant role in various

activities, ranging from portfolio allocation to risk management's density forecasting

(Brooks, 2008). The concept of volatility has been de�ned in di�erent ways, re�ecting

its relevance in various contexts. In a broader sense, volatility can be described as a

1
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series of �uctuations that characterize a phenomenon over a speci�c period of time.

However, in the realm of �nancial economics, volatility is more narrowly de�ned.

According to Andersen et al. (2010), it represents the instantaneous standard deviation

of a random component driven by Wiener process in a continuous-time di�usion model.

For all investors concerned with risk-adjusted returns, volatility modelling and

forecasting has signi�cant consequences, especially for those who use asset allocation,

risk parity, and volatility targeting techniques ( Du�tinema, 2021; Henriksen, 2011).

Quantifying the possible loss of assets is a key component of risk management, asset

allocation, and trading on �nancial markets. It is a crucial component of many

investment choices and portfolio constructions. Assessing investment risk can be

started with a good estimate of the volatility of asset prices across the investment

period (Du�tinema, 2021).

Since the �rst Basel Accord was founded in 1996, �nancial risk management

has been a key component of investment. This e�ectively turns volatility forecasting

into a requirement for risk management for many �nancial institutions globally

(Chang et al., 2011). Volatility in the �nancial markets can have signi�cant e�ects on

a nation's economy. Recent �nancial reporting scandals in the US have wreaked havoc

on global �nancial markets and had a detrimental e�ect on the global economy. This

demonstrates the critical connection between �nancial market volatility and public

con�dence. As a result, policymakers frequently utilize market estimates of volatility

as a measure of the vulnerability of the economy and �nancial markets (Ajao and

Wemambu, 2012).

There are various statistical and econometric techniques that can be used to

calculate stock market volatility. The Random Walk model is the most basic model

based on historical price. The Historical Average (HA), Simple Moving Average (MA),

Exponential Smoothing and Exponentially Weighted Moving Average (EWMA)

2
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methods are extensions of the Random Walk model. These estimators and models

assume that volatility is constant. Traditional estimates of unconditional volatility

include the standard deviation, close-to-close volatility, extreme value estimator of

Parkinson (1980) and Garman and Klass (1980) but these models do not take into

account the �nancial market's time-varying features.

There are other complimentary time series models such as those belonging to

the ARCH family, that are vastly used by researchers. Many academics and

practitioners have utilized the ARCH and GARCH models developed by (Engle,

1982) and (Bollerslev, 1986) respectively to estimate the stock market's volatility.

Conditional volatility, which integrates the time-varying characteristics of the �nancial

market, was developed as a result of these investigations on the ARCH model. These

models have helped in understanding the empirical characteristics of many �nancial

time series' volatility, including fat tails, leverage e�ects, and clustering (Cont, 2001

and Gregoriou, 2009). Forecasting stock market volatility is a challenging task, and

despite the existence of numerous models and techniques, their performance can vary

across di�erent stock markets (Bhowmik and Wang, 2020). This complexity in market

returns and volatility forecasting poses a signi�cant challenge for researchers and

�nancial analysts. The dynamic and unpredictable nature of stock markets, in�uenced

by various factors such as economic conditions, investor sentiment, and geopolitical

events, adds to the di�culty of accurately forecasting volatility. As a result, ongoing

research and advancements in econometric modelling and statistical techniques are

necessary to improve the accuracy and reliability of volatility forecasts in di�erent

stock markets. Consequently, a �exible model based on the hybrid of GARCH(1,1)

and B-spline expansion is proposed in this thesis for stock market volatility.

The use of B-splines for function approximation has been mathematically validated.

See, for instance, de Boor (2001). In fact, B-splines represent a piece-wise polynomial

function of interest, making the model simple to interpret. The admissibility of B-
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splines stems from their ability to capture complex patterns, maintain smoothness, and

provide computational e�ciency. These properties make B-splines a popular choice

in various �elds. The suggested model has the advantage of being computationally

practical, despite the fact that there may be a vast number of parameters to be

considered. Real and simulated data are used to con�rm the goodness of the model

in terms of accuracy in predicting volatility. The proposed BSGARCH (1,1) model is

compared with APARCH(1,1), EGARCH(1,1), GARCH (1,1), and the GJR-GARCH

(1,1) model.

1.3 Problem Statement

Stock market volatility modelling and forecasting has attracted a lot of attention from

scholars and researchers in �nancial markets because of the crucial function it has in

most �nancial applications in real life (Audrino and Bühlmann, 2009). The forecast

of expected returns and asset volatility heavily in�uences investment choices in the

stock market ( Du�tinema, 2021; Henriksen, 2011). Volatility is a measure of price

�uctuations in relation to an expected value for a �nancial security (Dash and Dash,

2016).

Various time series models have been developed for �nancial data that has

time varying volatility, however, all these models still have many �aws (Bhowmik and

Wang, 2020). The �rst breakthrough in volatility modelling was made by Engle (1982)

with the development of the ARCH model. This was a signi�cant advancement as it

provided a framework for considering the volatility clustering observed in �nancial

time series.

Following Engle's work, numerous studies recognized the potential of the ARCH

model and applied it to model various �nancial time series. However, it was noted by

(Rydberg, 2000) that ARCH models often require large lag values, leading to a higher

number of parameters. This can pose challenges in estimation and interpretation,
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especially when dealing with complex and high-frequency data. Despite the need

for many parameters, the ARCH model's ability to capture time-varying volatility

patterns made it a valuable tool in �nancial econometrics. Subsequent research has

built upon Engle's original work to develop more sophisticated and e�cient models

that address the shortcoming of the ARCH model while still capturing the essential

characteristics of �nancial volatility.

In their independent studies, Taylor (1986) and Bollerslev (1986) developed

the GARCH model as an extension to the ARCH model. The GARCH model

incorporates an Autoregressive Moving Average (ARMA) formulation to achieve

greater simplicity in modelling. It models the conditional variance as a function of

its lagged values and the squared lagged values of the innovation term. Since its

inception, the GARCH family of models have proven to be e�ective in considering

various stylized facts observed in �nancial time series such that Hansen and Lunde

(2005) noted that it is di�cult to obtain a model that outperforms the GARCH (1,1)

model in volatility forecasting. The capacity of the GARCH models and its extensions

to capture the stylized facts such as volatility clustering and leverage e�ect has led

to their widespread application in the �eld of �nancial econometrics and provide

valuable insights into the dynamics of �nancial markets. They are instrumental

in risk management, derivative pricing, and forecasting volatility, aiding investors,

traders, and �nancial institutions in making informed decisions (Atoi, 2014; Koima

et al., 2015; Hong and Lee, 2017 and Korkpoe and Junior, 2018). The GARCH model

has shown to be e�ective at determining the symmetric e�ect of volatility, but it has

several drawbacks, such as a violation of the non-negativity requirements placed on

the parameters to be evaluated and its inability to capture the asymmetry in volatility

(Bildirici and Ersin, 2014).

To address these limitations, several extensions to the standard GARCH models

have been suggested, such as the EGARCH by Nelson (1991), threshold GARCH

5

Digitized by UMaT Library



(TGARCH) by Zakoian (1994) and GJR-GARCH by Glosten et al. (1993) to

accommodate the asymmetric nature of volatility. The TGARCH and GJR-GARCH

are closely related.

The EGARCH model was introduced to overcome three key de�ciencies of the

GARCH model. These de�ciencies include parameter restrictions that guarantee

positive conditional variance, limited sensitivity to the asymmetric response of

volatility to shocks, and challenges in evaluating persistence in strongly stationary

series Ekong and Onye (2017). Malmsten and Teräsvirta (2010) argued that the

�rst-order EGARCH model with normal errors may not have su�cient �exibility to

capture the autocorrelation and kurtosis present in stock returns. To address this

limitation, they proposed improving the GARCH model by changing the normal

error distribution with a fat-tailed distribution. By raising the kurtosis of the error

distribution, the improved GARCH model would be better equipped to model the

low autocorrelation and kurtosis observed in stock returns. Nelson (1991) noted

that using a student-t distribution could result in in�nite unconditional variance for

the errors. Therefore, employing an error distribution with heavier tails than the

normal distribution can e�ectively increase kurtosis and reduce autocorrelation in

squared observations. For their proposed model, Malmsten and Teräsvirta (2010)

recommended using a Generalized Error Distribution (GED) in the EGARCH model.

They found that if the innovation follows a GED, the EGARCH model becomes

stationary.

Zakoian (1994) speci�ed the TGARCH model by allowing the conditional standard

deviation to depend on sign of lagged innovation. The speci�cation does not

show parameter restrictions to guarantee the positivity of the conditional variance.

However, to ensure stationarity of the TGARCH model, the parameters of the model

must be restricted and the choice of error distribution account for the stationarity.

Thus in the classical GARCH-type models, the choice of error distribution play a
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signi�cant role in their ability to forecast volatility.

Numerous studies have attempted to addressed the limitations of classical GARCH

models by proposing alternative approaches. For instance, Catania and Proietti

(2020) introduced a measurement model that incorporates time-varying connection

between asset returns and realized volatility using a bivariate framework. This

model captures key features such as heavy-tailed return distributions, long-term

memory of volatility, and negative dependence between daily market returns and

volatility. Another approach to address persistence in volatility is to assume a

"smoothly" non-stationary volatility process and model it appropriately (Amado

and Teräsvirta, 2013). Dahlhaus and Rao (2006) proposed a time-varying ARCH

process to model non-stationary volatility, while Engle and Rangel (2008) decomposed

the variance of a �nancial time series into non-stationary and stationary parts

using exponential quadratic splines within a multiplicative decomposition structure.

Similarly, Mishra et al. (2010) employed a multiplicative decomposition framework

to �x potential misspeci�cation in a parametric GARCH model by incorporating

a smooth non-parametric component. Additionally, Amado and Teräsvirta (2013)

proposed two non-stationary GARCH models to handle situations where volatility are

non-stationary, including a multiplicative decomposition approach and an additive

time-varying parameter model (with a focus on the former).

In addressing the limitations of individual models, the proposal of hybrid models has

emerged as an e�cient alternative for modelling and forecasting stock market volatility

(Dash and Dash, 2016). Hybrid models integrate �rst principle-based models with

data-based models, integrating their strengths to enhance model quality, robustness,

and interpretability (Kurz et al., 2022). In this context, a hybrid model that integrate

the B-Spline approach with the GARCH model is proposed. B-Splines, consisting

of connected polynomial curves known as knots, represent piecewise polynomial

functions capable of approximating any function of interest. The piecewise nature of
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B-Splines allows for the interpretation of threshold-regime functions, where di�erent

regions of the predictor correspond to di�erent regimes. By leveraging the strengths

of B-Splines and GARCH, the proposed hybrid model o�ers a promising solution for

accurately modelling and forecasting stock market volatility.

1.4 Reseaerch Objectives

The objectives of the research are to:

i. conduct a review of existing GARCH-type models, including APARCH, GJR-

GARCH GARCH, and EGARCH under di�erent error distributions.

ii. propose a hybrid BSGARCH model to forecast the volatilities of �nancial time

series.

iii. evaluate the performance of the hybrid BSGARCH model on simulated time series

and compare it with the performance of the other classical GARCH-type models

in (i) using RMSE, MAPE, TIC and QLIKE performance metric.

iv. assess the performance of the hybrid BSGARCH model on real time series and

compare it with the performance of the other classical GARCH-type models in (i)

above using RMSE, MAPE, TIC and QLIKE performance metric.

1.5 Facilities and Resources Used for the Research

These facilities were used for this thesis:

i. the library and internet facilities at the University of Mines and Technology

(UMaT), Tarkwa;

ii. the R-software and Microsoft Excel

iii. Federal Reserve Economic Data (FRED) data repository

iv. the website of the Ghana Stock Exchange
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1.6 Contribution To Science and Knowledge

This study adds to the body of literature on �nancial time series modelling by

proposing a hybrid model called BSGARCH(1,1), which integrates the GARCH (1,1)

and the basis spline (B-Spline). The integration of the GARCH model and B-Spline

makes the model �exible enough to capture volatility clustering and asymmetry very

well which serves as an improvement on the GARCH model. The model can be

used to analyse and forecast the volatility of �nancial asset returns, which is a

critical component of option pricing, risk management and portfolio management.

Additionally, this study adds to the literature on volatility modelling by o�ering a

comparison of the BSGARCH(1,1) model's forecasting performance with other widely

used models in the literature.

1.7 Structure of Thesis

The thesis is structured into six chapters, with each chapter contributing to the

research and analysis of the proposed model. Chapter 1 serves as the introductory

chapter where the problem statement and research objectives are presented. In

Chapter 2, the existing literature on the topic is reviewed to provide a comprehensive

understanding of the research area. Chapter 3 provides the theoretical background of

the methods used, along with some preliminary information. Chapter 4 is dedicated

to the formulation of the proposed model. The application of the proposed model on

both real and simulated data is presented in Chapter 5, and a comparison with other

models is made. Finally, in Chapter 6, conclusions are made from the �ndings and

recommendations are given for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter presents an extensive review of the theoretical and empirical literature on

volatility modelling and forecasting. The literature review is essential in providing a

background for the current study by highlighting the main developments, limitations,

and gaps in existing studies. The chapter begins with a general overview of the concept

of volatility, its importance in �nancial modelling, and the various models developed

to capture its dynamics.

2.2 Stock Market

It is a vital component of any economy, serving as a barometer of economic

performance and a source of �nancing for businesses. In general, a stock market is a

type of �nancial market where buyers and sellers exchange business stocks and other

listed securities (Omar, 2012). Stock markets, also known as share markets or equity

markets, represent a collective platform where buyers and sellers come together to

trade stocks. Unlike being a physical location or discrete entity, stock markets serve

as an aggregation of individuals and institutions engaged in the selling and buying

of stocks. They are essential in facilitating the exchange of shares, bonds, and other

�nancial instruments.

A stock exchange, also referred to as a securities exchange or bourse, is the

formal infrastructure that enables the buying and selling of shares, bonds, and

other �nancial instruments Musonera and Safari (2008). It provides a regulated

environment and necessary mechanisms for investors to engage in trading activities.

To be traded on a stock exchange, a security must be listed on a major exchange,

meeting speci�c listing requirements and adhering to regulatory standards.

10

Digitized by UMaT Library



The system of stock markets comprises multiple stock exchanges and their

interrelationships. These exchanges, operating within a country or across international

borders, form a network that facilitates the trading of securities. The interconnectivity

and cooperation among di�erent stock exchanges contribute to the overall functioning

and e�ciency of the stock market system (Rjumohan, 2019).

Stock markets are crucial and an indispensable part of the economy of a country. They

serve as a vital source of capital for companies, enabling them to raise funds through

the issuance of stocks or bonds. Stock markets provide investment opportunities for

individuals and institutions, promoting wealth creation and economic growth. The

stability and proper functioning of stock markets are crucial for fostering investor

con�dence and supporting the overall �nancial system of a country.

2.3 Volatility of The Stock Market

Volatility is an essential characteristic of the stock market, and is a critical aspect of

stock market behavior, as it a�ects the decisions of investors and traders, in�uences

the cost of capital, and re�ects how well the economy is doing. Stock market volatility

is the measure of variability in prices of stocks in the stock markets over a period

(Rahmani, 2016 and Cohen and Tegnér, 2019). It is crucial for both theoretical

and real-world �nancial applications (Hong and Lee, 2017 and Korkpoe and Junior,

2018 and Atoi, 2014 ) such that it is implemented by banks and other �nancial

institutions to measure exposure to risk Engle and Patton (2001). The availability

of high frequency data adds a new dimension to the modelling of volatility and the

forecasting of �nancial asset returns, and researchers have concentrated on this area(

Andersen and Bollerslev, 1998 ; Hansen and Lunde, 2005; Andersen et al., 2010 and

(Pypko, 2015) ).

The volatility of stocks plays a signi�cant role in the economy, particularly
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through its impact on the stock markets. Changes in stock prices can have various

e�ects on the overall economic conditions. For example, when stock prices increase, it

stimulates investment activities and creates a higher need for credit, which can results

in higher interest rates in the economy. Consequently, it is imperative to specify

appropriate volatility models that can capture variations in stock market returns, as

it directly a�ects the economy as a whole (Atoi, 2014)

Furthermore, reliable volatility models for stock market returns are essential for

investors in making informed decisions regarding risk management and portfolio

adjustments. These models assist in understanding and predicting the behavior

of stock market volatility, allowing investors to mitigate risks and optimize their

investment strategies. According to Engle (1982), a viable volatility model should

e�ectively capture heteroscedasticity in the innovation term and re�ect key stylized

facts hidden in stock market return series, such as ARCH e�ect, clustering of volatility

and asymmetry.

In literature, the extensively used volatility models are the ARCH model and

its extensions, including the GARCH, EGARCH, and GJR-GARCH models. Among

these, �rst-order GARCH models have been comprehensively studied and proven to

be feasible for modelling and forecasting �nancial time series (Bera and Hiigins, 1993;

Goudarzi and Ramanarayanan, 2011; Olowe, 2011). These models provide valuable

insights into the dynamics of volatility and have been widely employed in empirical

studies and practical applications.

2.4 Volatility Models

The �rst breakthrough in volatility modelling was made by Engle (1982) with the

development of the ARCH model. This was a signi�cant advancement as it provided

a framework for considering the volatility clustering observed in �nancial time series.
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Following Engle's work, numerous studies recognized the potential of the ARCH

model and applied it to model various �nancial time series. However, it was noted by

(Rydberg, 2000) that ARCH models often require large lag values, leading to a higher

number of parameters. This can pose challenges in estimation and interpretation,

especially when dealing with complex and high-frequency data. Despite the need

for many parameters, the ARCH model's ability to capture time-varying volatility

patterns made it a valuable tool in �nancial econometrics. Subsequent research has

built upon Engle's original work to develop more sophisticated and e�cient models

that address the shortcoming of the ARCH model while still capturing the essential

characteristics of �nancial volatility.

In their independent studies, Taylor (1986) and Bollerslev (1986) developed

the GARCH model as an extension to the ARCH model. The GARCH model

incorporates an Autoregressive Moving Average (ARMA) formulation to achieve

greater simplicity in modelling. It models the conditional variance as a function

of its lagged values and the squared lagged values of the innovation term. Since

its inception, the GARCH family of models have proven to be more e�ective in

considering various stylized facts observed in �nancial time series. These stylized

facts include volatility clustering, risk premium, shock persistence, the leverage e�ect

and mean reversion among other important characteristics of �nancial time series.

The capacity of the GARCH models and its extensions to capture these stylized

facts has led to their widespread application in the �eld of �nancial econometrics

and provide valuable insights into the dynamics of �nancial markets. They are

instrumental in risk management, derivative pricing, and forecasting volatility, aiding

investors, traders, and �nancial institutions in making informed decisions (Atoi, 2014;

Koima et al., 2015; Hong and Lee, 2017 and Korkpoe and Junior, 2018). The GARCH

model has shown to be e�ective at determining the symmetric e�ect of volatility,

but it has several drawbacks, such as a violation of the non-negativity requirements
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placed on the parameters to be evaluated.

To address these limitations, several extensions to the standard GARCH models

have been suggested, such as the EGARCH by Nelson (1991), threshold GARCH

(TGARCH) by Zakoian (1994) and GJR-GARCH by Glosten et al. (1993) to

accommodate the asymmetric nature of volatility. The TGARCH and GJR-GARCH

are closely related.

The EGARCH model was introduced to overcome three key de�ciencies of the

GARCH model. These de�ciencies include parameter restrictions that guarantee

positive conditional variance, limited sensitivity to the asymmetric response of

volatility to shocks, and challenges in evaluating persistence in strongly stationary

series Ekong and Onye (2017). In the EGARCH model, the logarithm of the

conditional variance is used to represent the leverage e�ect. This logarithmic

transformation signi�es that the leverage e�ect is exponential instead of quadratic,

as in the symmetric GARCH model. By expressing volatility in its logarithmic

transformation, the EGARCH model avoids restrictions on the parameters to ensure

the variance is positive. This is a major bene�t of the EGARCH model over the

symmetric GARCH model.

The TGARCH (Threshold GARCH) model, introduced by Zakoian (1994),

incorporates the conditional standard deviation of the innovation term based

on the sign of the lagged innovation. As a result, volatility can react di�erently to

positive and negative shocks. Unlike some other models, the TGARCH speci�cation

fails to impose parameter limitations to ensure the conditional variance is positive.

Additionally, the error distribution chosen for the TGARCH model also plays a role in

maintaining stationarity. The GJR-GARCH model developed by Glosten et al. (1993)

is closely related to he TGARCH model. Both models address the issue of asymmetric

responses in volatility by incorporating the impact of negative and positive shocks
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di�erently.

In their study, Ding et al. (1993) introduced another version of the standard

GARCH model, known as the Power GARCH (PGARCH) model. The PGARCH

model extends the GARCH framework by raising the conditional standard deviation

to a power, denoted as d, where d is a positive exponent. This power term is then

related to a function of the lagged conditional standard deviations and the lagged

absolute innovations, both raised to the same power. By allowing for the exponent

d to vary, the PGARCH model o�ers increased �exibility compared to the standard

GARCH model. This means that di�erent values of d can be used to determine

various patterns and characteristics of volatility in the data. When d is set to two, the

PGARCH model simpli�es to the standard GARCH model. Therefore, the provision

for switching the power exponent allows the PGARCH model to adapt to di�erent

volatility dynamics and o�ers enhanced modelling capabilities.

In addition to the standard GARCH models, a GARCH-in-mean parameterization

was developed by Engle et al. (1987). This parameterization formalizes the concept

that risk is priced by the market and that risk premia changes with volatility.

It suggests that the conditional mean of asset returns can be in�uenced by the

conditional volatility, thereby incorporating the relation between return and risk in

the model. When analyzing high-frequency data, it is observed that volatility varies

slowly and shocks take a long time to decay, exhibiting a long memory property.

To capture this behavior, Ballie et al. (1996) developed the Fractionally Integrated

GARCH (FIGARCH) model. The FIGARCH model introduces fractional integration

to the GARCH framework, allowing for the hyperbolic decay of shocks rather than

the exponential decay observed in traditional GARCH models. By incorporating long

memory into the volatility dynamics, the FIGARCH model provides a more accurate

representation of the persistence and decay patterns observed in �nancial time series.
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High frequency series, like stock returns, are well recognized for various stylized

features, such as volatility clustering, fat-tail distribution, and asymmetry. Therefore

the conventional assumption of normality in volatility modelling of �nancial time

series could reduce the robustness of parameter estimates. Mandelbrot (1963) and

Fama (1965) infer that daily stock index returns are not normal and tend to have

fat-tailed distribution. Due to this, Bollerslev (1986) relaxed the conventional

assumption of normality to include time varying volatility in high frequency data

by assuming that such data follows student t-distribution. Furthermore, Bollerslev

et al. (1994) established that kurtosis and slowly decaying autocorrelations in return

series cannot be well explained by the GARCH model with normally distributed errors.

In the �eld of stochastic volatility modelling, White (2006) proposed a likelihood-

based joint estimation and speci�cation testing process that addresses the challenges

associated with existing estimators. The key innovation introduced by the authors

is the use of a Discrete Nonlinear Filtering (DNF) algorithm. The DNF algorithm

enables estimation and speci�cation testing by applying the nonlinear �ltering set

of equations, which are commonly used in the analysis of nonlinear latent variable

problems including stochastic volatility models. The algorithm treats the continuously

valued state variable as if it were a discrete Markov variable with a large number of

states. This approach allows for a quick and accurate application of the nonlinear

�ltering equations. By leveraging the DNF algorithm, White (2006) provided

maximum likelihood estimates for the general class of nonlinear latent variable

problems, speci�cally focusing on stochastic volatility models. This advancement in

estimation and speci�cation testing procedures improves the operational e�ciency

and accuracy of stochastic volatility modelling, o�ering researchers and practitioners

a valuable tool for analyzing and understanding �nancial time series data.

Durham (2007) investigated the concept of modelling the shape of the conditional

distribution of stochastic volatility using a discrete mixture of normals. This approach
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o�ers �exibility in capturing the characteristics of the tails of the returns distribution,

providing insights into extreme events and outliers. The proposed model, called

SV-mix, was subjected to thorough model diagnostics to assess its performance.

The results indicated that SV-mix e�ectively captured the essential features of

the data, suggesting its suitability for modelling stochastic volatility. To compare

the performance of SV-mix against other models, several a�ne-jump models were

considered. The evaluation criteria used for comparison were the AIC and SIC. The

results of the comparison strongly favored SV-mix, indicating its superior performance

in terms of model �t and complexity.

Similarly, Malmsten and Teräsvirta (2010) argued that the �rst-order EGARCH model

with normal errors may not have su�cient �exibility to capture the autocorrelation

and kurtosis present in stock returns. To address this limitation, they proposed

improving the GARCH model by changing the normal error distribution with a

fat-tailed distribution. By raising the kurtosis of the error distribution, the enhanced

GARCH model would be better equipped to model the low autocorrelation and

kurtosis observed in stock returns. Nelson (1991) previously noted that using

a student-t distribution could result in in�nite unconditional variance for the

errors. Therefore, employing an error distribution with heavier tails than the

normal distribution can e�ectively increase kurtosis and reduce autocorrelation in

squared observations. For their proposed model, Malmsten and Teräsvirta (2010)

recommended using a Generalized Error Distribution (GED) in the EGARCH model.

They found that if the innovation follows a GED, the EGARCH model becomes

stationary. By incorporating the GED, the desired features of stock return series,

such as kurtosis and autocorrelation can be modelled more e�ectively.

The idea of implied volatility is widely employed in options pricing and trading. It

represents the volatility level implied by the market prices of options. However, in

stochastic volatility, traditional methods for calculating implied volatility may not
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be directly applicable. To address this, Henry-Labordère (2005) introduced a novel

approach based on di�erential geometry and heat kernel techniques. They developed

the problem in the framework of a Riemann manifold, which is a mathematical

structure used to describe curved spaces. By considering an Abelian connection on

this manifold, they were able to derive a general asymptotic expression for implied

volatility.

Feunou and Tédongap (2012), developed a discrete time a�ne stochastic volatility

model that has time varying conditional skewness in a uni�ed manner. Their approach

allowed current asset returns to be asymmetric conditional on current factors and past

information. Analytical formulas were derived for di�erent return moments that are

utilized in generalized moments methods (GMM) estimation. Wu (2012), proposed

a TGARCH model to de�ne the regime switching in volatility dynamics of assets of

�nancial returns. According to his threshold model, volatility in each regime followed

a GARCH process, and the switching between regimes was initiated by an observable

threshold variable. Again, theoretical conditions were established to guarantee that

the return process in the threshold model was strictly stationary as well as conditions

for the �nite variance and fourth moment. The �nite sample characteristics of the

maximum likelihood estimator were further investigated using a simulation study.

His proposed model was applied to an empirical data and the �ndings supported the

use of threshold variable to recognize the regime shifts in the volatility processes.

Akyildirim et al. (2014) developed a general method to reconstruct recombinant tree

approximations for stochastic volatility models and implemented on the Heston model

for the dynamics of stock price.

Vrontos et al. (2000) introduced a Bayesian approach to the analysis of GARCH and

EGARCH models. They developed a comprehensive framework that encompassed

parameter estimation, model selection, and volatility prediction within the Bayesian

paradigm. To perform Bayesian analysis, Vrontos et al. (2000) employed Markov-chain
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Monte Carlo (MCMC) methods, which are computational techniques for obtaining

posterior distributions of model parameters. By utilizing MCMC methodologies,

they were able to capture the full uncertainty in parameter estimates and make

probabilistic inferences. The authors demonstrated the implementation of their

Bayesian framework using data from the General Index of the Athens stock exchange.

They provided detailed implementation guidelines and illustrated the results of their

analysis. Through this empirical application, they showcased the practicality and

e�ectiveness of their proposed approach in real-world �nancial data.

As opposed to the popular Bayesian methods, Turatti (2018) developed a classical

maximum likelihood estimator for time-varying autoregressive models with stochastic

volatility. The estimation technique was as a result of a multivariate extension of the

numerically accelerated sampling together with a Rao-Blackwellization step to form

a highly e�cient estimation method. In addition, a new speci�cation for non-linear

time-varying parameter models was established to summarize the time-variation in

the coe�cients through a common factor structure, and this enhanced estimation

and retained the �exibility of the model. The proposed speci�cations was applied

to US consumer price index in�ation and it was acknowledged that the proposed

speci�cations was able to consider the observed dynamics in in�ation.

Delatola and Gri�n (2011) proposed a Bayesian non-parametric approach for

analyzing the return distribution in a stochastic volatility (SV) model. Speci�cally,

they focused on modelling the logarithm of squared returns using an in�nite mixture

of Normal distributions, which provided �exibility in capturing various shapes and

characteristics of the distribution. To estimate the model parameters, they developed

e�cient MCMC methods, which allowed for posterior inference. The proposed

method was implemented on simulated and real-world �nancial data. The outcome

showed that the estimated volatilities using the model could di�er signi�cantly from

those obtained using a normal return distribution, particularly when there was proof
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of a heavy-tailed return distribution. This highlighted the importance of considering

more �exible distributional assumptions when modelling �nancial returns.

Similarly, Liu and Morimune (2005) introduced modi�cations to the GARCH

model to consider the e�ect of consecutive negative or positive shocks on volatilities.

The new model was tested on the Shanghai SHCOMP and Nikkei225 indices, with

a particular focus on the SHCOMP index. Additionally, the EGARCH model

was extended along similar lines as the GARCH model. The authors proved

the stationarity of the new GARCH (1, 1) model and obtained the asymptotic

distribution of the quasi-maximum likelihood estimator. Also in the work of Men

(2012), estimation techniques for multivariate and univariate SV models were

proposed. For heavy-tailed SV models, the slice sampler algorithm was recommended

as the major instrument to sample the proposal distribution in the simulation of

latent states, while a simple Metropolis-Hastings method was developed for SV

models without heavy tails. The slice sampler was favored because it could adjust to

the analytical structure of the underlying density, leading to e�cient sampling and

fewer discarded samples compared to the original Metropolis-Hastings method.

Yang et al. (1999) determined the joint estimation of both multiplicative and

additive volatility using the marginally integrated local polynomial estimation.

Audrino and Bühlmann (2009) introduced a new GARCH-type model for forecasting

volatility in �nancial time series. Their procedure was based on multivariate B-

splines of lagged observations and volatility. The estimation of such B-splines basis

expansion was created within the likelihood framework of non-Gaussian observations.

Regularized and sparse model �tting method was used, because the dimension for the

B-spline was large. The predictive potential of their model was demonstrated through

simulated and real data. Their result was compared with other approaches. Yu (2012)

generalized the correlation structure in the conventional leverage stochastic volatility

model from a linear spline. In his model, the correlation between the volatility
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innovations and return were time varying and depended non-parametrically on the

kind of news that arrives at the market. Theoretical characteristics of the proposed

model were investigated and the estimation was done through Bayesian methods.

The performance of their estimates was determined through simulations. Their model

found evidence of time varying leverage e�ect in individual stocks. Chockalingam and

Muthuraman (2011) considered the issue of pricing American options under stochastic

volatility. A transformation technique was established to evaluate the optimal exercise

policy and option price which gives assurance for convergence. The accuracy and

speed of their technique was compared with other existing methods. Feunou and

Tédongap (2012) developed a discrete time a�ne stochastic volatility model with

time varying conditional skewness in a streamlined manner. Their technique enabled

current asset returns to be asymmetric conditional on past information and current

factors. Analytical formulas were derived for di�erent return moments that are used

for generalized method of moments (GMM) estimation.

Fengler (2009) recognized the importance of maintaining an arbitrage-free implied

volatility surface in local volatility models, as mispricings caused by arbitrage

opportunities can lead to inaccurate pricing and performance. They highlighted that

prevalent smoothing algorithms for the implied volatility surface may not ensure the

absence of arbitrage, and therefore proposed a method for smoothing the implied

volatility smile in an arbitrage-free manner. The key idea behind their approach is

to directly incorporate the no-arbitrage condition into the smoothing process. They

introduced a penalty term in the smoothing algorithm that penalizes deviations from

the no-arbitrage condition, e�ectively ensuring that the implied volatility surface

is free from arbitrage opportunities. By incorporating the no-arbitrage condition

into the smoothing algorithm, Fengler (2009) aimed to address the issue of negative

transition probabilities and negative local volatilities that can arise when the implied

volatility surface is not arbitrage-free. These mispricings can have a signi�cant impact

on option pricing and risk management, making the development of an arbitrage-free
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smoothing approach crucial for accurate pricing and performance evaluation in local

volatility models.

Again, For both the drift and the di�usion coe�cient of the unobserved di�usion

process of a stochastic volatility, Comte et al. (2010) proposed non-parametric least

square estimators, and provided bounds for their risk. Estimators were selected

from a class of functions belonging to a �nite dimensional space whose dimension is

chosen by a data driven technique. Barndor�-Nielsen and Veraart (2012) developed

a new class of stochastic volatility models that incorporates stochastic volatility

of volatility (SVV) e�ects. This class of models is known as Volatility Modulated

non-Gaussian Ornstein-Uhlenbeck (VMOU) processes. The VMOU processes allow

for the volatility to be modulated by a separate stochastic process, capturing the

additional uncertainty and dynamics in the volatility of the underlying asset. This

SVV e�ect is important as it can have a signi�cant impact on the behavior of �nancial

markets. The authors investigated various probabilistic properties of the (integrated)

VMOU processes, studying the statistical properties and dynamics of the model.

They also examined the e�ects of SVV on two important aspects of �nancial markets:

the leverage e�ect and the presence of long memory. The leverage e�ect refers to the

phenomenon where negative returns are associated with higher volatility compared to

positive returns. Barndor�-Nielsen and Veraart (2012) analyzed the impact of SVV

on the leverage e�ect and provided insights into how the volatility of volatility a�ects

this relationship. Furthermore, the authors studied the presence of long memory

in the VMOU processes. Long memory refers to the persistence of volatility over

time, where past volatility values have a signi�cant in�uence on future volatility.

They explored how SVV in�uences the presence of long memory and investigated the

implications for modeling and forecasting �nancial time series.

Langrock et al. (2014) proposed an approach for estimating the conditional

distribution in a stochastic volatility model in a non-parametric way, without relying
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on speci�c assumptions about its shape. This approach is based on a maximum

penalized likelihood estimation framework. To achieve non-parametric estimation, the

authors combined the hidden Markov model methodology with penalized B-splines.

This combination allowed them to �exibly capture the conditional distribution of the

stochastic volatility model without imposing strong assumptions about its functional

form. The proposed approach o�ers an alternative to Bayesian methods that have

been previously developed for semi-parametric stochastic volatility modelling. It

provides a powerful and �exible tool for estimating the conditional distribution in

a non-parametric manner. It is important to note that the model proposed by

Langrock et al. (2014) does not explicitly consider the leverage e�ect. The focus

of their work was on the non-parametric estimation of the conditional distribution,

rather than capturing speci�c stylized facts such as the leverage e�ect. The authors

demonstrated the feasibility and e�ectiveness of their approach through a simulation

study. By avoiding critical assumptions on the shape of the distribution, their method

provides a �exible and robust framework for modelling and estimating the conditional

distribution in a non-parametric way.

Kanaya and Kristensen (2016), proposed a general estimation strategy for SV

jump-di�usion models that combined a simple, model-free realized volatility estimator

with the additional structure imposed by the Markov di�usion model of the volatility

process. The asymptotic theory that they developed assumed the volatility process

has no jump component. Bandi and Renò (2018) identi�es spot volatility as a result

of jump robust non-parametric estimates and extracted the parameters and functions

that drives the price and volatility dynamics from non-parametric estimates of the

bivariate process' in�nitesimal moments. Phan et al. (2019) proposed a multivariate

stochastic volatility (MSV) model with the objective of estimating the time-varying

volatility of multivariate neural data and its spatial correlational structure. The

MSV model assumes that the volatility series of Intracranial electroencephalography

(iEEG) signals follows a latent-variable vector-autoregressive process, and it allowed
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for the lagged signals of di�erent brain regions to in�uence each other by specifying

a full persistent matrix (typically assumed to be diagonal) in the VAR process for

volatility. They used a Bayesian method to evaluate the hidden series in volatility

and the parameters of the MSV model using the forward �ltering backward sampling

and Metropolis Hastings algorithms.

Chung (2014) estimated �nancial volatility utilizing multivariate adaptive regression

splines (MARS) by logarithmic transformation as a initial analysis to determine a non-

parametric volatility model. To use the MARS methodology in a time series setting,

the predictor variables were chosen to be lagged values which results in a model

referred to as adaptive spline threshold autoregression (ASTAR). The estimation

was demonstrated through simulations and empirical examples. The performance

of the MARS volatility model was compared with the existing parametric and

non-parametric models in the literature by using several out-of-sample goodness-of-�t

measures. Cassim (2018) combined the aspects of multivariate adaptive regression

splines(MARS) model estimation algorithm proposed by Chung (2014) and an

algorithm proposed by Bühlmann and McNeil (2002) to develop an algorithm for

non-parametric estimation of GARCH (2,2) volatility model.

The characteristics of a linearized stochastic volatility model originally proposed by

Harvey et al. (1994) was investigated under discrete mixtures of normal by (Xu and

Knight, 2013) . They derived the general closed form expressions for the moment

conditions and showed that the proposed model determines various tail behavior in a

more �exible manner than the Gaussian stochastic volatility model. Coleman et al.

(2013) proposed an optimization formulation for calibrating a local volatility function

for option pricing. The aim was to ensure stability and accuracy in the calibration

process. The authors introduced an objective function based on the L1-norm, which

provides a trade-o� between calibration accuracy and model complexity. To represent

the unknown local volatility function, the authors employed a spline kernel function
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inspired by support vector machine learning. The spline kernel coe�cient vector

was minimized using the L1-norm regularization term, which e�ectively controls

the complexity of the model. Minimizing the L1-norm corresponds to reducing the

number of support vectors in the context of support vector regression, thus enhancing

predictability. The proposed approach was illustrated using synthetic market data,

showcasing its ability to accurately calibrate the local volatility surface. Additionally,

the authors demonstrated the simplicity of the calibrated local volatility surface by

applying their method to the S&P 500 market index.

Feil et al. (2009) also approximated the local volatility function using a bicubic

spline and high dimensional model representation (HDMR) model and thier results

were compared. The HDMR model produced more accurate results than the bicubic

spline model for option prices. Lee (2014) introduced the B-spline (BS) method as

an improvement over the smoothed implied volatility smile (SML) procedure for

estimating option implied risk-neutral measures (RNMs). The BS method models

the risk-neutral cumulative distribution function (CDF) using quartic B-splines with

power tails. This choice of modelling allows for a risk-neutral probability density

function (PDF) that exhibits continuity and is free of arbitrage. Through Monte Carlo

experiments and applications to S&P 500 index options, the authors demonstrated that

the BS method outperforms the SML method. The BS method consistently produced

arbitrage-free estimators of the risk-neutral measures and accurately recovered the

actual risk-neutral PDFs for various hypothetical distributions. This suggests that

the BS method provides more accurate and reliable estimates of option implied RNMs.

Additionally, Zhao (2016) proposed an algorithm to enhance the pricing process,

calibration process, and sensitivity analysis of the double Heston model in terms

of accuracy and e�ciency. The optimization was achieved through the use of an

optimized caching technique, which reduced the computation time for pricing by

approximately 15%. Ulrich and Walther (2018) addressed the sensitivity of option-
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implied information, such as forward-looking variance, skewness, and variance risk

premium, to the construction of the volatility surface. They observed that di�erent

volatility surface construction methods can lead to economically signi�cant di�erences

and systematic biases, particularly for out-of-the-money put options. To mitigate this

problem, the authors proposed a volatility surface construction method based on one-

dimensional kernel regression. They assessed the statistical accuracy of their proposed

approach by comparing it to existing state-of-the-art parametric, semi-parametric,

and non-parametric volatility surfaces using leave-one-out cross-validation. Using 14

years of end-of-day and intraday data from S&P 500 and Euro Stoxx 50 options,

the study concluded that the one-dimensional kernel regression approach provided

a more accurate representation of option market information compared to existing

approaches in the literature. This suggests that the proposed method captures the

nuances of the option market more e�ectively, reducing biases and improving the

accuracy of option-implied information.

Choi et al. (2019) also proposed a continuous-time stochastic volatility model

based on an arithmetic Brownian motion: a one-parameter extension of the normal

stochastic alpha-beta-rho (SABR) model. Implementing two generalized Bougerol's

identities in the literature, the study demonstrated that the model had a closed-form

Monte Carlo simulation scheme and that the transition probability for one special

case followed Johnson's Su distribution. It was argued that the Su distribution served

as an analytically better alternative to the normal SABR model due to the fact that

the two distributions are empirically same.

2.4.1 Empirical Review

Empirical evidence suggests that global equity market volatility exhibits several

stylized facts, including asymmetry, long memory, and spillover e�ects. One notable

observation is that volatility tends to be higher during bearish markets compared to

bullish markets, demonstrating asymmetry. This �nding implies a negative correlation

26

Digitized by UMaT Library



between current stock returns and future conditional volatility as highlighted by

(Black, 1976). In addition to the leverage e�ect, volatility feedback has been proposed

as another explanation for volatility asymmetries, as highlighted by Campbell and

Hentschel (1992). From this hypothesis, there is a causal relationship between price

volatility and future risk premiums. Positive shocks to volatility lead to an increase

in future risk premiums, which, assuming dividends remain constant, results in a

decrease in stock prices. This feedback mechanism suggests that volatility changes can

impact market dynamics and asset prices beyond their immediate e�ects. Studies have

identi�ed asymmetry in volatility at the aggregate market level in emerging markets,

as noted by Chiang and Doong (2001). However, the speci�c mechanisms underlying

this volatility asymmetry at the sector and �rm levels remain less explored. It is

important to understand how volatility asymmetries manifest across di�erent sectors

and individual �rms to gain a comprehensive understanding of market dynamics. It

is worth noting that the presence of volatility feedback does not negate the existence

of leverage e�ects. In fact, both factors can interact and contribute to volatility

asymmetries. Christie (1982) conducted an analysis across a section of �rms to test

Black's hypothesis and found a strong correlation between asymmetry and leverage.

However, they concluded that the leverage e�ect alone was not su�cient to fully

explain the observed asymmetric e�ects in volatility.

In a study by Pagan and Schwert (1990), di�erent statistical models for monthly

stock return volatility were compared, with a focus on U.S. data from 1834 to 1925.

The reason for focusing on this time period was that post-1926 data had already been

analyzed extensively by other researchers. Additionally, the presence of the Great

Depression during that period led to stock volatility levels that were inconsistent with

stationary models for conditional heteroskedasticity. The study aimed to address

the non-linearities in stock return behavior that were not adequately determined

by conventional ARCH or GARCH models, as well as the non-stationarity of stock

volatility. Similarly, Ladokhin (2009) conducted a study to determine the accuracy of
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di�erent models in forecasting stock volatility. The models considered in the study

included the Exponential Weighted Moving Average (EWMA), implied volatility,

and autoregressive conditional heteroskedastic (ARCH) models. The objective was

to assess the performance of these models and determine their ability to accurately

capture and forecast stock market volatility. By evaluating these models, researchers

aimed to gain insights into the e�ectiveness of di�erent approaches in capturing the

dynamic nature of stock volatility and providing reliable forecasts. The �ndings of

such studies have contributed to the development and re�nement of volatility models,

enhancing our understanding of the complexities of �nancial markets and enabling

better risk management and investment decision-making.

The GARCH framework utilizes the concept of volatility dependence to quantify

the in�uence of the previous period's forecast error and volatility in determining the

current volatility. For example, Niyitegeka and Tewari (2013), used the GARCH-

type models to examine the nature of the volatility clustering phenomenon in the

Johannesburg Stock Exchange. Their results indicated that there was an existence of

volatility clustering in the Johannesburg Stock Exchange but could not establish the

fact that an asymmetric e�ect of negative and positive shocks on conditional volatility

existed. Again, Koima et al. (2015), also examined the characteristics of volatility of

the Kenyan stock markets and its stylized facts using the symmetric GARCH(1,1)

model. Their result indicated the evidence of time varying stock return volatility over

the sampled period. Abdullah et al. (2017) also used several GARCH-type models

with Student's t-distribution and normal distribution error assumption to model the

volatility of the exchange rate of Bangladesh. Their results showed that the Student

t-distribution assumption in error provided more accurate forecast than the normal

distribution indicating the existence of fat tails in the exchange rate data used.

Yaya et al. (2014) also examined the e�ect of misspeci�cation of correct sampling

probability distribution of GARCH processes using the Monte Carlo Simulation
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approach. Among the three distributions considered in their work, The AR-GARCH

with generalized error distribution (GED) was judged the best. Anton (2012)

evaluated the forecasting performance of GARCH-type models in terms of their

forecasting accuracy in the case of Romanian stock market. It was found that the

TGARCH was the most successful in forecasting the volatility of the Romanian stock

market. Ahmed and Suliman (2011) implemented the GARCH models to determine

the conditional variance in the daily returns of the principal stock exchange of Sudan

(Khartoum Stock Exchange (KSE)). Various extensions to the standard GARCH

models have been developed to determine the asymmetric nature of volatility.

Examples of such extensions include the exponential GARCH (EGARCH) introduced

by Nelson (1991) and the threshold GARCH (TGARCH) proposed by Glosten et al.

(1993) and Zakoian (1994). In a study by Pagan and Schwert (1990), it was observed

that the EGARCH model provided slightly better predictions for monthly US stock

index volatility compared to the standard GARCH model. However, Franses and van

Dijk (1996) argued that asymmetric models, including EGARCH, did not outperform

simple GARCH models when forecasting the weekly volatility of European stock

market indices. For the Australian stock market, Brailsford and Fa� (1996) found

that the TGARCH model performed slightly better than other simple models such

as random walk, historical average (HA), moving average (MA), and exponentially

weighted moving average (EWMA).

Bates (1996) among others investigated the empirical performance of an a�ne

stochastic volatility with jump model using index returns and option data. Hautsch

and Ou (2008) reviewed the most common speci�cations of the discrete time stochastic

volatility models and illustrated the major principles of corresponding MCMC based

statistical inference. Karali et al. (2011) used the Bayesian state-space techniques

to evaluate the stochastic volatility of future prices for three storable commodities;

soybeans, corn and wheat with available futures contract maturities. Fatone et al.

(2014), analyzed some stochastic volatility models summarising advantages and
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shortcomings of each of them. Saltik et al. (2016) analyse the return of volatility of

spot market prices of crude oil and natural gas for two di�erent terms with di�erent

versions of the GARCH class models.

In a study conducted by Krichene (2003), a stochastic volatility model was

employed to determine the volatility of three stock indices. The model assumed that

volatility was driven solely by a latent variable referred to as "news." To estimate

the model parameters and �lter volatilities, a Markov Chain Monte Carlo algorithm

was utilized. The results indicated a high degree of volatility persistence, which

was consistent with both volatility clustering and mean reversion phenomena. The

�ltering process revealed highly volatile markets, re�ecting the frequent occurrence

of relevant news events. The diagnostic tests did not indicate any model failure,

although there was a possibility for speci�cation improvements. The �ndings of

the study aligned with well-known patterns observed in volatility modelling and

suggested that the model could o�er value to market participants in asset pricing

and risk management. Additionally, the model could assist policymakers in designing

macroeconomic policies that promote less volatile �nancial markets. Joubert and

Vencatasawmy (2005) presented some empirical observations concerning volatility,

and considered the impact of volatility on actuarial work.

Li (2007) studied the connection in the developed markets in Hong Kong and

the US and emerging stock exchanges in mainland China using a multivariate

GARCH approach. The researchers employed a four-variable asymmetric GARCH

model based on the BEKK framework proposed by Engle and Kroner (1995) to

capture the regularities observed in the share price indices. The aim was to test for

the transmission of volatility and returns across these markets. The �ndings of the

study revealed no direct connection between the stock exchanges in mainland China

and the US market. However, proof for uni-directional volatility spillovers was found

from the stock exchange in Hong Kong to those in Shanghai and Shenzhen.
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Dao and Wolters (2008), employed a multivariate stochastic volatility (SV) model to

assess the presence of usual stochastic trends in the weekly volatilities of the Hang

Seng, Dow Jones, Nikkei, and Strait Times index. The study aimed to evaluate

the correlation and potential shared patterns among the volatility innovations in

these stock indexes. The results revealed a remarkably high correlation among the

volatility innovations, indicating a strong interdependence between the volatilities of

the di�erent indexes.

In their research, Agnolucci (2009) conducted a comparative analysis of di�erent

volatility models for predicting West Texas Intermediate (WTI) future contract

volatility. The study evaluated GARCH-type models estimated from time series

data and an implied volatility model derived from options pricing. The researchers

assessed the models' performance using statistical and regression-based criteria and

investigated the presence of asymmetric e�ects, the in�uence of error distribution on

GARCH parameters, and the potential improvement of incorporating a time-varying

long-run mean in volatility estimation. The �ndings provided insights into model

e�ectiveness and suitability for forecasting WTI future contract volatility, bene�ting

traders, investors, and risk managers in the oil market. Takaishi (2009) employed

Bayesian estimation techniques to estimate a GARCH model for the exchange

rate between US Dollar and Japanese Yen. They utilized the Metropolis-Hastings

algorithm with an adaptive construction scheme for the proposal density. The

proposal density, assumed to follow a multivariate Student's t-distribution, was

updated adaptively during the Markov Chain Monte Carlo simulations using the

sampled data. In a similar vein, the study conducted by Valadkhani et al. (2010)

aimed to investigate the link between stock market returns and volatility, speci�cally

examining the impact of the Asian and global �nancial crises that occurred in

1997-1998 and 2008-2009. The research focused on four countries, namely Singapore,

Australia, the United States, and the United Kingdom, and employed a multivariate
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generalized autoregressive conditional heteroskedasticity (MGARCH) model. By

utilizing this model, the study sought to analyze the relationship between stock

market returns and volatility during periods of �nancial turmoil, providing insights

into the dynamics and interactions between stock returns and volatility in di�erent

market contexts. Based on their analysis of the mean return equations, the researchers

found no signi�cant e�ect on returns coming from the Asian crisis or the more recent

global �nancial crises in the four markets under investigation.

Arouri et al. (2011) used a generalized VAR-GARCH approach to investigate

the magnitude of volatility transmission between stock and oil markets in Europe and

the United States at the sector-level. The study revealed the evidence of signi�cant

volatility spillovers between the stock and oil returns. The estimated cross-market

volatility spillovers obtained from the VAR-GARCH models often resulted in

diversi�cation bene�ts and improved hedging e�ectiveness compared to commonly

used multivariate volatility models such as the CCC-GARCH proposed by Bollerslev

(1990), the diagonal BEKK-GARCH introduced by Engle and Kroner (1995), and the

DCC-GARCH developed by Engle (2002). These �ndings suggest that considering the

interdependence between stock and oil markets at the sector-level can provide valuable

insights for portfolio management and risk hedging strategies. By accounting for the

volatility spillovers, investors can potentially enhance their portfolio diversi�cation

and achieve more e�ective hedging strategies in the presence of oil-market-related risks.

Busch et al. (2011) focused on predicting future realized volatility in the bond

markets, foreign exchange and stock using a range of information variables that

includes implied volatility derived from option prices. The �ndings of the study

indicated that implied volatility provides additional information about future volatility

in all three markets when compared to past continuous and jump components alone.

Furthermore, the study demonstrated that implied volatility serves as an unbiased

forecast in the foreign exchange and stock markets.
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Du and Kapadia (2012) proposed a novel approach to analyze the in�uence of

jumps on the VIX index of the Chicago Board Options Exchange. The researchers

developed a model-free jump and tail index, which allowed them to assess the

impact of jumps without relying on speci�c models or assumptions. By employing

this approach, they were able to examine the presence and signi�cance of jumps in

the VIX index, providing valuable insights into the behavior and dynamics of this

important volatility measure. This index was constructed by creating a portfolio of

risk-reversals using 30-day index options, allowing for the measurement of changes

in the intensity of return jumps over time. By utilizing this jump and tail index,

the researchers were able to document a signi�cant increase in jump fears during the

�nancial crisis. Speci�cally, they observed a 50-fold surge in the intensity of return

jumps, indicating heightened market volatility and uncertainty during that period.

The construction of the model-free jump and tail index provided valuable insights into

the dynamics of market jumps and their impact on the VIX index. By quantifying

the intensity of return jumps, market participants and analysts can better understand

and monitor market conditions, precisely during times of heightened market stress

and uncertainty such as �nancial crises.

Singania and Anchalia (2013) investigated the e�ects of the global �nancial

turmoil on stock market return volatility in Japan, Hong Kong, India and China

during the sub-prime crisis and Eurozone debt crisis. The researchers employed the

EGARCH model and analyzed the daily return data from 2005 to 2011 for major

stock market indices in these countries. The �ndings of the study revealed that the

sub-prime crisis had a positive e�ect on the volatility of stock returns in China, Japan,

and India. However, it did not have a signi�cant impact on the volatility of returns

in Hong Kong. On the other hand, during the Eurozone debt crisis period, it was

observed that the already highly volatile stock returns in China and India experienced

a negative impact on their volatility. These results highlight the di�erential e�ects
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of global crises on stock market volatility across the studied countries. The positive

impact of the sub-prime crisis on volatility in Japan, China, and India suggests

increased market uncertainty and turbulence during that period. Similarly, the

negative impact of the Eurozone debt crisis on the volatility of extremely volatile

stock returns in China and India indicates further destabilization of their markets

during that particular crisis period.

Crisóstomo (2014) focused on the implementation of the Heston Stochastic Volatility

Model. This model is widely used in �nancial mathematics to determine the changing

trends of prices of asset and their associated volatilities. Additionally, Rasmussen

(2016) conducted a comprehensive evaluation of �ve di�erent methods for calibrating

the local volatility function. The study employed a uniform testing framework to

compare these methods in terms of accuracy, smoothness, speed, and robustness.

By assessing these key metrics, the researchers aimed to determine the performance

and suitability of each calibration method. The evaluation criteria allowed for a

thorough analysis of the methods, considering their accuracy in reproducing observed

market prices, the smoothness of the resulting volatility surface, computational

speed, and the robustness of the calibration process. By comparing the di�erent

calibration methods within a consistent framework, the study shed light on their

relative strengths and weaknesses. Vasquez (2017) conducted an analysis of �rms

as a result of the gradient of the volatility structure and examined the returns for

straddle portfolios. Remarkably, the �ndings revealed that straddle portfolios with

high gradient of the volatility structure consistently outperformed straddle portfolios

with low gradient. This outperformance was both economically and statistically

signi�cant. The observed results remained robust across di�erent empirical setups,

indicating the reliability and consistency of the �ndings. Furthermore, the superior

performance of high-slope straddle portfolios could not be explained by traditional

factors commonly considered in �nance.
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Hofmann and Uhrig-Homburg (2018) examined the relationship between �tting

errors of equity option-implied volatility surfaces and intermediary frictions in

�nancial markets. They focused on quantifying the goodness of �t between observed

implied volatilities of options and estimates obtained from Option Metrics' smoothed

volatility surface. For each stock and day, the researchers calculated the root-

mean-square errors of �tting, which captured the discrepancy between observed

implied volatilities and estimated values. They found that this error metric increased

with idiosyncratic stock volatility, as well as various measures of option and stock

illiquidity. Building on these �ndings, Hofmann and Uhrig-Homburg (2018) proposed

an overarching measure for intermediary frictions. This measure was derived from the

value-weighted average of the stock-speci�c �tting errors, indicating the entire level of

frictions present in the market. By considering the �tting errors across a broad range

of stocks, the researchers were able to capture the impact of intermediary constraints

on equity and debt markets. Furthermore, the study uncovered a close link between

volatility noise and the constraints faced by intermediaries in the equity and debt

markets. The �ndings suggested that higher levels of volatility noise were associated

with tighter constraints on intermediaries, which could have implications for market

liquidity and stability.

Rahahleh and Kao (2018) assessed the forecasting performance of linear and

non-linear GARCH models for the Tadawul All Share Index (TASI) and the

Tadawul Industrial Petrochemical Industries Share Index (TIPISI) in the context of

petrochemical industries. The researchers compared the in-sample and out-of-sample

forecasting accuracy of various GARCH-class models. By evaluating the performance

of both linear and non-linear GARCH models, Rahahleh and Kao (2018) aimed

to determine which type of model provided more accurate forecasts for the TASI

and TIPISI indices. The in-sample analysis assessed the models' ability to �t

historical data, while the out-of-sample analysis examined how well the models

predicted future movements in the indices. Neha and Singhania (2018) examined
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the presence of volatility spillover e�ects in frontier markets and investigated

whether any interlinkages existed among these markets. The analysis utilized

monthly data from 2009 to 2016 for regional frontier markets. To investigate the

volatility spillover e�ects and market linkages, the researchers employed multivariate

GARCH models, speci�cally the BEKK . Using the BEKK test, it was found that

the e�ect of a shock originating from own market did not have a lasting impact.

However, shocks from other markets exhibited greater persistence. Additionally, from

the DCC test, volatility spillover e�ects were observed across all the markets analyzed.

Kuhe (2018) focused on examining volatility asymmetry and persistence with

exogenous breaks in the Nigerian stock market. The analysis utilized daily closing

quotations of stock prices from the Nigerian stock exchange, covering the period

from 3rd July 1999 to 12th June 2017. To measure the persistence of shocks and

leverage e�ects in varying distributional assumptions, the researchers employed

standard symmetric GARCH (1,1), asymmetric EGARCH (1,1) and GJR-GARCH

(1,1) models. These models were estimated both with and without considering

structural breaks. The empirical �ndings of the study revealed a high persistence of

shocks in the return series.Nevertheless, when incorporating structural breaks into

the models, a signi�cant reduction in shocks persistence was observed. This suggests

that the occurrence of structural breaks plays a crucial role in understanding the

dynamics of volatility in the Nigerian stock market. The study also revealed evidence

of asymmetry without leverage e�ects in the Nigerian stock market. Speci�cally, the

presence of asymmetry in volatility was detected, but the leverage e�ect, was not

signi�cant. Similarly, Botshekan et al. (2018) aimed to identify volatility spillovers

in the capital market. The study con�rmed the existence of asymmetric volatility

spillovers from the dollar exchange return, as well as conditional shocks from gold

coin and crude oil returns, to the stock index.

Salameh and Alzubi (2018) aimed to examine the sources of volatility shocks
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in the Dubai Financial Market Index. Speci�cally, they investigated whether these

shocks originated from the index's own past shocks or from external shocks such

as the FTSE and S & P 500. Empirical analysis found that the volatility of the

Dubai Financial Market Index was primarily driven by its own shocks, indicating

a signi�cant impact of endogenous factors on the index's volatility. Additionally, a

portion of the volatility was found to be in�uenced by external shocks, particularly

those originating from the S & P 500. However, the study did not �nd any signi�cant

contribution to the Dubai Financial Market Index volatility from external shocks

related to the FTSE. Moreover, the �ndings suggested that the Abu Dhabi stock

Exchange (APX) a�ected the volatility of the Dubai Financial Market Index. This

indicates a signi�cant relationship between the two stock exchanges, with the Abu

Dhabi stock Exchange in�uencing the volatility dynamics of the Dubai Financial

Market Index.

Oikonomikou (2018) examined the equity market linkages among Ukraine, Russia,

Poland and the Czech Republic during the period from January 2005 to December

2014. They employed a multivariate asymmetric EGARCH model to analyse the

relationship between these markets. The empirical �ndings provided by the study

demonstrated signi�cant return and volatility spillover e�ects across di�erent periods,

the "Great Recession," and the Ukrainian political crisis. Throughout the entire

sample period, there was proof of return co-movements, indicating a degree of

interdependence among the equity markets. Additionally, the results revealed a

strong persistence in volatility, suggesting that shocks and �uctuations in volatility

tend to persist over time. The own return e�ects of each market were found to be

more in�uential compared to the cross-market e�ects, and the correlations between

the markets increased. This indicates that market-speci�c factors played a dominant

role during this period, leading to a stronger impact on individual market returns.

Cao et al. (2019) examined the connection between the uncertainty of volatility
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measured as the volatility of volatility and future delta-hedged equity option returns.

The �ndings consistently showed that delta-hedged option returns decreased in the

face of higher uncertainty of volatility. This result held true for di�erent measures of

volatility, including the implied volatility, EGARCH from daily returns, and realized

volatility from high-frequency data.

McAlinn et al. (2020) investigated the impact of leverage e�ect on individual stocks by

relaxing the assumption of linearity. They proposed nonlinear generalizations of the

leverage e�ect within the Bayesian stochastic volatility framework to determine more

�exible leverage structures. To evaluate this e�ect in a practical way, they developed

an e�cient Bayesian sequential computation method. The study utilized a dataset

of 615 stocks comprising the S&P500 and Nikkei 225 indices. The empirical results

showed that the proposed nonlinear leverage e�ect model signi�cantly improved the

predictive performance for 89% of all stocks compared to the classical stochastic

volatility model.
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CHAPTER 3

MATERIALS USED

3.1 Overview

This chapter serves as a comprehensive overview of essential mathematical concepts

and models used in the study. The discussions on stochastic processes, polynomial

interpolation, splines, GARCH-type models, and model performance evaluation lay the

foundation for the subsequent chapters, providing the necessary theoretical framework

for the proposed model.

3.2 Stochastic Processes

Any process of random variables that are indexed by a parameter such as time is

termed a stochastic process (Ming, 2015). This index may be either discrete or

continuous and the possible values of these random variables are called the states

of the process. Commodity prices, interest rates, foreign exchange rates and stock

prices all follow the stochastic process (Murara, 2019). That is they cannot easily be

predicted.

If a probability space (Ω,F ,P), is considered, then a random variable Zt is a

measurable function Zt : Ω −→ R, where F is the σ−�eld, Ω is the sample space, and

P is a function that assigns probability to the events in F .

3.2.1 Filtration

Given each time t, a subset of events Ft ⊂ F is the set of those events whose truth or

otherwise are known at time t. As t increases, so does Ft : Ft ⊂ Fu, t ≤ u. The family

(Ft)t≥0 taken collectively is called the �ltration in connection with the stochastic

process Zt, t ≥ 0. Thus, the �ltration Ft represent the history of the process up to

time t.
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A stochastic process Zt on the same time set u is adapted to the �ltraton if,

∀t ∈ u, Zt is Ft-measurable. Thus, an adapted process is a process whose random

value is known at all times.

3.2.2 Standard Brownian Motion

A Standard Brownian Motion (SBM) sometimes referred to as the Wiener Process is

a stochastic process W (t)t≥0 with the following properties

i. W (0) = 0

ii. W (t)t≥0 has stationary and independent increment.

iii. The increment W (t) − W (s) is normally distributed with mean 0 and variance

t− s for 0 ≤ s < t.

3.2.3 Martingale

A process Zt adapted to F and satisfying E[Zt] < ∞, ∀t ∈ [0, u] is called a

submartingale if

E[Zu|F ] ≥ Zt,∀t ∈ [0, u]

and a supermartingale if

E[Zu|F ] ≤ Zt,∀t ∈ [0, u].

Zt is a martingale if it is both a submartingale and a supermartingale, that is if

E[Zu|F ] = Zt.

3.3 Interpolation

Interpolation refers to the process of constructing a smooth curve that passes through a

certain set of points, typically representing the graph of a function. It �nds applications

in various �elds such as data analysis industrial design, signal processing and numerical
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analysis. The goal of interpolation is to estimate values between the given points,

enabling the prediction or representation of intermediate data points with a continuous

curve (Figuero et al., 2016). Thus,interpolation is a basic tool for the approximation

of given functions. Consider a family of functions of a single varible x,

θ(x; a0, ..., an)

having n+1 parameters a0, ..., an whose values demonstrate the individual functions in

this family. The problem of interpolation for θ consist of evaluating these parameters

ai so that for n + 1 given real or complex pairs of numbers (xi, fi), i = 0, · · · , n,

∀xi ̸= xk for i ̸= k,

θ(x; a0, ..., an) = fi, i = 0, · · · , n

exists. The pairs (xi, fi) would be referred to as the support points.

3.3.1 Polynomial Interpolation

Polynomials are commonly used for approximations because they possess several

advantageous properties. They can be evaluated, di�erentiated, and integrated

e�ciently using basic arithmetic operations such as addition, subtraction,

and multiplication. This makes computations involving polynomials relatively

straightforward and computationally e�cient. Additionally, polynomials o�er

�exibility in terms of degree, allowing for a trade-o� between accuracy and

computational complexity. The simplicity and versatility of polynomials make

them a popular choice for approximation techniques in various mathematical and

computational applications(de Boor, 2001). A polynomial of order n is a function

of the form

p(x) = a0 + a1x+ · · ·+ anx
n =

n∑
j=0

ajx
j (3.1)

The collection of all polynomials of order n forms a linear space (de Boor, 2001). In the

context of interpolation, the polynomial used for �tting the given set of points has a

degree that matches the number of degrees of freedom required to accurately represent
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the function at those points. The degrees of freedom in the polynomial correspond

to the number of parameters that can be adjusted to ensure the polynomial passes

through each of the speci�ed points.

3.4 Splines

Spline is commonly used to describe a broad class of functions utilized in various

applications that involve data interpolation and smoothing (Orosi, 2012). Splines

are particularly useful when there is a need to represent a smooth curve or surface

that passes through a given set of points. These functions are often employed in

�elds such as computer graphics, computer-aided design, data analysis, and numerical

modelling. Splines o�er �exibility and versatility, allowing for e�cient interpolation

and smoothing of data by providing a continuous and di�erentiable representation

of the underlying phenomenon. The foundations of modern mathematical theory of

spline approximation were laid by I. J. Schoenberg in 1946 (Schoenberg, 1959). In

that paper, splines was established for use in new approach to smoothing in statistical

data. Let X = (x0, x1 · · ·xk) be a vector of reals such that xi ≤ xi+1. A function S

is called a (polynomial) spline function of degree m + 1 (order m) if it satis�es the

following two conditions:

1. S is a polynomial of degree m− 1 on each subinterval (xi, xi+1)

2. S and its derivatives of order 1, 2, · · ·m − 2 are everywhere continuous, that is

S ∈ C [m−2]

The points xi are called the knots and X is the knot vector.

3.4.1 Knot Vector

In the context of spline interpolation and approximation, a knot vector refers to a

collection of increasing parameter values that de�ne the boundaries of the knot spans

within the parameter space. The parameter space can be thought of as an abstract

space where the basis functions used in the spline representation are de�ned. The
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knot vector divides the parameter space into contiguous intervals called knot spans,

with each span corresponding to a speci�c set of basis functions. The knot vector is

written as E = [t1, t2 · · · tn+p+1] where ti is the i
th knot, i is the knot index, p is the

polynomial order and n is the number of basis functions used to create the B-spline

curve. The knot vector serves as a fundamental component in the generation of B-

splines. It provides the necessary information to construct the basis functions used in

B-spline interpolation or approximation. If the knot sequence is uniform and also a

subset of Z, then the spline is referred to as a cardinal spline.

3.4.2 B-Spline

A B-spline curve is a mathematical function that can be represented as a combination

of B-spline basis functions. These basis functions are piecewise polynomial functions

with local support, meaning they are only nonzero over a speci�c interval (Sherar,

2004). For a partition of knot sequence (li), the B-splines of order 1 for this knot

sequence are the characteristic functions of this partition and it is de�ned as;

Bi1(l) =


1, if li ≤ l < li+1

0, otherwise

(3.2)

The key requirement is that the B-splines must collectively form a complete and non-

overlapping set, ensuring that their sum at any given point is always equal to 1. That

is ∑
i

Bi1(l) = 1, ∀l (3.3)

In particular, li = li+1 implies Bi1 = Xi = 0.

From the �rst order B-splines, higher-order B-splines can be obtained by recurrence:

Bik := ψikBi,k−1 + (1− ψi+1,k)Bi+1,k−1 (3.4)
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where

ψik(l) :=


l−li

li+k−1−li
, if li ̸= li+k−1

0, otherwise

(3.5)

Thus, the second-order B-spline is expressed as

Bi2 = ψi2Xi + (1− ψi+1,2)Xi+1 (3.6)

and in general, consists of two nontrivial linear pieces which join continuously to form

a piecewise linear function which becomes zero outside the interval [li, li+2).

The third-order B-spline is given by

Bi3 = ψi3Bi2 + (1− ψi+1,3)Bi+1,2 (3.7)

= ψi3ψi2Xi + (ψi3(1− ψi+1,2) + (1− ψi+1,3)ψi+1,2)Xi+1

+(1− ψi+1,3)(1− ψi+2,2)Xi+2

This shows that, in general Bi3 consists of 3 (nontrivial) quadratic pieces.

After k − 1 steps of the recurrence, Bik is obtained in the form

Bik =
i+k−1∑
j=i

bjkXj (3.8)

with each bjk a polynomial of degree less than k since it is the sum of products of k−1

linear polynomials. Thus a B-spline of order k consists of polynomial pieces of degree

less than k.

3.4.3 Evaluation of B-spline

The recurrence relations imply that

s =
∑
i

Bikai =
∑
i

Bik−1a
[1]
i (3.9)
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with

a
[1]
i = (1− ψik)ai−1 + ψikai (3.10)

Note that a
[1]
i is not a constant, but is the straight line through the points (li, ai−1)

and (li+k, ai). In particular, a
′
i(l) is a convex combination of ai−1 and ai if li ≤ l ≤

li+ k − 1. After k − 1 fold iteration of this procedure,

s =
∑
i

Bi1a
[k−1]
i (3.11)

which shows that

s = a
[k−1]
i (3.12)

on [li, li+1). See de Boor (2001) for details.

3.5 ARCH/GARCH-TYPE MODELS

With the swift increase of the �nancial market and the increasing complexity of

�nancial instruments, there is a growing need for sophisticated statistical methods

to gain a deeper understanding of �nancial time series. It is widely recognized that

predicting daily returns of �nancial assets, such as stock returns, is a challenging

task (Yanan, 2014). In this regard, time-varying volatility models have been widely

employed in the analysis of time series data, with the ARCH model being the simplest

and most commonly used approach. These models allow for the modelling of changing

volatility patterns over time, enabling researchers to better capture and analyze the

dynamics of �nancial markets.

3.5.1 ARCH MODEL

The ARCH models have been used extensively to model volatility. The ARCH(p)

model for the series xt is de�ned by specifying the conditional distribution of xt given

the �ltration. Let Ft−1 be the �ltration up to time t− 1. The ARCH(p) model for the
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series xt is given by

xt|Ft−1 ∼ N(0, ht) (3.13)

ht = αo +

p∑
i=1

αix
2
t−i (3.14)

where αo > 0, αi ≥ 0 ∀i and
∑p

i=1 αi < 1 are required to be satis�ed to ensure non-

negative and �nite unconditional variance of stationary xt series. Despite its usefulness,

the ARCH model has some limitations. One of the challenges is that when using a large

order of the ARCH model, a signi�cant number of parameters need to be computed.

This can be computationally intensive and may lead to issues of over�tting (Lama

et al., 2015). Another shortcoming of the ARCH model is related to the conditional

variance. In an ARCH(p) model, the unconditional autocorrelation function (ACF)

of squared residuals, if it exists, tends to decay rapidly. However, in practice, this

decay is often slower than what is typically observed. This discrepancy is especially

noticeable unless the maximum lag p is set to a large value (Lama et al., 2015).

3.5.2 Evaluating the ARCH(p) Model

The ARCH(p) model model parameters are evaluated by maximizing the likelihood

function. Given the assumption of normality, the likelihood function for an ARCH(p)

model can be formulated as follows:

f(x1 · · · , xT |α) = f(xT |FT−1)f(xT−1|FT−2) · · · f(xp+1|Fp)f(x1, · · · , xp|α)

=
T∏

t=p+1

1√
2πht

exp

(
− x2t
2ht

)
× f(x1 · · ·xp|α) (3.15)

Here, α = (α0, α1, · · ·αp)
′ and f(x1 · · · xp|α) is the joint probability density function

of x1 · · · xp.

Often the conditional likelihood function

f(xp+1 · · · , xT |α, x1 · · · , xp) =
T∏

t=p+1

1√
2πσ2

t

exp

(
− x2t
2σ2

t

)
(3.16)
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is used because the speci�c form of f(x1 · · ·xp|α) is complex. σ2
t can be computed

recursively when using the conditional likelihood (Tsay, 2005). Taking the logarithm

of the conditional likelihood simpli�es its usage. The logarithm of the conditional

likelihood is

L(xp+1 · · · , xT |α, x1 · · · , xp) =
T∑

t=p+1

(
−1

2
ln(2π)− 1

2
lnht −

1

2

x2t
ht

)
(3.17)

3.5.3 GARCH MODELS

The GARCH model, established by Bollerslev (1986), was proposed as an improvement

over the shortcomings of the ARCH model. In the GARCH model, the conditional

variance is not only dependent on the square of previous shocks but also on its own

lagged values Dralle (2011). It is formulated as follows:

xt = ϵt
√
ht

ht = αo +

p∑
i=1

αix
2
t−i +

q∑
j=1

βjht−j (3.18)

where ϵt
iid∼ N(0, 1). A su�cient requirement for the conditional variance to be positive

is: αo > 0, αi ≥ 0, i = 1, 2, · · · , p, βj ≥ 0, j = 1, 2, · · · , q. The GARCH(p,q) process is

weakly stationary iff
∑p

i=1 αi +
∑q

j=1 βj < 1 (Lama et al., 2015). The most popular

GARCH model in applications is the GARCH(1,1) model.

The GARCH(1,1) Model

The GARCH(1,1) model is given by

xt = ϵt
√
ht

ht = α0 + α1x
2
t−1 + β1ht−1 (3.19)

According to Equation 3.19, it is evident that when x2t−1 or ht−1 takes on a large value,

it leads to a huge value for ht. Consequently, a large value of x
2
t−1 tends to be followed
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by another large value of x2t . This phenomenon gives rise to clustering of volatility,

which is commonly observed in �nancial time series Tsay (2005).

The GARCH(1,1) model can be de�ned as

x2t = α0 + (α1 + β1)x
2
t−1 + vt − β1vt−1 (3.20)

where vt = x2t −ht . The expression indicates that the squared errors process follows an

ARMA(1,1) model with uncorrelated vt terms Box et al. (2016). This representation

of the model is valuable for analyzing the characteristics of the GARCH(1,1) model.

Parameter Estimation For the GARCH(1,1) Model

To estimate the parameters of a GARCH(1,1) model, it is necessary to provide a

starting value for the past conditional variance. Bollerslev (1986) proposes using the

unconditional variance of x2t as a suitable starting point for this variance. Hence

ht =
α0

1− α1 − β1
(3.21)

can be used to determine the starting point for the past conditional variance (Dralle,

2011).

In the case of normality assumption, the maximum likelihood estimation method can

be employed to evaluate the parameters (θ = (α0, α1, β1)
′) of the GARCH(1,1) model.

The likelihood can be expressed as

f(x1 · · · , xT , h1, h2, · · · , hT |θ) = f(xT , hT |FT−1)f(xT−1, hT−1|FT−2)× (3.22)

· · · × f(x2, h2|FT−2)f(x1, h1|θ)

=
T∏
t=2

1√
2πht

exp

(
− x2t
2ht

)
× f(x1, h1|θ)

where θ = (α0, α1, β1)
′. The precise form of f(x1, h1|θ) is complex and it is therefore

often simpler to condition on x1 and h1 and then to use the conditional likelihood in
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equation (3.23)

f(x2 · · · , xT , h2, · · · , hT |θ;x1, h1) = f(xT , hT |FT−1) · · · f(x2, h2|θ;x1, h1)

=
T∏
t=2

1√
2πht

exp

(
− x2t
2ht

)
(3.23)

to evaluate θ. The conditional log-likelihood is expressed as

L(θ|x1, h1) = ln f(x2, x3, · · · , xT , h2, h3, · · · , hT |x1, h1;θ)

=
T∑
t=2

(
−1

2
ln(2π)− 1

2
lnht −

1

2

x2t
ht

)
(3.24)

(Francq and Zakoian, 2010).

Evaluating Parameter with Non-Normal Distributions

When �tting GARCH models to real data, the normality assumption is often ignored.

This violation can lead to several issues. First and foremost, the parameter value

may become inconsistent. Again, it becomes impossible to give legitimate conditional

forecasting intervals for xT+1 given FT . Therefore, it is bene�cial to use a distribution

that exhibits leptokurtosis, indicating heavy tails and excess kurtosis (Herwatz, 2004).

GARCH with Generalized Error Distribution (GED)

The probability density function (PDF) of a random variable xt with shape parameter

v, mean zero, and variance ht can be expressed as follows:

f(xt|θ, v) = vexp

(
−1

2

∣∣∣∣ xt

λ·
√
ht

∣∣∣∣v)(2 v+1
v Γ

(
1

v

)
λ·
√
ht

)−1

(3.25)

where λ is given by

λ =

(
Γ
(
1
v

)
2

2
vΓ
(
3
v

)) 1
2

(3.26)
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3.5.4 EGARCH MODEL

The EGARCH model o�ers another asymmetric model by incorporating the leverage

e�ects, which account for the e�ect of changes in price on the conditional variance.

(Mohammed et al., 2020). It was �rst introduced by (Nelson, 1991). It can be expressed

as

xt = ϵt
√
ht

lnht = ω +

q∑
j=1

βj lnht−j +

p∑
i=1

γi

(
|xt−i|√
ht−i

− E

(
|xt−i|√
ht−i

))
+

p∑
i=1

αi
xt−i√
ht−i

(3.27)

By using the logarithmic form, the parameters in the model can take negative values

while ensuring that the conditional variance remains non-negative (Dash and Dash,

2016).

3.5.5 GJR-GARCH MODEL

This model, developed by Glosten et al. (1993), is another asymmetric model that

incorporates the leverage e�ect. The model is written as

ht = ω +

p∑
i=1

αix
2
t−i +

q∑
i=1

βjht−j +

p∑
k=1

γkx
2
t−kIt−k (3.28)

where;

It−k =


1, if xt−k < 0

0, if xt−k ≥ 0

It−k is an indicator function.

3.5.6 APARCH

The general structure of the Asymmetric Power ARCH (APARCH) as introduced by

Ding et al. (1993) is as follows;

xt = ϵt
√
ht (3.29)
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σδ
t = α0 +

p∑
i=1

αi(|xt−i| − γixt−i)
δ +

q∑
j=1

βjσ
δ
t−j (3.30)

where α0 > 0, δ ≥ 0, αi ≥ 0, i = 1, · · · , p, −1 < γi < 1, βj ≥ 0, j = 1, · · · , q and

σt =
√
ht. The model enforces a BoxCox power transformation of the conditional

standard deviation process.

3.6 Testing for ARCH E�ect

To examine the presence of ARCH e�ect, the residuals xt from the mean equation of

the return series are used. Two commonly employed tests can be used to assess the

ARCH e�ect. The �rst test utilizes the Ljung-Box statistics Q(m), which are applied

to the series x2t . The null hypothesis of this test assumes that the �rst m lags of the

autocorrelation function of the x2t series are zero (Tsay, 2005). The Ljung-Box statistic

is given by

Q(m) = T (T + 2)
m∑
k=1

ρ̂k
T − k

(3.31)

where T is the sample size, m is the number of lags, and ρ̂k is the estimate of the kth

autocorrelation of the squared residuals. ρ̂k is given by

ρ̂k =

∑T
t=k+1 (x

2
t − µ̂)

(
x2t−k − µ̂

)∑T
t=1

(
x2t−k − µ̂

)2 (3.32)

where µ̂ is the sample mean which is given by

µ̂ =
1

T

T∑
t=1

x2t (3.33)

When the null hypothesis is true, the Ljung-Box statistics Q(m) follows an asymptotic

chi-squared distribution with m degrees of freedom (Box et al., 2016). The null

hypothesis is rejected if Q(m) > χ2
m(α).Here, χ

2
m(α) is the 100(1 − α) percentile of a

chi-squared distribution with m degrees of freedom (Tsay, 2005)

The second test is the Lagrange multiplier test. The Lagrange multiplier test is
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equivalent to the F statistic for testing αi = 0 for i = 1, 2, · · · ,m in the regression

x2t = α0 + α1x
2
t−1 + · · ·+ αmx

2
t−m + ϵt (3.34)

for t = m+1, · · · , T , where ϵt is the error term, m is a speci�ed integer, and T is the

sample size (Lee, 1991). The null hypothesis is then

H0 : α1 = · · · = αm = 0 (3.35)

Under the null hypothesis, the test statistic given by

F =
(SSR0 − SSR1) /m

SSR1/ (T − 2m− 1)
(3.36)

is asymptotically distributed as a chi-squared distribution with m degrees of freedom.

The null hypothesis is rejected if F > χ2
m(α) , where χ

2
m(α) is the upper 100(1 − α)

percentile of a chi-squared distribution with m degrees of freedom (Tsay, 2005). Here,

SSR0 =
T∑

t=m+1

(
x2t − ū

)2
(3.37)

and

SSR1 =
T∑

t=m+1

(ϵ̂t)
2 (3.38)

where ū is the mean of x2t and ϵ̂t is the least squares residual from the regression in

equation 3.34.

3.7 Realized Volatility

The realized volatility is a model-free estimate of volatility which is obtained by

summing the squared intraday returns (Floros et al., 2020 ; Zhang et al., 2021) It
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was proposed by Andersen and Bollerslev (1998) and is de�ned as

RVt,n =
n+1∑
j=2

r2t,j (3.39)

where rt,j = 100(lnPt,j − lnPt,j−1) is an intraday return (j = 2, ..., n + 1) on day t .

Pt,j is the last price at time j on day t . Therefore, there are n intervals and n + 1

intraday closing prices in one trading day. The realized volatility is a valuable tool

as it o�ers a relatively precise measure of volatility, serving various purposes such as

volatility prediction and evaluation of predictions.

3.8 Model Performance Evaluation

The performance of the models in accurately predicting realized volatility is evaluated

using four di�erent loss functions, as it is not clear which one is most suitable for

assessing volatility models (Hansen and Lunde, 2005). The employed loss functions

include RMSE, MAPE, TIC, and QLIKE.

3.8.1 RMSE

The RMSE is used to evaluate the predicting performance of the proposed model. It is

the most favoured measure among practitioners and academics Lim and Kun (2013).

It is given by

RMSE =

√√√√ 1

T

T∑
t=1

(RVt − ht)2 (3.40)

The RMSE gives equal weights to all the errors, irrespective of any time period.

3.8.2 MAPE

The Mean Absolute Percentage Error (MAPE) is a measure of the accuracy of a

forecast or prediction. It is calculated as the average of the absolute percentage errors

between the forecasted value and the real value.
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The formula for MAPE is:

MAPE =
1

T

T∑
t=1

∣∣∣∣RVt − ht
RVt

∣∣∣∣× 100 (3.41)

MAPE is expressed as a percentage, and a lower value indicates a better �t between

the actual and forecasted values.

3.8.3 Theil's Inequality Coe�cient (TIC)

TIC is a statistical measure used to assess the degree of inequality in a distribution.

It was �rst introduced by Theil, H. (1969) as a way to quantify the gap between an

ideal situation where everyone has the same income (or any other variable of interest)

and the actual situation. TIC measures the relative di�erence between the observed

values and the expected values under perfect equality. The formula for TIC is:

TIC =

√
1
T

∑
t (RVt − ht)2√

1
T

∑
tRV

2
t +

√
1
T

∑
t h

2
t

(3.42)

In general, a model with a smaller TIC value is considered to be better than a model

with a larger TIC value. This is because a smaller TIC value indicates that the model

is better at predicting the actual outcomes.

3.8.4 QLIKE

QLIKE is a loss function used in statistical modelling to assess the accuracy of a

prediction model. According to Hansen and Lunde (2005), the QLIKE loss function

is de�ned as:

QLIKE =
1

T

T∑
t=1

(
ln(h2t ) +

RV 2
t

h2t

)
(3.43)

QLIKE penalizes more heavily the predictions that deviate from the target quantile

for the given level, while still taking into account the overall accuracy of the model.

The lower the value of QLIKE, the better the performance of the model.
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3.8.5 Average Superior Predictive Ability (aSPA)

The aSPA is used to test for average multi-horizon superior predictive ability. It

enables the possibility of compensating for inadequate performance at certain horizons

with exceptional performance at other horizons. It was proposed by Quaedvlieg (2021).

The test for aSPA is based on the loss di�erential given by

dijt = Li,t − Lj,t (3.44)

The associated hypothesis is given as

H0,aSPA : µAvg
i,j ≤ 0

H1,aSPA : µAvg
i,j > 0 (3.45)

A simple studentized statistics takes the form

taSPA,ij =

√
T d̄ij
ζij

(3.46)

Here, µij = E(dij,t) and ζij =
√
w′Ωijw. w are weight given to the loss di�erential

and Ωij is the covariance matrix Quaedvlieg (2021)
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CHAPTER 4

PROPOSED MODEL

4.1 Overview

This chapter presents the model formulation. This chapter describes the development

of the BSGARCH (1,1) model, including its mathematical expressions and the

assumptions made during its derivation.

4.2 Model Formulation

Let (Φ,F ,P) be a probability space and let Ft−1 be the information through t−1 which

is produced by a stochastic process Xt and assume that under the probability measure

P, Xt is given by

Xt = µt + σtvt

σ2
t = f(Xt−1, σ

2
t−1) (4.1)

Here, vt is i.i.d. random variable such that vt ∼ N(0, 1), µt = E(Xt|Ft−1) and

σ2
t = var(Xt|Ft−1). Ft−1 is the �ltration generated by the stochastic process Xt.

Generally, in �nancial application,it is not necessary to enable a large degree of

�exibility in the dynamics of the conditional mean (Audrino and Bühlmann, 2009).

Thus, the conditional mean is assumed to be zero. That is,

µt = 0 (4.2)

The focus will be on modelling the changing dynamics of volatility over time.

σ2
t = var(Xt|Ft−1). Estimating and predicting volatility play a crucial role in the

�nancial industry due to its fundamental signi�cance in various practical applications.

Achieving accurate volatility predictions is a primary objective in both academic
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research and practical applications, driving the search for e�ective methodologies.

The squared volatility dynamics are captured using a method that involves

decomposing the lagged squared volatility residuals into a basic univariate B-spline

basis function, resulting in an additive expansion. In details, the volatility is modelled

as

σ2
t = g(xt−1, σ

2
t−1) +

T∑
i=1

δiϱi(vt−1)+ (4.3)

Here, the univariate B-spline basis function
∑n

i=1 δiϱi(vt−1)+ is used to improve the

simple parametric initial function g(xt−1, σ
2
t−1). Where,

ϱi(vt−1)+ =


ϱi(vt−1), if ϱi(vt−1) ≥ 0

0, if ϱi(vt−1) < 0

(4.4)

The inclusion of Equation 4.4 is essential to guarantee that Equation 4.3 remains

positive at all times. ϱi(vt−1) is the basis function. vt−1 is the residual at time t − 1

from the classical GARCH (1,1) model. Assuming that all δi ≡ 0 which is feasible,

then the conventional parametric GARCH (1,1) model is achieved.

B-splines provide a high degree of �exibility in shaping the conditional variance

function, relying on the choice of number of knots and degree for each basis function.

In this thesis, a B-spline of degree 3 (order 2) is selected to allow the residuals from

squared volatility lags to follow a quadratic function. The number of knots plays a

role in determining the approximation accuracy. Generally, a huge number of knots

leads to a good approximation.

4.3 Parameter Estimation for The Proposed Model

The parameters in the �rst term of equation (4.3) are evaluated using same method as

the conventional parametric GARCH (1,1) model, which is the maximum likelihood

estimation. The main emphasis here is placed on evaluating the parameters of the
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second term of equation (4.3). Considering equation 4.5

f̂ =
n∑

t=1

δiϱi(vt−1) (4.5)

where δi represent control points and ϱi(.) is the basis function such that∑n
i=1 ϱi(vt−1) = 1. The estimate is found by minimizing the residual sum of squares.

That is

argmin
f

(
n∑

i=1

(vt − f(vt−1))
2 + λ ∥f ′′(vt−1)∥22

)
(4.6)

This is an in�nite-dimensional optimization problem through all functions f for which

the criterion is �nite. The criterion balances the trade-o� between minimizing the least

squares error and other considerations. In this context, the term λ |f ′′(vt−1)|22 serves as

a roughness penalty that regulates the variability and smoothness of the function. The

tuning parameter λ is a positive value that determines the robustness of the penalty.

In vector representation, Equation (4.5) is expressed as

f̂ = δΨ (4.7)

with

Ψij = ϱj(vt−1) (4.8)

Equation (4.6) can now be written as

S = argmin
f

(
(y − f)T (y − f) + λ ∥f ′′∥22

)
= argmin

f

(
(y − δΨ)T (y − δΨ) + λδTΩδ

)
(4.9)

The matrix Ω is intentionally designed to be positive semide�nite, serving as the

penalty matrix. It de�nes a seminorm on Rn, allowing us to express the seminorm

|f ′′|2 of f in terms of the basis expansion parameters represented by ϱi. Therefore, Ω
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can be formulated as follows:

Ωij =

∫ b

a

ϱ
′′

i (vt−1)ϱ
′′

j (vt−1)dvt−1 (4.10)

where a and b are consecutive knots.

The partial derivative of S with respect to δ is

∂S

∂δ
= δ

(
ΨΨT + λΩ

)
−ΨTy (4.11)

Equating ∂S
∂δ

to 0 and �nding δ, we get

δ̂ =
(
ΨΨT + λΩ

)−1
ΨTy (4.12)

Therefore, equation (4.7) can now be rewritten as

f̂ = Ψ
(
ΨΨT + λΩ

)−1
ΨTy (4.13)

where Ω is determined as follows;

Let ϱ
′′
i (vt−1)ϱ

′′
j (vt−1) = qij(vt−1) then, Equation (4.10) can be expressed as

∫ b

a

qij(vt−1)dvt−1 (4.14)

Newton's divided di�erence polynomial is used to express qij(vt−1) as

qij(vt−1) = b0 + b1(vt−1 − a) + b2(vt−1 − a)

(
vt−1 −

a+ b

2

)
(4.15)
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where

b0 = qij(a)

b1 =
qij
(
a+b
2

)
− qij(a)

a+b
2

− a

b2 =

qij(b)−qij(a+b
2 )

b−a+b
2

− qij(a+b
2 )−qij(a)
a+b
2

−a

b− a
(4.16)

Integrating Newton's divided di�erence polynomial gives

b− a

6

[
qij(a) + 4qij

(
a+ b

2

)
+ qij(b)

]
= Ω (4.17)

The optimal tuning parameter λ must be determined now that the penalty matrix Ω

has been formed. In order to produce accurate curve estimator, it is crucial to identify

the optimal tuning parameter, λ.

4.3.1 Generalized Cross Validation

Various methods have been proposed for evaluating the optimal tuning parameter λ,

which include the ordinary cross validation (OCV), generalized cross validation (GCV),

and modi�cations of OCV such as the leave-(2l+1)-out model proposed in (Chu and

Marron, 1991). For this study, the GCV method described in Maharani and Saputro

(2021) was adopted due to its asymptotic optimality and other advantages over other

methods. The GCV method is expressed as:

GCVλ =

1
n

∑n
i=1

[
vt − f̂(vt−1)

]2
[
1− df

n

]2 (4.18)

where,

df = trace(Ψ
(
ΨΨT + λΩ

)−1
ΨT ) (4.19)
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CHAPTER 5

RESULTS, ANALYSIS AND DISCUSSION

5.1 Overview

In this chapter, the performance of the new BSGARCH (1,1) model in forecasting

volatility of both simulated and real �nancial time series is compared with the

performance of other popular models such as GARCH, EGARCH, GJRGARCH, and

APARCH using performance metrics such as RMSE, MAPE, TIC and QLIKE.

5.2 Simulated Data

Following a similar approach to Li and Mark (1994), the data producing process is

represented by a time series Wt that satis�es equation (5.1).

Wt = ϕWt−1 + εt (5.1)

First, εt ∼ N(0, σ) where the conditional variance σ2 is expressed in equation (5.2)

σ2
t = α0 + α1ε

2
t−1 (5.2)

The simulated data was divided into two periods: an in-sample period consisting of

the �rst 70% of the data, and an out-of-sample testing period consisting of the 30%

left. The estimation of the models focused solely on the conditional variance, with

the conditional mean assumed to be zero. During the in-sample period, all model

parameters were estimated using the available data. These estimated parameters

were used for forecasting purposes. The forecasting performance of �ve models -

GARCH(1,1), EGARCH(1,1), GJRGARCH(1,1), APARCH(1,1) and the proposed

BSGARCH(1,1) was evaluated under six di�erent scenarios. The process was repeated

1000 times, and the average forecasting performance across these repetitions was

analysed.
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Scenario 1

This scenario involves the generation of 255 observations using the parameter values:

ϕ = 0.1, α0 = 0.1, α1 = 0.3. The forecasting performance of the �ve di�erent models,

including BSGARCH (1,1), APARCH (1,1), GARCH (1,1), GJRGARCH (1,1) and

EGARCH (1,1), was evaluated and compared. The results of this evaluation are

presented in Figure 5.1. It was indicated that the BSGARCH (1,1) model was superior

to the conventional GARCH-type models in terms of QLIKE and RMSE, which are

indicators of volatility prediction accuracy. Although the disparities in TIC and MAPE

between the models were relatively minor, the results suggest that the new BSGARCH

(1,1) model is a superior option compared to the classical GARCH-type models for

this speci�c scenario, as it delivers more accurate volatility predictions.

62

Digitized by UMaT Library



Figure 5.1 Performance Evaluation: Averaged Results for n = 255 Data Points

with Parameters α0 = 0.1, ϕ = 0.1, α1 = 0.3

Scenario 2

In this scenario, a dataset of 2000 observations was generated using speci�c parameter

values α0 = 0.1, ϕ = 0.1, α1 = 0.3 . As in scenario 1, the forecasting performance of

the models were evaluated. The results are presented in Figure 5.2. It was revealed

that the new BSGARCH (1,1) model consistently outperformed the conventional

GARCH-type models across all performance metrics implemented in this thesis.

This suggests that the BSGARCH (1,1) model is better suited for predicting future

volatility of �nancial time series with low ARCH parameters, such as the one

generated in this scenario. These results highlight the potential of the BSGARCH

(1,1) model for improving the accuracy of volatility forecasts in �nancial time series

analysis, especially in scenarios where the ARCH parameter is relatively low.
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Figure 5.2 Performance Evaluation: Averaged Results for n = 2000 Data Points

with Parameters α0 = 0.1, ϕ = 0.1, α1 = 0.3

Scenario 3

In Scenario 3, 255 data points were produced using the parameter values;

ϕ = 0.6, α0 = 0.4, α1 = 0.6 and evaluated the forecasting performance of di�erent

models using various performance metrics, which are presented in Figure 5.3. The

results revealed that in this particular scenario, there was little variation in the

forecasting performance among all the models. This means that none of the models

performed signi�cantly better or worse than the others in forecasting the volatility of

�nancial time series with the given parameters.

While this may seem like a negative result, it is an important �nding as well.
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It suggests that for �nancial time series with similar characteristics to those generated

in this scenario, di�erent GARCH-type models and the BSGARCH model may

be equally e�ective for forecasting their volatility. This could give practitioners

more �exibility in choosing which model to use, depending on factors such as their

familiarity with the model or computational e�ciency.

However, it is worth noting that this �nding may not necessarily hold true for

�nancial time series with di�erent characteristics, and practitioners should still

carefully consider which model to use based on their speci�c needs and the properties

of the data they are working with.

Figure 5.3 Performance Evaluation: Averaged Results for n = 255 Data Points

with Parameter Values α0 = 0.4, ϕ = 0.6, α1 = 0.6

Scenario 4

In Scenario 4, 2000 data points were produced via the parameter values; ϕ = 0.6, α0 =

0.4, α1 = 0.6 and evaluated the forecasting performance using various performance
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metrics, which are presented in Figure 5.4. The �ndings indicated that the new

BSGARCH (1,1) model consistently outperformed the conventional GARCH-type

models across all performance metrics in this particular scenario. This is an important

�nding, as it suggests that the BSGARCH model can be a useful tool for practitioners

who want to forecast the volatility of �nancial time series with moderate levels of

ARCH e�ects.

Figure 5.4 Performance Evaluation: Averaged Results for n = 2000 Data Points

with Parameter Values α0 = 0.4, ϕ = 0.6, α1 = 0.6

Scenario 5

In scenario 5, a �nancial time series was generated with 255 observations using the

parameter values α0 = 0.6, ϕ = 0.8, α1 = 0.9. The predictive performance of di�erent

models was determined and compared using the various performance metrics. The

results as given in Figure 5.5 showed that the new BSGARCH (1,1) model exhibited

better performance as compared to the conventional GARCH-type models in predicting

the volatility of the �nancial time series in this particular scenario. The predictive

performance of BSGARCH (1,1) was measured using the various performance metrics,
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and it had smaller values for all of them compared to the other models considered.

This shows that the BSGARCH (1,1) model is e�ective in predicting the volatility of

�nancial time series with the given parameter values.

Figure 5.5 Performance Evaluation: Averaged Results for n = 255 Data Points

with Parameters α0 = 0.6, ϕ = 0.8, α1 = 0.9

Scenario 6

In Scenario 6, the performance of various models was evaluated for 2000 observations

produced with the parameter values α0 = 0.06, ϕ = 0.8, α1 = 0.9. The forecasting

performance was assessed using di�erent metrics, and the results were given in Figure

5.6. The new BSGARCH (1,1) model was found to have the lowest values in all

the performance metrics, indicating its superior forecasting accuracy. This implies

that the BSGARCH (1,1) model is more e�ective than conventional GARCH-type

models in predicting the volatility of �nancial time series with high ARCH parameters.

The results of this scenario are consistent with the �ndings of the previous

scenarios, where the new BSGARCH (1,1) model consistently outperformed other
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models, indicating the robustness and e�ectiveness of the proposed model.

Figure 5.6 Performance Evaluation: Averaged Results for n = 2000 Data Points

with Parameter Values α0 = 0.6, ϕ = 0.8, α1 = 0.9

The new BSGARCH (1,1) model outperformed the GARCH-type models in all the

performance metrics used in all the 6 scenarios, except for Scenario 4, where the

di�erence in forecasting performance was insigni�cant. These results indicate that the

BSGARCH (1,1) model could be a useful tool for forecasting the volatility of �nancial

time series in various market conditions.

In addition to the 6 scenarios discussed earlier, another simulation was conducted

to test the performance of the models when εt follows a normal distribution with a

time-varying deterministic volatility component. The volatility component was set

to follow equation (5.3) with parameter values α0 = 0.6, ϕ = 0.8, α1 = 0.9 and the

results were averaged over 1000 replications with 255 and 2000 observations.

σ2
t = α0 + α1ε

2
t−1 + gt (5.3)
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where gt represents a time-varying persistent deterministic volatility component, which

was de�ned according to equation (5.4).

gt = sin(
2πt

n
) (5.4)

The performance of the models was then determined using the various metrics in

the previous section and the results for n = 255 and n = 2000 observations are

presented in Figure 5.7 and Figure 5.8 respectively. The BSGARCH (1,1) model was

found to outperform the conventional GARCH-type models in all metrics in Figure

5.8. However, in Figure5.7, the performance of all models was comparable, except for

QLIKE metric where the new BSGARCH (1,1) model outperformed the other models.

These �ndings suggest that the new BSGARCH (1,1) model can e�ectively forecast

the volatility of �nancial time series under di�erent scenarios, including those with

normal error distribution and time-varying deterministic volatility component.

Figure 5.7 Performance Evaluation: Averaged Results for n = 255 Data Points

with Parameter Values α0 = 0.6, ϕ = 0.8, α1 = 0.9 and ht = α0+α1ε
2
t−1+gt
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Figure 5.8 Performance Evaluation: Averaged Results for n = 2000 Data Points

with Parameter Values α0 = 0.6, ϕ = 0.8, α1 = 0.9 and ht = α0+α1ε
2
t−1+gt

In summary, simulation study was undertaken in this session to assess and compare the

forecasting performance of the new BSGARCH (1,1) model with that of conventional

GARCH-type models in predicting the volatility of �nancial time series. The study

considered six di�erent scenarios using data generated from equation (5.1) and

equation (5.2). Each scenario represented a varying degree of ARCH e�ect in the

data. The �rst two scenarios were characterized by a low ARCH parameter, indicating

a relatively weak presence of autoregressive conditional heteroscedasticity. The third

and fourth scenarios had a moderate ARCH parameter, representing a moderate

level of volatility clustering. Finally, the �fth and sixth scenarios had a high ARCH

parameter, signifying a strong presence of volatility persistence and pronounced

clustering. By examining these di�erent scenarios, the study aimed to assess how well

the new BSGARCH (1,1) model and conventional GARCH-type models performed

in capturing and forecasting volatility under varying degrees of ARCH e�ect. The

analysis of the simulated data allowed for a comprehensive evaluation of the models'

forecasting accuracy and e�ectiveness in capturing the underlying volatility patterns.

In all these scenarios, the new BSGARCH (1,1) model outperformed the conventional

70

Digitized by UMaT Library



GARCH-type models in terms of TIC, MAPE, QLIKE and RMSE performance

metrics. However, in some scenarios, the di�erence in performance between the

models was not signi�cant, such as in the third scenario.

Additionally, another scenario was considered where a deterministic time varying

volatility component was added to the conditional variance. The new BSGARCH

(1,1) model again, outperformed the traditional GARCH-type models. The simulation

study suggests that the new BSGARCH (1,1) model can be used as an alternative to

classical GARCH-type models for forecasting the volatility of �nancial time series,

especially for series with signi�cant ARCH e�ects.

5.3 Real Data

Real �nancial data were utilized to evaluate the performance of the BSGARCH(1,1)

model. The data sets consisted of the Standard and Poor 500 (S&P 500), Nasdaq

100 (NASDAQ100), Dow Jones Industrial Average (DJIA), Nikkei 225 Stock Average

(NIKKEI225) and the Ghana Stock Exchange Composite Index (GSE-CI). The

objective of using data from di�erent stock markets across di�erent continents was to

investigate the performance of the new BSGARCH (1,1) model in diverse �nancial

settings.

In �nance, return series are often preferred over price series as they are easier

to analyse and provide a scale-free summary of the data (Tsay, 2005). Thus, in this

thesis, the daily return series is calculated using the daily closing price index, given

by

r′t =
yt − yt−1

yt−1

(5.5)

where yt and yt−1 are the daily closing price index at times t and t− 1 respectively. It

is also common to use the log returns because it reduces the variation of time series

which makes it easier to �t models to it (Ruppert and Matteson, 2010). The daily log

71

Digitized by UMaT Library



return is given by

rt = ln

(
yt
yt−1

)
(5.6)

5.4 Data Exploration

Detailed description of the data used are as follows.

5.4.1 Standard and Poor 500 (S & P 500)

The dataset used in this study consists of 2403 data points spanning from 5th July,

2011 to 30th June 2021. The data was retrieved from the Federal Reserve Economic

Data (FRED) and represents the S&P 500 stock market index. The S&P 500 index

monitors the performance of 500 large companies listed on stock exchanges in the

United States. Figure 5.9 provides a plot of the daily stock index values, revealing

periods of both large and small price movements. This indicates clustering of volatility

in the series. The log return series, which consists of 2402 data point (one observation

lost during return computation), is depicted in Figure 5.10. The plot of log returns

provides further proof of clustering of volatility in the series.
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Figure 5.9 S& P 500 Daily Stock Index

Figure 5.10 S& P 500 Log Returns

Table 5.1 provides some basic statistics for the return series. The statistics indicate

that the return series exhibits high kurtosis, suggesting a departure from a normal

distribution. This observation is further supported by the tests for normality

presented in Table 5.2, as well as the histogram and density plot of the log returns
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shown in Figure 5.11. In all the tests presented in Table 5.2, the p-values are less

than the signi�cance level of 0.05, leading to the rejection of the null hypothesis of

normality.

Table 5.1 Summary Statistics of Daily Log Returns of S & P 500

Statistic S&P 500

Mean 0.000473
Skewness -0.929785
Maximum 0.089683
Kurtosis 17.7375
Minimum -0.127652
Standard Deviation 0.011064

Figure 5.11 Histogram and Density Plot of S & P 500. Histogram on The Left

and Density Plot on The Right
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Table 5.2 Normality Test for S & P 500

Test Statistic pvalue

Jarque-Bera 33670 < 0.001
Kolmogorov-Smirnov 0.5084 < 0.001
Anderson-Darling 2379.4 < 0.001

The presence of an ARCH e�ect in the data series allows for the modelling of

conditional volatility. The Ljung-Box and ARCH-LM test are performed at the 5%

signi�cant level to determine the ARCH e�ect in the series. The results are given

in Table 5.3. The null hypothesis is the rate of returns does not have ARCH e�ect,

while the alternative is the opposite (Forsberg and Bollerslev, 2002). Both tests show

that the daily log returns are not homoscedastic but rather heteroscedastic since all

p-values is approximately zero which is far less than the 5% signi�cant level. This

implies that there is an ARCH e�ect in the series and hence conditional variance can

be computed.

Table 5.3 ARCH E�ect Test on S & P 500

Test Chi-Squared pvalue

ARCH-LM 1024.8 < 0.001
Ljung-Box 1357 < 0.001

5.4.2 NASDAQ100

The NASDAQ100 dataset comprises 2403 observations spanning from December 5,

2011, to June 30, 2021. It was retrieved from FRED and represents a basket of the

100 largest and most actively traded non-�nancial companies listed on the NASDAQ

Stock Exchange. The index includes companies from various industries such as

retail, biotechnology, industrial technology, and healthcare, among others. Figure

5.12 displays a plot of the daily stock index of NASDAQ100, revealing periods of both

large and small price movements. This suggests the clustering of volatility in the

series. The log return series consists of 2402 observations, as one data point is lost

when computing the return. Figure 5.13 presents the plot of the daily log returns,
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which further demonstrates proof of clustering of volatility in the series.

Figure 5.12 NASDAQ100 Daily Stock Index

.

Figure 5.13 NASDAQ100 Log Returns
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Table 5.4 presents summary statistics for the log returns of NASDAQ100. The

results indicate that the series exhibits high kurtosis, suggesting that it deviates

from a normal distribution. This �nding is further supported by the normality test

shown in Table 5.5 and the visual inspection of the histogram and density plot in

Figure 5.14. All the tests in Table 5.5 have null hypotheses stating that the data is

distributed normally, while the alternative hypotheses propose otherwise. In all cases,

the signi�cance level of 0.05 is greater than the p-values leading to the rejection of

the null hypothesis. Positive skewness is also observed, indicating asymmetry in the

distribution. The skewness coe�cient of 0.015939 suggests that the distribution of

the series has fat right tails, implying that there is asymmetry in the data.

Figure 5.14 Histogram and Density Plot of NASDAQ100. Histogram on The Left

and Density Plot on The Right
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Table 5.4 Summary Statistics of Daily Log Returns of NASDAQ100

Statistic NASDAQ100

Mean 0.000354
Skewness 0.015939
Maximum 0.172030
Kurtosis 8.357814
Minimum -0.130033
Standard Deviation 0.016318

Table 5.5 Normality Test on NASDAQ100

Test Statistic pvalue

Jarque-Bera 15020 <0.001
Kolmogorov-Smirnov 0.5681 <0.001
Anderson-Darling 4951.3 <0.001

Table 5.6 gives the results for ARCH-LM and the Ljung-Box test. Both tests show

that the daily log returns are not homoscedastic but rather heteroscedastic since all

p-values is approximately zero which is far less than the 5% signi�cant level. This

implies that there is an ARCH e�ect in the series and hence conditional variance can

be computed.

Table 5.6 ARCH E�ect Test on NASDAQ100

Test Chi-Squared pvalue

ARCH-LM 1182.8 <0.001
Ljung-Box 908.35 <0.001

5.4.3 Dow Jones Industrial Average (DJIA)

The DJIA data comprises 2406 observations, covering the period from 6th September

2011 to 30th June 2021, and was retrieved from FRED. The DJIA is a stock market

index that tracks the performance of 30 large publicly-owned blue chip companies

listed on the New York Stock Exchange (NYSE) and the NASDAQ Exchange. Figure

5.15 shows a plot of the daily stock index of DJIA, revealing periods of both small

and large price movements. This indicates clustering of volatility in the series. The

log return series consists of 2405 data points. Figure 5.16 illustrates the plot of the
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daily log returns for the series. The plot of the log returns further con�rms clustering

of volatility, as the series exhibits periods of both low and high volatility. These

observations suggest that the DJIA series exhibits volatility clustering, with periods

of both large and small price movements.

Figure 5.15 DJIA Daily Stock Index
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Figure 5.16 DJIA Log Returns

.

Table 5.7 presents summary statistics for the log return series of DJIA. The log return

series has high kurtosis, suggesting that it deviates from a normal distribution. This

�nding is con�rmed by the tests for normality presented in Table 5.8, as well as the

visual examination of the density and histogram plot shown in Figure 5.17. All the tests

in Table 5.8 follow the null hypothesis stating that the data is normally distributed,

while the alternative hypothesis states otherwise. The signi�cance level of 0.05 is

grater than the p-values obtained from these tests leading to the rejection of the

null hypothesis. This provides further evidence that the return series of DJIA is

not normally distributed. Additionally, the positive skewness coe�cient of -1.018078

indicates evidence of asymmetry in the distribution of the series.
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Figure 5.17 Histogram and Density Plot of DJIA. Histogram on The Left and

Density Plot on The Right

Table 5.7 Summary Statistics of Daily Log Returns of DJIA

Statistic DJIA

Mean 0.000432
Skewness -1.018078
Maximum 0.107643
Kurtosis 27.51668
Minimum -0.138418
Standard Deviation 0.010684

Table 5.8 Normality Test on DJIA

Test Statistic pvalue

Jarque-Bera 76483 <0.001
Kolmogorov-Smirnov 0.50795 <0.001
Anderson-Darling 2377.5 <0.001

Table 5.9 provides the Ljung-Box and the ARCH-LM test. Both tests show that the

daily log returns are not homoscedastic but rather heteroscedastic since all p-values is

approximately zero which is far less than the 5% signi�cant level. This implies that

there is an ARCH e�ect in the series and hence conditional variance can be computed.
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Table 5.9 ARCH E�ect Test on DJIA

Test Chi-Squared pvalue

ARCH-LM 1011.2 <0.001
Ljung-Box 1216.3 <0.001

5.4.4 Nikkei 225 Stock Average (NIKKEI225)

The NIKKEI225 data consists of 2075 observations spanning from January 4th, 2013,

to June 30th, 2021. It was retrieved from FRED. NIKKEI225 is a price-weighted

index that represents the performance of Japan's top 225 blue-chip companies traded

on the Tokyo Stock Exchange. Figure 5.18 presents a plot of the daily stock index of

NIKKEI225, showing periods of both large and small price movements. Figure 5.19

displays the plot of the daily log returns for the series, revealing evidence of volatility

clustering.

Figure 5.18 NIKKEI225 Daily Stock Index
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Figure 5.19 NIKKEI225 Log Returns

Table 5.10 provides summary statistics for the return series of NIKKEI225. The

log return series exhibits high kurtosis, suggesting that it deviates from a normal

distribution. This observation is further supported by the normality tests as shown in

Table 5.11 and the visual examination of the density and histogram plot of the return

displayed in Figure 5.20. In all the tests provided in Table 5.11, the signi�cance level of

0.05 is greater the p-values, leading to the rejection of the null hypothesis. Additionally,

the standard deviation value reported in Table 5.10 indicates a high level of dispersion

from the average daily log returns of NIKKEI225. Furthermore, the positive skewness

coe�cient suggests asymmetry in the distribution. These preliminary results highlight

the non-normality, high dispersion, and asymmetry in the return series of NIKKEI225,

which are important considerations for modelling and forecasting the volatility of this

index.
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Figure 5.20 Histogram and Density Plot of NIKKEI225.Histogram on The Left

and Density Plot on The Right

Table 5.10 Summary Statistics of Daily Log Returns of NIKKEI225

Statistic NIKKEI225

Mean 0.000148
Skewness -0.370339
Minimum -0.12111
Maximum 0.132346
Standard Deviation 0.014872
Kurtosis 6.465696

Table 5.11 Normality Test on NIKKEI225

Test Statistic pvalue

Jarque-Bera 8867.5 <0.001
Kolmogorov-Smirnov 0.51882 <0.001
Anderson-Darling 4858.3 <0.001

Table 5.12 provides the Ljung-Box and ARCH-LM test. Both tests show that the

daily log returns are not homoscedastic but rather heteroscedastic since all p-values is

approximately zero which is far less than the 5% signi�cant level. This implies that

there is an ARCH e�ect in the series and hence conditional variance can be computed.

84

Digitized by UMaT Library



Table 5.12 ARCH E�ect Test on NIKKEI225

Test Chi-Squared pvalue

ARCH-LM 1148 <0.001
Ljung-Box 1060.6 <0.001

5.4.5 Ghana Stock Exchange Composite Index (GSE-CI)

The GSE-CI dataset consists of 2403 observations, covering the period from January

3, 2012, to October 10, 2021. The data was obtained from the Ghana Stock Exchange

website. The GSE-CI, is calculated as the volume-weighted average of the closing

prices of all listed stocks on the Ghana Stock Exchange. It includes ordinary shares

of all listed companies, except those listed on other markets. The index is market

capitalization weighted, meaning that each constituent is assigned a weight based on

its market capitalization. The base date for the GSE-CI is December 31, 2010, with a

base index value of 1000. Figure 5.21 provides a plot of the daily stock index of GSE-CI

which shows periods of both small and large price movements. This suggests clustering

of volatility in the series. Figure 5.22 displays the plot of the log returns, which provides

further evidence of volatility clustering. These �ndings highlight the dynamic nature

of the GSE-CI, with periods of signi�cant price movements and volatility clustering.
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Figure 5.21 GSE-CI

Figure 5.22 GSE-CI Log Returns
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Table 5.13 provides basic statistics for the log return series of GSE-CI. The series

exhibits high kurtosis, suggesting that it deviates from a normal distribution. This

�nding is further supported by the normality tests presented in Table 5.14 and the

visual examination of the density and histogram plot shown in Figure 5.23. Moreover,

the standard deviation value presented in Table 5.13 indicates a high level of dispersion

from the average daily log returns of GSE-CI. Additionally, the positive skewness

coe�cient of 0.177693 suggests asymmetry in the distribution of the series.

Figure 5.23 Histogram and Density Plot of GSE-CI. Histogram on The Left and

Density Plot on The Right

Table 5.13 Summary Statistics of Daily Log Returns of GSE-CI

Statistic GSE-CI

Mean 0.000450
Standard Deviation 0.008015
Maximum 0.161049
Skewness 0.177693
Minimum -0.162585
Kurtosis 141.387

87

Digitized by UMaT Library



Table 5.14 Normality Test on GSE-CI

Test Statistic pvalue

Jarque-Bera 2003281 <0.001
Kolmogorov-Smirnov 0.48636 <0.001
Anderson-Darling 147.15 <0.001

Table 5.15 provides the test statistics of the ARCH-LM and the Ljung-Box test. Both

tests show that the daily log returns are not homoscedastic but rather heteroscedastic

since all p-values is approximately zero which is far less than the 5% signi�cant level.

This implies that there is an ARCH e�ect in the series and hence conditional variance

can be computed.

Table 5.15 ARCH E�ect Test on GSE-CI

Test Chi-Squared p-value

ARCH-LM 955.43 <0.001
Ljung-Box 581.12 <0.001

5.5 Performance Comparison of the New BSGARCH(1,1) Model with

Conventional GARCH-Type Models on Real Financial Data

In this section, the performance of the new BSGARCH(1,1) model introduced

in Chapter 4 was evaluated on real data and compared with the conventional

EGARCH(1,1), APARCH(1,1), GARCH (1,1) and GJR-GARCH(1,1) models with

di�erent error distributions. The comparison with GARCH (1,1) is crucial as it

is a extensively used standard model for �nancial volatility, which is notoriously

di�cult to outperform (Audrino and Bühlmann, 2009). Moreover, comparing with

GJR-GARCH, EGARCH and APARCH models is also signi�cant because these

models capture the asymmetric e�ects in �nancial time series, which the GARCH

(1,1) model fails to do. Therefore, this section demonstrates the practical application

of the proposed model to real-world �nancial data.
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5.5.1 S & P 500

The initial step in the analysis was to plot the optimal conditional variance estimates

obtained using the proposed model against the log returns, which is shown in Figure

5.24. The estimated conditional variance functions display highly nonlinear and

asymmetric patterns with respect to preceding lagged log returns of the series. The

series also exhibits a leverage e�ect, particularly for high values of past lagged log

returns. Furthermore, for the same magnitude of positive past shocks, negative past

shocks tend to raise the conditional variance more than positive past shocks.

Figure 5.24 Estimated Conditional Variance against the lagged Log Returns of

S&P500

Residual Analysis

The new BSGARCH (1,1) model was implemented on the datasets, and its validity

was assessed using the the ACF plot of the standardized residuals and McLeod- Li

test for autocorrelation. The ACF plot is shown in Figure 5.25. The results of the

analysis indicated that the new BSGARCH (1,1) method provided forecasts that
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e�ectively incorporated all information available. Speci�cally, the expected value

of the standardized residuals was found to be close to zero, indicating that the

model's predictions were unbiased on average. Additionally, the ACF plot revealed

no signi�cant correlation in the series of standardized residuals.

Figure 5.25 ACF Plot of Standardized Residuals (S&P 500)

To further validate the absence of autocorrelations in the standardized residuals, the

McLeod-Li test was implemented. The test was carried out with di�erent lag values,

namely 10, 15, 20, 25, and 30. The null hypothesis (H0) of the McLeod-Li test holds

that the model's residuals are independent and identically distributed (i.i.d), while

the alternative hypothesis H1 suggests otherwise.

According to the results presented in Table 5.16, the H0 of the McLeod-Li test

was not rejected for the S&P 500 data at various lag values including 10, 15, 20,

25, and 30. This conclusion is supported by observing that the 5% signi�cance level

was less than the corresponding p-values. Consequently, there is insu�cient proof

to recommend that the residuals of the BSGARCH (1,1) model are not i.i.d. These

�ndings indicate that the new BSGARCH (1,1) model is well-suited for the S&P 500

data. The calculated coe�cients and predicted values obtained from this model can

be considered unbiased and e�cient.
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Table 5.16 The McLeod - Li Test for ARCH e�ect in Standardised Residuals

Number of lags P-Value Test Statistic

10 0.328 11.387
15 0.173 19.975

20 0.298 22.809

25 0.561 23.282

30 0.701 25.494

Peformance Evaluation on S & P 500

The predictive performance of various models, including APARCH (1,1), GARCH

(1,1), GJR-GARCH (1,1), and EGARCH (1,1) with di�erent error distributions, was

evaluated alongside the proposed BSGARCH (1,1) for S&P 500 data. The evaluation

focused on the models' ability to forecast volatility. As depicted in Figure 5.26,

the new BSGARCH (1,1) model consistently outperformed all the classical models

examined in the study. This superiority was evident through its lower values of QLIKE,

RMSE, TIC, and MAPE values. The results provide compelling evidence that the

new BSGARCH (1,1) model represents a signi�cant improvement over the classical

models when it comes to forecasting volatility in �nancial time series, especially for

huge sample size. The superior performance of the BSGARCH (1,1) model suggests

its e�ectiveness in capturing the underlying dynamics and patterns of the S & P 500

volatility, leading to more accurate and reliable volatility forecasts.
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Figure 5.26 Performance Evaluation on S&P 500

The average Superior Predictive Ability (aSPA) tests, as established by Quaedvlieg

(2021), were conducted to verify whether the improvements in forecasting �nancial

time series volatility using the BSGARCH (1,1) model were statistically signi�cant.

The outcome of the tests are provided in Table 5.17. Positive statistic values are

always favorable to the suggested BSGARCH(1,1) model. Table 5.17 con�rms that

the BSGARCH(1,1) model has higher predictive power in for conditional variance

compared to the conventional GARCH-type models.

Table 5.17 Test Values for Average Superior Predictive Ability

Models Error Distribution Test Value P-Value

GARCH vs BSGARCH GED 646.22 < 0.001
NORM 678.79 < 0.001

EGARCH vs BSGARCH GED 721.72 < 0.001
NORM 706.79 < 0.001

GJR-GARCH vs BSGARCH GED 647.70 < 0.001
NORM 661.22 < 0.001

APARCH vs BSGARCH GED 392.86 < 0.001
NORM 312.95 < 0.001
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5.5.2 NASDAQ100

Figure 5.27 displays the optimal conditional variance estimates obtained using the

proposed model, plotted against the log returns for NASDAQ100. The estimated

conditional variance functions exhibit high nonlinearity and asymmetry with respect

to preceding lagged log returns of the series. The series exhibits a clear leverage

e�ect, especially when considering large values of past preceding log returns. This

means that negative past returns have a greater impact on increasing the conditional

variance compared to positive past returns of the same magnitude.

Figure 5.27 Conditional Variance Estimate of the NASDAQ100 Log Returns

Residual Analysis on NASDAQ 100

The standardized residuals' ACF plot, obtained from applying the BSGARCH (1,1)

model to the NASDAQ100 dataset, is depicted in Figure 5.28. The analysis reveals

that the BSGARCH (1,1) method e�ectively captures and incorporates all the
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available information in the data. The mean of the standardized residuals is found to

be approximately zero, indicating that the model produces unbiased estimates.

Figure 5.28 ACF Plot of Standardized Residuals ( NASDAQ100 )

The McLeod-Li test was conducted on the standardized residuals of the

BSGARCH(1,1) model applied to the NASDAQ100 data. The test was performed

for lags 10, 15, 20, 25, and 30, and the outcome are presented in Table 5.18. The

p-values for all lags were greater than the 5% signi�cance level, indicating that there

is insu�cient proof to recommend that the residuals of the BSGARCH (1,1) model

are not i.i.d Therefore, the new BSGARCH(1,1) is deemed adequate for for predicting

the NASDAQ100 data, and the calculated coe�cients and forecast values are e�cient

and unbiased.
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Table 5.18 The McLeod - Li Test for ARCH e�ect in Standardised Residuals For

NASDAQ100

Number of lags Test Statistic P-Value

10 3.981 0.948
15 15.021 0.450

20 16.440 0.689

25 19.325 0.781

30 21.347 0.877

Performance Evaluation on NASDAQ 100

Figure 5.29 displays the results of the performance evaluation of the models considered

in this thesis implemented on the NASDAQ100 data. The new BSGARCH(1,1)

generally outperforms all the other methods, indicating that it improves upon the

accuracy of the parametric models. In �nancial time series analysis, it is often di�cult

to calculate accurately the "true" conditional variances of the data. Instead, the

realized conditional variances are used, which are estimated from historical data,

to measure the performance of competing approaches. These realized variances are

inherently noisy due to the presence of measurement error, which can lead to small

di�erences between competing approaches (Bekierman and Manner, 2018).

However, in the case of the new BSGARCH(1,1) model, the improvement observed

in this study was not just small, but rather substantial. This indicate that the

BSGARCH(1,1) model is able to determine important aspects of �nancial time series

dynamics that are not well-captured by the classical GARCH(1,1)-type, models and

that this improvement is signi�cant.
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Figure 5.29 Peformance Evaluation on NASDAQ100

The aSPA test was also applied to the NASDAQ100 dataset to verify the signi�cance

of the improvements observed with the proposed BSGARCH(1,1) model. The results

are presented in Table 5.19, where positive values of the statistic indicate that the

BSGARCH(1,1) model outperforms the competitors.

Table 5.19 aSPA Test for NASDAQ100

Models Error Distribution Test Value P-Value

GARCH vs BSGARCH GED 175.63 < 0.001
NORM 203.97 < 0.001

EGARCH vs BSGARCH GED 276.30 < 0.001
NORM 263.94 < 0.001

GJR-GARCH vs BSGARCH GED 208.64 < 0.001
NORM 197.29 < 0.001

APARCH vs BSGARCH GED 152.52 < 0.001
NORM 225.05 < 0.001
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5.5.3 DJIA

The plot in Figure 5.30 depicts the optimal estimates of conditional variance obtained

using the proposed model and how they relate to the log returns. The estimated

function for conditional variance shows a signi�cant degree of nonlinearity and

asymmetry with respect to past lagged log returns of the series. Notably, the series

exhibits a leverage e�ect, especially for higher values of past lagged log returns.

Figure 5.30 Conditional Variance Estimate of the DJIA Log Returns

Residual Analysis

The ACF plot of the standardized residuals obtained from the BSGARCH (1,1) model

implemented on the DJIA is presented in Figure 5.31. The outcome indicated that

the new BSGARCH (1,1) generated forecasts that included all information available.

The expected value of the standardized residuals was approximately zero. There was

no signi�cant correlation in the series of standardized residuals.
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Figure 5.31 ACF Plot of Standardized Residuals (DJIA)

The McLeod-Li test was conducted on the standardized residuals of the

BSGARCH(1,1) model applied to the DJIA data. The test was performed for lags

10, 15, 20, 25, and 30, and the results are presented in Table 5.20. The p-values for

all lags were greater than the 5% signi�cance level, indicating that there is insu�cient

evidence to reject the null hypothesis. Therefore, the BSGARCH(1,1) model is deemed

adequate to �t the DJIA data, and the calculated coe�cients and forecast values are

e�cient and unbiased.

Table 5.20 The McLeod - Li Test for ARCH e�ect in Standardised Residuals For

DJIA

Number of lags P-Value Test Statistic

10 0.315 11.569
15 0.197 19.369

20 0.326 22.262

25 0.589 22.810

30 0.721 25.089

Performance Evaluation on DJIA

Figure 5.32 presents a summary of the performance results for the di�erent volatility

estimation models considered in this thesis. The outcome demonstrate that the
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BSGARCH(1,1) method consistently performs better than all the competing

approaches in terms of accuracy. The BSGARCH(1,1) model signi�cantly improves

upon the accuracy of the parametric models, indicating its e�ectiveness in capturing

and predicting volatility in the DJIA dataset. This �nding highlights the superior

performance and predictive power of the BSGARCH(1,1) model in comparison to the

conventional approaches.

Figure 5.32 Peformance Evaluation on DJIA

The signi�cance of the improvements made by the new BSGARCH(1,1) model was

evaluated using aSPA tests. The outcome are presented in Table 5.21, where positive

values of the statistic means that the new BSGARCH(1,1) model performs better

than the competitors. The table con�rms that the new BSGARCH(1,1) model has

signi�cantly higher predictive power in terms of conditional variance prediction than

the other models considered.
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Table 5.21 aSPA for DJIA

Models Error Distribution Test Value P-Value

GARCH vs BSGARCH GED 5238.18 < 0.001
NORM 6911.40 < 0.001

EGARCH vs BSGARCH GED 6770.40 < 0.001
NORM 5534.06 < 0.001

GJR-GARCH vs BSGARCH GED 3106.90 < 0.001
NORM 3859.04 < 0.001

APARCH vs BSGARCH GED 4784.54 < 0.001
NORM 3859.04 < 0.001

5.5.4 NIKKEI225

The optimal conditional variance estimates obtained using the new proposed model is

plotted against the log returns and presented in Figure 5.33. The estimated conditional

variance functions is highly nonlinear and asymmetric in past lagged log returns of the

series. Leverage e�ect is noticeable in the series especially for high values of past

lagged log returns.

Figure 5.33 Conditional Variance Estimate of the NIKKEI225 Log Returns
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Residual Analysis

The ACF plot of the standardized residuals obtained from the BSGARCH (1,1) model

implemented on the NIKKEI225 is presented in Figure 5.34. The results indicated

that the proposed BSGARCH (1,1) generated forecasts that included all information

available. The expected value of the standardized residuals was approximately zero.

There was no signi�cant correlation in the series of standardized residuals.

Figure 5.34 ACF of Standardized Residuals( NIKKEI225)

The McLeod-Li test was conducted on the standardized residuals of the

BSGARCH(1,1) model implemented on NIKKEI225 data. The test was performed

for lags 10, 15, 20, 25, and 30, and the outcome are provided in Table 5.22. The p-

values for all lags were greater than the 5% signi�cance level, indicating that there is

insu�cient proof to reject the null hypothesis. Therefore, the BSGARCH(1,1) model

is deemed adequate to �t the NIKKEI225 data, and the calculated coe�cients and

forecast values are e�cient and unbiased.
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Table 5.22 The McLeod - Li Test for ARCH e�ect in Standardised Residuals For

NIKKEI225

Number of lags Test Statistic P-Value

10 15.801 0.105
15 20.554 0.152

20 22.935 0.292

25 26.218 0.396

30 30.186 0.456

Performance Evaluation on NIKKEI225

In Figure 5.35, the performance results of di�erent volatility estimation models are

presented. Notably, the BSGARCH(1,1) method consistently performs better than all

other competing approaches. This indicates that the BSGARCH(1,1) model provides

improved volatility estimation compared to the traditional parametric models.

Figure 5.35 Peformance Evaluation on NIKKEI225

To assess the signi�cance of the improvements observed, the aSPA tests, was

conducted. The outcome are provided in Table 5.23. Positive values of the statistic
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consistently favor the proposed BSGARCH(1,1) model. The outcome in Table

5.23 con�rm the superior predictive power of the BSGARCH(1,1) model over its

competitors.

Table 5.23 aSPA Test For NIKKEI225

Models Error Distribution Test Value P-Value

GARCH vs BSGARCH GED 71.72 < 0.001
NORM 72.20 < 0.001

EGARCH vs BSGARCH GED 84.72 < 0.001
NORM 79.91 < 0.001

GJR-GARCH vs BSGARCH GED 76.79 < 0.001
NORM 76.26 < 0.001

APARCH vs BSGARCH GED 82.53 < 0.001
NORM 76.26 < 0.001

5.6 GSE-CI

The optimal conditional variance estimates obtained using the new proposed model is

plotted against the log returns and presented in Figure 5.36. The estimated conditional

variance function exhibits a highly nonlinear and asymmetric relationship with past

lagged log returns of the series. This suggests the presence of a leverage e�ect,

particularly for high values of past lagged log returns.
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Figure 5.36 Conditional Variance Estimate of the GSE-CI Log Returns

Residual Analysis

The ACF plot of the standardized residuals derived from applying the BSGARCH

(1,1) model to the GSE-CI data is shown in Figure 5.37. The results demonstrate

that the BSGARCH (1,1) method e�ectively captured and included all available

information in the data. The expected value of the standardized residuals was

observed to be approximately zero, indicating that the model produced unbiased

estimates.

104

Digitized by UMaT Library



Figure 5.37 ACF of Standardized Residuals (GSE-CI)

The standardized residuals of the BSGARCH(1,1) model applied to the GSE-CI data

were subjected to the McLeod-Li test for autocorrelation at lags 10, 15, 20, 25, and

30. The outcome of the test are presented in Table 5.24. The p-values corresponding

to each lag were found to be larger than the 5% signi�cance level, indicating that

there is insu�cient proof to reject the null hypothesis.This suggests that the new

BSGARCH(1,1) is suitable for the GSE-CI data, and the calculated coe�cients and

forecast values are e�cient and unbiased.

Table 5.24 The McLeod - Li Test for ARCH e�ect in Standardised Residuals For

GSE-CI

Number of lags Test Statistic P-Value

10 5.288 0.871
15 12.543 0.638

20 16.390 0.692

25 33.833 0.112

30 37.297 0.169

105

Digitized by UMaT Library



Performance Evaluation on GSE-CI

The performance of the various volatility models, was assessed on the GSE-CI dataset.

The evaluation was based on four metrics: QLIKE, MAPE, RMSE and TIC. The

outcome are summarized in Figure 5.38. The performance analysis reveals that the

BSGARCH (1,1) model consistently performs better than all other models across

all metrics. It achieves the lowest values for RMSE and MAPE, indicating superior

accuracy in estimating conditional variance. Additionally, the BSGARCH (1,1) model

exhibits the lowest TIC value, suggesting better forecasting performance compared

to the competing models. Although the QLIKE values for the BSGARCH (1,1)

model are comparable to the GJR-GARCH (1,1) and APARCH (1,1) models, they

are signi�cantly lower than those of the GARCH (1,1) and EGARCH (1,1) models.

Overall, these results highlight the improved predictive power of the BSGARCH (1,1)

model in capturing the volatility dynamics of the GSE-CI dataset.

Figure 5.38 Peformance Evaluation on GSE-CI
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To assess the signi�cance of the improvements observed, the aSPA tests, was

conducted. The outcome are provided in Table 5.25. Positive values of the statistic

consistently favor the new BSGARCH(1,1) model. The outcome in Table 5.25 con�rm

the superior predictive power of the BSGARCH(1,1) model over its competitors.

Table 5.25 aSPA Test for GSE-CI

Models Error Distribution Test Value P-Value

BSGARCH vs GARCH GED 412.49 < 0.001
NORM 629.66 < 0.001

BSGARCH vs EGARCH GED 626.17 < 0.001
NORM 628.22 < 0.001

BSGARCH vs GJR-GARCH GED 634.81 < 0.001
NORM 627.43 < 0.001

BSGARCH vs APARCH GED 623.91 < 0.001
NORM 627.43 < 0.001

Comparison of the SplineGARCH Model with BSGARCH (1,1) Model

A comparative analysis was conducted between the proposed BSGARCH (1,1) model

and the Spline-GARCH model introduced by Engle and Rangel (2008). Utilizing data

from (Engle and Rangel, 2008), the performance of these models was assessed using

RMSE, MAPE, TIC, and QLIKE as evaluation metrics. The main objective was to

evaluate their predictive capabilities using out-of-sample data. The results, presented

in Figure 5.39, indicated that the Spline-GARCH model slightly outperformed the

proposed BSGARCH (1,1) model.
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Figure 5.39 BSGARCH (1,1) vs SplineGARCH (1,1) Model

To statistically test the di�erence in performance, a two-tailed T-test was conducted

(see Table 5.26). The null hypothesis (H0) stated that there is no signi�cant di�erence

between the performance of the two models, while the alternative hypothesis (H1)

stated that there is a signi�cant di�erence. Based on the T-test results, the p-value

was calculated as 0.9134, which is greater than the signi�cance level of 0.05. Therefore,

we fail to reject the null hypothesis, indicating that there is no signi�cant di�erence in

performance between the two models. These �ndings suggest that the new BSGARCH

(1,1) model can be considered as a valid alternative to the Spline-GARCH model,

o�ering comparable predictive accuracy and easier implementation.

Table 5.26 Comparison of Performances: Two Tailed Test Results

Test Statistic P-value

t-test 0.1134 0.9134
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CHAPTER 6

CONCLUSIONS, CONTRIBUTION AND

RECOMMENDATIONS

6.1 Conclusions

The research presented a novel approach, the BSGARCH(1,1) model, for estimating

the conditional variance of �nancial time series. The model exhibited superior

performance compared to popular models such asAPARCH(1,1), GARCH(1,1), GJR-

GARCH(1,1) and EGARCH(1,1) across multiple datasets and various performance

metrics. The consistent outperformance of the new BSGARCH(1,1) model in terms of

RMSE, TIC, MAPE, and QLIKE metrics demonstrates its e�ectiveness in capturing

the volatility patterns inherent in �nancial data.

Moreover, the statistically signi�cant improvements in conditional variance prediction

demonstrated by the classical average Superior Predictive Ability (aSPA) test further

support the superiority of the BSGARCH(1,1) model. These �ndings indicate that

the proposed model can enhance the accuracy and predictive power of conditional

variance evaluation.

The research contributes to the existing body of knowledge by introducing a

new model that performs better than the traditional GARCH-type models. By

incorporating the BSpline framework, the BSGARCH(1,1) model captures the

nonlinear and asymmetrical dynamics of �nancial time series, as well as the leverage

e�ect observed in the data. The empirical results validate the potential of the

BSGARCH(1,1) model as a valuable tool for volatility modelling and forecasting,

highlighting its superiority over widely used alternatives.

These �ndings have practical implications for market participants, risk analysts, and
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�nancial decision-makers. The accurate estimation of conditional variance is crucial

for various �nancial applications, including option pricing, portfolio optimization, and

risk management strategies. The BSGARCH(1,1) model can provide more reliable

volatility forecasts, enabling market participants to better manage their exposure to

market risks and make informed decisions.

In conclusion, the research demonstrates the e�ectiveness and superiority of the

proposed BSGARCH(1,1) model in estimating the conditional variance of �nancial

time series. The model's improved accuracy, predictive power, and ability to capture

the dynamics of �nancial markets make it a valuable tool for researchers and

practitioners in the �eld of �nancial econometrics.

6.2 Recommendations

The study �nally recommend the following:

i. From the outcome obtained from the study, it is recommended that �nancial

analysts and researchers consider using the proposed BSGARCH (1,1) model in

their �nancial time series modelling. This is because the model outperformed

other popular models such as GJRGARCH, GARCH, APARCH and EGARCH in

terms of accuracy and predictive power. Using the BSGARCH (1,1) model as an

alternative could lead to more reliable and accurate �nancial forecasts.

ii. The �ndings suggest that using more sophisticated models such as the BSGARCH

(1,1) model can lead to more accurate predictions of the conditional variance of

�nancial returns. Therefore, it is recommended to explore more sophisticated

models in �nancial modelling.

iii. The results suggest that �nancial returns exhibit a high degree of nonlinearity and

asymmetry with respect to past lagged log returns of the series. This implies that
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simple linear models may not be appropriate for modelling the �nancial returns.

Therefore, it is recommended to consider nonlinear models in �nancial modelling.

iv. Future research could investigate the applicability of the model to other �nancial

datasets, as well as explore ways to further improve its performance.
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APPENDIX A VALUES OF PERFORMANCE

EVALUATION ON SIMULATED DATA

Table A.1 Performance Evaluation on Simulated Data (Scenario 1, Scenario 2

and Scenario 3)

ED BSGARCH GARCH EGARCH GJRGARCH APARCH
Scenario 1

RMSE NORM 4.9332 5.5791 5.5809 5.5778 5.5773

GED 5.7862 6.5377 6.5386 6.5365 6.5367

TIC NORM 0.9391 0.9630 0.9649 0.9628 0.9632

GED 0.9453 0.9629 0.9629 0.9633 0.9634

MAPE NORM 1.2391 1.2571 1.2592 1.2566 1.2576

GED 1.2525 1.2714 1.2721 1.2710 1.2707

QLIKE NORM 1.7449 4.8728 5.1087 4.7125 5.2820

GED 1.9904 5.3272 5.9296 5.1521 5.4620

Scenario 2

RMSE NORM 0.9035 0.9165 0.9169 0.9164 0.9159
GED 0.9035 0.9164 0.9169 0.9160 0.9160

TIC NORM 0.9044 0.9493 0.9507 0.9493 0.9471

GED 0.9044 0.9493 0.9507 0.9480 0.9476

MAPE NORM 0.1580 0.1623 0.1624 0.1623 0.1621

GED 0.1580 0.1623 0.1624 0.1622 0.1621

QLIKE NORM 0.0977 0.2698 0.2826 0.2672 0.2543

GED 0.0977 0.2683 0.2822 0.2554 0.2572

Scenario 3

RMSE NORM 2.2200 2.2200 2.2253 2.2224 2.2200
GED 2.2200 2.2200 2.2256 2.2217 2.2200

TIC NORM 0.9157 0.9121 0.9198 0.9175 0.9149
GED 0.9157 0.9119 0.9201 0.9170 0.9149

MAPE NORM 0.9372 0.9353 0.9395 0.9382 0.9355

GED 0.9372 0.9352 0.9396 0.9379 0.9368

QLIKE NORM 0.2162 0.2192 0.2394 0.2260 0.2165

GED 0.2162 0.2184 0.2409 0.2230 0.2297

128

Digitized by UMaT Library



Table A.2 Performance Evaluation on Simulated Data (Scenario 4, Scenario 5

and Scenario 6)

APARCHGJRGARCHEGARCHGARCHBSGARCHED
Scenario 4 0

0.16420.16530.16570.16430.1474NORMRMSE

0.16410.16440.16570.16430.1474GED

0.14540.14780.14850.14610.1307NORMTIC

0.14320.14620.14850.14620.1307GED

0.15870.16010.16040.15910.1427NORMMAPE

0.15880.15920.16050.15910.1427GED

0.02790.04040.04540.03150.0249NORMQLIKE

0.02880.03170.04580.03150.0249GED

Scenario 5

0.56130.56640.56670.56220.5259NORMRMSE
0.56570.56700.56670.56710.5259GED

0.78180.79610.79710.79700.7468NORMTIC

0.79420.79770.79700.79820.7468GED

0.77530.78240.78290.77650.7277NORMMAPE

0.78140.78320.78290.78340.7337GED

0.73160.48300.64660.54060.4198NORMQLIKE

0.82320.69120.61980.65220.4198GED

Scenario 6

0.40000.03480.02260.20490.0161NORMRMSE
0.40840.34180.20380.20540.0161GED

0.33120.18020.14170.19610.1162NORMTIC
0.33180.19610.35920.19610.1162GED

0.34540.12020.07790.21240.0375NORMMAPE

0.35260.35410.14120.21280.0375GED

0.00950.00410.00410.00900.0045NORMQLIKE

0.00950.00900.02170.00900.0045GED
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Table A.3 Performance Evaluation on Simulated Data (Corresponding to Figure

5.7 and Figure 5.8)

APARCHGJRGARCHEGARCHGARCHBSGARCHED
Figure 5.7 0

0.74200.74280.74310.74200.7409NORMRMSE

0.74200.74200.74300.74200.7409GED

0.49080.49180.49220.49080.4894NORMTIC

0.49080.49090.49220.49080.4894GED

0.14150.14170.14170.14150.1413NORMMAPE

0.14150.14150.14170.14150.1413GED

0.21080.26460.29060.21020.1557NORMQLIKE

0.20950.21170.28960.21100.1557GED

Figure 5.8

1.03881.03991.04031.03880.6232NORMRMSE
1.03881.03881.04021.03880.6232GED

0.98170.98370.98440.98170.4393NORMTIC

0.98170.98180.98440.98170.4393GED

0.14150.14170.14170.14150.0365NORMMAPE

0.14150.14150.14170.14150.0365GED

0.21080.26460.29060.21020.0488NORMQLIKE

0.20950.21170.28960.21100.0488GED
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APPENDIX B VALUES OF PERFORMANCE

EVALUATION ON REAL TIME SERIES

Table B.1 Performance Evaluation for S&P500, NASDAQ100 and DJIA

ED BSGARCH GARCH EGARCH GJRGARCH APARCH
S&P500

RMSE NORM 0.0393 0.2631 0.2664 0.2629 0.2523

GED 0.0393 0.2615 0.2682 0.2621 0.2555

TIC NORM 0.0720 0.8165 0.8354 0.8154 0.7576

GED 0.0720 0.8076 0.8461 0.8112 0.7751

MAPE NORM 0.0187 0.1249 0.1264 0.1248 0.1197

GED 0.0187 0.1237 0.1237 0.1244 0.1213

QLIKE NORM 0.0161 0.8601 1.0932 0.8487 0.4586

GED 0.0161 0.7737 1.2658 0.8070 0.5444

NASDAQ

RMSE NORM 0.0302 0.2366 0.2391 0.2361 0.2382
GED 0.0302 0.2355 0.2412 0.2369 0.2326

TIC NORM 0.0526 0.7708 0.7856 0.7683 0.7804

GED 0.0526 0.7647 0.7981 0.7728 0.7484 < 0.001

MAPE NORM 0.0154 0.1209 0.1222 0.1207 0.1218

GED 0.0154 0.1141 0.1071 0.1211 0.1189

QLIKE NORM 0.0084 0.5622 0.6541 0.5480 0.6196

GED 0.0084 0.5291 0.74855 0.5737 0.4536

DJIA

RMSE NORM 0.2381 0.4554 0.4615 0.4561 0.4504
GED 0.2381 0.4526 0.4645 0.4561 0.4197

TIC NORM 0.3151 0.8460 0.8668 0.8481 0.8287
GED 0.3151 0.8363 0.8776 0.8481 0.7310

MAPE NORM 0.1130 0.2101 0.2206 0.2153 0.1992

GED 0.1130 0.2243 0.2252 0.2165 0.1992

QLIKE NORM 0.0712 1.3152 1.4419 1.3554 1.0416

GED 0.0712 1.1520 1.7268 1.3551 0.3740
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Table B.2 Performance Evaluation for NIKKEI225 and GSE-CI

APARCHGJRGARCHEGARCHGARCHBSGARCHED
NIKKEI

0.20520.20600.21140.20740.0159NORMRMSE

0.21600.21090.21960.20810.0159GED

0.59860.60240.62780.60870.0299NORMTIC

0.65050.62570.66870.61200.0299GED

0.17660.17730.18190.17850.0137NORMMAPE

0.18590.18150.15970.16390.0137GED

0.64270.65880.77910.68620.0333NORMQLIKE

0.91130.76791.0120.70120.0333GED

GSE-CI

0.14630.15210.29530.27040.1467NORMRMSE

0.28100.32630.35380.32700.1467GED

0.56390.24690.79640.25120.2412NORMTIC

0.59310.76130.88200.76410.2412GED

0.17010.09340.20910.09470.0917NORMMAPE

0.17560.20390.22300.22280.0917GED

0.06660.06810.62200.35960.0668NORMQLIKE

0.44701.6311.69801.67500.0668GED
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APPENDIX C A 10-DAY VOLATILITY FORECAST USING

THE BSGARCH(1,1) MODEL

Table C.1 A 10-Day Volatility Forecast Using BSGARCH(1,1)

Day Forecast S&P500 NASDAQ100 DJIA NIKKEI225 GSE-CI
T+1 0.053602 0.061514 0.051121 0.055735 0.044303

T+2 0.053604 0.061534 0.051166 0.055781 0.044276

T+3 0.053632 0.061525 0.051211 0.055850 0.044265

T+4 0.053614 0.061500 0.051181 0.055614 0.044276

T+5 0.053620 0.061516 0.051184 0.055589 0.044297

T+6 0.053793 0.061496 0.051183 0.055638 0.044305

T+7 0.053773 0.061484 0.051192 0.055515 0.044310

T+8 0.053742 0.061462 0.051195 0.055476 0.044309

T+9 0.053701 0.061451 0.051209 0.055473 0.044280

T+10 0.053671 0.061449 0.051221 0.055472 0 044253
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APPENDIX D LIST OF ACRONYMS AND

ABBREVIATIONS

Acronym Meaning
APARCH Asymmetric Power Autoregressive Conditional

Heteroskedasticity
ARCH Autoregressive Conditional Heteroskedasticity

BSGARCH Basis Spline Generalized Autoregressive Conditional
Heteroskedasticity

DJIA Dow Jones Industrial Average

ED Error Distribution

EGARCH Exponential Generalized Autoregressive Conditional
Heteroskedasticity

GARCH Generalized Autoregressive Conditional Heteroskedasticity

GED Generalized Error Distribution

GJR-GARCH Glosten-Jagannathan-Runkle Generalized Autoregressive
Conditional Heteroskedasticity

GSE-CI Ghana Stock Exchange Composite Index

MAPE Mean Absolute Percentage Error

NASDAQ National Association of Securities Dealers Automated
Quotations

NORM Normal Distribution

QLIKE Quasi-Likelihood Loss Function

RMSE Root Mean Squared Error

S & P 500 Standard & Poor's 500

TIC Theil's Inequality Coe�cient
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APPENDIX E PUBLICATIONS ARISING FROM

RESEARCH

PAPER 1
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Index  

 

A 

accuracy, 3–4, 16, 21, 24–27, 34, 41, 53–54, 

63, 95, 99, 109–10 

 volatility prediction, 62 

additive time-varying parameter model, 7 

algorithm, 16, 24–25, 115 

 model estimation, 24 

Amado, 7, 112 

Andersen, 2, 11, 53, 112–13 

APARCH (Asymmetric Power ARCH), 4, 8, 

50, 61–62, 88, 91–92, 96, 100, 103, 

106–7, 110, 128–32, 134 

APARCH and EGARCH in terms of 

accuracy, 110 

APARCH models, 88 

applications, 5, 9, 12–13, 42, 47, 56–57, 

114, 116–17, 121, 124, 127 

approach 

 competing, 95, 99, 102 

 generalized VAR-GARCH, 32 

 multivariate GARCH, 30 

approximation, 41–43, 57 

ARCH, 45–46, 51, 70, 75, 78, 81–82, 84–

85, 88, 91, 95, 98, 102, 105 

ARCH and GARCH models, 3 

ARCH/GARCH-TYPE MODELS, 45 

ARCH-LM, 75, 78, 82, 85, 88 

ARCH-LM test, 75, 81, 84 

ARCH model, 3–5, 12–13, 45–47, 114 

ARCH model’s ability, 5, 13 

ARCH parameter, 63 

 moderate, 70 

AR-GARCH, 29 

ARMA (Autoregressive Moving Average), 

5, 13, 48 

aSPA, 55, 92, 100, 109 

aSPA tests, 96, 99, 102–3, 107 

assets, 1–2, 7, 15, 18, 22, 34, 116, 123 

assumptions 

 conventional, 16 

 normal distribution error, 28 

asymmetric EGARCH, 36 

asymmetric model, 29, 50, 115 

Asymmetric Power ARCH. See APARCH 

asymmetric volatility spillovers, 36 

asymmetry, 5, 12, 16, 26–27, 36, 77, 80, 83, 

87, 93, 97 

Atoi, 5, 11–13, 113 

autocorrelation, 6, 17, 89–90, 105 

autoregressive models, time-varying, 19 

Autoregressive Moving Average (ARMA), 

5, 13, 48 

Averaged Results, 63–70 

Average Superior Predictive Ability Models, 

92 

 

B 

Barndor, 22, 113 

basis functions, 42–43, 57–58 

Bayesian stochastic volatility framework, 38 

bicubic spline model, 25 

Bollerslev, 3, 5, 11, 13, 16, 32, 47–48, 53, 

75, 112–14, 119 

bonds, 10–11 

Boor, 3, 41, 45, 117 

BS. See B-spline 

BSGARCH, 4, 9, 56, 61–63, 66–69, 71, 90–

110, 128–33 

 new, 61–63, 66–71, 88–91, 94–95, 97, 99, 

105, 107–9 

 p-value, 107 

BSGARCH model, 65–66 

 hybrid, 8 

BS method models, 25 

B-spline (BS), 3–4, 7–8, 20, 23, 25, 43–44, 

57, 125 

B-splines of order, 43–44 

 

C 

capital, 1, 11 

CCC-GARCH, 32 

Chung, 24, 116 

class, 22, 42, 116 

classical GARCH-type models, 6, 8, 62, 71 

clustering, 3, 12, 48, 72, 75–76, 78, 85 

companies, 1, 11, 75 

comparison, 9, 17, 88, 99, 107–8, 112, 116 

conditional distribution, 16, 22–23, 45 
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conditional variance, 5–6, 13–14, 46–48, 50, 

61, 75, 78, 81, 84, 88–89, 92–93, 95, 

97, 109–10 

Conditional Variance Estimate, 93, 97, 100, 

104 

conditional variance prediction, 99, 109 

conventional GARCH-type models, 62–63, 

66–67, 69–70, 92 

countries, 11, 31, 33 

crisis, sub-prime, 33–34 

cumulative distribution function (CDF), 25, 

121 

 

D 

Dash, 4, 7, 50, 117 

DCC-GARCH, 32 

decay, 15, 46 

degrees, 37, 41–42, 44, 54, 57 

 varying, 70 

degrees of freedom, 41–42, 51–52 

diagonal BEKK-GARCH, 32 

Discrete Nonlinear Filtering (DNF), 16 

distribution, 17, 19, 23, 26, 29, 49, 54, 77, 

80, 83, 87 

 chi-squared, 51–52 

 normal, 6, 17, 19, 28, 68, 73, 77, 80, 83, 

87 

DJIA (Dow Jones Industrial Average), 71, 

78–82, 97–100, 131, 134 

DJIA Daily Stock Index, 78–79 

Dow Jones Industrial Average. See DJIA 

dynamics, 5, 10, 12–13, 18, 22, 32–33, 36, 

45, 56, 91, 95 
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