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ABSTRACT 

 One of the recently developed probability distributions which are gaining popularity in 

modelling is a two-parameter Janardan distribution. However, Janardan distribution is 

discovered to be limited in controlling skewness and kurtosis which most lifetime data 

exhibit hence the need to modify the Janardan distribution through the method of 

parametrisation. To improve the usability and flexibility of the Janardan probability 

distribution, the study is designed to come out with three new probability distributions of 

which Janardan distribution is a baseline, establish the statistical properties of the new 

distributions as well as test their goodness of fit through the use of data. In line with the study 

objectives, three new distributions are developed through the method of parametrisation. 

These new distributions are Exponentiated Janardan (Three parameter distribution), 

Kumaraswamy Janardan (Four Parameter distribution) and Exponentiated Kumaraswamy 

Janardan (Five parameter distribution). Statistical properties such as PDF, CDF, Hazard rate, 

Survivor rate, Moments, Moment Generating function and MLE are established for each of 

the derived distributions. Empirical results reveal that all the derived models provide a better 

fit to all the considered sample datasets than the existing sub-models. Apart from the fact 

that these three derived distributions show superiority over Janardan Distribution and its sub-

model (Lindley distribution), the study further investigated the goodness of fit among the 

three new models. In comparing the three new distributions, the four-parameter 

Kumaraswamy Janardan (KJ) Distribution proves superiority in most cases. The researcher 

recommends that scholars should expand the statistical properties of the new distributions to 

bridge the research gap in mathematical computations. Also, industry experts in the field of 

reliability engineering, demography, actuary, etc; should use Kumaraswamy Janardan in 

modelling and predicting the reliability and hazard rate of their product since this distribution 

provides a robust hazard rate function. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of The Study 

Though probability and statistics are applications of mathematics, probability is known to 

be the heart of statistics with a slight fundamental difference in worldview. While 

probability is concerned with the likelihood of future events, statistics analyses the 

occurrences of past events. The relevance, usefulness, and application of probability cannot 

be overestimated so far as life and life events are concerned. Modern probabilistic theories 

are developed from the dice table of France in 1654, “the gambler’s dispute”, (Camilleri, 

2018). 

Since 1654, many mathematicians (such as Pascal and Fermat, Christian Huygens, Jakob 

Bernoulli, Abraham de Moivre, Pierre de Laplace, Chebyshev, Kolmogorov, Poisson, 

Weibull, Kumaraswamy, Shanker, and others) have contributed immensely to the 

development of probabilistic theories. Probabilistic ideas have spread from the game of 

chance to many scientific and practical problems.  Some of the important applications of 

probability theory are the theory of errors, actuarial mathematics, statistical mechanics, etc 

(Khan, 2016). Many more probability theory distributions are being developed from time to 

time. Even though the classical models serve great purposes in their area of application, they 

have not been able to stand the test of time (Khrennikov, 2019). This has motivated 

researchers to come out with modifications to these existing distributions to make them 

better.  The Janardan is one such modification, but the distribution has limitations that make 

it difficult to apply it to real-life data.   

The ability of distributions to effectively model data, especially lifetime data, is grossly 

influenced by parameters, thus; scale parameters and shape parameters. Scale parameters 
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control the variability in the dataset while shape parameters control the kurtosis and 

skewness. However, some distributions do not have “sufficient” parameters to effectively 

model the lifetime dataset. An example of such distribution is the Janardan distribution. 

Janardan distribution is a two-parameter distribution introduced by Shanker et al. (2013) of 

which the one-parameter Lindley (1958) distribution is a special case. Janardan probability 

distribution had been tried and tested on many lifetime datasets and proven to be a more 

relaxed and better fit than the Lindley distribution. However, since the introduction of 

Janardan, scholars (Elbatal et al., 2013; Warahena-Liyanage and Pararai, 2014; Shanker et 

al., 2014; Bashir and Rasul, 2016; Amer et al., 2017; Al-khazaleh et al., 2016; Hussian, 

2014) have one way or the other tried to modify it and enhance its usability in diverse data 

environment through parametrisation. Diverse kinds of generators have been used by these 

scholars in adding parameter(s) to the Janardan distribution but none of them had used the 

Kumaraswamy generator despite its potential in improving “scaled-parametric” models. 

The Kumaraswamy generator for parametrisation in this study was introduced by Cordeiro 

and Castro (2011). This generator has no scale parameter but has two shape parameters. 

This makes it suitable for modifying distributions that need shape parameters to be improved 

upon like the Janardan distribution.  

1.2 Problem Statement 

Janardan distribution has one scale parameter and one shape parameter. This means that it 

is limited in controlling skewness and kurtosis which most lifetime data exhibit. This 

distribution does not complement generators that lack shape parameters (Amer, 2017). In 

solving this problem, there is the need to modify the Janardan distribution by using a 

generator that has shape parameter(s). These modifications of Janardan distribution would 

be accomplished using Kumaraswamy and exponential distribution as generators. The 
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Exponential distribution is used in introducing one additional shape parameter to the 

Janardan distribution. Kumaraswamy distribution is used to introduce two more shape 

parameters to increase reliability in controlling kurtosis and skewness. These modifications 

are to improve future usability and flexibility of Janardan probability distribution (which 

currently is rarely noticed in literature and application). 

1.3 Research Questions 

1. What are the new modifications of Janardan distribution that can fit lifetime data 

better than the Janardan model and its sub-models? 

2. What are the parameter estimators of the new distributions of which the Janardan 

model is a particular case? 

3. What are the effects of parameter estimators when simulated? 

4. What are the modified distributions using real-time data?  

1.4 Research of Objectives 

The objectives of the study are: 

1. To derive some new distribution from the Janardan distribution. 

2. To derive parameter estimators of the new distributions. 

3. To analyse the parameter estimators through simulation 

4. To test the modified distributions using real-life data.  

1.5 Organisation of the Thesis 

This research work is organised into six (6) chapters. Chapter 1 is the introduction to the 

study while chapter 2 reviews various kinds of literature in connection to the study. Chapter 

3 discusses the methodology used to achieve the objectives of the study. The theoretical 
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results are presented in chapter 4 and the empirical result in chapter 5 while chapter 6 

presents the discussion, conclusions, and recommendations of the study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.0 Introduction 

According to Klakattawi (2019), Karl Pearson developed the Gamma family distributions 

in 1895. Uniquely among this family of distributions is the exponential distribution which 

came out clearly in 1930. This distribution is a continuous version of the Poisson 

distribution. Post-classical probability distributions are developed to better-fit lifetime data. 

However, these probability distributions are modifications that take their root from the 

classical probability distribution. This is because the classical models serve great purposes 

in their area of application. The exponential distribution (an example of a classical model) 

is the classical base distribution for this study. Many scholars have come out with modified 

versions of the exponential distribution, which are tested and established as a better-fit 

model than the exponential model. One of those probability models in which exponential 

distribution forms a sub-model is the Janardan distribution.  

In this chapter, the study reviews sub-models of Janardan distributions, the Janardan 

distribution itself, and post-Janardan models. Also, Kumaraswamy's distribution and 

method of parameterisation are reviewed. 

 

2.1 Pre-Janardan Distributions (Sub Janardan Models) 

Pearson’s gamma family of distributions published in 1895 had given birth to exponential 

distribution as unique distribution in 1930 (Klakattawi, 2019). Scholars such as Epstein 

(1958), Esary (1957), Ferguson (1964), Freund (1961), Gaver (1963), and Gumbel (1960), 

among others; carried out various studies on exponential distributions and found it to be a 

great distribution that was good in modeling data. Epstein (1958) discusses the role of 

exponential distribution in life testing in connection with industrial quality control. In 1957, 

Esary discussed the appropriateness of exponential distribution in modeling the stochastic 

theory of accident and survival. Ferguson (1964) vividly explains the mathematical 

characteristics of the exponential distribution. In improving Gumbel’s work, Freund (1961) 

came out with a bivariate extension of the exponential distribution. The exponential 

distribution is very central in modeling in various fields ranging from engineering, quality 

control, medicine, bio-chemical, and computer science among others. Weibull (1939) 
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suggests the relevance of exponential distribution in modeling actuarial, biological, and 

engineering problems.  

Despite the relevance of exponential distribution as presented by many scholars, Marshall 

(1966) questioned the assumptions of the exponential distribution, especially, in life 

situations where assumptions are found to be questionable or false. In addressing this 

novelty, Marshall came out with meaningful derivations of the multivariate exponential 

distribution. This is a build-up of the work of Gumbel (1960) and Freund (1961). So, it is 

very clear that the need to improve on exponential distribution dated decades ago. 

Recently, the dynamism of the knowledge wave around exponential distribution has 

changed. Many researchers have extended exponential distribution by using the distribution 

as a generator for parametrisation.  

As an extension of the exponential distribution, Weibull (1939) proposed a two-parameter 

Weibull distribution with cumulative density function as: 

𝑋 ∼ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝐹(𝑥) = 1 − 𝑒(
𝑥

𝜆
)
𝑘

; 𝑥, 𝑘, 𝜆 > 0                                                                                         (2.1) 

This distribution approximates to exponential distribution if the shape parameter (k) is set 

to 1.  Hence the CDF for exponential distribution is given as  

𝐹(𝑥) = 1 − 𝑒(
𝑥

𝜆
)
1

; 𝑥, 𝜆 > 0                                                                                              (2.2) 

Deducing from equations (2.1) and (2.2), clearly demonstrates that exponential distribution 

is a special case of Weibull distribution. Hence, the exponential distribution is considered a 

sub-model of the Weibull model. It would not be wrong to conclude that the Weibull 

distribution is exponentiated exponential distribution. This distribution has many 

applications in reliability engineering and survival analysis as well as industrial quality 

control (Nikulin, 2013). 

Very important functions in stochastic modeling in the area of survival and reliability 

analysis are survivor function and hazard function.  Hazard function models the risk of 

failure in an infinitesimally small time between 𝑡 + 𝜕𝑡. The theoretical hazard function of 

the Weibull distribution is given in (2.3). 
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ℎ(𝑡) =
𝑘

𝜆𝑘
𝑡𝑘−1                                                                                                          (2.3) 

Setting k = 1, the hazard function of Weibull approximates the hazard function of 

exponential distribution (as demonstrated in 2.4). 

ℎ(𝑡) =
1

𝜆
                                                                                                                    (2.4) 

From equation 2.4, it is demonstrated that h(t) solely depends on the model scale parameter 

and is constant over time. The assumption of constant hazard over time is often not realistic. 

In solving this drawback in exponential distribution, Weibull introduced the shape 

parameter. This transforms the hazard function into a monotonic hazard function, which can 

either be decreasing or increasing but not both. Again, the assumption of monotonicity may 

not be feasible in some cases. 

Another major extended exponential distribution is the Lindley distribution. Lindley 

distribution is introduced by D.V Lindley in 1958. Lindley's (1958) distribution is a build-

up of the exponential distribution. According to Sah (2019), “exponential and Lindley 

occupy central places among the class of continue probability distributions and play 

important roles in statistical theory”. Mishra and his team have spent quite a significant 

amount of time and effort on the modification of Lindley distribution. Mishra and Sah 

(2016) introduced Generalised Exponential-Lindley distribution (GELD). This model is 

found to provide a better fit to most life data than the Exponential-Lindley model. In an 

attempt to discretise a continuous distribution, Mishra and Sah (2019) introduced a 

distribution that merges GELD with Poisson and termed it as Generalised Exponential-

Lindley Mixture of Poisson Distribution (GELMPD). This new modification was tested on 

lifetime data and compared with Sankaran's (1970) Poisson Lindley Distribution (PLD) and 

has proven that it gives a better fit than PLD. A lot of scholars and researchers have 

contributed to improving Lindley distribution. Ghitany et al. (2008, 2009, 2011) and 

Bakouch et al. (2012) are among numerous researchers who have discussed the properties, 

relevance, and application of Lindley distribution. Shanker (2013), Zakerzadeh and Dolati 

(2009) introduced higher parameter distributions and their various applications and 

properties were discussed.  

There have been a lot of modifications on this Lindley Distribution. Among these modified 

distributions is Shanker’s Janardan distribution of which Lindley is the baseline distribution.  
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Janardan Distribution is a two-parameter version of Lindley distribution with Cumulative 

Density Function as: 

𝐹(𝑥; 𝛼, 𝜃) = 1 − [
1+𝛼𝜃+𝜃𝑥

𝛼𝜃+1
] 𝑒−𝜃𝑥                                                                               (2.5) 

Differentiating the CDF gives the probability density function as in equation (2.6) 

𝑓(𝑥; 𝛼, 𝜃) =
𝜃2

𝜃+𝛼
(1 + 𝛼𝑥)𝑒−𝜃𝑥                                                                                       (2.6) 

Setting 𝛼 = 1, one parameter Lindley distribution is obtained. The CDF and PDF of one 

parameter Lindley distribution are given in equations (2.7) and (2.8). 

𝐹(𝑥; 𝜃) = 1 − [
1+𝜃+𝜃𝑥

𝜃+1
] 𝑒−𝜃𝑥, 𝑥, 𝜃 > 0                                                                           (2.7) 

 

𝑓(𝑥; 𝜃) =
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥                                                                                              (2.8) 

Setting 𝛼 = 0,  The Lindley distribution approximates the exponential distribution. 

𝑓(𝑥; 0, 𝜃) = 𝜃𝑒−𝜃𝑥                                                                                                          (2.9) 

Hence, it is seen that exponential distribution in equation (2.9) is a baseline model of Lindley 

Distribution in equation (2.8). Also, Lindley Distribution in equation (2.8) is a baseline 

distribution of Janardan Distribution in equation (2.6). 

The expansion and modification of Lindley distribution continue to occupy space in the 

literature and knowledge gap. Gómez-Deniz  (2011) discuss the properties and applications 

of discrete Lindley distribution. 

2.2 Janardan Distribution 

Ghitany et al. (2008) discussed some significant statistical properties of one one-parameter 

Lindley (1958) distribution. The study contributes significantly to the success of Shanker et 

al (2013) two-parameter distribution known as the Janardan Distribution. Shanker and his 
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co-researchers introduced Janardan Distribution in 2013. They established the Cumulative 

density function and probability density function. They further went on to establish some 

statistical properties of the new distribution. Some of the statistical properties established 

by Shanker et al. (2013) and the team are the mode of the distribution, the moments and 

their related measures, the failure rate, and the mean residual life, stochastic orderings as 

well as estimation of parameters. They concluded their work by applying the distribution to 

several life data and found out that the Janardan distribution provides closer fits than the 

Lindley distribution. 

For a random variable that follows Janardan Distribution (JD) with parameters 𝛼, 𝜃; the 

probability density function is given as: 

𝑋 ∼ 𝐽𝐷(𝑥, 𝜃, 𝛼) = 𝑓(𝑥, 𝜃, 𝛼). 𝑓(𝑥, 𝜃, 𝛼) =
𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒−

𝜃
𝛼
𝑥; 

𝑥, 𝛼, 𝛼, 𝜃 > 0                                                                                                               (2.10)                                                                                                                                         

Integrating the pdf, Shanker established the cumulative density function of Janardan as 

𝐹(𝑥) = 1 −
𝛼(𝜃+𝛼2)+𝜃𝛼2𝑥

𝛼(𝜃+𝛼2)
𝑒−

𝜃

𝛼
𝑥      ; 𝑥 > 0, 𝛼 > 0, 𝜃 > 0                                                     (2.11) 

The mean or expectation of Janardan distribution (which is also known as the first moment) 

is also established as: 

𝐸(𝑋) = 𝜇𝑋 =
𝛼(𝜃+2𝛼2)

𝜃(𝜃+𝛼2)
                                                                                                 (2.12a) 

Also, the second, third, and fourth moments are appropriately established as follows: 

𝜇2 = 2 [
𝛼

𝜃
]
2 (𝜃 + 3𝛼2)

(𝜃 + 𝛼2)
 

𝜇3 = 6 [
𝛼

𝜃
]
3 (𝜃 + 4𝛼2)

(𝜃 + 𝛼2)
 

𝜇4 = 24 [
𝛼

𝜃
]
4 (𝜃 + 5𝛼2)

(𝜃 + 𝛼2)
 

Digitized by UMaT Library



 

10 
 

By generalisation, the rth moment is given as  

 

𝜇𝑟 = 𝑟! [
𝛼

𝜃
]
𝑟

[1 +
𝑟𝛼2

𝜃+𝛼2
] ; 𝑟 = 1,2,3, . ..                                                                     (2.12b) 

The mode of the distribution is established as: 

Differentiating the pdf and setting the result to zero, the extrema of the Janardan distribution. 

𝑥 =
𝛼2−𝜃

𝛼𝜃
. This value, the 𝑓(𝑥) is maximum only if 𝛼 > 𝜃. But in a situation where 𝛼 < 𝜃   

The 𝑓(𝑥) is decreasing in 𝑋. Therefore, the mode of Janardan distribution is established to 

be: 

0
.,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛼2−𝜃
𝛼𝜃

,𝛼>𝜃

 

Furthermore, Shanker and the team established the Hazard function ℎ(𝑥) and mean residual 

rate 𝑚(𝑥) respectively as follows: 

ℎ(𝑥) =
𝑓(𝑥)

1 − 𝐹(𝑥)
=

𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒−

𝜃
𝛼
𝑥

𝛼(𝜃 + 𝛼2) + 𝜃𝛼2𝑥
𝛼(𝜃 + 𝛼2)

𝑒−
𝜃
𝛼
𝑥

 

 

=

𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)

𝛼(𝜃 + 𝛼2) + 𝜃𝛼2𝑥
𝛼(𝜃 + 𝛼2)

=

𝜃2

1
(1 + 𝛼𝑥)

𝛼(𝜃 + 𝛼2) + 𝜃𝛼2𝑥
1

= 

 

=
𝜃2(1 + 𝛼𝑥)

𝛼(𝜃 + 𝛼2) + 𝜃𝛼2𝑥
 

                        ℎ(𝑥) =
𝜃2(1+𝛼𝑥)

𝛼(𝜃+𝛼2)+𝜃𝛼2𝑥
                                                                                                      (2.13) 
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Therefore, 𝑚(𝑥) =
𝛼

𝜃
[
(𝜃+𝛼2)+(𝜃𝛼𝑥+𝛼2)

(𝜃+𝛼2)+𝜃𝛼𝑥
]                                                                              (2.14) 

Janardan probability distribution had been tried and tested on many lifetime datasets and 

proven to be a more relaxed and better fit than the Lindley distribution. 

However, since the introduction of Janardan (a generalisation of Lindley distribution), a 

series of studies are carried out in the bid to propose a distribution that would better fit 

lifetime data and be more flexible. 

Lindley distribution has attracted many researchers and industrial players in modeling 

organisational and industrial lifetime data. Many generalisations of the Lindley distribution 

are done and hence providing competing distributions with the Janardan distribution. Below 

are some generalisations of Lindley distribution (that are competing with Janardan). 

Sankaran (1970) introduced the Poisson-Lindley distribution for modeling discrete random 

variables. This distribution has a probability mass function as: 

𝑃(𝑋 = 𝑥) =
𝜃2(𝜃+𝑥+2)

(𝜃+1)𝑥+3
; 𝑥 = 0,1, . . . . ; 𝜃 > 0                                                                (2.15) 

Another competing distribution with Janardan (as a Lindley generalised) is the Generalised 

Lindley Distribution (GLD). This distribution is introduced by Zakerzadeh and Dolati 

(2009). This distribution has three non-negative parameters; 𝜃and 𝛾  (scale parameters) and 

𝛼 (shape parameter) and  has a probability density function as: 

𝑓(𝑥) =
𝜃2(𝜃𝑥)𝛼−1(𝛼+𝑥)𝑒−𝜃𝑥

(𝛾+𝜃)𝛤(𝛼+1)
; 𝑥 > 𝑜, 𝛼 > 0, 𝜃 > 0; 𝛾 > 0                                          (2.16) 

Another modification to the Lindley distribution is “The Negative Binomial-Lindley 

Distribution. This distribution was introduced by Zamani and Ismail (2010). This is a 

discrete model developed by merging negative binomial distribution and Lindley 

distribution. The new model has a probability mass function (pmf) as: 

 
1

( ) 1 ( )
1 ( ) x

m x F t dt
F x



 
 
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𝑝(𝑥) =
𝜃2

𝜃+1
( 𝑥

𝑟+𝑥−1)∑ ( 𝑗
𝑘)𝑘

𝑗=0 (−1)
𝑗
𝜃+𝑟+𝑗+1

(𝜃+𝑟+𝑗)2; 𝑥 = 0,1,2, . . . ; 𝜃 > 0                         (2.17) 

Another generalisation of Lindley distribution is Extended Lindley Distribution (EXLD) 

introduced by Bakouch et al. (2012). This distribution has CDF as: 

𝐹(𝑥) = 1 − [
1+𝜃+𝜃𝑥

1+𝜃
]
𝛼

𝑒−(𝜃𝑥)
𝛽
; 𝑥 > 0, 𝜃 > 0, 𝛼 ∈ ℝ−1                                                (2.18) 

Shanker and Mishra (2013) introduced “the Quasi Lindley Distribution” (QLD) as a 

generalisation of Lindley distribution with pdf as: 

𝑓(𝑥) =
𝜃(𝛼+𝜃𝑥)

𝛼+1
𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0                                                               (2.19) 

Elbatal et al. (2013) also introduced New Generalised Lindley Distribution (NGLD) with 

the proposed PDF as: 

𝑓(𝑥) =
1

1+𝜃
[
𝜃𝛼+1𝑥𝛼−1

𝛤(𝛼)
+
𝜃𝛽𝑥𝛽−1

𝛤(𝛽)
] 𝑒−𝜃𝑥; 𝑥 > 𝑜, 𝛼 > 0, 𝜃 > 0; 𝛽 > 0                          (2.20) 

The last but not the least competing model considered in this review is “The Generalised 

Power Lindley Distribution” (GPLD). This distribution was introduced by Warahena-

Liyanage and Pararai (2014). It is an improvement on Ghitany et al. (2005)’s Power Lindley 

Distribution (PLD). The CDF was gotten through the method of exponentiation. 

𝐹(𝑥) = {1 − [1 +
𝛽𝑥𝛼

𝛽+1
] 𝑒−𝛽𝑥

𝛼
}
𝜔

, 𝑥, 𝛽, 𝛼, 𝜔, > 0                                                          (2.21) 

 

All these distributions are diligently derived and tested on datasets. However, some of 

them fit the data better than others. Despite their ability to fit data, they all have their 

weaknesses. 

2.3 Post-Janardan Reviews 

Since the introduction of Janardan distribution by Shanker et al. (2013), Shanker and his 

team have been working to improve the relevance as well as usability of the distribution. 

Digitized by UMaT Library



 

13 
 

Shanker et al. (2014) introduced a more general form of the Janardan distribution by 

merging Poisson and Janardan to arrive at the Discrete Poisson Janardan Distribution (PJD) 

in which Sankaran’s (1970) discrete Poisson Lindley Distribution (PLD) was a special case. 

Statistical properties such as the first four moments of PJD are established and parameters 

of the distribution are estimated using the moment method as well as the maximum 

likelihood estimation approach. The PJD was tested on some datasets of which PLD was 

used to model. With regard to the goodness of fit, PJD was found to provide a closer fit than 

PLD. 

Bashir and Rasul (2016) did a lot of work on some properties of the Size-Biased Janardan 

Distribution, of which the Size-Biased Lindley Distribution is a special case. In their 

publication, they conclude that “Janardan Distribution is one of the important distributions 

for lifetime model and it has many applications in real life data”. They established statistical 

properties such as moments, median, skewness, kurtosis, and Fisher index of dispersion of 

a Size-Biased Janardan Distribution. This distribution was tested on life data and compared 

Size-Biased Lindley distribution and was found to be better and more flexible in reliability 

analysis. The hazard rate was derived and found to be monotonically increasing. 

Amer et al. (2017) introduced a generalisation of Janardan distribution known as 

Transmuted Janardan distribution (TJD). These researchers made use of Shaw and 

Buckley’s (2009) quadratic rank transmutation map to generate TJD. Parametrisation 

through transmutation is not limited to Amer and his co-researchers. Scholars (Elbatal & 

Elgarhy, 2013; Aryal & Trokos, 2009; Al-khazaleh et al., 2016; Elbatal et al, 2014; Hussian, 

2014; etc) have improved one distribution or another through transmutation. 
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Table 2.1 Exponential Generalised Distributions – Strengths and weaknesses 

The distributions Parameter Description Problem 

Exponential 

Distribution 

𝜃  This distribution has 

one scale parameter 

with no shape 

parameter. 

This distribution cannot 

control skewness and 

kurtosis which most 

lifetime data exhibit. 

Also, it has a constant 

hazard rate (which is 

unrealistic) 

Weibull 

Distribution 

𝜆, 𝑘  It is an improvement 

on exponential 

distribution. It has one 

scale parameter (𝜆) and 

one shape parameter 𝑘. 

This distribution can 

model variability, 

skewness, and kurtosis 

which most lifetime data 

exhibit. Also, it has a 

monotonic hazard rate 

(which is unrealistic 

with lifetime data) 

Lindley 

Distribution 

𝜃 It is an improvement 

on exponential 

distribution. It has one 

scale parameter (𝜃). 

This distribution has a 

good hazard rate. 

However, it has no 

shape parameter to be 

able to control kurtosis 

and skewness. 

Janardan 

Distribution (a two-

𝜃, 𝛼 It is an improvement 

on Lindley 

distribution. It has 

This distribution has a 

good hazard rate and 

lifetime data better than 

Lindley. However, it has 
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parameter Lindley 

distribution 

scale and shape 

parameters (𝜃, 𝛼). 

limitations in controlling 

kurtosis and skewness. 

Generalised Lindley 

Distribution (GLD) 

𝜃,𝛾, and 𝛼 This is an improvement 

on Janardan 

distribution. It has three 

parameters; 𝜃and 𝛾  

(scale parameters) and 

𝛼 (shape parameter). 

 

Even though this 

distribution has one 

shape parameter to 

control kurtosis and 

skewness to some 

extent, there is still the 

need to improve on it to 

make it more 

accommodating. 

Extended Lindley 

Distribution 

(EXLD) 

𝜃, 𝛼 This is a competing 

model with the 

Janardan model with 

two scale parameters 

(𝜃, 𝛼). 

This distribution has a 

good hazard rate and 

lifetime data better than 

Lindley. However, it has 

no shape parameter to 

be able to control 

kurtosis and skewness. 

New Generalised 

Lindley 

Distribution 

(NGLD) 

𝛼, 𝜃, 𝛽 This distribution has 

one scale parameter 

and two shape 

parameters. This 

means that the 

distribution can control 

kurtosis and skewness 

to some extent as well 

as variability. 

This distribution can 

further be modified to 

improve on its ability to 

model lifetime data 

better. 
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The Generalised 

Power Lindley 

Distribution 

(GPLD) 

𝛽, 𝛼, 𝜔,> 0 This distribution has 

one scale parameter 

and two shape 

parameters. This 

means that the 

distribution can control 

kurtosis and skewness 

to some extent as well 

as variability. 

This distribution can 

further be modified to 

improve its ability to 

model lifetime data 

better. 

 

2.4 Methods of Developing New Probability Distributions 

The quest for the precision of prediction has increased in recent years. Due to that, the 

medium of prediction has evolved. Probability distribution, been a medium for prediction, 

has witnessed a wave of new distributions of which existing ones are baselines. However, 

Pinho (2017) proposed two methods. He proposed that new probability distributions could 

be built using the computer-based method as well as the composite method. Hao (2014), in 

his doctoral dissertation, came out with new probability distributions based on random 

extrema and permutation patterns. Khalil et al. (2021) suggested and used the method of 

parametrisation and described it as a novel method for developing efficient probability 

distribution. In this section of the study, the computer-based method, 

composition/parametrisation method, random extrema method, and permutation patterns 

method are discussed. 

2.4.1 Method of New Distribution – Computer-based Method 

One of the methods of building new probability distribution as discussed by Pinho (2017) 

is a computer-based method. This approach of probabilistic modeling is done using 

computer-based evolutionary algorithms to come out with a customised cumulative density 

function (CDF) based on a given data. It is a kind of experimental approach. According to 

Pinho (2017), this approach of developing a new distribution works when there is limited 

understanding of the given problem to permit the building of an explicit CDF or/and to 

Digitized by UMaT Library



 

17 
 

propose the use of an existing CDF. This approach attempts to find the “best possible” 

continuous probability distribution to model the given data concerning some fitness and 

optimality criteria and thereby controlling the mathematical complexity of outcome 

cumulative density function (CDF).  The main baseline algorithm of this method is the 

Probabilistic Incremental Program Evolution (PIPE) algorithm which was developed by 

Salustowicz and Schmidhuber (1997). 

Salustowicz and Schmidhuber (1997) presented the PIPE algorithm which is capable of 

producing programs according to to set rules governing probability. These probability rules 

are bettered over several iterations for the resultant programs are more probably to solve a 

given problem. This set of rules in a certain order is dependent on nodes and edges with 

certain assumptions. For instance, the PIPE, in its original proposition, assumes normality 

and exponentiality of continuous variables. The uniqueness of the PIPE algorithm is 

continuous parsing the program to a tree known as Probabilistic Prototype (PPT) and then 

randomly traversing on the PPT to sets of programs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 An example of a Probabilistic Prototype assuming normality 
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From figure 2.1, PPT presents the “n” maximum arity of the instruction in the given 

function, F and terminal, T. The PPT contains “nodes” (Nd,w) at “depth” (d ≥ 0) and “widths” 

(w ≥ 0) with a probability vector (Pd,w). The entries of Pd,w are given as Pd,w(I) for every I ∈ 

F ∪ T. The eligibility check of the nodes should satisfy the probability condition as given 

as: 

∑ Pd,w(I)
𝑛
𝑙,   𝑙 ∈ F ∪ T, = 1;  ∀Nd,w                                                                                     (2.22) 

In a case when PPT is traversed in a depth starting at a node, an instruction “l” is auto-

selected at the accessed node with a probability, with certain threshold conditionality, 

thereby creating a new “Tree”. Recursively, new nodes are added (growing), some old ones 

are retained, and some are deleted (pruning) at each iteration. 

Critical analysis of PIPE led to the discovery of two learning mechanisms namely: elitist 

learning and generation-based learning. These two learning mechanisms alternate until an 

ending criterion is met. The major part of the learning mechanism, generation-based 

learning, is known to have five distinguishable phases. Phase one is the creation of a 

program population while Phase two deals with population evaluation based on a fitness 

function. The next phase is learning from the population based on modified likelihood at 

each node while phase four deals with mutation of the PPT and the final phase is for PPT 

pruning. 

Besides Pinho (2017), other scholars (Pelikan et al., 2002; Ondas et al., 2005) have applied 

and presented PIPE in their scholastic publications. 

 

2.4.2 Method of New Distribution – Random Extrema Method 

 

Hao (2014) employed the method of extrema and permutation patterns to come out with 

several new probability distributions. In his work, he studied a new family of distributions 

of random variables which are double-bounded [0, 1], and satisfied the condition of iid 

(identically and independently distributed). The two new distributions proposed by this 

author are the “Standard Uniform Geometric Model” and the “Correlated Standard Uniform 

Geometric Model”. The models are a build-up of Uniform Distribution.  
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The standard Uniform Geometric model’s pdf is established as follows: 

𝑔(𝑦) =
𝜃

[1−(1−𝜃)𝑦]2
;    0 < 𝑦 < 1  

Its expectation is as follows: 

𝐸(𝑌𝑘) =
𝜃

[1−𝜃]𝑘+1
∑ (𝑘

𝑗
)𝑗=0 ∫ (−𝑢)𝑗−2𝑑𝑢

1

0
  ;   𝑗 = 0,1, … , 𝑘 𝑎𝑛𝑑 𝑢 =  1 − (1 − 𝜃)𝑦   

 

2.4.3 Parameterisation of Distribution – Composition Method of New Distribution 

Parameterisation is a method of adding parameter(s) to a distribution. This is done by 

merging two or more probability distributions through the generator. By so doing, a new 

distribution is formed from the existing distribution. This is the recent trait of distribution 

modifications due to the rate at which data is generated. The quantum of data available today 

is growing increasingly faster. 

Mudholkar et al., (1993) introduced a one-parameter generator known as an exponential 

generalised generator with cdf given as: 𝐹(𝑥) = [𝐺(𝑥)]𝛼 , 𝛼 > 0 . This generator helps in 

improving a distribution that has only scale parameter by introducing a shape parameter𝛼 >

0 

Eugene et al. (2002) defined beta generalised generator. This generator improves on existing 

distribution by introducing additional three parameters. The CDF of this generator is given 

as: 

𝐹(𝑥) =
1

𝐵(𝑎,𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1
𝐺(𝑥)

0
𝑑𝑡 , where 𝑎 > 0; 𝑏 > 0 and 0 < 𝑡 < 1                      (2.22) 

Cordeiro and Castro (2011) introduced Kumaraswamy G1 generator with CDF as 

 𝐹(𝑥) = 1 − (1 − 𝐺𝑎(𝑥))𝑏; 𝑎, 𝑏 > 0                                                                                   (2.23) 

Ramos (2019) also introduced three-parameter Kumaraswamy generator known as 

Kumaraswamy-G exponentiated generator with CDF as 
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𝐹(𝑥) = (1 − (1 − 𝐺𝑎(𝑥))𝑏)𝑐; 𝑎, 𝑏, 𝑐 > 0                                                                    (2.24) 

Other generators such as  Gamma-G type 1 (Zografos & Balakrishnan, 2009), Odd-gamma-

G type 3 (Torabi & Montazari, 2012), Logistic-G (Torabi & Montazari, 2014), 

Transformed-Transformer, T-X (Alzaatreh et al, 2013), Exponentiated T-X (Alzaghal et al., 

2013), Odd exponentiated generalised (Cordeiro et al, 2013), Exponentiated half-logistic 

(Cordeiro et al., 2015), Kumaraswamy-G (Das, 2012); are among generators which are 

commonly used in distribution improvement lately. 

 

2.5 Kumaraswamy Distribution 

In 1980, Kumaraswamy introduced Kumaraswamy distribution as a better substitute for beta 

distribution. This was introduced when beta distribution failed to model and explain 

hydrological applications (Khan et al., 2020). Kumaraswamy compared his distribution to 

some widely used distributions at the time and ran them on hydrological data and found out 

that his distribution better fit hydrological data. Among the competing distributions are log-

normal distribution, beta distribution, and normal distribution (Kumaraswamy, 1980). This 

two-parameter distribution (Kumaraswamy) has been applied, by many scholars, in 

modeling test scores, height data, the temperature of the atmosphere, and many more (Jones, 

2009). Since its introduction, many scholars (Khan et al., 2020; El-Sherpieny, 2014; among 

others) have presented Kumaraswamy (in their research works) to be better distribution than 

its computing distributions. Hence, Kumaraswamy is the transformed transformer generator 

for most distributions that need modification to enable them to model closely current 

lifetime data in this data age. That is the motivation for the researcher to choose 

Kumaraswamy as a generator to improve Janardan distribution. 

Kumaraswamy generalised distribution is one of the distributions that use the 

Kumaraswamy generator to come out with a five-parameter distribution. This new family 

of distribution was introduced by Das D. (2012). This new family of Kumaraswamy 

distribution has some sub-models under it. One of the sub-models is Kumaraswamy Normal 

distribution (Kw-N). This sub-model has one location parameter, one scale parameter, and 

two shape parameters. The PDF of Kumaraswamy's normal distribution is given by Das 

(2012) as: 
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𝑓(𝑥) =
𝑎𝑏

𝜎
𝜙(

𝑥−𝜇

𝜎
){𝛷(

𝑥−𝜇

𝜎
)}𝑎−1{1 − 𝛷(

𝑥−𝜇

𝜎
)𝑎}𝑏−1                                                      (2.25) 

𝑎, 𝑏, 𝜇, 𝜎2 

When the location parameter, 𝜇, is set to zero and the scale parameter, 𝜎, is set to unitary, 

the distribution transforms into a Standard Kumaraswamy-Normal distribution. Again, 

when 𝑎 =2  and 𝑏 = 1, Kumaraswamy's Normal distribution is reduced to a skew-normal 

distribution with the shape parameter being unitary. 

Another special case of the Kumaraswamy-Generalised family of distributions introduced 

by Das (2012) is the Kumaraswamy-Weibull distribution. This is a four-parameter 

distribution with PDF as  

𝑓(𝑥) = 𝑎𝑏𝑐𝛽𝑐𝑥𝑐−1 𝑒𝑥𝑝{ − (𝛽𝑥)𝑐}[1 − 𝑒𝑥𝑝{ − (𝛽𝑥)𝑐}]𝑎−1 × {1 − [1 − 𝑒𝑥𝑝{ − (𝛽𝑥)𝑐}]𝑎}𝑏−1.           (2.26) 

It is very conspicuous that when “c” is set to one, the whole distribution is reduced to 

Kumaraswamy-Exponential distribution. 

Yet another special case of the Kumaraswamy-Generalised family of distributions 

introduced by Das (2012) is the Kumaraswamy-Gamma distribution. This is a four-

parameter distribution with PDF as  

𝑓(𝑥) =
𝑎𝑏𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

𝛤(𝛼)𝑎𝑏
𝛤𝛽𝑥(𝛼)

𝑎−1{𝛤(𝛼)𝑎 − 𝛤𝛽𝑥(𝛼)}
𝑏−1                                                 (2.27) 

Kumaraswamy is a widely used generator in developing probability distributions. Abd Al-

Fattah et al. (2021) used Kumaraswamy as a generator to introduce Exponentiated 

Generalised inverted Kumaraswamy distribution and established some statistical properties 

and applications. Mostafa et al. (2014) estimate parameters of Kumaraswamy distribution 

using general progressive type II censoring. El-Sherpieny et al. (2014) introduced 

Kumaraswamy-Kumaraswamy. Also, generalised order statistics from Kumaraswamy 

distribution were established by Garg (2009). Chakraborty et. al (2020) published a 

scholastic article on the Kumaraswamy Poisson-G family of distribution. Khan et al. (2016) 

proposed transmuted Kumaraswamy distribution using Shaw et al (2009) quadratic rank 

transmutation map. 
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2.6 Summary of the Review 

Many scholars have demonstrated in their publications the special and significant role 

exponential distribution plays in modeling in the fields of actuary, biology, engineering, and 

many others. 

Some scholars (though, admitting the relevance of exponential distribution) also questioned 

some of its assumptions. This questioning of assumptions of exponential distribution dated 

way back to 1966. This spark of dynamic knowledge waves around exponential distribution. 

Many scholars came out with improved versions of Exponential distribution. Among the 

modified versions of exponential distribution are The Weibull distribution, Lindley 

distribution, and Lindley generalised distribution (of which Janardan distribution is a 

particular case). 

In efforts to enhance the goodness of fit of Exponential/Lindley distribution, Shanker (2013) 

established (through theoretical and empirical analysis) that Janardan distribution fits 

lifetime data better than pre-Janardan distributions reviewed. Many scholars (through the 

method of parameterisation) established competing models. These competing models 

together with the Janardan model were all found out having a monotonically increasing 

hazard rate hence proving the basis for further improvement.  

The review also critically examined several generators which aided scholars to come out 

with modified distributions through the method of parameterisation. Among the generators 

reviewed is the Kumaraswamy generator which is of significant essence to this study. Many 

scholars had used the Kumaraswamy generator to improve on existing distributions and 

achieved better results.  

Therefore, the weaknesses in the Janardan model and its competing models coupled with 

potential in the Kumaraswamy generator provide the basis for coming out with better 

distribution in this study. 
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CHAPTER 3 

METHODS USED 

3.0 Introduction 

This section presents the methods used in this study. New distributions are developed using 

parameterisation. The parameters are estimated using maximum likelihood estimation with 

the help of simulated annealing. This section addresses the methods under the following 

sub-sections. 

3.1 Method of parameterisation 

Method of parameterisation (for sometimes now) is a new technique useful in developing 

new probability distribution by many statisticians and mathematical scientists. 

To correct the limitations of Janardan distribution in handling lifetime data, three modified 

distributions are developed and tested with lifetime data. The proposed distributions are 

Exponentiated Janardan distribution (EJ), Kumaraswamy Janardan distribution (KJ), and 

Exponentiated Kumaraswamy Janardan Distribution (EKJ). These new modified models are 

developed through the method of parameterisation.  

 

 

 

 

 

 

 

Figure 3.1 Flowchart Demonstrating Parameterisation of The New Models 
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From the above flowchart, it is clear that the baseline distribution for the proposed 

distributions is a generalised Lindley distribution known as the Janardan distribution.  The 

parameterisation for the proposed model 1 is diagrammatically presented below. 

 

  

 

 

Figure 3.2 Flowchart Demonstrating Parameterisation Leading to Exponentiated 

Janardan 

The parameterisation for proposed model 2 is diagrammatically presented below. 

 

 

 

 

 

 

Figure 3.3 Flowchart Demonstrating Parameterisation Leading to Kumaraswamy 

Janardan Model 
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The parameterisation for proposed model 3 is diagrammatically presented below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Flowchart Demonstrating Parameterisation Leading to Exponentiated 

Kumaraswamy Janardan Model 

For each of the proposed models, Cumulative Density Function (CDF), Probability Density 

Function (PDF), hazard rate function, reliability function, moments and moment generating 

function as well as maximum likelihood function are derived.  The proposed new modified 

distributions together with the sub-models are tested on lifetime data. The goodness of fit 

of the distributions is tested using Akaike Information Criterion (AIC). 

3.2 Optimisation Techniques 

This section presents the theoretical background of the optimality technique used in the 

study. The optimality technique employed in the study is maximum likelihood estimation. 
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In probability, Maximum Likelihood Estimation is used to estimate parameters of 

probability distribution given some observed sample data. According to Rossi (2018), in 

maximising the likelihood function of the probability model, the sample data is most 

probable. The estimated point in the parameter space that maximises the likelihood function 

is called the maximum likelihood estimate. Any given set of observations is a sample from 

an unknown population, and MLE is to help make inferences about the population that is 

most likely to have generated the sample (Myung, 2003).  

Consider a random sample 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) being independent and identically random 

variables, each with probability density function as 𝑓(𝑥𝐼𝜃𝑋) 

Where 𝑓(𝑥𝐼𝜃𝑋) ∈ Ƒ 

and Ƒ = {𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑓(𝑥𝐼𝜃)}, 𝜃 ∈ 𝛩 ⊆ 𝑅𝑑 

Given Ƒ satisfies model identifiability condition and it holds that: 

𝑓(𝑥𝐼𝜃1) ≠ 𝑓(𝑥𝐼𝜃2)  

Then, the joint probability density function of the random sample 𝑋1, 𝑋2, … , 𝑋𝑛 is given by 

∏ 𝑓(𝑥𝑖𝐼𝜃𝑋)
𝑛
𝑖=1                                                                                                                 (3.1) 

The Maximum likelihood estimator 𝜃 of the parameter 𝜃𝑋 is the point from 𝛩 that maximises 

the joint density evaluated at the observed values of 𝑋1, 𝑋2, … , 𝑋𝑛.  

The likelihood function of the parameter 𝜃 in the model distribution Ƒ is defined as: 

𝐿(𝜃) = ∏ 𝑓(𝑥𝑖𝐼𝜃)
𝑛
𝑖=1                                                                                                       (3.2) 

Taking logarithm on both sides, we obtain the log-likelihood function of the parameter 

space in the model Ƒ as defined as: 

𝑙(𝜃) = log 𝐿(𝜃) = ∑ log 𝑓(𝑥𝑖𝐼𝜃)
𝑛
𝑖=1                                                                              (3.3) 

The maximum likelihood estimator (MLE) of the parameter space  

𝜃 = arg𝑀𝑎𝑥 𝐿(𝜃);  , 𝜃 ∈ 𝛩  
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Since logarithm is strictly increasing, 𝐿(𝜃) and 𝑙(𝜃) attain their maximum at the same 

point hence the estimate that maximises the likelihood function also maximises the log-

likelihood function. 

The MLE is usually determined by the differentiation of the log-likelihood function. 

Consider a random vector whose score function is given as: 

𝑈(𝜃𝐼𝑋𝑖) =   
𝜕

𝜕𝜃
 (log 𝑓(𝑋𝑖𝐼𝜃))                                                                                       (3.4) 

And the corresponding score statistics for the parameter 𝜃 in the model Ƒ is: 

𝑈𝑛(𝜃𝐼𝑋𝑖) = ∑ 𝑈(𝜃𝐼𝑋𝑖)
𝑛
𝑖=1  =  ∑  

𝜕

𝜕𝜃
 (log 𝑓(𝑋𝑖𝐼𝜃))

𝑛
𝑖=1                                                  (3.5) 

While ith contribution to the information matrix is defined as: 

𝐼(𝜃𝐼𝑋𝑖) =  
𝜕𝑈(𝜃𝐼𝑋𝑖)

𝜕𝜃𝑇
 =  −

𝜕2

𝜕𝜃𝜕𝜃𝑇
 (log 𝑓(𝑋𝑖𝐼𝜃))                                                               (3.6) 

So, the observed information matrix is given as: 

𝐼𝑛(𝜃𝐼𝑋𝑖) = −
1

𝑛
 
𝜕

𝜕𝜃𝑇
𝑈𝑛(𝜃𝐼𝑋𝑖)  =

1

𝑛
 ∑ 𝐼(𝜃𝐼𝑋𝑖)

𝑛
𝑖=1                                                           (3.7) 

Also, the expected (Fisher) information matrix is defined as: 

𝐼(𝜃) = 𝐸(𝐼(𝜃𝐼𝑋𝑖))   =  −𝐸 (
𝜕2

𝜕𝜃𝜕𝜃𝑇
 (log 𝑓(𝑋𝑖𝐼𝜃)))                                                       (3.8) 

If set 𝛩 is open, the MLE 𝜃𝑛 solves the system of equation: 

𝑈𝑛(𝜃𝑛𝐼𝑋𝑖) = ∑  
𝜕

𝜕𝜃
 (log 𝑓(𝑋𝑖𝐼𝜃𝑛))

𝑛
𝑖=1 = 0                                                                    (3.9) 

These optimality equations are otherwise known as likelihood equations. 

 

3.3 Model Selection and Evaluation Criteria 

The scientific community today is confronted (on regular basis) with the question of the best 

model that fits occurrence. The quest for an answer to this question motivates many model 

experts to keep developing new stochastic models and scientifically determining the “best 

fit” model among the lot. In order not to be trapped with a mad throng of models and new 
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models, statistical determination of best-fit model among models becomes very relevance. 

Hence, it comes as no surprise that many approaches to dealing with this key issue have 

been proposed over the years. There are many schools of thought about which criteria are 

very appropriate. Among them, both Bayesian and Frequentist gain popularity on the matter 

with methods such as cross-validation, stepwise; backward and forward selection 

procedures, exhaustive search, test for the nested model, AIC, BIC, and so on. Some of the 

above-mentioned methods are algorithms for selecting a “good” model while others are 

criteria for judging the quality of a model. Among such criteria for judging the quality of a 

model are AIC and BIC (MacKay, 1992). 

In judging the quality of a model, statisticians use methods that are coherent and general 

enough to handle a wide range of problems bearing in mind the likelihood principle and 

principle of parsimony. This is what the Bayesian school of thought proposed (Key, 

Pericchi, and Smith,1999; MacKay, 1992). Due to the popularity and usability of Bayesian 

methods of model selection, scholars (Bernardo and Rueda, 2002) dived into model 

selection as a problem in Bayesian hypothesis testing and failed to reject the Bayesian 

criterion. This is an indication that the Bayesian factor in model selection stood the test of 

time. 

Among many reviewers who dived into a discussion on Bayes Factor in model selection is 

Kass and Raftery (1997). This discussion of the Bayes Factor has led to the general 

acceptability of two criteria used for model selection. These criteria are the Bayesian 

Information Criterion (BIC) and the Akaike Information Criterion (AIC). 

AIC is a criterion that compares the quality of a set of statistical models. It does this by 

taking the models and ranking them from best to worst. The “best” model among the 

considered models is the one that neither over-fits nor under-fits that data. AIC chooses the 

best model among considered models. By implication, if all the models considered are very 

good, AIC will select the best among them. The converse is also true. That is why it is very 

important to run the test of significance on any selected model. 

𝐴𝐼𝐶 =  −2(𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝐾                                                                                          (3.10) 

Where K is the number of parameters considered in the model. 
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Log-likelihood value measures model suitability.  

The first summand (-2loglikelihood) expresses the goodness-of-it of the model while the 

second summand is a penalty term for increasing the number of parameters in the model. 

The summands in the AIC equation provide enough ground to harmonise accuracy and 

parsimony to aid the selection of the best among models. 

In conclusion, there is a plethora of approaches in the scientific/statistical community in 

selecting the best among models. Among this plethora of approaches, Bayesian and classical 

statisticians’ proposals proved to be superior. It is in light of this argument that this study 

adopts Bayesian-classical criteria in judging the best model among models. 
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CHAPTER 4 

THEORETICAL RESULTS 

4.0 Introduction 

This chapter presents the theoretical results of the proposed distributions and their statistical 

properties. Specifically, the chapter discusses the statistical properties of Exponentiated 

Janardan distribution, Kumaraswamy Janardan distribution, and Exponentiated 

Kumaraswamy Janardan distribution. 

4.1 Exponentiated Janardan Distribution 

In this section, a three-parameter continuous distribution for a non-negative random variable 

is introduced. It is named “Exponentiated Janardan”. This new distribution has the Janardan 

distribution as the baseline distribution. Visualisation of the behavior of the PDF, hazard 

rate, and survival function are presented. Also, some statistical properties are established. 

 

For a random variable that follows Janardan Distribution (JD) with parameters  𝜑, 𝜌 ; the 

probability density function is given as: 

𝑋 ∼ 𝐽𝐷(𝑥, 𝜑, 𝜌 ) = 𝑓(𝑥, 𝜑, 𝜌 ).     

𝑔(𝑥, 𝜑, 𝜌 ) =
𝜌2  

𝜑(𝜌+𝜑2)
. (1 + 𝜑𝑥) 𝑒

−
𝜌

𝜑
𝑥
  ;  𝑥, 𝜑, 𝜌 > 0                                                                (4.1) 

and the corresponding cumulative density function (CDF) is established as: 

𝐺(𝑥, 𝜑, 𝜌) = 1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
;  𝑥, 𝜑, 𝜌 > 0                                                        (4.2) 

The expectation of Janardan distribution is also established as: 

𝐸(𝑋) = 𝜇𝑋 =
𝜑(𝜌+2𝜑2)

𝜌(𝜌+𝜑2)
                                                                                                          (4.3) 

Also, the second, third, and fourth moments are appropriately established. 
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𝜇2 = 2 [
𝜑

𝜌
]
2 (𝜌+3𝜑2)

(𝜌+𝜑2)
  ; 𝜇3 = 6 [

𝜑

𝜌
]
3 (𝜌+4𝜑2)

(𝜌+𝜑2)
 ; 𝜇4 = 24 [

𝜑

𝜌
]
4 (𝜌+5𝜑2)

(𝜌+𝜑2)
  

By generalisation, the rth moment is given as  

𝜇𝑟 = 𝑟! [
𝜑

𝜌
]
𝑟

[1 +
𝑟𝜑2

𝜌+𝜑2
] ; 𝑟 = 1,2,3, . ..                                                                                 (4.4) 

The mode of the distribution is established as: 

Differentiating the pdf and setting the result to zero, the extrema of the Janardan distribution 

becomes: 

𝑥 =
𝜑2−𝜌

𝜑𝜌
.  

This value, the 𝑓(𝑥) is maximum only if 𝜑 > 𝜌. But in a situation where 𝜑 < 𝜌  the 𝑓(𝑥) 

is decreasing in 𝑋. Therefore, the mode of Janardan distribution is established to be: 

𝑚𝑜𝑑𝑒 = {
𝜑2−𝜌

𝜑𝜌
, 𝜑 > 𝜌

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                                                                                                           (4.5) 

 

Hazard function ℎ(𝑥) of the distribution is also established as: 

ℎ(𝑥) =
𝜌2(1+𝜑𝑥)

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥
                                                                                                             (4.6) 

Janardan probability distribution had been tried and tested to many lifetime datasets and 

proven to be a more relaxed and better fit than the Lindley distribution. 

 

4.1.1 Derived functions of Exponentiated Janardan Distribution 

The cumulative density function for exponential generator  

𝐹(𝑥) =  [𝐺(𝑥)]𝛾                                                                                                                   (4.7) 
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Inserting equation (4.2) into (4.7), we derived the cumulative density function for 

Exponentiated Janardan (EJ) as: 

𝐹(𝑥 ) =  [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛾

  

Hence, a random variable that conforms to Exponentiated Janardan distribution, 

 𝑋 ∼ 𝐸𝐽(𝑥, 𝜑, 𝜌, 𝛾 ) has the CDF as: 

𝐹(𝑥, 𝜑, 𝜌, 𝛾 ) =  [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛾

                                                                            (4.8) 

In order to check the legitimacy of the CDF, the CDF plot of exponentiated Janardan 

distribution is presented as follows: 

 

Figure 4.1 Behaviour of the CDF of exponentiated Janardan distribution 

Using the chain rule, the CDF (equation 4.8) is differentiated to arrive at the pdf of 

Exponentiated Janardan distribution as: 

Let  

𝐴 = 1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
 

𝑌 = 𝐹(𝑥, 𝜑, 𝜌, 𝛾 ) 
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𝑌 =  [𝐴]𝛾 

𝜕𝑌

𝜕𝐴
=  𝛾[𝐴]𝛾−1 

 

𝜕𝐴

𝜕𝑥
=
𝜕

𝜕𝑥
[1 − 

𝜑(𝜌 + 𝜑2)𝑒
−
𝜌
𝜑
𝑥
+ 𝜌𝜑2𝑥𝑒

−
𝜌
𝜑
𝑥
 

𝜑(𝜌 + 𝜑2)
]   

𝜕𝐴

𝜕𝑥
=
𝜕

𝜕𝑥
[1 − 

𝜑(𝜌 + 𝜑2)𝑒
−
𝜌
𝜑
𝑥
 

𝜑(𝜌 + 𝜑2)
+
𝜌𝜑2𝑥𝑒

−
𝜌
𝜑
𝑥
 

𝜑(𝜌 + 𝜑2)
]  

𝜕𝐴

𝜕𝑥
= [ 

𝜌(𝜌 + 𝜑2)𝑒
−
𝜌
𝜑
𝑥
 

𝜑(𝜌 + 𝜑2)
+

𝜌𝜑2 

𝜑(𝜌 + 𝜑2)

𝜕

𝜕𝑥
(𝑥𝑒

−
𝜌
𝜑
𝑥
)] 

Applying the product rule; 

𝜕𝐴

𝜕𝑥
= [ 

𝜌(𝜌 + 𝜑2)𝑒
−
𝜌
𝜑
𝑥
 

𝜑(𝜌 + 𝜑2)
+

𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
(𝑒

−
𝜌
𝜑
𝑥
−
𝜌

𝜑
𝑥𝑒

−
𝜌
𝜑
𝑥
)] 

Simplifying: 

𝜕𝐴

𝜕𝑥
= [ 

𝜌(𝜌 + 𝜑2)𝑒
−
𝜌
𝜑
𝑥
 

𝜑(𝜌 + 𝜑2)
−
𝜌𝜑2 𝑒

−
𝜌
𝜑
𝑥

𝜑(𝜌 + 𝜑2)
+
𝜌2𝑥𝑒

−
𝜌
𝜑
𝑥
 

(𝜌 + 𝜑2)
] 

𝜕𝐴

𝜕𝑥
= [ 

𝜌(𝜌 + 𝜑2) 

𝜑(𝜌 + 𝜑2)
−

𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
+

𝜌2𝜑𝑥 

𝜑(𝜌 + 𝜑2)
] 𝑒

−
𝜌
𝜑
𝑥
 

𝜕𝐴

𝜕𝑥
= [ 

𝜌2 + 𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
+

𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
−

𝜌2𝜑𝑥 

𝜑(𝜌 + 𝜑2)
] 𝑒

−
𝜌
𝜑
𝑥
 

 

𝜕𝐴

𝜕𝑥
= [ 

𝜌2 + 𝜌𝜑2 − 𝜌𝜑2 + 𝜌2𝜑𝑥

𝜑(𝜌 + 𝜑2)
] 𝑒

−
𝜌
𝜑
𝑥
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𝜕𝐴

𝜕𝑥
= [ 

𝜌2 + 𝜌2𝜑𝑥

𝜑(𝜌 + 𝜑2)
] 𝑒

−
𝜌
𝜑
𝑥
 

𝜕𝐴

𝜕𝑥
= [ 

𝜌2 + 𝜌2𝜑𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌
𝜑
𝑥
] 

𝜕𝐴

𝜕𝑥
= [ 

𝜌2

𝜑(𝜌 + 𝜑2)
(1 + 𝜑𝑥)𝑒

−
𝜌
𝜑
𝑥
] 

Applying the chain rule; 

𝑌́ = 𝑓(𝑥, 𝜑, 𝜌, 𝛾 ) =
𝜕𝑌

𝜕𝑥
=
𝜕𝑌

𝜕𝐴
×
𝜕𝐴

𝜕𝑥
 

𝑓(𝑥, 𝜑, 𝜌, 𝛾 ) = 𝛾 [1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛾−1

× [ 
𝜌2

𝜑(𝜌 + 𝜑2)
(1 + 𝜑𝑥)𝑒

−
𝜌
𝜑
𝑥
] 

Hence, the probability density function of Exponentiated Janardhan distribution is  

𝑓(𝑥, 𝜑, 𝜌, 𝛾) =  𝛾 [
𝜌2  

𝜑(𝜌+𝜑2)
(1 + 𝜑𝑥) 𝑒

−
𝜌

𝜑
𝑥
] [1 − 

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛾−1

                  (4.9) 

The shape of the pdf for some arbitrary values of the parameters of Exponentiated Janardan 

distribution is presented in figure 4.1. Hence figure 4.1 exhibits the behavior of this 

proposed distribution. 

Figure 4.2 Behaviour of PDF of Exponentiated Janardan for some parameters 
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Another determinant of the ability of distribution to model life time data is the survival and 

hazard function of the distribution.  

Survival function, 𝑅(𝑥), by definition, is given as 

 𝑅(𝑥) = 1 − 𝐹(𝑥)                                                                                                                     (4.10) 

By implication, the survival function for Exponentiated Janardan distribution is derived as: 

𝑅(𝑥) = 1 − [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛾

                                                                                    (4.11) 

The behavior of the survival function is pictorially demonstrated in figure 4.2 for some 

randomly selected values of the parameters of the distribution. 

 

Figure 4.3 Behaviour of Survival function of Exponentiated Janardan for some 

parameters 

Equation (4.12) presents the hazard function of Exponentiated Janardan distribution.  

Hazard function, ℎ(𝑥), by definition, is given as: 

ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
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This implies that the Hazard rate function of Exponentiated Janardan distribution is derived 

as: 

ℎ(𝑥) =
 𝛾[

𝜌2  

𝜑(𝜌+𝜑2)
(1+𝜑𝑥) 𝑒

−
𝜌
𝜑
𝑥
][1− 

𝜑(𝜌−𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛾−1

1− [1− 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛾                                                                  (4.12) 

Furthermore, figure 4.3 demonstrates the behavior of the hazard rate of Exponentiated 

Janardan distribution for some randomly selected values of the parameters. 

Figure 4.4 Behaviour of Hazard Rate function of Exponentiated Janardan for some 

parameters 

The study further established the role of each of the parameters for Exponentiated Janardan 

distribution. This is done by varying one parameter while keeping others constant and the 

result is pictorially displayed in figures 4.4 through figure 4.6. 

It is conspicuously clear from figure 4.4 that the parameter gamma,𝛾, is a location 

parameter. This gives credence to the proposed distribution’s ability to model lifetime data 

even if the data is transformed or shifted. Even if the data set is shifted to the right, say, 𝑥𝑜+ 

X (Where X is a random variable emanating from an unknown probability distribution), 

Exponentiated Janardan would be able to model without a change of shape or form. More 

information can be gotten about the impact of location parameters from Stone (1975). 
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Figure. 4.4 indicates that the varying numeric value of 𝛾 only changes the location of the 

curve without a change of shape while maintaining f(x) at the same value. 

Furthermore, rho (𝜌) has been determined and illustrated to be the scale parameter of the 

proposed Exponentiated Janardan distribution. Figure 4.5 reveals that a change in the 

numeric value of rho (holding all other parameters constant) results in a change in the spread 

of distribution without a change in the shape of the distribution. This effect is a behavior of 

the scale parameter of a distribution. Scale parameter controls the variability in the dataset 

that most lifetime data exhibit. 

The functional impact of 𝜑 is also determined and illustrated in Figure. 4.6. This is done by 

keeping all other parameters constant except 𝜑. It is clear from figure 4.6 that, as the value 

of  𝜑 changes, the shape of the distribution also changes. Hence, 𝜑, is playing the role of 

shape parameter in Exponentiated Janardan distribution. 

Figure 4.5 Demonstrating the effect of “gamma” on behaviour of pdf of EJ 
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Figure 4.6 Demonstrating the effect of “rho” on behaviour of pdf of EJ 

Figure 4.7 Demonstrating the effect of 𝛗 on behaviour of pdf of EJ 

4.1.2 Statistical Properties of Exponentiated Janardan Distribution 

This subsection introduces some statistical properties of Exponentiated Janardan 

distribution. Some of the statistical properties established are moment about the origin and 

maximum likelihood estimator of the parameters. 

 

Digitized by UMaT Library



 

39 
 

Moment about the origin 

Simplifying (4.9), we obtain 

𝑓(𝑥, 𝜑, 𝜌, 𝛾) = −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
𝑥𝛾−1𝑒

−
𝜌𝛾

𝜑
𝑥
+ 𝑥𝛾𝑒

−
𝜌𝛾

𝜑
𝑥
 ]                                         (4.13) 

Hence, for a random variable “X” that follows exponentiated Janardan distribution with 

parameters 𝜑, 𝜌 𝑎𝑛𝑑 𝛾 has a probability density function as: 

𝑓(𝑥, 𝜑, 𝜌, 𝛾) =  { −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
𝑥𝛾−1𝑒

−
𝜌𝛾

𝜑
𝑥
+ 𝑥𝛾𝑒

−
𝜌𝛾

𝜑
𝑥
 ] ;                   𝑥, 𝜑, 𝜌, 𝛾 > 0

0                                                                                                            𝐸𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  

 

𝐸(𝑋) =  ∫ 𝑥 
∞

0
𝑓(𝑥) 𝑑𝑥                                                                                             (4.13a) 

𝐸(𝑋) =  −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

× ∫ 𝑥 
∞

0
[
1

𝜑 
𝑥𝛾−1𝑒

−
𝜌𝛾

𝜑
𝑥
+ 𝑥𝛾𝑒

−
𝜌𝛾

𝜑
𝑥
 ]  𝑑𝑥                            (4.13b) 

𝐸(𝑋) =  −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

× [∫  
∞

0

1

𝜑 
𝑥𝛾𝑒

−
𝜌𝛾

𝜑
𝑥
+ ∫  

∞

0
𝑥𝛾+1𝑒

−
𝜌𝛾

𝜑
𝑥
 ]  𝑑𝑥  

𝐸(𝑋) =  −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

× [
1

𝜑 
∫  
∞

0
𝑥𝛾𝑒

−
𝜌𝛾

𝜑
𝑥
+ ∫  

∞

0
𝑥𝛾+1𝑒

−
𝜌𝛾

𝜑
𝑥
 ]  𝑑𝑥  

 

Using gamma transformation: 

𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) = ∫  
∞

0
𝑥𝛼−1𝑒

−
1

𝛽
𝑥
𝑑𝑥 = ⌈𝛼 × 𝛽𝛼 = (𝛼 − 1)! 𝛽𝛼                               (4.13c) 

the expected value of the variable is as follows: 

∴ 𝐸(𝑋) =  −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

× [
1

𝜑 
(𝛾)! (

𝜑

𝜌𝛾
)
𝛾+1

+ (𝛾 + 1)! (
𝜑

𝜌𝛾
)
𝛾+2

]                           (4.14) 

In general, the rth moment about the origin is established as follows: 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟
∞

0
𝑓(𝑥) 𝑑𝑥                                                                                              (4.14a) 

𝐸(𝑋𝑟) = −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

∫ [
1

𝜑 
𝑥𝛾+𝑟−1𝑒

−
𝜌𝛾

𝜑
𝑥
+ 𝑥𝛾+𝑟𝑒

−
𝜌𝛾

𝜑
𝑥
 ]

∞

0
 𝑑𝑥                              (4.14b) 
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𝐸(𝑋𝑟) = −
𝜌𝛾

𝜑 
 [

−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
(𝛾 + 𝑟)! (

𝜑

𝜌𝛾
)
𝛾+𝑟

+ (𝛾 + 𝑟 + 1)! (
𝜑

𝜌𝛾
)
𝛾+𝑟+1

]   

𝐸(𝑋𝑟) = −
𝜌𝛾

𝜑 
 (
𝜑

𝜌𝛾
)
1

[
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
(𝛾 + 𝑟)! (

𝜑

𝜌𝛾
)
𝛾+𝑟

+ (𝛾 + 𝑟 + 1)! (
𝜑

𝜌𝛾
)
𝛾+𝑟+1

]  

𝐸(𝑋𝑟) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
(𝛾 + 𝑟)! (

𝜑

𝜌𝛾
)
𝛾+𝑟

+ (𝛾 + 𝑟 + 1)! (
𝜑

𝜌𝛾
)
𝛾+𝑟+1

]  

𝐸(𝑋𝑟) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
+ (𝛾 + 𝑟 + 1) (

𝜑

𝜌𝛾
)] (𝛾 + 𝑟)! (

𝜑

𝜌𝛾
)
𝛾+𝑟

                          (4.14c) 

When r = 1 

𝐸(𝑋) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
+ (𝛾 + 2) (

𝜑

𝜌𝛾
)] (𝛾 + 1)! (

𝜑

𝜌𝛾
)
𝛾+1

                                  (4.14d) 

When r = 2 

𝐸(𝑋2) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
+ (𝛾 + 3) (

𝜑

𝜌𝛾
)] (𝛾 + 2)! (

𝜑

𝜌𝛾
)
𝛾+2

                               (4.14e) 

When r = 3 

𝐸(𝑋3) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
+ (𝛾 + 4) (

𝜑

𝜌𝛾
)] (𝛾 + 3)! (

𝜑

𝜌𝛾
)
𝛾+3

                                (4.14e) 

When r  = 4 

𝐸(𝑋4) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
+ (𝛾 + 5) (

𝜑

𝜌𝛾
)] (𝛾 + 4)! (

𝜑

𝜌𝛾
)
𝛾+4

                                (4.14f) 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))2                                                                                 (4.14g) 

𝑉𝑎𝑟(𝑋) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
+ (𝛾 + 3) (

𝜑

𝜌𝛾
)] (𝛾 + 2)! (

𝜑

𝜌𝛾
)
𝛾+2

            

−

 

([
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
+ (𝛾 + 2) (

𝜑

𝜌𝛾
)] (𝛾 + 1)! (

𝜑

𝜌𝛾
)
𝛾+1

)

2

                                              (4.14h)         

𝑉𝑎𝑟(𝑋) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
(𝛾 + 2)! (

𝜑

𝜌𝛾
)
𝛾+2

+ (𝛾 + 3)! (
𝜑

𝜌𝛾
)
𝛾+3

] − (− [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
(𝛾 +

1)! (
𝜑

𝜌𝛾
)
𝛾+1

+ (𝛾 + 2)! (
𝜑

𝜌𝛾
)
𝛾+2

])
2
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𝑉𝑎𝑟(𝑋) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
(𝛾 + 2)! (

𝜑

𝜌𝛾
)
𝛾+2

+ (𝛾 + 3)! (
𝜑

𝜌𝛾
)
𝛾+3

] − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
2𝛾

([
1

𝜑 
(𝛾 +

1)! (
𝜑

𝜌𝛾
)
𝛾+1

+ (𝛾 + 2)! (
𝜑

𝜌𝛾
)
𝛾+2

])
2

  

 

𝑉𝑎𝑟(𝑋) = − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
𝛾

[
1

𝜑 
(𝛾 + 2)! (

𝜑

𝜌𝛾
)
𝛾+2

+ (𝛾 + 3)! (
𝜑

𝜌𝛾
)
𝛾+3

] − [
−𝜌𝜑 

(𝜌+𝜑2)
 ]
2𝛾

([
1

𝜑 
(𝛾 +

1)! (
𝜑

𝜌𝛾
)
𝛾+1

+ (𝛾 + 2)! (
𝜑

𝜌𝛾
)
𝛾+2

])
2

                                                                        (4.14i) 

 

Maximum Likelihood Estimation 

  

For simplicity, the pdf is re-written as  

𝑓(𝑥, φ, ρ, γ) =  

γρ2[1− 
(ρφ2𝑥+φ(ρ+φ2))𝑒

− 
ρ𝑥
φ

φ(ρ+φ2)
]

γ −1

(φ𝑥+1)𝑒
− 
ρ𝑥
φ

φ(ρ+φ2)
                                                (4.15) 

 

From the foregoing statement, the likelihood function is obtained as: 

L = ∏ 𝑓(𝑥𝑖 ,
𝑛
𝑖=1 φ, ρ, γ)                                                                                                (4.16a) 

 

L(φ, ρ, γ) = ∏

γρ2[1− 
(ρφ2𝑥+φ(ρ+φ2))𝑒

− 
ρ𝑥
φ

φ(ρ+φ2)
]

γ −1

(φ𝑥+1)𝑒
− 
ρ𝑥
φ

φ(ρ+φ2)
 𝑛

𝑖=1                                        (4.16b) 

 

L(φ, ρ, γ) = (
γρ2

φ(ρ+φ2)
)
𝑛

∏    [1 − 
(ρφ2𝑥𝑖+φ(ρ+φ

2))𝑒
− 
ρ𝑥𝑖
φ

φ(ρ+φ2)
]

γ −1

𝑛
𝑖=1 (φ𝑥𝑖 + 1)𝑒

− 
ρ𝑥𝑖
φ       (4.17a) 

The log-likelihood function is obtained by subjecting the likelihood function to a natural 

logarithm as: 
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log (L(φ, ρ, γ)) = log ((
γρ2

φ(ρ+φ2)
)
𝑛

∏  [1 − 
(ρφ2𝑥𝑖+φ(ρ+φ

2))𝑒
− 
ρ𝑥𝑖
φ

φ(ρ+φ2)
]

γ −1

𝑛
𝑖=1 (φ𝑥𝑖 + 1)𝑒

− 
ρ𝑥𝑖
φ )                                                                                                                    

(4.17b) 

Evaluation of log-likelihood function yields: 

log(L(φ, ρ, γ)) = 𝑛 log (
γρ2

φ(ρ+φ2)
) + ∑ logn

𝑖=1 ( [1 − 
(ρφ2𝑥𝑖+φ(ρ+φ

2))𝑒
− 
ρ𝑥𝑖
φ

φ(ρ+φ2)
]

γ −1

(φ𝑥𝑖 + 1)𝑒
− 
ρ𝑥𝑖
φ )  

log(L(φ, ρ, γ)) = 𝑛 [log(γ) + 2log(ρ) − log(φ) − log((ρ + φ2))] + 

∑

(

 
 
(𝑙𝑜𝑔 [1 − 

(ρφ2𝑥𝑖 + φ(ρ + φ
2))𝑒

− 
ρ𝑥𝑖
φ

φ(ρ + φ2)
]

γ −1

+ 𝑙𝑜𝑔(φ𝑥𝑖 + 1)𝑒
− 
ρ𝑥𝑖
φ )

)

 
 

n

𝑖=1

 

 

log(L(φ, ρ, γ)) = 𝑛 [log(γ) + 2log(ρ) − log(φ) − log((ρ + φ2))] + 

∑

(

 (𝑙𝑜𝑔 [1 − 
(ρφ2𝑥𝑖+φ(ρ+φ

2))𝑒
− 
ρ𝑥𝑖
φ

φ(ρ+φ2)
]

γ −1

+ 𝑙𝑜𝑔(φ𝑥𝑖 + 1)𝑒
− 
ρ𝑥𝑖
φ )

)

 n
𝑖=1                     (4.17c) 

 

log(L(φ, ρ, γ)) = 𝑛 [log(γ) + 2log(ρ) − log(φ) − log((ρ + φ2))] 

+(γ − 1)∑ ((𝑙𝑜𝑔 [1 − 
(ρφ2𝑥𝑖+φ(ρ+φ

2))𝑒
− 
ρ𝑥𝑖
φ

φ(ρ+φ2)
]))n

𝑖=1  +∑ ((𝑙𝑜𝑔(φ𝑥𝑖 + 1)𝑒
− 
ρ𝑥𝑖
φ ))n

𝑖=1  

 

Digitized by UMaT Library



 

43 
 

log(L(φ, ρ, γ)) = 𝑛 [log(γ) + 2log(ρ) − log(φ) − log((ρ + φ2))] + (γ −

1)∑ (log (φ) + (log (ρφ𝑥𝑖 + (ρ + φ
2))) −

ρ𝑥𝑖

φ
− (log(φ) − log(ρ + φ2)))n

𝑖=1 +

∑ ((𝑙𝑜𝑔(φ𝑥𝑖 + 1)) − 
ρ𝑥𝑖

φ
)n

𝑖=1   

 

log(L(φ, ρ, γ)) = 𝑛 [log(γ) + 2log(ρ) − log(φ) − log((ρ + φ2))] + (γ − 1)[log(φ) −

log(φ) − log(ρ + φ2)]∑ ((log(ρφ𝑥𝑖 + (ρ + φ
2))))n

𝑖=1 −
ρ

φ
∑ (𝑥𝑖)
n
𝑖=1 + ∑ 𝑙𝑜𝑔(φ𝑥𝑖 +

n
𝑖=1

1) −
ρ

φ
∑ (𝑥𝑖)
n
𝑖=1   

 

log(L(φ, ρ, γ)) = log(γ) + 2log(ρ) − log(φ) − log(ρ + φ2) + (γ − 1)[log(φ) −

log(φ) − log(ρ + φ2)]∑ ((log(ρφ𝑥𝑖 + (ρ + φ
2))))n

𝑖=1 −
ρ

nφ
∑ (𝑥𝑖)
n
𝑖=1 +

∑ 𝑙𝑜𝑔(φ𝑥𝑖 + 1)
n
𝑖=1 −

ρ

nφ
∑ (𝑥𝑖)
n
𝑖=1   

 

log(L(φ, ρ, γ)) = log(γ) + 2log(ρ) − log(φ) − log(ρ + φ2) + (γ − 1)[log(φ) −

log(φ) − log(ρ + φ2)]∑ ((log(ρφ𝑥𝑖 + (ρ + φ
2))))n

𝑖=1 −
ρ

φ
x̅ + ∑ 𝑙𝑜𝑔(φ𝑥𝑖 + 1)

n
𝑖=1 −

ρ

φ
x̅        

                                                                                                                                      (4.18)                    

 

Furthermore, the maximum likelihood estimates φ̂, ρ̂, γ̂ of φ, ρ, γ  are represented as 

solutions to the respective optimality equations. 

The equation maximiser with respect to φ is  

∂

∂φ
log(L(φ, ρ, γ)) = 0                                                                                                 (4.18a) 

∂

∂φ
log(L(φ, ρ, γ)) = −

1

φ
−

2φ

ρ+φ2
+ (γ − 1) [−

2φ

ρ+φ2
]∑ (

ρ𝑥𝑖+2φ

(ρφ𝑥𝑖+(ρ+φ
2))
)n

𝑖=1 + 2
ρ

φ2
x̅ +

∑
𝑥𝑖

φ𝑥𝑖+1

n
𝑖 = 0                                                                                                              (4.18b) 
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The equation maximiser with respect to ρ is  

∂

∂ρ
log(L(φ, ρ, γ)) = 0                                                                                              (4.18c) 

2

ρ
−

1

ρ+φ2
+ (γ − 1) [−

1

ρ+φ2
] ∑ (

φ𝑥𝑖+1

ρφ𝑥𝑖+(ρ+φ
2)
)n

𝑖=1 − 2
x̅

φ
= 0                                  (4.18d) 

The equation maximiser with respect to γ is  

∂

∂γ
log(L(φ, ρ, γ)) = 0                                                                                         (4.18e) 

log(L(φ, ρ, γ)) =
1

γ
+ [− log(ρ + φ2)] = 0                                                      (4.18f) 

1

γ
= log(ρ + φ2) 

γ̂ =
1

log(ρ̂+φ̂2)
                                                                                                        (4.18g) 

Quantile Function for Exponentiated Janardan Distribution 

This subsection presents the quantile function of Exponentiated Janardan distribution. 

According to Chen (2000), the quantile function is very useful in the computation of various 

characteristics such as percentile, median, quantiles, skewness, and kurtosis. 

Mathematically, the quantile function is the inverse of the CDF. A continuous random 

variable ‘X’ which is strictly monotonic, a quantile function is expressed mathematically as 

follows: 

Let 𝑢 = 𝐹(𝑥); 0 < 𝑢 < 1  

𝑢 =  [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛾

                                                                                     (4.18h)                                                

Making 𝑥 the subject of the relation as follows: 

[1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛾

= 𝑢 

1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
= √𝑢

𝛾
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1 − √𝑢
𝛾

  =  
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
 

(1 − √𝑢
𝛾
)𝜑(𝜌 + 𝜑2)  = 𝜑(𝜌 + 𝜑2)𝑒

−
𝜌

𝜑
𝑥
+  𝜌𝜑2𝑥 𝑒

−
𝜌

𝜑
𝑥
                                          (4.18i) 

Taking ln on both sides as follows: 

𝑙𝑛(1 − √𝑢
𝛾
) + ln(𝜑) + 𝑙𝑛(𝜌 + 𝜑2)  = ln(𝜑) + 𝑙𝑛(𝜌 + 𝜑2)  −

𝜌

𝜑
𝑥 + ln( 𝜌𝜑2) + ln(𝑥) −

𝜌

𝜑
𝑥                                                                                                                           

(4.18j) 

𝑙𝑛(1 − √𝑢
𝛾
)  =  −

𝜌

𝜑
𝑥 + ln( 𝜌𝜑2) + ln(𝑥) −

𝜌

𝜑
𝑥 

𝑙𝑛(1 − √𝑢
𝛾
) − ln( 𝜌𝜑2)  =  −

𝜌

𝜑
𝑥 + ln(𝑥) −

𝜌

𝜑
𝑥 

𝑙𝑛 (
(1 − √𝑢

𝛾
)

𝜌𝜑2
)  =  −

𝜌

𝜑
𝑥 + ln(𝑥) −

𝜌

𝜑
𝑥 

𝑙𝑛 (
(1− √𝑢

𝛾
)

𝜌𝜑2
)  =  ln(𝑥) −

2𝜌

𝜑
𝑥                                                                                              (4.18k) 

The quantile function of Exponentiated Janardan distribution does not have the exact 

solution (a close form), hence quantile function can be approximated using numerical 

optimisation. 

Table 4.1 presents the quantile values of EJ for some monotonic values of 𝑢 ∈ (0,1) for 

arbitrary parameter values. It can be seen that as the values of ‘u’ monotonically increase 

towards unitary, the quantile values increase. 
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Table 4.1 Iterated Quantile values for some arbitrary parameter values 

Q(u) φ = 20, ρ = 9 and γ = 3 φ = 6, ρ = 2 and γ = 5 

Q(0.1) 7.486456 11.44227 

Q(0.2) 8.236381 12.55206 

Q(0.25) 8.568819 13.02998 

Q(0.4) 9.5345 14.38805 

Q(0.6) 10.96573 16.35231 

Q(0.75) 12.40909 18.30435 

Q(0.8) 13.05235 19.16951 

Q(0.9) 14.95424 21.71939 

 

4.2 Kumaraswamy Janardan Distribution 

In this section, a four-parameter distribution named as Kumaraswamy-Janardan (KJ) 

distribution is presented. Cumulative density function, probability density function, hazard 

rate, survival rate functions, and their respective pictorial presentation are established in this 

section. Also, the maximum likelihood estimator as well as a moment about the origin are 

established for K-J.  

4.2.1 Mathematical Derivations of Kumaraswamy-Janardan Distribution 

From literature, Shanker et al. (2013) established the Cumulative density function and 

density function of Janardan distribution respectively as: 

𝐺(𝑥, 𝜑, 𝜌) = 1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
;  𝑥, 𝜑, 𝜌 > 0                                                                (4.19) 

𝑔(𝑥, 𝜑, 𝜌 ) =
𝜌2  

𝜑(𝜌+𝜑2)
. (1 + 𝜑𝑥) 𝑒

−
𝜌

𝜑
𝑥
  ;  𝑥, 𝜑, 𝜌 > 0                                                              (4.20) 

Also, Kumaraswamy (1980) established cumulative and probability density functions of 

Kumaraswamy distribution respectively as: 

𝐹(𝑥) = 1 − (1 − 𝑥𝛼)𝛽                                                                                                           (4.21) 
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And 

𝑓(𝑥) = 𝛼𝛽𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1                                                                                                   (4.22) 

Kumaraswamy distribution was later established as Kumaraswamy generalised by Cordeiro 

and Castro (2011) with CDF and PDF respectively as: 

𝐹(𝑥) = 1 − (1 − 𝐺(𝑥)𝛼)𝛽;   0 < 𝑥 < 1;  𝛼, 𝛽 > 0                                                                 (4.23) 

In order to establish the cumulative density function for the Kumaraswamy-Janardan 

distribution, we employed the function of functions approach by substituting equation (4.19) 

into equation (4.23). 

𝐹(𝑥) = { 1 − (1 − (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽

0;                                                           𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

;  𝑥, 𝜑, 𝜌, 𝛼, 𝛽 > 0                  (4.24) 

Where 𝜑 𝑖𝑠 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑏𝑒𝑖𝑛𝑔 𝜌, 𝛼 𝑎𝑛𝑑 𝛽 

Differentiating equation (4.24); 

𝑓(𝑥) = [
𝛼𝛽𝜌𝜑  

(𝜌 + 𝜑2)
(
𝜌𝑥

𝜑
− 1) 𝑒

−
𝜌
𝜑
𝑥
] × [ (1 − (1 − 

𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
)

𝛼

)

𝛽−1

]  × 

[ (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼−1

]                                                                                                     (4.25) 

Having established CDF and PDF, as indicated in equation (4.24) and equation (4.25) 

respectively, the study established the mathematical function of the survival function and 

hazard function as follows: 

Survival function, 𝑅(𝑥), by definition, is given as 

 𝑅(𝑥) = 1 − 𝐹(𝑥) 

This implies that the survival function for Kumaraswamy Janardan distribution is derived 

as: 
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𝑅(𝑥) = 1 − [1 − (1 − (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽

]                                          (4.26) 

Hazard function, 𝐻(𝑥), by definition, is given as: 

𝐻(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
  

This implies that the Hazard rate function of Kumaraswamy Janardan distribution is 

derived as: 

𝐻(𝑥) = [[
𝛼𝛽𝜌𝜑  

(𝜌+𝜑2)
(
𝜌𝑥

𝜑
− 1) 𝑒

−
𝜌

𝜑
𝑥
] × [(1 − 

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼−1

] ×

[(1 − (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽−1

]]  ÷ [1 − [1 − (1 − (1 −

 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽

] ]                                                                         (4.27) 

It is important to establish the hazard rate function of K-J distribution because it provides 

the foundation for planning insurance, and the safety of a system in a wider variety of 

applications (Mahmoud, 2016) 

The K-J distribution is very flexible noticing that the distribution at various parameter values 

exhibits several renowned distributions as sub-models. For instance; 

a) When 𝛼 = 1 a three-parameter Exponentiated Janardan distribution is obtained and 

its CDF is obtained as follows: 

            𝐹(𝑥) =  1 − (− 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
 )
𝛽

                                                          (4.28) 

b) When 𝛼 = 𝛽 = 1 a two-parameter Janardan distribution is obtained and its CDF is 

obtained as follows: 

𝐹(𝑥) = 1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
                                                                                (4.29) 
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c) When 𝛼 = 𝛽 = 𝜑 = 1 a one-parameter Lindley distribution is obtained and its CDF 

is obtained as follows: 

         𝐹(𝑥) = 1 − 
(𝜌+1)𝜌𝑥 

(𝜌+1)
 𝑒−𝜌𝑥                                                                                   (4.30) 

d) When 𝛼 = 𝛽 = 𝜌 = 1 a gamma distribution is obtained and its CDF is obtained as 

follows: 

𝐹( 𝜑) = − 
𝜑 

(1+𝜑2)
 𝑥𝑒

−
1

𝜑
𝑥
                                                                                              (4.31) 

 

4.2.2 Graphical Presentation of Kumaraswamy-Janardan Distribution 

This section presents a pictorial analysis of the proposed distribution. 

From figure 4.7, it is conspicuous that the Kumaraswamy-Janardan distribution is a 

unimodal probability distribution. Depending on parameter values, the distribution is 

depicting the flexibility of modeling datasets that are right skewed or nearly symmetric. 

A graphical illustration of the effect of the various parameters on the distribution is 

presented in Figures 4.8 to figure 4.11. Careful observation of the behavior of the figures 

reveal that 𝜑 is scale parameter while 𝛼, 𝜌 and 𝛽 are the shape parameters. 𝜑 being scale 

parameter controls the variability and scalability in the dataset. The roles of these parameters 

are demonstrated pictorially. 
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Figure 4.8 Behaviour of pdf of KJ for some parameters 

Figure 4.9 Behaviour of pdf of KJ with varying   value 
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Figure 4.10 Behaviour of pdf of KJ with varying   value 

Figure 4.11 Behaviour of pdf of KJ with varying   value 
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Figure 4.12 Behaviour of pdf of KJ with varying   value 

From figure 4.8 through figure 4.11, it is clear that “peakness” of the KJ model changes 

with varying values of 𝛼, 𝜌 and 𝛽 depicting that they shape parameters. Though these three 

are shape parameters, the magnitude of their impact on shape of the distribution differ. This 

is indication that their values would differ when numerical optimisation is run. Combining 

the three in modeling would provide optimised result in controlling skewness and kurtosis. 

Also, 𝜑 being scale parameter controls the variability and scalability in a given dataset. 

 

4.2.3 Linear Representation of Probability Function of Kumaraswamy-Janardan 

Distribution 

Due to complex nature of PDF, determination of statistical properties becomes complex and 

time consuming. To reduce this complexity, the PDF is transformed as linear representation 

using binomial series expansion as demonstrated in this section. 

Recall equation (4.25) and renamed as follows: 

𝑓(𝑥) = [
𝛼𝛽𝜌𝜑  

(𝜌+𝜑2)
(
𝜌𝑥

𝜑
− 1)] × [ (1 − (− 

𝜌𝜑2 

𝜑(𝜌+𝜑2)
 𝑥𝑒

−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽−1

]  ×

[ (−
𝜌𝜑2 

𝜑(𝜌+𝜑2)
 𝑥𝑒

−
𝜌

𝜑
𝑥
)
𝛼−1

] 𝑒
−
𝜌

𝜑
𝑥
                                                                                                (4.32) 
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In mathematics, binomial series of  (1 + 𝑏)𝑝  can be written linearly as  ∑ (𝑝
𝑖
)𝑛

𝑖=0 𝑏𝑖. 

Hence, Binomial series presentation employed in simplification of the pdf of 

Kumaraswamy distribution is: 

(1 + 𝑏)𝑝 = ∑ (𝑝
𝑖
)𝑛

𝑖=0 𝑏𝑖                                                                                                 (4.33a) 

Applying equation (4.33) to (4.32), 

 

𝑓(𝑥) =  ∑ (𝛽−1
𝑖
)

𝛽−1
𝑖=0 (−1)𝛼𝑖 (−

𝜌𝜑2 

𝜑(𝜌+𝜑2)
 𝑥𝑒

−
𝜌

𝜑
𝑥
)
𝛼𝑖

× [ (−
𝜌𝜑2 

𝜑(𝜌+𝜑2)
 𝑥𝑒

−
𝜌

𝜑
𝑥
)
𝛼−1

] 𝑒
−
𝜌

𝜑
𝑥
  

 

Simplifying to separate the variable 𝑥 from the constants, resulting in: 

𝑓(𝑥) =  ∑ (𝛽−1
𝑖
)

𝛽−1
𝑖=0 (−1)𝛼𝑖 (

−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼𝑖

( 𝑥𝑒
−
𝜌

𝜑
𝑥
)
𝛼𝑖

× [ (
−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 𝑥𝑒

−
𝜌

𝜑
𝑥
)
𝛼−1

] 𝑒
−
𝜌

𝜑
𝑥
 

(4.33b) 

𝑓(𝑥) =  ∑ (𝛽−1
𝑖
)

𝛽−1
𝑖=0 (−1)𝛼𝑖 (

−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼𝑖

( 𝑥)𝛼𝑖 ( 𝑒
−
𝜌

𝜑
𝑥
)
𝛼𝑖

× [ (
−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 𝑥𝑒

−
𝜌

𝜑
𝑥
)
𝛼−1

] 𝑒
−
𝜌

𝜑
𝑥
 

𝑓(𝑥)

=  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

( 𝑥)𝛼𝑖 ( 𝑒
−𝛼𝑖

𝜌
𝜑
𝑥
) [ (

−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 𝑥𝑒

−
𝜌
𝜑
𝑥
)

𝛼−1

] 𝑒
−
𝜌
𝜑
𝑥
   

 

𝑓(𝑥)

=  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 𝑥𝑒

−
𝜌
𝜑
𝑥
)

𝛼−1

] 𝑒
−
𝜌
𝜑
𝑥
( 𝑒

−𝛼𝑖
𝜌
𝜑
𝑥
)   
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𝑓(𝑥)

=  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 𝑥𝑒

−
𝜌
𝜑
𝑥
)

𝛼−1

] 𝑒
−(1+𝛼𝑖)

𝜌
𝜑
𝑥
   

 

𝑓(𝑥)

=  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 𝑥𝑒

−
𝜌
𝜑
𝑥
)

𝛼−1

] 𝑒
−(1+𝛼𝑖)

𝜌
𝜑
𝑥
   

 

𝑓(𝑥) =  ∑ (𝛽−1
𝑖
)

𝛽−1
𝑖=0 (−1)𝛼𝑖 (

−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼−1

( 𝑥)𝛼−1] ×

[𝑒
−(1+𝛼𝑖)

𝜌

𝜑
𝑥
 𝑒
−
𝜌

𝜑
(𝛼−1)𝑥

]    

 

𝑓(𝑥) =  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼−1

( 𝑥)𝛼−1]

× [𝑒
−((1+𝛼𝑖)

𝜌
𝜑
𝑥+(𝛼−1)

𝜌
𝜑
𝑥)
]    

 

𝑓(𝑥) =  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼−1

( 𝑥)𝛼−1]

× [𝑒
−((1+𝛼𝑖)+(𝛼−1))

𝜌
𝜑
𝑥
]    

 

𝑓(𝑥) =  ∑ (𝛽−1
𝑖
)

𝛽−1
𝑖=0 (−1)𝛼𝑖 (

−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼−1

( 𝑥)𝛼−1] 𝑒
−((𝛼𝑖)+(𝛼))

𝜌

𝜑
𝑥
     

 

𝑓(𝑥) =  ∑ (𝛽−1
𝑖
)

𝛽−1
𝑖=0 (−1)𝛼𝑖 (

−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼𝑖

( 𝑥)𝛼𝑖 [ (
−𝜌𝜑2 

𝜑(𝜌+𝜑2)
 )
𝛼−1

( 𝑥)𝛼−1] 𝑒
−(𝛼𝑖+𝛼)

𝜌

𝜑
𝑥
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𝑓(𝑥) =  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

[ (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼−1

] ( 𝑥)𝛼𝑖+𝛼−1𝑒
−(𝛼𝑖+𝛼)

𝜌
𝜑
𝑥
    

(4.33c) 

Let  

𝐴 =  ∑ (
𝛽 − 1

𝑖
)

𝛽−1

𝑖=0

(−1)𝛼𝑖 (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼𝑖

[ (
−𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 )

𝛼−1

]   

 

Then  

𝑓(𝑥) =  𝐴  𝑥(𝛼𝑖+𝛼−1)  𝑒
−(𝛼𝑖+𝛼)

𝜌

𝜑
𝑥
                                                                                  (4.34) 

 

4.2.4 Statistical Properties of Kumaraswamy-Janardan Distribution 

In this section, we introduce some statistical properties of the Kumaraswamy-Janardan 

distribution. Some of the statistical properties established are moment about the origin and 

maximum likelihood estimates of the parameters. 

Moment and Moment Generating Function  

For a random variable 𝑋 that follows Kumaraswamy-Janardan distribution has pdf as: 

𝑓(𝑥) = [
𝛼𝛽𝜌𝜑  

(𝜌 + 𝜑2)
(
𝜌𝑥

𝜑
− 1)]

× [ (1

− (− 
𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 𝑥𝑒

−
𝜌
𝜑
𝑥
)

𝛼

)

𝛽−1

] [ (−
𝜌𝜑2 

𝜑(𝜌 + 𝜑2)
 𝑥𝑒

−
𝜌
𝜑
𝑥
)

𝛼−1

] 𝑒
−
𝜌
𝜑
𝑥
 

 With its linear representation as: 
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𝑓(𝑥) =  𝐴  𝑥(𝛼𝑖+𝛼−1)  𝑒
−(𝛼𝑖+𝛼)

𝜌

𝜑
𝑥
     

The rth moment about the origin is defined as: 

𝐸(𝑋𝑟) =  ∫ 𝑥 𝑟
∞

0
𝑓(𝑥) 𝑑𝑥                                                                                              (4.35) 

Substituting (4.34) into (4.35), results in: 

 

𝐸(𝑋𝑟) =  𝐴 ∫ 𝑥 𝑟
∞

0
  𝑥(𝛼𝑖+𝛼−1)  𝑒

−(𝛼𝑖+𝛼)
𝜌

𝜑
𝑥
 𝑑𝑥                                                            (4.36a) 

𝐸(𝑋𝑟) =  𝐴 ∫ 𝑥(𝛼𝑖+𝛼+𝑟)−1  𝑒
−(𝛼𝑖+𝛼)

𝜌

𝜑
𝑥
 𝑑𝑥

∞

0
                                                                (4.36b) 

                                                                                                                                      

Using gamma transformation; 

𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) = ∫  
∞

0

𝑥𝛼−1𝑒
−
1
𝛽
𝑥
𝑑𝑥 = ⌈𝛼 × 𝛽𝛼 = (𝛼 − 1)! 𝛽𝛼 

𝐸(𝑋𝑟) =  𝐴 [(𝛼𝑖 + 𝛼 + 𝑟)! (
𝜑

(𝛼𝑖+𝛼)𝜌
)
𝛼𝑖+𝛼+𝑟+1

]                                                         (4.37) 

 

𝐸(𝑋𝑟) = {
𝐴 [(𝛼𝑖 + 𝛼 + 𝑟)! (

𝜑

(𝛼𝑖 + 𝛼)𝜌
)
𝛼𝑖+𝛼+𝑟+1

] ,            𝑟 = 1,2,3, … 

0,                                                                                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  

 

From (4.37), it follows, therefore, that: 

𝐸(𝑋) =  𝐴 [(𝛼𝑖 + 𝛼 + 1)! (
𝜑

(𝛼𝑖+𝛼)𝜌
)
𝛼𝑖+𝛼+2

]                                                          (4.37a) 

𝐸(𝑋2) =  𝐴 [(𝛼𝑖 + 𝛼 + 2)! (
𝜑

(𝛼𝑖+𝛼)𝜌
)
𝛼𝑖+𝛼+3

]                                                         (4.37b) 

𝐸(𝑋3) =  𝐴 [(𝛼𝑖 + 𝛼 + 3)! (
𝜑

(𝛼𝑖+𝛼)𝜌
)
𝛼𝑖+𝛼+4

]                                                          (4.37c) 
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𝐸(𝑋4) =  𝐴 [(𝛼𝑖 + 𝛼 + 4)! (
𝜑

(𝛼𝑖+𝛼)𝜌
)
𝛼𝑖+𝛼+5

]                                                            (4.37d) 

The moment generating function of KJ distribution is given by 

 𝑀𝑥(𝑡) =  ∫ 𝑒𝑡𝑥
∞

0
𝑓(𝑥) 𝑑𝑥                                                                                             (4.38) 

Using the fact that 𝑒𝑡𝑥 = ∑
(𝑡𝑥)𝑟

𝑟!
∞
𝑟=0 , to obtain: 

𝑀𝑥(𝑡) =  ∫ ∑
(𝑡𝑥)𝑟

𝑟!
∞
𝑟=0

∞

0
𝑓(𝑥) 𝑑𝑥                                                                                   (4.39) 

𝑀𝑥(𝑡) =  ∫ ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 𝑥𝑟

∞

0
𝑓(𝑥) 𝑑𝑥  

𝑀𝑥(𝑡) =  ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 ∫ 𝑥𝑟

∞

0
𝑓(𝑥) 𝑑𝑥  

𝑀𝑥(𝑡) =  ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 𝐸(𝑋𝑟)                                                                                              (4.40) 

 

Maximum Likelihood Estimation (MLE) 

In probability, Maximum Likelihood Estimation is used to estimate parameters of 

probability distribution given some observed sample data. According to Rossi (2018), by 

maximising the likelihood function of the probability model, the sample data is most 

probable. The estimated point in the parameter space that maximises the likelihood function 

is called the maximum likelihood estimate. Any given set of observations is a sample from 

an unknown population, and MLE is to help make inferences about the population that is 

most likely to have generated the sample (Myung, 2003).  

It is against this background that this section presents the maximum likelihood estimation 

of the Kumaraswamy-Janardan Distribution. 

Intuitively, given parameter space   ∅ =  [𝛼  𝛽  𝜌   𝜑]𝑇, MLE 𝐿(∅, 𝑥) is given as: 

𝐿(∅, 𝑥) =  ∏ 𝑓(𝑥𝑖/∅)
𝑛
𝑖=1                                                                                        (4.41) 

Plugging (4.32) into (4.41), to obtain 
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𝐿(∅, 𝑥) = ∏

{
 
 

 
 [

𝛼𝛽𝜌𝜑  

(𝜌+𝜑2)
] [
𝜌𝑥

𝜑
− 1] × [ (1 − (1 − 

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽−1

]

 × (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼−1

𝑒
−
𝜌

𝜑
𝑥

}
 
 

 
 

𝑛
1                

𝐿(∅, 𝑥) = [
𝛼𝛽𝜌𝜑  

(𝜌+𝜑2)
]
𝑛
∏

{
 
 

 
 [

𝜌𝑥

𝜑
− 1] × [ (1 − (1 − 

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽−1

] 

× (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼−1

𝑒
−
𝜌

𝜑
𝑥

}
 
 

 
 

𝑛
1      (4.42) 

Taking “ln” on both sides to arrive at log-likelihood (𝑙) and it is given as: 

              𝑙 = 𝑛 (ln
𝛼𝛽𝜌𝜑  

(𝜌+𝜑2)
) + ∑ 𝑙𝑛𝑛

𝑖=1 {[
𝜌𝑥

𝜑
− 1] × [ (1 − (1 −

 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)
𝛽−1

]  × (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼−1

𝑒
−
𝜌

𝜑
𝑥
}                     (4.42a) 

 

𝑙 = 𝑛 (ln
𝛼𝛽𝜌𝜑  

(𝜌+𝜑2)
) + ∑ {

𝑙𝑛 [
𝜌𝑥

𝜑
− 1] + (𝛽 − 1)𝑙𝑛 (1 − (1 − 

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)

+(𝛼 − 1) ln  (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)  −

𝜌

𝜑
𝑥

}𝑛
𝑖=1             

 

𝑙 = 𝑛 (ln
𝛼𝛽𝜌𝜑  

(𝜌+𝜑2)
) + ∑ {

𝑙𝑛 [
𝜌𝑥−𝜑

𝜑
] + (𝛽 − 1)𝑙𝑛 (1 − (1 − 

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)

+(𝛼 − 1) ln  (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)  −

𝜌

𝜑
𝑥

}𝑛
𝑖=1     

                                                         

𝑙 = 𝑛[ln(𝛼) + ln(𝛽) + ln(𝜌) + ln(𝜑) − ln (𝜌 + 𝜑2)] +

∑

{
 
 

 
 

ln(𝜌𝑥 − 𝜑) − ln(𝜑)

+(𝛽 − 1)𝑙𝑛 (1 − (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)

+(𝛼 − 1) ln  (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)  −

𝜌

𝜑
𝑥 }
 
 

 
 

𝑛
𝑖=1                                    (4.42b) 
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𝑙 = 𝑛[ln(𝛼) + ln(𝛽) + ln(𝜌) + ln(𝜑) − ln(𝜌 + 𝜑2)] +∑ln(𝜌𝑥 − 𝜑)

𝑛

1

− 𝑛 ln(𝜑) 

+(𝛽 − 1)∑ ln (1 − (1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
)
𝛼

)𝑛
1 + (𝛼 − 1)∑ ln (1 −𝑛

1

 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
) −

𝜌𝑛𝑥̅

𝜑
                                                                                       (4.43) 

 

The objective here is to find the values of the respective parameters in the model that 

maximise the likelihood function over the parameter space, ∅. This objective can be 

achieved if the log-likelihood function is partially differentiated over the parameter space 

(
𝜕𝑙

𝜕𝛼
,
𝜕𝑙

𝜕𝛽
   
𝜕𝑙

𝜕𝜌
  𝑎𝑛𝑑 

𝜕𝑙

𝜕𝜑
).  

The estimated point in the parameter space (φ̂, ρ̂, 𝛼̂, 𝛽̂) that maximises the likelihood 

function of KJ distribution is achieved by simultaneously solving the optimality equations: 

 
𝜕𝑙

𝜕𝛼
= 0,

𝜕𝑙

𝜕𝛽
= 0,   

𝜕𝑙

𝜕𝜌
= 0    𝑎𝑛𝑑 

𝜕𝑙

𝜕𝜑
= 0   

The optimality equations are complex to solve analytically but can be solved empirically 

using an iterative technique like the Simulated annealing algorithm (a package in R-

Studio). 

 

4.3 Exponentiated Kumaraswamy Janardan Distribution 

The third proposed distribution is Exponentiated Kumaraswamy Janardan (EKJ). This is a 

five-parameter model obtained through the method of parameterisation. This distribution 

has Shanker’s Janardan model as a baseline. 

Recall that Janardan distribution has cumulative density function as in equation (4.2) and 

renamed as follows: 

𝐺(𝑥) = 1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
                                                                                  (4.44) 

Where 𝑥 is a random variable; and ρ and φ are the parameters to be estimated. 
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Also, the cumulative density function for the exponentiated generator as in equation (4.7) is 

renamed and given as follows:  

𝐹(𝑥) =  [𝐺(𝑥)]𝛾                                                                                                       (4.45) 

The cumulative density function of Kumaraswamy distribution (4.23) is recalled, renamed, 

and given as follows: 

𝐹(𝑥) = 1 − (1 − 𝐺(𝑥)𝛼)𝛽;   0 < 𝑥 < 1;  𝛼, 𝛽 > 0                                                 (4.46) 

 

4.3.1 Cumulative density Function of Proposed EKJ 

The third proposed model is Exponentiated Kumaraswamy Janardan (EKJ). This is a five-

parameter model with proposed CDF as follows: 

𝐹(𝑥) =  [1 − (1 − [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛼

)
𝛽

]

𝛾

                                                           (4.47) 

𝜑, 𝜌, 𝛼, 𝛽, 𝛾, 𝑥 > 0 

While  𝑥 is a random variable, 𝜑 𝑎𝑛𝑑 𝜌  are scale parameters, and 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 are shape 

parameters. 

Proof 

The CDF for Kumaraswamy is given by Cordeiro and Castro (2011) as: 

𝐹(𝑥) = 1 − (1 − 𝐺(𝑥)𝛼)𝛽  

This generator has two shape parameters with no scale parameter. This makes 

Kumaraswamy a good generator to solve limitations in the Janardan model. 

Substituting the Janardan CDF, 

 𝐺(𝑥) = 1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
  into Kumaraswamy generator,  𝐹(𝑥) = 1 − (1 −

 𝐺(𝑥)𝛼)𝛽;  
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Kumaraswamy-Janardan model is obtained as follows: 

𝐺(𝑥) = 1 − (1 − [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛼

)
𝛽

                                                        (4.48) 

Substituting CDF of Kumaraswamy-Janardan as in equation (4.48) into Exponentiated 

generator as in equation (4.45): 

 𝐹(𝑥) =  [𝐺(𝑥)]𝛾,  

The CDF of Exponentiated Kumaraswamy Janardan is obtained as: 

 

𝐹(𝑥) =  [1 − (1 − [1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛼

)

𝛽

]

𝛾

 

𝜑, 𝜌, 𝛼, 𝛽, 𝛾, 𝑥 > 0  

Hence the resultant equation (4.47) is the CDF for the proposed five (5) parameters 

Exponentiated Kumaraswamy distribution. This distribution has three shape parameters and 

two scale parameters.  

4.3.2: Probability Density function of proposed EKJ 

From first principle, pdf of any distribution is obtained by differentiating the cdf of the 

distribution. Same principle holds in this model as well. 

This implies that equation (4.47) is differentiated, to obtain pdf of Exponentiated 

Kumaraswamy Janardan and the result is presented in equation (4.49) as follows: 

 

𝑓(𝑥) = 𝛾𝛽𝛼 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

× 
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[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+

𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥

𝜑                                                                                                                                    (4.49)                                                                                                                                                                                                                                                                                                                                                           

 

Proof: 

Recall equation (4.47) 

𝐹(𝑥) =  [1 − (1 − [1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛼

)

𝛽

]

𝛾

 

Let 𝐴 = 1 − (1 − [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛼

)
𝛽

  

 

𝐹(𝑥) =  [𝐴]𝛾 

Differentiating the function with respect to A as follow: 

𝑑𝐹(𝑥)

𝑑𝐴
=  𝛾[𝐴]𝛾−1 

Let 𝐵 =  (1 − [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛼

)
.

 

 

𝐴 = 1 − (𝐵)𝛽  

Differentiating A with respect to B as follows: 

𝑑𝐴

𝑑𝐵
= −𝛽[𝐵]𝛽−1  

Let 𝐶 =  1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
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𝐵 = 1 − (𝐶)𝛼  

𝑑𝐵

𝑑𝐶
= −𝛼[𝐶]𝛼−1  

Differentiating C with respect to x as follows: 

𝑑𝐶

𝑑𝑥
= [

𝜌𝜑(𝜌+𝜑2)

𝜑2(𝜌+𝜑2)
−

𝜌𝜑2

𝜑(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌

𝜑
𝑥
  

Applying chain rule; 

𝑑𝐹(𝑥)

𝑑𝑥
= 𝑓(𝑥) =

𝑑𝐹(𝑥)

𝑑𝐴
 .  
𝑑𝐴

𝑑𝐵
 .
𝑑𝐵

𝑑𝐶
 .
𝑑𝐶

𝑑𝑥
                                                                               (4.50) 

But 

𝑑𝐹(𝑥)

𝑑𝐴
=  𝛾[𝐴]𝛾−1  ,

𝑑𝐴

𝑑𝐵
= −𝛽[𝐵]𝛽−1 ,   

𝑑𝐵

𝑑𝐶
= −𝛼[𝐶]𝛼−1 𝑎𝑛𝑑  

𝑑𝐶

𝑑𝑥
= [

𝜌𝜑(𝜌+𝜑2)

𝜑2(𝜌+𝜑2)
−

𝜌𝜑2

𝜑(𝜌+𝜑2)
+

𝜌𝑥

𝜑
] 𝑒

−
𝜌

𝜑
𝑥
   

Substituting into equation (4.50) results as follows: 

𝑓(𝑥) = 𝛾[𝐴]𝛾−1 . −𝛽[𝐵]𝛽−1 . −𝛼[𝐶]𝛼−1. [
𝜌𝜑(𝜌+𝜑2)

𝜑2(𝜌+𝜑2)
−

𝜌𝜑2

𝜑(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌

𝜑
𝑥
                        (4.51) 

Substituting the expression for A, B and C to obtain 

𝑓(𝑥) = 𝛾 [1 − (1 − [1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛼

)

𝛽

]

𝛾−1

 × 

 −𝛽 [1 − [1 − 
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥 

𝜑(𝜌 + 𝜑2)
 𝑒
−
𝜌
𝜑
𝑥
]

𝛼

]

𝛽−1

 × 

 −𝛼 [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
 ]
𝛼−1

× [
𝜌𝜑(𝜌+𝜑2)

𝜑2(𝜌+𝜑2)
−

𝜌𝜑2

𝜑(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌

𝜑
𝑥
                  (4.51a) 
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𝑓(𝑥) = 𝛾𝛽𝛼 [1 − (1 − (1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1

− (1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

 

[1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]

𝛼−1

[
𝜌𝜑(𝜌 + 𝜑2)

𝜑2(𝜌 + 𝜑2)
−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥
𝜑  

Simplifying 

𝑓(𝑥) = 𝛾𝛽𝛼 [1 − (1 − (1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1

− (1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

× 

[1 −
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌𝜑(𝜌+𝜑2)

𝜑2(𝜌+𝜑2)
−

𝜌𝜑2

𝜑(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥

𝜑                                  (4.51b) 

𝑓(𝑥) = 𝛾𝛽𝛼 [1 − (1 − (1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1

− (1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

× 

[1 −
𝜑(𝜌 + 𝜑2) + 𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]

𝛼−1

[
𝜌𝜑(𝜌 + 𝜑2)

𝜑2(𝜌 + 𝜑2)
−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥
𝜑  

 

𝑓(𝑥) = 𝛾𝛽𝛼 [1 − (1 − (1 −
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 )
𝛼

)
𝛽

]

𝛾−1

[1 − (1 −

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 )
𝛼

]
𝛽−1

× [1 −
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌𝜑(𝜌+𝜑2)

𝜑2(𝜌+𝜑2)
−

𝜌𝜑2

𝜑(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥

𝜑   
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𝑓(𝑥) = 𝛾𝛽𝛼 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

× 

[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥

𝜑                                                            (4.51c) 

 

Hence, the pdf equation (4.49) is proven. 

 

4.3.3 Linear Representation of Probability Density function of EKJ 

Recall equation (4.49): 

𝑓(𝑥) = 𝛾𝛽𝛼 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

× 

[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥

𝜑    

Also, recall equation (4.33) and renamed as follows: 

(1 + 𝑏)𝑝 = ∑ (𝑝
𝑖
)𝑛

𝑖=0 𝑏𝑖                                                                                                  (4.52) 

Applying equation (4.52) to equation (4.49), 

𝑓(𝑥) = 𝛾𝛽𝛼

[
 
 
 
 
 
∑(

𝛾 − 1

𝑖
) (−1)𝛽𝑖

𝑛

𝑖=0

(1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽𝑖

 

∑(
𝛽

𝑗
) (−1)𝛼𝑗 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑗𝑛

𝑗=0 ]
 
 
 
 
 

×  [∑(
𝛽 − 1

𝑘
) (−1)𝛼𝑘 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑘𝑛

𝑘=0

]   × 

[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥

𝜑                                                       (4.52a) 
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𝑓(𝑥) = 𝛾𝛽𝛼

[
 
 
 
 
 
∑(

𝛾 − 1

𝑖
) (−1)𝛽𝑖

𝑛

𝑖=0

(1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽𝑖

 

∑(
𝛽

𝑗
) (−1)𝛼𝑗 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑗𝑛

𝑗=0 ]
 
 
 
 
 

×  [∑(
𝛽 − 1

𝑘
) (−1)𝛼𝑘 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑘𝑛

𝑘=0

]   × 

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 ]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
𝑥] 𝑒

−
𝜌𝑥
𝜑  

 

𝑓(𝑥) = 𝛾𝛽𝛼

[
 
 
 
 
 
∑(

𝛾 − 1

𝑖
) (−1)𝛽𝑖

𝑛

𝑖=0

(1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽𝑖

 

∑(
𝛽

𝑗
) (−1)𝛼𝑗 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑗𝑛

𝑗=0 ]
 
 
 
 
 

×  [∑(
𝛽 − 1

𝑘
) (−1)𝛼𝑘 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑘𝑛

𝑘=0

]   × 

[−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌(𝜌+𝜑2)−𝜌𝜑+𝜌(𝜌+𝜑2)

𝜑(𝜌+𝜑2)
𝑥] 𝑒

−
𝜌𝑥

𝜑                                             (4.52b) 

Simplifying to separate the variable, 𝑥, from the constants, as follows: 

𝑓(𝑥) = 𝛾𝛽𝛼

[
 
 
 
 
 
∑(

𝛾 − 1

𝑖
) (−1)𝛽𝑖

𝑛

𝑖=0

(1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼

)

𝛽𝑖

(𝑥𝑒
−
𝜌𝑥
𝜑 )

𝛼𝛽𝑖

 

∑(
𝛽

𝑗
) (−1)𝛼𝑗 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑗𝑛

𝑗=0

(𝑥𝑒
−
𝜌𝑥
𝜑 )

𝛼𝑗

]
 
 
 
 
 

×  [∑(
𝛽 − 1

𝑘
) (−1)𝛼𝑘 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑘𝑛

𝑘=0

(𝑥𝑒
−
𝜌𝑥
𝜑 )

𝛼𝑘

]   × 

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[𝑥𝑒
−
𝜌𝑥
𝜑 ]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
] 𝑥𝑒

−
𝜌𝑥
𝜑  
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𝑓(𝑥) = 𝛾𝛽𝛼

[
 
 
 
 
 
∑(

𝛾 − 1

𝑖
) (−1)𝛽𝑖

𝑛

𝑖=0

(1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼

)

𝛽𝑖

∑(
𝛽

𝑗
) (−1)𝛼𝑗 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑗𝑛

𝑗=0 ]
 
 
 
 
 

× [∑(
𝛽 − 1

𝑘
) (−1)𝛼𝑘 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑘𝑛

𝑘=0

]   × 

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
] × [𝑥𝑒

−
𝜌𝑥
𝜑 ]

𝛼−1

 

(𝑥𝑒
−
𝜌𝑥

𝜑 )
𝛼𝑘

(𝑥𝑒
−
𝜌𝑥

𝜑 )

𝛼𝑗

(𝑥𝑒
−
𝜌𝑥

𝜑 )

𝛼𝛽𝑖

 𝑥𝑒
−
𝜌𝑥

𝜑                                                               (4.52c) 

𝑓(𝑥) = 𝛾𝛽𝛼

[
 
 
 
 
 
∑(

𝛾 − 1

𝑖
) (−1)𝛽𝑖

𝑛

𝑖=0

(1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼

)

𝛽𝑖

∑(
𝛽

𝑗
) (−1)𝛼𝑗 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑗𝑛

𝑗=0 ]
 
 
 
 
 

×  [∑(
𝛽 − 1

𝑘
) (−1)𝛼𝑘 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑘𝑛

𝑘=0

]   × 

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
] (𝑥)𝛼−1+𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+1 (𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑘+𝛼−1+𝛼𝑗+𝛼𝛽𝑖+1

 

𝑓(𝑥) = 𝛾𝛽𝛼 [∑(
𝛾 − 1

𝑖
) (−1)𝛽𝑖

𝑛

𝑖=0

(1

− (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼

)

𝛽

∑(
𝛽

𝑗
) (−1)𝛼𝑗 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑗𝑛

𝑗=0

𝑖

] × 
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[∑(
𝛽 − 1

𝑘
) (−1)𝛼𝑘 (−

𝜌𝜑2

𝜑(𝜌 + 𝜑2)
)

𝛼𝑘𝑛

𝑘=0

] [−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
]

× 

[(𝑥)𝛼−1+𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+1 (𝑒
−
𝜌𝑥
𝜑 )

𝛼𝑘+𝛼−1+𝛼𝑗+𝛼𝛽𝑖+1

] 

𝑓(𝑥) = [

∑ ∑ ∑ (𝛾−1
𝑖
)𝑛

𝑘=0 (𝛽
𝑗
)𝑛

𝑗=0 (𝛽−1
𝑘
)(−1)𝛼𝑘(−1)𝛽𝑖(−1)𝛼𝑗𝑛

𝑖=0 ×

(1 − (−
𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼

)
𝛽𝑖

    
(−

𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼𝑗 ] ×  

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼𝑘

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
 (𝛾𝛽𝛼)] × 

[(𝑥)𝛼−1+𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+1 (𝑒
−
𝜌𝑥
𝜑 )

𝛼𝑘+𝛼−1+𝛼𝑗+𝛼𝛽𝑖+1

] 

𝑓(𝑥) = [

∑ ∑ ∑ (𝛾−1
𝑖
)𝑛

𝑘=0 (𝛽
𝑗
)𝑛

𝑗=0 (𝛽−1
𝑘
)(−1)𝛼𝑘(−1)𝛽𝑖(−1)𝛼𝑗𝑛

𝑖=0 ×

(1 − (−
𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼

)
𝛽𝑖

    
(−

𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼𝑗 ] ×  

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼𝑘

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
 (𝛾𝛽𝛼)] × 

[(𝑥)𝛼+𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖 (𝑒
−
𝜌𝑥

𝜑 )
𝛼𝑘+𝛼+𝛼𝑗+𝛼𝛽𝑖

]                                                                            (4.52d) 

𝑓(𝑥) = 

[∑ ∑ ∑ (𝛾−1
𝑖
)𝑛

𝑘=0 (𝛽
𝑗
)𝑛

𝑗=0 (𝛽−1
𝑘
)(−1)𝛼𝑘(−1)𝛽𝑖(−1)𝛼𝑗𝑛

𝑖=0 (1 −

(−
𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼

)
𝛽𝑖

    
(−

𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼𝑗

] ×  

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼𝑘

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
 (𝛾𝛽𝛼)] × 
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[(𝑥)𝛼+𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖 (𝑒
−
𝜌𝑥

𝜑 )
𝛼𝑘+𝛼+𝛼𝑗+𝛼𝛽𝑖

]                                                                      (4.52e) 

Let  

𝑊𝑖𝑗𝑘 = 

[∑ ∑ ∑ (𝛾−1
𝑖
)𝑛

𝑘=0 (𝛽
𝑗
)𝑛

𝑗=0 (𝛽−1
𝑘
)(−1)𝛼𝑘(−1)𝛽𝑖(−1)𝛼𝑗𝑛

𝑖=0 (1 −

(−
𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼

)
𝛽𝑖

    
(−

𝜌𝜑2

𝜑(𝜌+𝜑2)
)
𝛼𝑗

] ×  

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼𝑘

[−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
]

𝛼−1

[
𝜌(𝜌 + 𝜑2) − 𝜌𝜑 + 𝜌(𝜌 + 𝜑2)

𝜑(𝜌 + 𝜑2)
 (𝛾𝛽𝛼)]  

By implication, the pdf of EKJ is given as: 

𝑓(𝑥) =  𝑊𝑖𝑗𝑘 [(𝑥)
𝛼+𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖 (𝑒

−
𝜌𝑥
𝜑 )

𝛼𝑘+𝛼+𝛼𝑗+𝛼𝛽𝑖

] 

𝑓(𝑥) =  𝑊𝑖𝑗𝑘 [𝑥
𝛼(𝑘+𝑗+𝛽𝑖+1) × 𝑒

−𝛼(𝑘+𝑗+𝛽𝑖+1)
𝜌𝑥

𝜑 ]                                                                      (4.53) 

 

4.3.4 Statistical Properties of EKJ 

This section presents some statistical properties of Exponentiated Kumaraswamy Janardan 

probability distribution. Some of the statistical properties presented are moments and 

Maximum Likelihood estimates. 

Moments and Moment Generating Function of EKJ 

According to Spanos (1999), Pafnuty Chebyshev became the first person to introduce 

moments of random variables. Moments of random variables are quantitative measures that 

describe the shape of a probability function’s graph. The first moment is known as the 

expected value while the second moment (crude or central) is a pointer to the spread of the 

distribution. The third and the fourth standardised moments are the distribution’s skewness 
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and kurtosis. For a distribution whose random variable is on a bounded interval (from 0 to 

∞), the collection of all moments uniquely describes the distribution. It is against this 

background that this section considers all moments of Exponentiated Kumaraswamy 

Janardan Distribution. 

Recall equation (4.53): 

𝑓(𝑥) =  𝑊𝑖𝑗𝑘 [𝑥
𝛼(𝑘+𝑗+𝛽𝑖+1) × 𝑒

−𝛼(𝑘+𝑗+𝛽𝑖+1)
𝜌𝑥
𝜑 ] 

Also, the  rth raw moment is defined as: 

𝐸(𝑋𝑟) =  ∫ 𝑥 𝑟
∞

0
𝑓(𝑥) 𝑑𝑥                                                                                                          (4.54) 

Applying equation (4.53) to equation (4.54) results in: 

𝐸(𝑋𝑟) =  𝑊𝑖𝑗𝑘∫ 𝑥 𝑟
∞

0

[𝑥𝛼(𝑘+𝑗+𝛽𝑖+1) × 𝑒
−𝛼(𝑘+𝑗+𝛽𝑖+1)

𝜌𝑥
𝜑 ]  𝑑𝑥 

𝐸(𝑋𝑟) =  𝑊𝑖𝑗𝑘∫ [𝑥𝛼(𝑘+𝑗+𝛽𝑖+1)+𝑟 × 𝑒
−𝛼(𝑘+𝑗+𝛽𝑖+1)

𝜌𝑥
𝜑 ]

∞

0

 𝑑𝑥 

𝐸(𝑋𝑟) =  𝑊𝑖𝑗𝑘 ∫ [𝑥(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+1+𝑟)−1 × 𝑒
−(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)

𝜌𝑥

𝜑 ]
∞

0
 𝑑𝑥                               (4.55) 

Using gamma transformation on equation (4.55) results in equation (4.56) below. 

𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) = ∫  
∞

0

𝑥𝛼−1𝑒
−
1
𝛽
𝑥
𝑑𝑥 = ⌈𝛼 × 𝛽𝛼 = (𝛼 − 1)! 𝛽𝛼 

𝐸(𝑋𝑟) =  𝑊𝑖𝑗𝑘 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 1 + 𝑟)! (
𝜑

(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+1+𝑟)

]    

(4.56)                                  

𝐸(𝑋𝑟) = 

{
𝑊𝑖𝑗𝑘 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 1 + 𝑟)! (

𝜑

(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+1+𝑟)

] , 𝑟 = 1,2,3, … 

0,                                                                                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
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From equation (4.56), it follows, therefore, that: 

𝐸(𝑋) =  𝑊𝑖𝑗𝑘 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 2)! (
𝜑

(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+2)

]         (4.56a) 

𝐸(𝑋2) =  𝑊𝑖𝑗𝑘 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 3)! (
𝜑

(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+3)

]      (4.56b) 

𝐸(𝑋3) =  𝑊𝑖𝑗𝑘 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 4)! (
𝜑

(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+4)

]     (4.56c) 

𝐸(𝑋4) =  𝑊𝑖𝑗𝑘 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 5)! (
𝜑

(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+5)

]    (4.56d) 

 

The moment generating function of EKJ distribution is given by 

 𝑀𝑥(𝑡) =  ∫ 𝑒𝑡𝑥
∞

0
𝑓(𝑥) 𝑑𝑥                                                                                         (4.57a) 

Using the fact that 𝑒𝑡𝑥 = ∑
(𝑡𝑥)𝑟

𝑟!
∞
𝑟=0 , results in: 

𝑀𝑥(𝑡) =  ∫ ∑
(𝑡𝑥)𝑟

𝑟!
∞
𝑟=0

∞

0
𝑓(𝑥) 𝑑𝑥                                                                               (4.57b)    

𝑀𝑥(𝑡) =  ∫ ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 𝑥𝑟

∞

0
𝑓(𝑥) 𝑑𝑥  

𝑀𝑥(𝑡) =  ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 ∫ 𝑥𝑟

∞

0
𝑓(𝑥) 𝑑𝑥  

𝑀𝑥(𝑡) =  ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 𝐸(𝑋𝑟)                                                                                       (4.57c)                                                      

𝑀𝑥(𝑡) =  ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 𝑊𝑖𝑗𝑘 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 1 +

𝑟)! (
𝜑

(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+1+𝑟)

]  

𝑀𝑥(𝑡) =  𝑊𝑖𝑗𝑘 ∑
(𝑡)𝑟

𝑟!
∞
𝑟=0 [(𝛼𝑘 + 𝛼𝑗 + 𝛼𝛽𝑖 + 𝛼 + 1 + 𝑟)! (

𝜑

(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼)𝜌
)
(𝛼𝑘+𝛼𝑗+𝛼𝛽𝑖+𝛼+1+𝑟)

]                                                        

(4.57d)                    
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Maximum likelihood Estimation of EKJ 

This section presents the maximum likelihood estimation of the proposed five-parameter 

Exponentiated Kumaraswamy Janardan probability distribution. 

Intuitively, given parameter space   ∅ =  [𝛼  𝛽  𝜌   𝜑  𝛾]𝑇, MLE 𝐿(∅, 𝑥) is given as: 

𝐿(∅, 𝑥) =  ∏ 𝑓(𝑥𝑖/∅)
𝑛
𝑖=1                                                                                                (4.58) 

Plugging equation (4.49) into equation (4.58) results in: 

 

𝐿(∅, 𝑥) =  ∏ [𝛾𝛽𝛼 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

)
𝛽

]

𝛾−1

[1 −𝑛
𝑖=1

(−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

]
𝛽−1

[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

[
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥

𝜑 ]                   

 

𝐿(∅, 𝑥) = [𝛾𝛽𝛼]𝑛∏ {[1 − (1 − (−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

)
𝛽

]

𝛾−1

× [[1 −𝑛
1

(−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

]
𝛽−1

[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

 ]  × [
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌

𝜑
𝑥
}       (4.59)                

 

Taking “ln” on both sides to obtain log-likelihood (𝑙) as follows: 

              𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾𝛽𝛼) + ∑ 𝑙𝑛 {[1 − (1 − (−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

)
𝛽

]

𝛾−1

×𝑛
𝑖=1

[[1 − (−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

]
𝛽−1

[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]
𝛼−1

 ]  × [
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
] 𝑒

−
𝜌

𝜑
𝑥
}  (4.60a) 
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𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾𝛽𝛼)

+∑{𝑙𝑛 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1
𝑛

𝑖=1

+ 𝑙𝑛 [[1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

+ 𝑙𝑛 [−
𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]

𝛼−1

 ]

+ 𝑙𝑛 [
𝜌

𝜑
−

𝜌𝜑

(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] −

𝜌

𝜑
𝑥} 

 

𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾𝛽𝛼)

+∑{(𝛾 − 1)𝑙𝑛 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

1
𝑛

𝑖=1

+ [(𝛽 − 1)𝑙𝑛 [1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

1

+ (𝛼

− 1)𝑙𝑛 [−
𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]  ] + 𝑙𝑛 [

𝜌

𝜑
−

𝜌𝜑

(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] −

𝜌

𝜑
𝑥} 

 

 

𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾𝛽𝛼)

+∑{(𝛾 − 1)𝑙𝑛 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

1
𝑛

𝑖=1

+ [(𝛽 − 1)𝑙𝑛 [1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

1

+ (𝛼

− 1)𝑙𝑛 [−
𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]

1

 ] + 𝑙𝑛 [
𝜌

𝜑
−

𝜌𝜑

(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] −

𝜌

𝜑
𝑥} 
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𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾𝛽𝛼)

+∑{(𝛾 − 1)𝑙𝑛 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝑛

𝑖=1

+ [(𝛽 − 1)𝑙𝑛 [1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]    

+ (𝛼 − 1) ln [−
𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]   ] + 𝑙𝑛 [

𝜌

𝜑
−

𝜌𝜑

(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] −

𝜌

𝜑
𝑥} 

 

𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾) + 𝑛 ∗ 𝑙𝑛(𝛽) + 𝑛 ∗ 𝑙𝑛(𝛼)

+∑{(𝛾 − 1)𝑙𝑛 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝑛

𝑖=1

+ [(𝛽 − 1)𝑙𝑛 [1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]    

+ (𝛼 − 1) ln [−
𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]   ] + 𝑙𝑛 [

𝜌

𝜑
−

𝜌𝜑

(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] −

𝜌

𝜑
𝑥} 

 

𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾) + 𝑛 ∗ 𝑙𝑛(𝛽) + 𝑛 ∗ 𝑙𝑛(𝛼)

+∑{(𝛾 − 1)ln [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]}

𝑛

𝑖=1

+ +∑{[(𝛽 − 1)𝑙𝑛 [1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]    ]}

𝑛

𝑖=1

+∑{[(𝛼 − 1) ln [−
𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]   ]}

𝑛

𝑖=1

+∑{𝑙𝑛 [
𝜌

𝜑
−

𝜌𝜑

(𝜌 + 𝜑2)
+
𝜌𝑥

𝜑
] −

𝜌

𝜑
𝑥}

𝑛

𝑖=1
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𝑙 = 𝑛 ∗ 𝑙𝑛(𝛾) + 𝑛 ∗ 𝑙𝑛(𝛽) + 𝑛 ∗ 𝑙𝑛(𝛼) + (𝛾 − 1)∑ ln [1 − (1 −𝑛
𝑖=1

(−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

)
𝛽

]  + (𝛽 − 1)∑ 𝑙𝑛 [1 − (−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥

𝜑 )
𝛼

]𝑛
𝑖=1 +

∑ ln [−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥

𝜑 ]  𝑛
𝑖=1 + (𝛼 − 1)∑ 𝑙𝑛 [

𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
]  𝑛

𝑖=1 + −
𝜌

𝜑
𝑛𝑥̅           (4.60b)                                                                    

 

The objective here is to find the values of the respective parameters in the model that 

maximise the likelihood function over the parameter space, ∅. This objective can be 

achieved if the log-likelihood function is partially differentiated over the parameter space 

(
𝜕𝑙

𝜕𝛼
,
𝜕𝑙

𝜕𝛽
   
𝜕𝑙

𝜕𝜌
  
𝜕𝑙

𝜕𝜑
 𝑎𝑛𝑑 

𝜕𝑙

𝜕𝛾
).  

The estimated point in the parameter space (φ̂, ρ̂, 𝛼̂, 𝛽,̂   𝛾) that maximises the likelihood 

function of EKJ distribution is achieved by simultaneously solving the optimality equations: 

 
𝜕𝑙

𝜕𝛼
= 0,

𝜕𝑙

𝜕𝛽
= 0,   

𝜕𝑙

𝜕𝜌
= 0,

𝜕𝑙

𝜕𝜑
= 0    𝑎𝑛𝑑   

𝜕𝑙

𝜕𝛾
= 0  

The optimality equations are complex to solve analytically but can be solved empirically 

using an iterative technique like the Simulation annealing algorithm (a package in R-

Studio). 

4.3.5 Graphical Presentation of EKJ 

This section presents the behaviour of Exponentiated Kumaraswamy Janardan distribution 

pictorially. Figure 4.12 demonstrates the behavior of EKJ for some random values of the 

parameters. Figure 4.13 through figure 4.17 are demonstrations of the effect of each 

parameter on the functional behavior of the proposed distribution.  

Examination of the plots below reveals EKJ demonstrating both symmetric and asymmetric 

behavior depending on the parameter estimates. This behavior is an indication of the 

flexibility of the proposed distribution in modeling lifetime data economically. 

A model that exhibits symmetric behavior offers the modeler the opportunity to subdivide 

the dataset to work with a symmetric portion instead of an entire set. This could save 

significant analytic time, analytic energy as well as analytic cost. 
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The model also exhibits skewness (asymmetric) - a distortion from normality to some extent. 

Many lifetime data normally do not follow the assumptions of normality. Whenever 

assumptions of normality fail, standard deviation as a measure of dispersion provides a 

misleading foundation for decision-making. In this case, skewness is a highly recommended 

statistic in risk assessment. The skewness behavior of this proposed distribution is a pointer 

to the robustness of the distribution. This is the reason why this new proposed distribution 

is pictorially depicting the ability in modeling variability in the dataset as well as skewness 

in the dataset. 

Figure 4.13 Behaviour of PDF of EKJ for some parameters 
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Figure 4.14 Effect of   on behaviour of PDF of EKJ 

Figure 4.15 Effect of  on behaviour of PDF of EKJ 
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Figure 4.16 Effect of   on behaviour of PDF of EKJ 

Figure 4.17 Effect of  on behaviour of PDF of EKJ 
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Figure 4.18 Effect of  on behaviour of PDF of EKJ 

4.3.6 Survivor and Hazard Functions of EKJ 

The survival plot is a plot of the survival function. Survival function, by definition, is the 

probability of performing a given specified function under a given condition for a specified 

period. This function is also known as the reliability function (mainly, in the field of 

engineering). However, it is commonly known as survivor function in a wider range of 

applicable fields such as finance, insurance, biology, and so on. 

In the field of engineering, the survival function measures the probability that a product will 

perform without fail for a designed lifetime under designed operative conditions.  

According to Finkelstein (2008), reliability is a quality requirement of consumers from 

producers. The quantitative value of the survival function is a major determinant in 

determining the warranty of a product by suppliers/producers thereby instilling user 

confidence in the product. 

Mathematically, the survival function of distribution is given as: 

𝑅(𝑥) = 1 − 𝐹(𝑥)                                                                                                                     (4.61) 

Substituting equation (4.47) into equation (4.61) results in: 
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𝑅(𝑥) =  1 − [1 − (1 − [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛼

)
𝛽

]

𝛾

                                                      

Intuitively,  

𝑅(𝑥) =  ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑥
 =  1 − [1 − (1 − [1 − 

𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛼

)
𝛽

]

𝛾

                (4.62) 

The close function to the survivor rate is the hazard rate. In some contexts, important 

characteristics of a model can be clearly demonstrated through hazard function (or failure 

rate) more clearly than other rates. Analytically, the hazard rate function is mathematically 

demonstrated as: 

ℎ(𝑥) = lim
∆𝑥→0

𝑝𝑟𝑜𝑏(𝑥<𝑋<𝑥+∆𝑥𝐼𝑋>𝑥)

∆𝑥
                                                                         (4.63)                                                                                    

Using the Bayes theorem of conditional probability; 

ℎ(𝑥) = lim
∆𝑥→0

𝐹(𝑥+∆𝑥)−𝐹(𝑥)

∆𝑥 (1−𝐹(𝑥))
                                                                                                      (4.64) 

ℎ(𝑥) =  
𝑓(𝑥)

1−𝐹(𝑥)
= 

𝑓(𝑥)

𝑅(𝑥)
                                                                                                           (4.65) 

Hazard rate plays a very central role in survival evaluation. It is mainly used in the fields of 

demography, actuary, and epidemiological studies. It is commonly known as the force of 

mortality. Hazard rate is also applicable in risk evaluation in finance. In engineering, the 

hazard rate of a machine or device with life “X” conforming to a distribution, is the 

instantaneous conditional probability of failure given that the machine/device has served 

until time “x”. 

The quantitative value of hazard rate ℎ(𝑥)  has myriad uses in describing many life 

phenomena. Keenly, it has numerous applications in myriad fields including (but not limited 

to) engineering, economics, insurance, epidemiology, and so on. 

More closely, the hazard function of Exponentiated Kumaraswamy Janardan distribution is 

derived as:  

Digitized by UMaT Library



 

81 
 

 

 

ℎ(𝑥) =  
𝑊𝑖𝑗𝑘[𝑥

𝛼(𝑘+𝑗+𝛽𝑖+1)× 𝑒
−𝛼(𝑘+𝑗+𝛽𝑖+1)

𝜌𝑥
𝜑 ]

1− [1− (1− [1− 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌
𝜑𝑥]

𝛼

)

𝛽

]

𝛾                                                       (4.66)                                                

 

In expanded form, we obtain: 

 

ℎ(𝑥) =   {[𝛾𝛽𝛼 [1 − (1 − (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1

− (−
𝜌𝜑2

𝜑(𝜌 + 𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

[−
𝜌𝜑2𝑥

𝜑(𝜌 + 𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]

𝛼−1

[
𝜌

𝜑
−

𝜌𝜑

(𝜌 + 𝜑2)

+
𝜌𝑥

𝜑
] 𝑒

−
𝜌𝑥
𝜑 ]} ÷ 

{1 − [1 − (1 − [1 − 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌

𝜑
𝑥
]
𝛼

)
𝛽

]

𝛾

}  

ℎ(𝑥) =   
[
 
 
 
 
 
𝛾𝛽𝛼[1−(1−(−

𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

)

𝛽

]

𝛾−1

[1−(−
𝜌𝜑2

𝜑(𝜌+𝜑2)
𝑥𝑒

−
𝜌𝑥
𝜑 )

𝛼

]

𝛽−1

×

[−
𝜌𝜑2𝑥

𝜑(𝜌+𝜑2)
𝑒
−
𝜌𝑥
𝜑 ]

𝛼−1

[
𝜌

𝜑
−

𝜌𝜑

(𝜌+𝜑2)
+
𝜌𝑥

𝜑
]𝑒
−
𝜌𝑥
𝜑

]
 
 
 
 
 

1−[1− (1− [1− 
𝜑(𝜌+𝜑2)+𝜌𝜑2𝑥 

𝜑(𝜌+𝜑2)
 𝑒
−
𝜌
𝜑𝑥]

𝛼

)

𝛽

]

𝛾                         (4.67) 

The hazard rate function can exhibit a rate that is constant, increasing, decreasing, or upside-

down bathtub and bathtub depending on the values of parameters of the model. Any model 

that exhibits all the above shapes has a great ability in robustness in modeling hazard rates 

appropriately. Succinctly, a distribution with a robust hazard rate can model data that exhibit 

constant failure rate, monotonically increasing (decreasing) failure rate, and bathtub failure 

rate.  
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CHAPTER 5 

EMPIRICAL RESULTS 

5.0 Introduction 

This section presents the empirical results of the study. Empirical findings are presented in 

three subsections according to the models proposed and developed. The three models 

developed are fed with five different datasets.  

5.1 Application of Exponentiated Janardan to Lifetime Data 

This subsection presents the results of applying Exponentiated Janardan distribution as well 

as Janardan distribution to lifetime data. Dataset 1 was one of the datasets Shanker (2013) 

used to test the Janardan distribution and found it to be better than the Lindley distribution. 

Datasets 2 and 4 are obtained from MTN Ghana Call Center. While dataset 2 was obtained 

from the Low Value (LV) queue, dataset 4 is obtained from the High Value (HV) queue. 

Datasets 3 and 5 are the academic score of students from Bluecrest University (a private 

university) and Accra Technical University (a public university) respectively. Both Janardan 

and Exponentiated Janardan distributions were fitted to the five different datasets 

concurrently. In all cases, Exponentiated Janardan distribution provides a smaller AIC than 

Janardan distribution.  

Table 5.1 The empirical optimisation result of Exponentiated Janardan Distribution 

Datasets Model Mean SD 𝜑̂ 𝜌̂ 𝛾 -(log L) AIC 

Dataset 1 EJ 0.73 0.71 0.295 0.598 1.411 15.9735 37.947 

J 2.419 5.044 ----- 17.6080 39.216 

Dataset 2 

(Queue LV) 

EJ 1.49 0.35 3.7*10-8 8.5*10-

5 

0.104 -702.77 -

696.77 

J 46.43 17.69 ------ -91.32 -87.32 

Dataset 3 

(examscoreBC) 

EJ 0.87 0.25 0.13 0.09 1.25 30.12 36.12 

J 2.78 2,01 ----- 33.768 37.768 

Dataset 4 

(Queue HV) 

EJ 2.49 0.5 0.007 0.089 0.111 -216.76 -

201.76 

Digitized by UMaT Library



 

83 
 

J 1.437 1.96 ------ -112,51 -

108.51 

Dataset 5 

(examscoreatu) 

EJ 0.76 0.15 0.17 0.11 1.25 31.17 37.17 

J 2.38 2.17 ----- 33.89 37.89 

 

5.2 Application of Kumaraswamy Janardan to Lifetime Data 

This subsection presents the empirical optimisation result of the proposed Kumaraswamy-

Janardan distribution using real data to demonstrate that the K-J model provides a significant 

improvement over the sub-models (Lindley and Janardan). Datasets 1, 2, and 3 are obtained 

from the Janardan article. These datasets were fitted to Lindley, Janardan and 

Kumaraswamy-Janardan distributions concurrently. The optimisation output is presented in 

table 5.2. 

Table 5.2 Empirical optimisation result of Kumaraswamy-Janardan Model 

Datasets Model 𝜌̂ 𝜑̂ 𝛼̂  𝛽̂ -(log L) AIC 

Dataset 1 Lindley 2.9097 - - - 73.1047 75.1047 

Janardan 64.3228 4.6215 - - -

125.7309 

-

121.7309 

K-J 4.3964 0.1174 13.0521 0.9394 -

231.1150 

-

223.1150 

Dataset 2 Lindley 2.9097 - - - -28.8451 -26.8451 

Janardan 76.4254 4.9416 - - -33.5370 -29.5370 

K-J 0.1908 0.2571 7.0334 15.7885 -39.7005 -31.7005 

Dataset 3 Lindley 2.7243 - - - 95.9087 97.9087 

Janardan 71.0587 4.8012 - - 37.0897 78.1794 

K-J 2.7607 10.8387 5.5524 9.6799 29.5206 67.0522 

From table 5.2, the Maximum Likelihood Estimate for each parameter of the given model 

is presented alongside the loglikelihood value which eventually feeds into AIC. The MLE 

(in table 5.2) are estimated point(s) in the parameter space that maximizes the likelihood 

function of each of the probability models in the table with the given datasets. These 
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estimates are helping to make inferences about the population that is most likely to have 

generated the sample datasets. To determine which model among the considered models is 

the best in fitting these sample data, the researcher considered the Akaike Information 

Criterion (AIC). The model with the least AIC is the best among the considered models. 

From the table, it is observed that Kumaraswamy-Janardan (K-J) records the lowest AIC 

and hence is the best of the considered models. 

5.3 Application of Exponentiated Kumaraswamy Janardan to Lifetime Data 

This subsection presents the empirical result of the optimisation of Exponentiated 

Kumaraswamy Janardan (EKJ) distribution. This distribution is run alongside the sub-

models on five (5) different datasets and suitability is determined. Datasets 1,2,3,4 and 5 

were retrieved from the literature. These datasets were previously fitted to Lindley and 

Janardan distributions. The optimality output with the help of simulated annealing is 

presented in table 5.3. 

Table 5.3 Empirical optimisation result of Exponentiated Kumaraswamy Janardan 

Distribution 

Data 

sets 

Model Mean SD 𝜌̂ 𝜑̂ 𝛼̂ 𝛽̂ 𝛾 -(log L) AIC 

1 L 2.52 0.25 2.910 - - - - 73.105 75.105 

J 64.32 4.62 - - - -125.731 -121.73 

KJ 4.396 0.117 13.05

2 

0.939 - -231.115 -223.12 

EJ 0.32 1.07 --- --- 0.15 -229.31 -223.31 

EKJ 5.98 0.982 2.992 0.006 0.59 -232.25 -222.25 

 2 L 172 30 2.910 - - - - -28.8451 -26.8451 

J   76.42

5 

4.942 - - - -33.537 -29.5370 

KJ   0.191 0.257 7.033 15.78

9 

- -39.7005 -31.7005 

EJ   0.378 3.001 --- --- 0.021 -36.28 -30.28 

EKJ   3.215 0.891 5.340 4.952 0.369 -39.789 -29.789 

 3 L   2.724 - - - - 95.9087 97.9087 

J 0.98 0.08 71.05

9 

4.801 - - - 37.9897 41.9897 

KJ   2.761 10.839 5.552 9.68 - 29.5206 37.5206 

EJ   2.00 5.25 - - 0.978 31.950 37.95 
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EKJ   7.23 0.09 8.21 5.20 1.09 31.595 41.595 

4 L 21.3 5.7 2.731 - - - - 27.326 29.326 

J   5.044 2.419 - - - 17.6080 21.608 

KJ   6.982 5.001 0.965 5.941 - 11.289 19.289 

EJ   5.598 2.295 - - 1.411 15.9735 21.9735 

EKJ   0.98 2.038 8.321 4.231 0.992 14.852 24.852 

5 L 37.2 6 11.28

1 

- - - - 231.58 233.58 

J   5.28 6.245 - - - 227.620 231.620 

KJ   2.212 4.357 1.372 0.978 - 198.83 206.83 

EJ   3.891 0.924 - - 1.285 200.94 206.94 

EKJ   5.126 1.732 5.203 0.872 0.901 199.72 209.72 

Table 5.3 presents the Maximum Likelihood Estimate (MLE) for each parameter of the 

given model as well as the loglikelihood value which eventually feeds into AIC. The MLE 

is the estimated point(s) in the parameter space that maximises the likelihood function of 

each of the probability models in the table with the given datasets. These estimates are 

helping to make inferences about the population that is most likely to have generated the 

sample datasets. The essence of the estimates in probability theory is to obtain a suitable 

model for better projection. The values of the estimates culminate in calculating the 

likelihood value of a given model. The models considered are Lindley, Janardan, 

Kumaraswamy-Janardan (new), Exponentiated Janardan (new), and Exponentiated 

Kumaraswamy Janardan (new). The three new models are fitted to five different datasets. 

These datasets were used in judging the superiority of Janardan over Lindley. In order to 

determine which model among the considered models is the best in fitting these sample data, 

the researcher, considered the Akaike Information Criterion (AIC). The model with the least 

AIC is the best among the considered models.  

From table 5.3, it can be observed that all the new models (Exponentiated Janardan, 

Kumaraswamy Janardan and Exponentiated Kumaraswamy Janardan) independently 

recorded the lowest AIC value in comparison to the existing models (Lindley and Janardan). 

By implication, the new models provide a better fit to all the considered sample datasets 

than the existing sub-models. 

Recalling that the three new models developed in this project are a three-parameter 

Exponentiated Janardan Distribution, a four-parameter Kumaraswamy Janardan 
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Distribution, and a five-parameter Exponentiated Janardan Distribution. Apart from the fact 

that these three distributions show superiority over Janardan Distribution and its sub-model 

(Lindley distribution), the study further investigates the goodness of fit among the three new 

models. In comparing the three new distributions, Kumaraswamy Janardan (KJ) 

Distribution proves superior in most cases. KJ recorded the lowest AIC in all but one dataset. 

In dataset 1, the AIC for Exponentiated Janardan (EJ) is -223.31 while KJ is -223.115 and 

EKJ is -222.25. In this dataset, EJ proves to be the best among these new models even 

though the KJ’s AIC value is very close. However, the difference in these AICs  is less than 

2 (in absolute terms), indicating that they are statistically the same with the dataset. In the 

case of datasets 2, 3, 4 and 5; KJ recorded the lowest AIC which was consistently followed 

by EJ. 
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CHAPTER 6 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Discussions 

This study came out with three new probability distributions of which the Janardan 

distribution is a particular case. The new distributions are run alongside their sub-models in 

the data environment. These new distributions have exponential distribution as a classical 

baseline model. Since exponential distribution is the classical baseline, the new distributions 

can be used to model zero bounded variables in the field of industrial quality control as 

suggested by Epstein (1958). It can also be used in modeling the stochastic theory of 

accident and survival as suggested by Esary (1957). These new distributions have the 

potential in modeling variables in reliability engineering and survival analysis since their 

hazard rate exhibit bathtub characteristics.  

As indicated in chapter two the important functions in stochastic modeling in the area of 

survival and reliability analysis are survivor function and hazard function. The drawbacks 

of the constant hazard function (in the case of exponential distribution) and the monotonic 

hazard rate function (in the case of Weibull and Janardan distributions) are corrected in these 

new distributions. Each of the new distributions exhibits a constant rate, monotonically 

increasing/decreasing rate as well as bathtub rate (upside down and downside up). These 

characteristics of the hazard function of the new distributions are a kind of superiority of the 

new distributions over the sub-models (Exponential, Weibull, Lindley and Janardan 

distributions) as well as competing models (Size-Biased Janardan, Transmuted Janardan 

distribution, etc)  

Although Bashir and Rasul (2016) claimed that the Janardan distribution is one of the 

important distributions for the life model and it has many applications in real-life data, the 

empirical result of this study reveals that all three new distributions provide a better fit than 

Janardan.  

 

6.2 Conclusions 

The ideas of probability have evolved over the years from the game of chance to many 

practical and scientific problems such as in the areas of theory of errors, actuarial 
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mathematics, statistical mechanics, etc. Due to the evolution of probabilistic ideas, more 

probability theories/distributions are being developed from time to time to improve the 

ability of existing distributions to model. One of the new improved distributions that 

attracted the attention of the researcher is the Janardan distribution. This distribution had 

been tried and tested on many lifetime datasets and proven to be a more relaxed and better 

fit than Lindley and Exponential distributions. 

However, Janardan distribution is discovered to be limited in controlling skewness and 

kurtosis which most lifetime data exhibit, hence the need to modify the Janardan distribution 

through the method of parametrisation. To improve the usability and flexibility of the 

Janardan probability distribution, the study was designed to come out with three new 

probability distributions of which the Janardan distribution is the baseline, the statistical 

properties of these new distributions were established as well as their goodness of fit through 

the use of data are tested. 

In line with the study objectives, three new distributions are developed through the method 

of parametrisation. These new distributions are Exponentiated Janardan (Three parameter 

distribution), Kumaraswamy Janardan (Four Parameter distribution) and Exponentiated 

Kumaraswamy Janardan (Five parameter distribution). Statistical properties such as PDF, 

CDF, Hazard rate, Survivor rate, Moments, Moment Generating function and MLE are 

established for each of the derived distributions.  

Empirical results reveal that all the derived models provide better fit to all the considered 

sample datasets than the existing sub-models. Apart from the fact that these three derived 

distributions show superiority over Janardan Distribution and its sub-model (Lindley 

distribution), the study further investigates the goodness of fit among the three new models. 

In comparing the three new distributions, the four-parameter Kumaraswamy Janardan (KJ) 

Distribution proves superiority in most cases. 

6.3 Recommendations 

The knowledge and applications of probability distribution need to be continuously 

enhanced and become more flexible in modeling current lifetime data effectively and 

efficiently. It is against this background that the Janardan probability distribution is 

improved upon by the researcher. This study would bridge the knowledge gap that exists in 
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probability distributions. Kumaraswamy Janardan's distribution proves its robustness with 

the sample data used in the study. 

The researcher would like to recommend that scholars expand the statistical properties of 

the new distributions established in this study to bridge the research gap in mathematical 

computations. 

Probability curriculum developers should include these new distributions in their curriculum 

to enhance their knowledge and usability of them since these distributions have proven to 

be better in modeling than the traditional classical distributions such as Exponential and 

Weibull distributions. 

Industry experts in the fields of reliability engineering, demography, actuary, etc; should 

use Kumaraswamy Janardan in modeling and predicting the reliability and hazard rate of 

their product since this distribution provides a robust hazard rate function. 
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APPENDIX 

R-STUDIO CODES 

 

Useful codes for EJ 

### EJ PDF PLOT ## 

EJ_PDF_PLOT<-function(x,f,r,g) 

  { 

  A=f*(r+f^2) 

  B=exp(-(r/f)*x) 

  C=f*(r+f^2) 

  J_CDF=1-(((A+(r*(f^2)*x))/A)*B) 

  J_PDF=((f^2)/C)*(1+(r*x))*B 

  #  EXPONENTIATED JARNADAN CDF ### 

  EJ_CDF<-(J_CDF)^g 

  ######  EXPONENTIATED JARNADAN PDF ######### 

  EJ_PDF<-g*(J_PDF*(J_CDF)^(g-1)) 

             return(EJ_PDF) 

} 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EJ_PDF_PLOT(x,0.1,0.2,5),0,10,col="blue",ylab=expression(paste('f',"(x)")),ylim=

c(0,0.5),xlab="x",lty=1,lwd=1) 

curve(EJ_PDF_PLOT(x,0.2,0.5,3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EJ_PDF_PLOT(x,0.3,0.6,2),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(varphi,"=",0.1,",",~rho

,"=",0.2,",",~gamma,"=",5)),expression(paste(varphi,"=",0.2,",",~rho,"=",0.5,",",~gamma,

"=",0.2)), 

expression(paste(varphi,"=",0.3,",",~rho,"=",0.6,",",~gamma,"=",2))),lty=1,lwd=2,col=c("

blue","green","red")) 
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title(main="Figure 4.1: Behaviour of PDF of EJ  

      for some parameters") 

################ EJ SURVIVAL PLOT ############################## 

EJ_SURVIVAL_PLOT<-function(x,f,r,g) 

{ 

   

  EJ_SURVIVAL<-1-EJ_CDF 

##  EJ_PDF<-g*(J_PDF*(J_CDF)^(g-1))### 

   

  return(EJ_SURVIVAL) 

} 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EJ_SURVIVAL_PLOT(x,0.1,0.2,5),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,1),xlab="x",lty=1,lwd=1) 

curve(EJ_SURVIVAL_PLOT(x,0.2,0.5,3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EJ_SURVIVAL_PLOT(x,0.3,0.6,2),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(varphi,"=",0.1,",",~rho

,"=",0.2,",",~gamma,"=",5)),expression(paste(varphi,"=",0.2,",",~rho,"=",0.5,",",~gamma,

"=",0.2)), 

expression(paste(varphi,"=",0.3,",",~rho,"=",0.6,",",~gamma,"=",2))),lty=1,lwd=2,col=c("

blue","green","red")) 

title(main="Figure 4.2: Behaviour of Survival Function of EJ  

      for some parameters") 

 

##### EJ HAZARD PLOT ### 

EJ_HAZARD_PLOT<-function(x,f,r,g) 

{ 

  EJ_HAZARD<-EJ_PDF/EJ_SURVIVAL 
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  return(EJ_HAZARD) 

} 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EJ_HAZARD_PLOT(x,0.1,0.2,5),0,10,col="blue",ylab=expression(paste('f',"(x)")),

ylim=c(0,1),xlab="x",lty=1,lwd=1) 

curve(EJ_HAZARD_PLOT(x,0.2,0.5,3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EJ_HAZARD_PLOT(x,0.3,0.6,2),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(varphi,"=",0.1,",",~rho

,"=",0.2,",",~gamma,"=",5)),expression(paste(varphi,"=",0.2,",",~rho,"=",0.5,",",~gamma,

"=",0.2)), 

expression(paste(varphi,"=",0.3,",",~rho,"=",0.6,",",~gamma,"=",2))),lty=1,lwd=2,col=c("

blue","green","red")) 

title(main="Figure 4.3: Behaviour of Hazard Rate of EJ  

      for some parameters") 

 

  ######################  

  janardan.lik<-function(theta,x) 

  { 

    theta<-c(r,f) 

    r<-theta[1] 

  f<-theta[2] 

  n<-nrow(x) 

 logl<- 2*n*ln(r)-n*ln(f)-n*ln(r+f^2)+n*ln(1+f*x)-(r/f)*sum(x) 

  x<-

c(1.31209,0.61040,0.50733,2.17203,1.78809,0.60867,2.64002,0.57412,0.45361,0.42831,0

.34411,0.23693,0.07457,0.18864,0.38920,0.18449,0.76830,0.29148,0.67360,2.06885,0.51

296,0.16361,0.13590,0.56586 

) 

  return(-logl) 
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  } 

  optim(c(1,1),janardan.lik,x,method="BFGS")   

summary(-logl) 

print 

######## Demostration of effect of the parameters###### 

EJ_PDF_PLOT<-function(x,f,r,g) 

{ 

  ######   JARNADAN CDF  ############### 

  A=f*(r+f^2) 

  B=exp(-(r/f)*x) 

  J_CDF=1-(((A+(r*(f^2)*x))/A)*B) 

  ######  JARNADAN PDF  ############## 

  C=f*(r+f^2) 

  B=exp(-(r/f)*x) 

  J_PDF=((f^2)/C)*(1+(r*x))*B 

  #### EXPONENTITED CDF###### 

  ### F(x)= (G(x))^g #### 

  ######  EXPONENTIATED JARNADAN CDF ######### 

  EJ_CDF<-(J_CDF)^g 

  ##### EXPONENTIATED PDF##### 

  ## f(x)= g*g(x)*(G(x))^(g-1)### 

  ######  EXPONENTIATED JARNADAN PDF ######### 

  EJ_PDF<-g*(J_PDF*(J_CDF)^(g-1)) 

  return(EJ_PDF)   } 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

Digitized by UMaT Library



 

102 
 

curve(EJ_PDF_PLOT(x,0.1,0.2,5),0,10,col="blue",ylab=expression(paste('f',"(x)")),ylim=

c(0,0.5),xlab="x",lty=1,lwd=1) 

curve(EJ_PDF_PLOT(x,0.1,0.2,10),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EJ_PDF_PLOT(x,0.1,0.2,15),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("topleft",inset=c(0.05),cex=1.0,legend=c(expression(paste(varphi,"=",0.1,",",~rho,

"=",0.2,",",~gamma,"=",5)),expression(paste(varphi,"=",0.1,",",~rho,"=",0.2,",",~gamma,"

=",10)), 

expression(paste(varphi,"=",0.1,",",~rho,"=",0.2,",",~gamma,"=",15))),lty=1,lwd=2,col=c(

"blue","green","red")) 

title(main="Figure 4.4: Demostration of Effect of gamma  

      on Behaviour of  PDF of EJ ") 

#### Effect of Rho #### 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EJ_PDF_PLOT(x,0.1,0.2,5),0,10,col="blue",ylab=expression(paste('f',"(x)")),ylim=

c(0,0.5),xlab="x",lty=1,lwd=1) 

curve(EJ_PDF_PLOT(x,0.1,0.1,5),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EJ_PDF_PLOT(x,0.1,0.08,5),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(varphi,"=",0.1,",",~rho

,"=",0.2,",",~gamma,"=",5)),expression(paste(varphi,"=",0.1,",",~rho,"=",0.1,",",~gamma,

"=",5)), 

expression(paste(varphi,"=",0.1,",",~rho,"=",0.08,",",~gamma,"=",5))),lty=1,lwd=2,col=c(

"blue","green","red")) 

title(main="Figure 4.5: Demostration of Effect of rho  

      on Behaviour of  PDF of EJ " 

#### Effect of Varphi #### 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EJ_PDF_PLOT(x,0.1,0.1,5),0,10,col="blue",ylab=expression(paste('f',"(x)")),ylim=

c(0,0.5),xlab="x",lty=1,lwd=1) 

curve(EJ_PDF_PLOT(x,0.5,0.1,5),0,10,col="green",add=TRUE,lty=1,lwd=1) 
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curve(EJ_PDF_PLOT(x,0.6,0.1,5),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("topright",inset=c(0.05),cex=1.0,legend=c(expression(paste(varphi,"=",0.1,",",~rho

,"=",0.1,",",~gamma,"=",5)),expression(paste(varphi,"=",0.5,",",~rho,"=",0.1,",",~gamma,

"=",5)), 

expression(paste(varphi,"=",0.6,",",~rho,"=",0.1,",",~gamma,"=",5))),lty=1,lwd=2,col=c("

blue","green","red")) 

title(main="Figure 4.6: Demostration of Effect of Varphi  

      on Behaviour of  PDF of EJ " 

########################### EJ MLE 

OPTIMIZATION############################### 

janardan_re.fit<-function(params, x_i){ 

  varphi<-params[1] 

  rho<-params[2] 

  gamma<-params[3] 

  n<-length(x_i) 

  x_i<-

c(1.31209,0.61040,0.50733,2.17203,1.78809,0.60867,2.64002,0.57412,0.45361,0.42831, 

         

0.34411,0.23693,0.07457,0.18864,0.38920,0.18449,0.76830,0.29148,0.67360,2.06885,0.5

1296,0.16361, 

         0.13590,0.56586) 

  x_i 

  logl<-n*log(gamma*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(gamma - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

    return(-logl)   } 

janardan_re.est<-function(x_i){ 

  data.params<-optim(par = runif(3), janardan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 
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  return(estimates) 

} 

janardan_re.est(x_i) 

########################### Jan Only MLE FINAL###### 

jan_re.fit<-function(params, x_i){ 

  varphi<-params[1] 

  rho<-params[2] 

  n<-length(x_i) 

  x_i<-

c(1.31209,0.61040,0.50733,2.17203,1.78809,0.60867,2.64002,0.57412,0.45361,0.42831, 

0.34411,0.23693,0.07457,0.18864,0.38920,0.18449,0.76830,0.29148,0.67360,2.06885,0.5

1296,0.16361, 0.13590,0.56586) 

  logl<-n*log(1*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(1 - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

  return(-logl) 

} 

jan_re.est<-function(x_i){ 

  data.params<-optim(par = runif(2), jan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 

  return(estimates) 

} 

jan_re.est(x_i) 

###### EJ MLE data 2 ##### 

janardan_re.fit<-function(params, x_i){ 

  varphi<-params[1] 

  rho<-params[2] 
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  gamma<-params[3] 

  n<-length(x_i) 

  x_i<-c(0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 

1.04, 

         1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,  1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 

         1.50, 0.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 

         

1.61,1.62,1.66,1.70,1.77,1.84,0.84,1.24,1.30,1.48,1.51,1.55,1.61,1.63,1.67,1.70,1.78,1.89) 

  x_i 

   

  logl<-n*log(gamma*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(gamma - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

  return(-logl) 

} 

janardan_re.est<-function(x_i){ 

   

  data.params<-optim(par = runif(3), janardan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 

  return(estimates) 

} 

janardan_re.est(x_i) 

#### J MLE Only ### 

jan_re.fit<-function(params, x_i){ 

  varphi<-params[1] 

  rho<-params[2] 
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  n<-length(x_i) 

  x_i<-c(0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 

1.04, 

         1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,  1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 

         1.50, 0.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 

         

1.61,1.62,1.66,1.70,1.77,1.84,0.84,1.24,1.30,1.48,1.51,1.55,1.61,1.63,1.67,1.70,1.78,1.89) 

  x_i 

  logl<-n*log(1*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(1 - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

  return(-logl) 

} 

jan_re.est<-function(x_i){ 

  data.params<-optim(par = runif(2), jan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 

  return(estimates) 

} 

jan_re.est(x_i) 

##### 

jan_re.fit<-function(params, x_i){ 

  varphi<-params[1] 

  rho<-params[2] 

  n<-length(x_i) 

  x_i<-c(0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 

1.04, 

         1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,  1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 
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         1.50, 0.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 

         

1.61,1.62,1.66,1.70,1.77,1.84,0.84,1.24,1.30,1.48,1.51,1.55,1.61,1.63,1.67,1.70,1.78,1.89) 

  x_i 

  logl<-n*log(1*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(1 - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

  return(-logl) 

} 

janardan_re.est<-function(x_i){ 

  data.params<-optim(par = runif(2), jan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 

  return(estimates)      } 

janardan_re.est(x_i) 

###### EJ MLE data 3 ##### 

janardan_re.fit<-function(params, x_i){ 

  varphi<-params[1] 

  rho<-params[2] 

  gamma<-params[3] 

  n<-length(x_i) 

  x_i<-c(5, 25, 31, 32, 34, 35, 38, 39, 39, 40, 42, 43, 43, 

         43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55, 

         55, 56, 56, 56, 58, 59, 59, 59, 59, 59, 63, 63, 64, 

         64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 

         69, 69, 69, 69, 71, 71, 72, 73, 73, 73, 74, 74, 76, 

         76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81, 83, 83, 
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         84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97, 

         98, 98, 99, 101, 103, 105, 109, 136, 147) 

  x_i 

  logl<-n*log(gamma*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(gamma - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

  return(-logl)       } 

janardan_re.est<-function(x_i){ 

   

  data.params<-optim(par = runif(3), janardan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 

  return(estimates)       } 

janardan_re.est(x_i) 

#### J MLE Only ### 

jan_re.fit<-function(params, x_i){ 

  varphi<-params[1] 

  rho<-params[2] 

  n<-length(x_i) 

  x_i<-c(5, 25, 31, 32, 34, 35, 38, 39, 39, 40, 42, 43, 43, 

         43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55, 

         55, 56, 56, 56, 58, 59, 59, 59, 59, 59, 63, 63, 64, 

         64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 

         69, 69, 69, 69, 71, 71, 72, 73, 73, 73, 74, 74, 76, 

         76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81, 83, 83, 

         84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97, 

         98, 98, 99, 101, 103, 105, 109, 136, 147) 
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  logl<-n*log(1*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(1 - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

  return(-logl)    } 

jan_re.est<-function(x_i) { 

  data.params<-optim(par = runif(2), jan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 

  return(estimates) 

} 

jan_re.est(x_i) 

jan_re.fit<-function(params, x_i){ 

   

  varphi<-params[1] 

  rho<-params[2] 

   

  n<-length(x_i) 

  x_i<-c(5, 25, 31, 32, 34, 35, 38, 39, 39, 40, 42, 43, 43, 

         43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55, 

         55, 56, 56, 56, 58, 59, 59, 59, 59, 59, 63, 63, 64, 

         64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 

         69, 69, 69, 69, 71, 71, 72, 73, 73, 73, 74, 74, 76, 

         76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81, 83, 83, 

         84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97, 

         98, 98, 99, 101, 103, 105, 109, 136, 147) 

  x_i 
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  logl<-n*log(1*rho**2/(varphi*(rho + varphi**2))) +  

    sum(log((1 -((rho*varphi**2)*x_i + varphi*(rho + varphi**2))*exp(-

rho*x_i/varphi)/(varphi*(rho + varphi**2)))**(1 - 1)*(varphi*x_i + 1)*exp(-

rho*x_i/varphi))) 

  return(-logl) 

} 

janardan_re.est<-function(x_i){ 

  data.params<-optim(par = runif(2), jan_re.fit, method = "SANN", 

                     x_i = data, hessian = T) 

  estimates<-data.params 

  return(estimates) 

} 

janardan_re.est(x_i) 

 

 

 

Useful codes for KJ 

  #####  KUMARASWAMY JARNADAN CDF ############## 

   

  KJ_CDF=1-(1-(J_CDF^a))^b 

   

   

  #####  KUMARASWAMY JARNADAN PDF ############## 

   

  KJ_PDF=a*b*J_PDF*J_CDF^(a-1)*(1-J_CDF)^(b-1) 
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  return(KJ_PDF) 

} 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,3.8,3.0,0.5,1.5),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,6,4,1,1.9),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)),expression(paste(alpha,"=",3.8,",",~beta,"=",3.0,"

,",~phi,"=",0.5,",",~rho,"=",1.5)), 

expression(paste(alpha,"=",6,",",~beta,"=",4,",",~phi,"=",1,",",~rho,"=",1.9))),lty=1,lwd=2

,col=c("blue","green","red")) 

title(main="Figure 1: Behaviour of pdf of KJ for some parameters") 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,3,3.2,1.9,2),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,3.5,3,1.3,2.1),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,4.2,3.2,3.8,4),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.75,legend=c(expression(paste(alpha,"=",3,",",~beta,"

=",3.2,",",~varphi,"=",1.9,",",~rho,"=",2)),expression(paste(alpha,"=",3.5,",",~beta,"=",3,",

",~phi,"=",1.3,",",~rho,"=",2.1)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~phi,"=",3.8,",",~rho,"=",4))),lty=1,lw

d=2,col=c("blue","green","red")) 

title(main="Figure 4.7: Behaviour of pdf of KJ for some parameters") 

 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 
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curve(KJ_PDF_PLOT(x,3,3.2,1.9,2),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,3.5,3,1.3,2.1),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,4.2,3.2,3.8,4),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.75,legend=c(expression(paste(alpha,"=",3,",",~beta,"

=",3.2,",",~varphi,"=",1.9,",",~rho,"=",2)),expression(paste(alpha,"=",3.5,",",~beta,"=",3,",

",~phi,"=",1.3,",",~rho,"=",2.1)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~phi,"=",3.8,",",~rho,"=",4))),lty=1,lw

d=2,col=c("blue","green","red")) 

 

 

 

 

##### modification of legend  rough work#### 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,3.8,3.0,0.5,1.5),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,6,4,1,1.9),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)),expression(paste(alpha,"=",3.8,",",~beta,"=",3.0,"

,",~varphi,"=",0.5,",",~rho,"=",1.5)), 

expression(paste(alpha,"=",6,",",~beta,"=",4,",",~varphi,"=",1,",",~rho,"=",1.9))),lty=1,lw

d=2,col=c("blue","green","red")) 

title(main="Figure 1: Behaviour of pdf of KJ for some parameters") 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 
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curve(KJ_PDF_PLOT(x,3,3.2,1.9,2),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,3.5,3,1.3,2.1),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,4.2,3.2,3.8,4),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.75,legend=c(expression(paste(alpha,"=",3,",",~beta,"

=",3.2,",",~varphi,"=",1.9,",",~rho,"=",2)),expression(paste(alpha,"=",3.5,",",~beta,"=",3,",

",~varphi,"=",1.3,",",~rho,"=",2.1)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~varphi,"=",3.8,",",~rho,"=",4))),lty=1

,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.7: Behaviour of pdf of KJ for some parameters") 

 

################# EFFECT OF ALPHA ON PDF ########## 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,3,3,2.2,5.3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,6,3,2.2,5.3),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)),expression(paste(alpha,"=",3,",",~beta,"=",3,",",~

varphi,"=",2.2,",",~rho,"=",5.3)), 

expression(paste(alpha,"=",6,",",~beta,"=",3,",",~varphi,"=",2.2,",",~rho,"=",5.3))),lty=1,l

wd=2,col=c("blue","green","red")) 

title(main="Figure 4.8: Behaviour of pdf of KJ with varying alpha value") 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,3,3,2.2,5.3),0,10,col="green",add=TRUE,lty=1,lwd=1) 
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curve(KJ_PDF_PLOT(x,6,3,2.2,5.3),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)),expression(paste(alpha,"=",3,",",~beta,"=",3,",",~

varphi,"=",2.2,",",~rho,"=",5.3)), 

expression(paste(alpha,"=",6,",",~beta,"=",3,",",~varphi,"=",2.2,",",~rho,"=",5.3))),lty=1,l

wd=2,col=c("blue","green","red")) 

 

 

 

################# EFFECT OF BETA ON THE PDF### 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.3),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,2,2.2,5.3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,4,2.2,5.3),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)), 

                                               

expression(paste(alpha,"=",5,",",~beta,"=",2,",",~varphi,"=",2.2,",",~rho,"=",5.3)),  

                                               

expression(paste(alpha,"=",5,",",~beta,"=",4,",",~varphi,"=",2.2,",",~rho,"=",5.3))),lty=1,l

wd=2,col=c("blue","green","red")) 

title(main="Figure 4.9: Behaviour of pdf of KJ with varying beta value") 

 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.3),xlab="x",lty=1,lwd=1) 

Digitized by UMaT Library



 

115 
 

curve(KJ_PDF_PLOT(x,5,2,2.2,5.3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,4,2.2,5.3),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)), 

                                               

expression(paste(alpha,"=",5,",",~beta,"=",2,",",~varphi,"=",2.2,",",~rho,"=",5.3)),  

                                               

expression(paste(alpha,"=",5,",",~beta,"=",4,",",~varphi,"=",2.2,",",~rho,"=",5.3))),lty=1,l

wd=2,col=c("blue","green","red")) 

 

 

################# EFFECT OF VARPHI ON PDF###### 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,2,5.3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,1,5.3),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)), 

                                               

expression(paste(alpha,"=",5,",",~beta,"=",3,",",~varphi,"=",2,",",~rho,"=",5.3)), 

                                               

expression(paste(alpha,"=",5,",",~beta,"=",3,",",~varphi,"=",1,",",~rho,"=",5.3))),lty=1,lw

d=2,col=c("blue","green","red")) 

 

title(main="Figure 4.10: Behaviour of pdf of KJ with varying varphi value") 
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windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,2,5.3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,1,5.3),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)), 

                                               

expression(paste(alpha,"=",5,",",~beta,"=",3,",",~varphi,"=",2,",",~rho,"=",5.3)), 

                                               

expression(paste(alpha,"=",5,",",~beta,"=",3,",",~varphi,"=",1,",",~rho,"=",5.3))),lty=1,lw

d=2,col=c("blue","green","red")) 

 

 

 

 

################# EFFECT OF RHO ON PDF#### 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,2.2,6),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,2.2,7),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0, 

       

legend=c(expression(paste(alpha,"=",5,",",~beta,"=",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)

), 

                expression(paste(alpha,"=",5,",",~beta,"=",2,",",~varphi,"=",2.2,",",~rho,"=",6)), 
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expression(paste(alpha,"=",5,",",~beta,"=",4,",",~varphi,"=",2.2,",",~rho,"=",7))),lty=1,lw

d=2,col=c("blue","green","red")) 

title(main="Figure 4.11: Behaviour of pdf of KJ with varying rho value") 

 

 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(KJ_PDF_PLOT(x,5,3,2.2,5.3),0,10,col="blue",ylab=expression(paste('f',"(x)")),yli

m=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,2.2,6),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(KJ_PDF_PLOT(x,5,3,2.2,7),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0, 

       

legend=c(expression(paste(alpha,"=",5,",",~beta,"=",3,",",~varphi,"=",2.2,",",~rho,"=",5.3)

), 

                expression(paste(alpha,"=",5,",",~beta,"=",2,",",~varphi,"=",2.2,",",~rho,"=",6)), 

                

expression(paste(alpha,"=",5,",",~beta,"=",4,",",~varphi,"=",2.2,",",~rho,"=",7))),lty=1,lw

d=2,col=c("blue","green","red")) 

 

 

Useful codes for EKJ 

 

################ EKJ PDF PLOT ############################## 

EKJ_PDF_PLOT<-function(x, a, b, f,r,g){ 

  ######   JARNADAN CDF  ############### 

  A=f*(r-f^2) 

  B=exp(-(r/f)*x) 
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  J_CDF=1-(((A+(r*(f^2)*x))/(f*(r+f^2)))*B) 

  ######  JARNADAN PDF  ############## 

  C=f*(r+f^2) 

  B=exp(-(r/f)*x) 

  J_PDF=((f^2)/C)*(1+(r*x))*B 

  #####  KUMARASWAMY JARNADAN CDF ############## 

  KJ_CDF=1-(1-(J_CDF^a))^b 

  #####  KUMARASWAMY JARNADAN PDF ############## 

  KJ_PDF=a*b*J_PDF*J_CDF^(a-1)*(1-J_CDF)^(b-1) 

  ######  EXPONENTIATED KUMARASWAMY JARNADAN CDF ######### 

  EKJ_CDF=(KJ_CDF)^g 

  ######  EXPONENTIATED KUMARASWAMY JARNADAN PDF ######### 

  EKJ_PDF=g*(KJ_PDF)*(KJ_CDF)^(g-1) 

  EKJ_PDF 

  return(EKJ_PDF) 

} 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,5,3,2.2,5.3,1.8),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3.8,3.0,0.5,1.5,2.5),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,6,4,1,1.9,5),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",5,",",~beta,"=

",3,",",~phi,"=",2.2,",",~rho,"=",5.3,",",~gamma,"=",1.8)),expression(paste(alpha,"=",3.8,"

,",~beta,"=",3.0,",",~phi,"=",0.5,",",~rho,"=",1.5,",",~gamma,"=",2.5)), 

expression(paste(alpha,"=",6,",",~beta,"=",4,",",~phi,"=",1,",",~rho,"=",1.9,",",~gamma,"=

",5))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.1.1a: Behaviour of pdf of EKJ for some parameters") 
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windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3.5,3,1.3,2.1,0.4),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.2,3.2,3.8,4,1.8),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~phi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3.5,"

,",~beta,"=",3,",",~phi,"=",1.3,",",~rho,"=",2.1,",",~gamma,"=",.4)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~phi,"=",3.8,",",~rho,"=",4,",",~gamm

a,"=",1.8))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.1.1b: Behaviour of pdf of EKJ for some parameters") 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,0.2,1.5,2,4,2),0,10,col="blue",ylab=expression(paste('f',"(x)")),

ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,7,2.5,0.5,2,1.3),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,7,4.2,3.3,4.5,1.1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=1.0,legend=c(expression(paste(alpha,"=",.2,",",~beta,"=

",1.5,",",~phi,"=",2,",",~rho,"=",4,",",~gamma,"=",2)),expression(paste(alpha,"=",7,",",~b

eta,"=",2.5,",",~phi,"=",.5,",",~rho,"=",2,",",~gamma,"=",1.3)), 

expression(paste(alpha,"=",7,",",~beta,"=",4.2,",",~phi,"=",3.3,",",~rho,"=",4.5,",",~gamm

a,"=",1.1))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.1.1c: Behaviour of pdf of EKJ for some parameters") 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,2,1.5,0.3,3,2),0,10,col="blue",ylab=expression(paste('f',"(x)")),

ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3,3.8,1.5,1.5,2.5),0,10,col="green",add=TRUE,lty=1,lwd=1) 
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curve(EKJ_PDF_PLOT(x,8,4,3,5,1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.1),cex=0.75,legend=c(expression(paste(alpha,"=",2,",",~beta,"=

",1.5,",",~phi,"=",0.3,",",~rho,"=",3,",",~gamma,"=",2)),expression(paste(alpha,"=",3,",",~

beta,"=",3.8,",",~phi,"=",1.5,",",~rho,"=",1.5,",",~gamma,"=",2.5)), 

expression(paste(alpha,"=",8,",",~beta,"=",4,",",~phi,"=",3,",",~rho,"=",5,",",~gamma,"=",

1))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.1.1d: Behaviour of pdf of EKJ for some parameters") 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3.5,3,1.3,2.1,0.4),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.2,3.2,3.8,4,1.8),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~phi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3.5,"

,",~beta,"=",3,",",~phi,"=",1.3,",",~rho,"=",2.1,",",~gamma,"=",.4)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~phi,"=",3.8,",",~rho,"=",4,",",~gamm

a,"=",1.8))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.12: Behaviour of pdf of EKJ for some parameters") 

################################## EFFECT OF VARYING PARAMETERS ON 

EKJ ####################### 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3.5,3,1.3,2.1,0.4),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.2,3.2,3.8,4,1.8),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

.5,",",~beta,"=",3,",",~varphi,"=",1.3,",",~rho,"=",2.1,",",~gamma,"=",.4)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~varphi,"=",3.8,",",~rho,"=",4,",",~ga

mma,"=",1.8))),lty=1,lwd=2,col=c("blue","green","red")) 
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title(main="Figure 4.12: Behaviour of pdf of EKJ for some parameters") 

 

## EFFECT OF VARYING PARAMETERS ON EKJ #### 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3.5,3,1.3,2.1,0.4),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.2,3.2,3.8,4,1.8),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

.5,",",~beta,"=",3,",",~varphi,"=",1.3,",",~rho,"=",2.1,",",~gamma,"=",.4)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~varphi,"=",3.8,",",~rho,"=",4,",",~ga

mma,"=",1.8))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.12: Behaviour of pdf of EKJ for some parameters") 

 

 

 

########### EFFECT OF VARYING ALPHA ON EKJ ######### 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.5,3.2,1.9,2,3.1),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.2,3.2,1.9,2,3.1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

.5,",",~beta,"=",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~ga

mma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.13: Effect of alpha on behaviour of pdf of EKJ") 
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windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.5,3.2,1.9,2,3.1),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,4.2,3.2,1.9,2,3.1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

.5,",",~beta,"=",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)), 

expression(paste(alpha,"=",4.2,",",~beta,"=",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~ga

mma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

 

########### EFFECT OF VARYING BETA ON EKJ ######### 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 

curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3,4,1.9,2,3.1),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3,4.5,1.9,2,3.1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

,",",~beta,"=",4,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)), 

expression(paste(alpha,"=",3,",",~beta,"=",4.5,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gam

ma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.14: Effect of beta on behaviour of pdf of EKJ") 

 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 
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curve(EKJ_PDF_PLOT(x,3,3.2,1.9,2,3.1),0,10,col="blue",ylab=expression(paste('f',"(x)")

),ylim=c(0,0.1),xlab="x",lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3,4,1.9,2,3.1),0,10,col="green",add=TRUE,lty=1,lwd=1) 

curve(EKJ_PDF_PLOT(x,3,4.5,1.9,2,3.1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

,",",~beta,"=",4,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)), 

expression(paste(alpha,"=",3,",",~beta,"=",4.5,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gam

ma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

 

########### EFFECT OF VARYING VARPHI ON EKJ ######### 
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curve(EKJ_PDF_PLOT(x,3,3.2,2.5,2,3.1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

,",",~beta,"=",4,",",~varphi,"=",2,",",~rho,"=",2,",",~gamma,"=",3.1)), 

expression(paste(alpha,"=",3,",",~beta,"=",4.5,",",~varphi,"=",2.5,",",~rho,"=",2,",",~gam

ma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.15: Effect of Varphi on behaviour of pdf of EKJ") 
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curve(EKJ_PDF_PLOT(x,3,3.2,2.5,2,3.1),0,10,col="red",add=TRUE,lty=1,lwd=1) 

Digitized by UMaT Library



 

124 
 

legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

,",",~beta,"=",4,",",~varphi,"=",2,",",~rho,"=",2,",",~gamma,"=",3.1)), 

expression(paste(alpha,"=",3,",",~beta,"=",4.5,",",~varphi,"=",2.5,",",~rho,"=",2,",",~gam

ma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

 

########### EFFECT OF VARYING RHO ON EKJ ######### 

windows(width=20,height=10) 

par(mfrow=c(1,1)) 
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",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3

,",",~beta,"=",4,",",~varphi,"=",2,",",~rho,"=",3,",",~gamma,"=",3.1)), 

expression(paste(alpha,"=",3,",",~beta,"=",4.5,",",~varphi,"=",2.5,",",~rho,"=",1.6,",",~ga

mma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

title(main="Figure 4.16: Effect of Rho on behaviour of pdf of EKJ") 

 

windows(width=20,height=10) 
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legend("center",inset=c(0.05),cex=0.8,legend=c(expression(paste(alpha,"=",3,",",~beta,"=

",3.2,",",~varphi,"=",1.9,",",~rho,"=",2,",",~gamma,"=",3.1)),expression(paste(alpha,"=",3
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expression(paste(alpha,"=",3,",",~beta,"=",4.5,",",~varphi,"=",2.5,",",~rho,"=",1.6,",",~ga

mma,"=",3.1))),lty=1,lwd=2,col=c("blue","green","red")) 

########### EFFECT OF GAMMA ON EKJ ######### 
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windows(width=20,height=10) 
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title(main="Figure 4.17: Effect of gamma on behaviour of pdf of EKJ" 
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