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ABSTRACT

This thesis aims to enhance the modelling capabilities of the Gompertz, Fréchet, and

Burr XII distributions using the harmonic mixture G family. These classical distri-

butions are widely used in various fields to represent different types of data, but they

often face limitations in capturing complex data characteristics such as skewness and

heavy tails.To achieve this objective, the research utilises the harmonic mixture G

family as generator to modify the Gompertz, Fréchet, and Burr XII distributions.

The modified distributions are then evaluated using the maximum likelihood estima-

tion, ordinary least squares, weighted least squares, Cramér-von Mises, and Anderson

Darling estimation methods to estimate their parameters. Monte Carlo simulation ex-

periments were performed to identify the best estimation methods for the parameters.

The maximum likelihood estimation method was adjudged the best estimator for the

models developed. Additionally, parametric regression models were developed based

on two of these modified distributions, providing a framework for analysing relation-

ships between variables.The findings of this research demonstrate that integrating

the harmonic mixture G family significantly enhances the modelling capabilities of

the Gompertz, Fréchet, and Burr XII distributions. The modifications enable these

distributions to better capture skewness and heavy tails, leading to more accurate rep-

resentation of real-world data patterns. The developed parametric regression models

further enhance the flexibility and versatility of these modified distributions, facili-

tating improved analysis of complex relationships.The practical implications of this

research are extensive, benefiting various fields such as finance, economics, environ-

mental sciences, engineering, and risk analysis. Researchers and practitioners can

leverage the modified distributions and parametric regression models to more effec-

tively model and analyse complex data patterns, enabling improved decision-making,

risk assessment, and predictive modelling.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Over the years, the motivation for introducing new type of distributions is to pro-

vide more flexibility in fitting real data sets comparative to the well-known classical

distributions. The introduction of additional location, scale or shape parameters to

existing distributions are aimed at generalising these distributions. The areas in real

life where classical distributions are being applied are not static, hence there is the

need to introduce different types of distributions to meet the dynamic nature of these

real life situations. In recent times, modifying classical distributions require the use

of generators. Generators serve as the engine block that transforms the given base-

line distribution into a modified distribution. Many generators in literature have

improved the goodness-of-fit of the distributions they modified (Badr et al., 2020;

Marganpoor et al., 2020; Bhat et al., 2018; Bello et al., 2021).

The increasingly heterogeneous nature of real data sets has made the use of mixture

models popular in the last one or two decades. A mixture distribution is preferred

when a particular distribution has parameters that vary in part or whole according to

some other probability distribution usually referred to as a mixing distribution. Us-

ing single parametric or non-parametric distributions to handle heterogeneous data

comes with its own challenges, hence the increasingly switch of most researchers to

mixture distributions. The flexibility of mixture models has made them useful in var-

ious fields in the sciences. Mixture distribution families may easily be used when the

data set have other sub-components with different individual properties that could be

best modelled individually. They are widely useful in fields such as reliability theory,

finance, economics, agriculture, medicine, survival analysis, etc. Several researchers

have obtained in literature the properties and characteristics of various mixtures dis-

tributions. Karim et al. (2011) proposed the Rayleigh mixture, Al-Moisheer (2021)
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proposed the Mixture of Lindley and Lognormal Distributions, Alotaibi et al. (2021)

studied a mixture of the Marshall–Olkin extended Weibull distribution to efficiently

model failure, survival, and COVID-19 data using the classical and Bayesian ap-

proaches, the arithmetic mixture distribution was proposed by Behboodian (1972), the

geometric mixture distribution or generalised escort distribution by Bercher (2012),

power mean mixture or α - mixture distribution by Van Erven and Harremos (2014),

Yamaguchi et al. (2010) estimated the parameters of a mixture of Erlang distribution

using the Variational Bayesian Approach, Bhat et al. (2018) obtained the Mixture of

Exponential and Weighted Exponential Distribution using the Maximum Likelihood

Estimation technique.

The Harmonic Mixture-G (HMG) family, proposed by Kharazmi et al. (2022), is a

new family of mixture distributions. This family combines two survival functions us-

ing weighted harmonic means. They obtained the estimates of the parameters using

both the classical and Bayesian approaches. The Weibull distribution was used as a

parent distribution to assess the new mixture distribution family.

In this study, three (3) new hybrid families of continuous distributions are constructed

from the HMG family using the Gompertz, Fréchet and Burr XII distributions as

baseline distributions.

1.2 Problem Statement

The research problem addressed in this thesis revolves around the modification and

enhancement of three widely used probability distributions - the Gompertz, Fréchet,

and Burr XII distributions - using the HMG family. These classical distributions

have been extensively employed in various fields to model diverse types of data .

However, they may exhibit limitations in capturing complex features such as skew-

ness, heavy tails, and boundedness, which are frequently encountered in real-world

datasets (Missov and Lenart, 2011; Pollard and Valkovics, 1992; Afify and Mead,

2017; Ul Haq et al., 2017; Ramos et al., 2020; Bhatti et al., 2021). In data modelling,
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choosing an appropriate distribution model is a major hurdle. Finding the appropriate

model classes or families serve as springboards for statisticians to derive and propose

models that provide lots of flexibility (Makubate et al., 2021). Existing probability

distributions someday may not be able to come up with a good fit for some real data

sets. In some cases, there would be the need to introduce an additional one or two

parameter(s) to handle this drawbacks but in other cases a whole new method need

to be adopted to fit the data sets appropriately (Nasiru, 2018).

By harnessing the flexibility and versatility offered by the HMG family, which incor-

porates a shape parameter and a scale parameter, we aim to enhance the modelling

capabilities of the Gompertz, Fréchet, and Burr XII distributions. Subsequently, the

research will focus on the following key aspects:

i. Enhancement of the Gompertz Distribution: The Gompertz distribution is com-

monly employed in survival analysis and demography to model mortality rates

and other life-related variables. Nevertheless, it may have limitations in accu-

rately capturing bounded data and complex skewness patterns (Abubakari et al.,

2021; El-Gohary et al., 2013). The research will explore how the integration of the

HMG family can improve the Gompertz Distribution’s ability to handle asym-

metric datasets, leading to more precise modelling of mortality rates and related

phenomena.

ii. Modification of the Fréchet Distribution: The Fréchet distribution is widely used

to model extreme events and phenomena. However, it may struggle to adequately

represent skewness and heavy-tailed behaviour (Hussein et al., 2021a; Pillai and

Moolath, 2019). The research will justify how incorporating the HMG family

can enhance the Fréchet distribution’s ability to capture these characteristics,

enabling more accurate modelling of extreme events in various domains.

iii. Refinement of the Burr XII Distribution: The Burr XII Distribution is widely

used to model a variety of data types, including income distributions, hydrological

data, and reliability analysis. However, it may struggle to accurately represent
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heavy-tailed behaviour and capture extreme observations (Cordeiro et al., 2017;

Bhatti et al., 2020). The research will investigate how incorporating the HMG

family can enhance the Burr XII Distribution, enabling better representation of

heavy tails, extreme values, and other complex features present in diverse data

sets

1.3 General Objectives

The main objective of the study is to develop harmonic extensions of the Gompertz,

Fréchet and Burr XII distributions and demonstrate their applications using lifetime

data.

1.4 Specific Objectives

The specific objectives of the study are:

i. To develop the harmonic mixture Gompertz distribution.

ii. To develop the harmonic mixture Fréchet distribution.

iii. To develop the harmonic mixture Burr XII distribution.

iv. To develop parametric regression models for the modified Gompertz and Burr

XII distributions.

v. To illustrate the applications of the developed distributions using lifetime data.

1.5 Thesis Outline

The thesis comprises six distinct chapters, each addressing specific components of the

research topic. The first chapter provides an introduction to the study, presenting the

background and outlining the research problem, research questions, and objectives.

In the second chapter, a comprehensive literature review is conducted, focusing on
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the existing extensions of the Gompertz, Fréchet, and Burr XII distributions. The

third chapter provides an overview of the essential concepts and methodologies used

throughout the study. Moving on to the fourth chapter, the theoretical outcomes

derived from the research are presented. The fifth chapter is dedicated to simulations

and practical applications, showcasing how the proposed distributions perform in real-

world scenarios. Lastly, the sixth chapter concludes the thesis by summarising the

main findings and offering recommendations based on the study’s results.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

New distribution families are being introduced day by day. The development of

new models with much flexibility are needed to convey the true characteristic of the

data sets being analysed (Eghwerido et al., 2021a). The desire to get more flexible

families of distributions from the classical distributions have led to the introduction of

various extensions of the Gompertz, Fréchet and Burr XII distributions. This chapter

discusses the modifications of these classical distributions.

2.2 Modifications of the Gompertz Distribution

According to Eghwerido et al. (2021a), a modification to the Gompertz distribution

called the alpha power Gompertz distribution was proposed. This modification in-

volved the addition of an extra shape parameter to address the issues of skewness and

kurtosis. The resulting distribution was characterised as left-skewed and decreasing,

exhibiting an upside-down bathtub shape in its probability density function (PDF).

Moreover, the failure rate function of the alpha power Gompertz distribution dis-

played a bathtub-shaped pattern.

The transmuted power Gompertz distribution introduced by Eraikhuemen et al. (2021)

added an extra shape parameter to the power Gompertz distribution called the trans-

muted parameter, which increased its flexibility. The PDF is positively skewed and

takes several shapes depending on the values of the parameter while the failure rate

function (FRF) is increasing.

The exponentiated generalised Weibull-Gompertz distribution was applied to the life

time data of 50 devices by El-Bassiouny et al. (2017) and was more flexible than the

classical Gompertz and other classical distributions.

Kuje et al. (2019) introduced the odd Lindley Gompertz distribution. They recom-
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mended that the model would be appropriate for positively skewed and large sample

data sets. They also averred that based on the behaviour of the FRF, the model will

fit better for data sets that are time or age dependent.

Kuje et al. (2020) presented a theoretical analysis of an extension of the odd Lindley

Gompertz distribution proposed by Kuje et al. (2019). The new model can assume

various shapes depending on the values of the parameter used which includes nega-

tively skewed with high level of kurtosis.

The unit Gompertz distribution was proposed by Mazucheli et al. (2019) with the

motivation of introducing a new distribution that has the ability to model constant,

increasing, uni-modal and also bathtub shaped failure rates.

Eghwerido et al. (2021b) presented a new class of distribution whose PDF is bathtub,

increasing, decreasing and skewed shaped and was called the Marshall-Olkin Gom-

pertz distribution.

Kazemi et al. (2021) introduced a four-parameter modification of the generalised Gom-

pertz distribution using the extended Weibull distribution. The new distribution was

found to have increasing, decreasing, uni-modal or bathtub shaped FRF depending

on the parameters used.

The exponentiated Gompertz distribution as proposed by Abu-Zinadah and Aloufi

(2014) generalises the classical Gompertz distribution by introducing an additional

shape parameter, hence resulted in a more flexible density function and FRF.

The bi-variate Gompertz distribution was derived and used by Al-Khedhairi and El-

Gohary (2008) to model heterogeneous lifetime data sets. The new distribution was

found to generalise the Marshall-Olkin bi-variate exponential distribution and other

modified distributions in literature.

Bakouch et al. (2017) proposed a new weighted Gompertz distribution as part of

the developments in the weighted family of distributions. They discovered that the

proposed distribution could be regarded as a dual component of the log-Lindley-X

family.

The bi-variate exponentiated generalised Weibull-Gompertz distribution was devel-
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oped using the Marshall-Olkin method by El-Bassiouny et al. (2016a). They assessed

the efficiency of the new model using a 1986 bi-variate data from the American na-

tional football league and found the model to provide an effective fitting.

Recently, Taniş and Saraçoğlu (2022) introduced the cubic rank transmuted gener-

alised Gompertz distribution following the cubic rank transmutation map proposed

by Granzotto et al. (2017).The FRF exhibited increasing, decreasing and bathtub

shapes.

The inverse Gompertz distribution was derived and studied by Eliwa et al. (2019)

using the inverse distribution method. They adopted a five estimation method to

estimate with the aim of getting the best parameter values for fitting real life data.

The cubic transmuted Gompertz distribution was developed by Ogunde et al. (2020a)

using the cubic transmuted family distribution developed by Rahman et al. (2018).They

averred that the cubic transmuted Gompertz distribution could be used to analyse

several forms of data including those with bimodal failure rates.

A three parameter Gamma-Gompertz distribution was developed from the gamma-X

family by Shama et al. (2022).The shape of the PDF of the distribution obtained

could be decreasing, unimodal or decreasing-increasing-decreasing whereas the failure

rate function exhibit increasing and unimodal shapes.

Nzei et al. (2020) transformed the cumulative distribution function of the Gompertz

random variable using the Topp-Leone as generator to obtain an extension of the

Gompertz distribution called the Topp-Leone Gompertz distribution. The PDF can

either be unimodal, right skewed or decreasing while the FRF exhibit bathtub, con-

cave or convex increasing shapes.

The transmuted Gompertz distribution was obtained by Khan et al. (2017) using the

quadratic rank transmutation map scheme proposed by Shaw and Buckley (2007).

Assessing different parameter choices, they suggested that the failure rate function

has an increasing pattern.

Marshall-Olkin exponential Gompertz distribution was proposed by Khaleel et al.

(2020) and is suitable for modelling either symmetric or heavily skewed data sets.
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A mixture of two exponentiated generalised Weibull-Gompertz distribution was pro-

posed by El-Bassiouny et al. (2016b) and was found to be useful in modelling causes

of system failure concurrently.

The Nadarajah-Haghighi Gompertz distribution was obtained by Ogunde et al. (2020b)

using the Nadarajah-Haghighi generator. The model obtained was found to be more

flexible and provided a better representation of real life data than the classical Gom-

pertz distribution and some other distributions considered.

The weighted exponential Gompertz distribution whose failure rate could be increas-

ing or bathtub was obtained by Ahmad et al. (2019).The new model was obtained by

generating the integral transform of the PDF of the weighted exponential distribution.

Abdelhady and Amer (2021) introduced a three parameter inverse power Gompertz

distribution.The inverse power Gompertz distribution was obtained from the inverse

Gompertz distribution using a transformation that raise the random variable X to an

extra shape parameter.

Rayleigh Gamma Gompertz distribution was obtained as a special case of the Rayleigh-

G family by Al-Noor and Assi (2021).

The modified Beta Gompertz distribution was obtained by Elbatal et al. (2019b) using

the modified beta generator proposed by Nadarajah et al. (2014) and the Gompertz

distribution. They observed that the PDF and FRF of the new distribution can take

various forms depending on the values of the parameters, which shows an increasing

flexibility.

The wrapped generalised Gompertz distribution was derived from the class of wrapped

distributions by Roy and Adnan (2012). They concluded that the distribution derived

provides a better fit than some existing circular symmetric and non-symmetric distri-

butions.
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2.3 Modifications of the Fréchet Distribution

The cubic transmuted Fréchet distribution proposed by Shalabi (2020) extended the

work of the cubic transmuted families of distributions using the Fréchet distribution.

The new distribution increased the flexibility of the transmuted distribution and could

be used to model more complex data in wealth distribution.

Yousof et al. (2018) proposed an extension of the Fré chet distribution using a log

location-scale regression model. The new model provided a better fit than other re-

gression models compared to it.

Nadarajah and Kotz (2003) derived the exponentiated Fréchet distribution by adding

an additional shape parameter to the classical Fréchet distribution to improve its flex-

ibility.

Badr (2019) proposed a six parameter beta generalised exponentiated Fréchet and

demonstrated its advantages using lifetime data sets. The generalised family of the

distribution was generated by applying the Cumulative Distribution Function (CDF)

of the generalised exponentiated Fréchet to the beta distribution random variable.

The FRF of the new distribution using different parameter values was decreasing.

The extended Weibull–Fréchet distribution was introduced by Hussein et al. (2021b).

They estimated the parameters using several frequentist estimation approaches. The

FRF of the extended Weibull-Fréchet distribution exhibited decreasing, increasing

and also an upside-down bathtub shape while the corresponding PDF was symmet-

ric, asymmetric, reversed-J and J shaped.

Badr and Shawky (2014) discussed the finite mixture of two components following the

exponentiated Fréchet distribution. They found the Bayes approach more flexible in

estimating the parameters.

A new five parameter Fréchet model was proposed by Ul Haq et al. (2017) to model

extreme values. The modification of the Fréchet distribution was obtain using the

Weibull-Fréchet distribution and the transmuted-G family of distributions. The es-

timates of the parameters were obtained using the maximum likelihood estimation
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approach.

Hassan et al. (2019) introduced a new four-parameter distribution and named it the

truncated Weibull Fréchet distribution. They derived the new model from the trun-

cated Weibull-G family and found that the PDF and failure rate of the new distribu-

tion take different forms that depends on values of parameters.

The extended Poisson Fréchet distribution was investigated by Khalil and Rezk (2019).

The PDF of the new model was found to be right and left skewed and unimodal while

its FRF was bathtub, unimodal-bathtub, increasing and decreasing.

Ibrahim (2019) introduced a modification of the Fréchet distribution using the Burr

XII-G family. The new model’s PDF was right skewed and unimodal while its FRF

unimodal and decreasing shaped.

The Burr X Fréchet model was proposed by Jahanshahi et al. (2019) to model extreme

values. The versatility of the developed model was practically ascertained using two

real data sets one of which is the clinical trial of the relief time (hours) of 50 arthritic

patients.

A four parameter Fréchet distribution was derived and studied by Hamed et al. (2020)

using the odd Lomax-G family. The PDF indicates a reversed-J shape, left or right

skewed whereas the failure rate function indicate an increasing, decreasing or uni-

modal shape.

Roy and Rahman (2021) mixed the Poisson distribution and the Fréchet distribution

to obtain what is referred to as the Poisson-Fréchet distribution. The new distribution

was applied to a 57 years rainfall data and its performance was compared with other

distributions and was found to be more flexible.

The gamma extended Fréchet distribution, a new four parameter model was intro-

duced by da Silva et al. (2013). They obtained the model by inserting the CDF of

the extended Fréchet distribution into the CDF of the gamma-G distribution. The

model was found to be more competitive than the exponentiated Weibull distribution

and provides a superior fit as against the other models used for the comparison.

The Fréchet distribution was generalised by Pillai and Moolath (2019) using the T-
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transmuted X family proposed by Moolath and Jayakumar (2017). The FRF was

initially increasing and then decreasing.

Fréchet-Weibull distribution was generated using the T-X family method by Teamah et al.

(2020b). The FRF of the model was an upside down bathtub function of one of the

shape parameters.

The new exponential-X Fréchet distribution proposed by Alzeley et al. (2021) was

derived and studied to provide a more superior versatility for some classical reliability

models that have a non-monotonic FRF.

A modified Fréchet-Rayleigh distribution was introduced by Al-Noor and Assi (2021)

to overcome the inadequacies of the Rayleigh model. The new model introduced pro-

vided various shapes for the FRF, an indication of its flexibility.

A three-parameter model for modelling lifetime data was proposed by Abouelmagd et al.

(2018b) called the Burr X Fréchet distribution using the Burr X generator. They ar-

gued that due to the flexibility of the model obtained, the model can accommodate

various shapes of FRF.

The two-parameter X gamma Fréchet distribution was proposed by Yousof et al.

(2020) and provides a better fit for repair-time data. The model was obtained using

the CDF of the X gamma-G family. They observed that the FRF of the X gamma

Fréchet model could be upside down bathtub, decreasing or reversed J, increasing and

increasing or J shaped.

The right truncated Fréchet-Weibull distribution is derived and studied by Teamah et al.

(2020c). Depending on the values of the parameter the FRF of the model can be uni-

modal, decreasing or increasing.

Iqbal et al. (2019) modified the transmuted Fréchet model using the double function

technique. The model derived provided flexible estimates on skewed real life data

sets.

Lehman Type II Fréchet Poisson distribution, a new generalisation of the Fréchet

was proposed by Ogunde et al. (2021) using the Lehman type II distribution which

is a hybrid of the generalised exponentiated distributions proposed by Cordeiro et al.
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(2013). They observed and concluded that the model derived can be a suitable model

to fit unimodal and right skewed data.

Two bivariate Fréchet distribution were derived from the univariate Fréchet and stud-

ied by Almetwally and Muhammed (2020) using the Farlie-Gumbel-Morgen-Stern

(FGM) and the Ali-Mikhail-Haq (AMH) copulas.

The Fréchet - Weibull mixture distribution was introduced and studied by Teamah et al.

(2020a) by mixing a re-parameterised Fréchet - Weibull distribution and the exponen-

tial distribution. The resulting failure rate was decreasing or upside down bathtub

shaped.

The Marshall-Olkin Fréchet distribution was obtained by Krishna et al. (2013a)

through the survival function of the Marshall-Olkin family of distributions. The PDF

of the derived model is unimodal while the FRF exhibited an upside-down bathtub

shape. Krishna et al. (2013b), then applied the model to a real life data set on fail-

ure times of air-conditioning systems in jet planes and the results revealed that the

model could be applied in various areas including clinical trials used in comparing the

efficacy of a medicine over another.

The modified Kies-Fréchet distribution, an extension of the Fréchet was introduced by

Al Sobhi (2021). The new model could provide left-skewed, symmetric, right-skewed,

J-shaped and reversed J- shaped probability densities.

A mixture of two Fréchet distribution was derived by Ahmed et al. (2021) and the

new function was applied to number of cancer cases in Iraq. The parameters estimates

were obtained from the maximum likelihood estimation method.

The quadratic transmutation map was used to generate an extension of the Fréchet

distribution by Mahmoud and Mandouh (2013) and was referred to as the trans-

muted Fréchet distribution with the purpose of modifying the skewness and kurtosis

of Fréchet distribution.

Deka et al. (2021) derived and studied some properties on Fréchet-Weibull distribu-

tion using the T-X family. They suggested that modified forms of the Fréchet and

Weibull distributions are more flexible in modelling experimental data.
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A three-parameter modified Fréchet distribution was obtained using the Lambert

function and some of its statistical properties were obtained by Tablada and Cordeiro

(2017). The FRF can be decreasing, unimodal and bathtub shaped while the PDF is

unimodal.

Eghwerido (2020) proposed the alpha power Weibull Fréchet distribution and esti-

mated its statistical properties using the maximum likelihood method. The resulting

PDF’s shape was inverted-bathtub or decreasing.

Reyad et al. (2021) introduced the Fréchet Topp-Leone-G family of distribution using

the Fréchet distribution and the Topp-Leone-G family. The sub-models derived from

the new distributions exhibited the ability to model monotonic decreasing, increasing,

bathtub, upside down bathtub and reversed J FRF.

Mansour et al. (2018) proposed a five-parameter distribution named the Kumaraswamy

exponentiated Fréchet distribution by adding two additional shape parameters to the

CDF of the exponentiated Fréchet distribution to give it greater flexibility. The PDF

and FRF can assume various shapes depending on the values of the parameters.

2.4 Modifications of the Burr XII Distribution

Makubate et al. (2021) derived and explored the Lindley-Burr XII power series dis-

tribution. They illustrated the usefulness of the new distribution by applying it to

some real data sets and concluded that the new distribution is more flexible than

some non-nested models.

The exponentiated Burr XII Poisson distribution was proposed by da Silva et al.

(2015). The new lifetime model obtained demonstrates that it provides a better fit

than the other distributions used for comparison.

Elbatal et al. (2019a) proposed the generalised Burr XII power series distribution

by compounding the generalised Burr XII and the power series distributions. They

derived special models such as the geometric, Poisson, binomial and logarithmic from
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the new family and they exhibited more flexibility.

The Gompertz-modified Burr XII distribution was developed and studied by Abubakari et al.

(2021) using the modified Burr XII distribution as the parent distribution. The PDF

of the new lifetime model could assume right and left-skewed shapes, decreasing and

nearly symmetric shapes.

The Kumaraswamy exponentiated Burr XII distribution was proposed by Afify and

Mead (2017) by adding two shape parameters to the PDF of the exponentiated Burr

XII distribution. They revealed that the two additional shape parameters provides a

greater control over the weights in the tails and centre of the model developed.

The Burr XII distribution was modified by Okasha and Shrahili (2017) using the

quadratic transmutation map approach. They estimated the parameters of the new

model using the maximum likelihood estimation method.

An additional shape parameter was introduced into the PDF of the Burr XII distri-

bution using the Odd Lindley-G family of distribution by Abouelmagd et al. (2018a).

The FRF of the new four-parameter model could assume constant, increasing, de-

creasing, unimodal or bathtub shape.

Daniyal and Aleem (2014) derived and discussed the classical properties of the mix-

ture of the Burr XII and Weibull distributions. The PDF of the model derived can

exhibit various shapes depending of the values of the parameters.

The Burr XII distribution is modified by replacing the PDF and CDF of the random

variable X in the exponentiated T-X family with that of Burr XII. The derived dis-

tribution known as the exponentiated exponential Burr XII as discussed by Badr and

Ijaz (2021) exhibited monotonic and non-monotonic failure rate.

Nasir et al. (2018) obtained the Burr XII uniform distribution. The developed model

had a FRF with decreasing, increasing and bathtub shapes.

Using the generalised log Pearson differential equation, the generalised log Burr XII

distribution was derived and studied by Bhatti et al. (2018a). They proposed the new

model to handle positively skewed and heavy tailed data sets and also provide better

fits for survival data compared to other competing models.
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The modified Burr XII -inverse Weibull distribution was developed using the T-X

family technique by Bhatti et al. (2018b). The FRF of the new distribution could

accommodate various shapes as the values of the parameters are varied.

The Weibull generalised Burr XII distribution can be used to model bimodal data

sets as derived and reported by Raya and Butt (2019). The PDF of the model was

unimodal and right skewed while the FRF could exhibit bathtub, constant, unimodal,

decreasing or increasing shapes.

A four-parameter model known as the Burr XII gamma distribution was derived from

the T-X family method and linking the exponential and gamma random variables.

The FRF of the new distribution can accommodate several shapes including increas-

ing, decreasing, decreasing-increasing, increasing-decreasing-increasing, bathtub and

modified bathtub as proposed by Bhatti et al. (2021).

The weighted distribution concept which incorporates a function called the length

biased was introduced and studied by Mahdy et al. (2021) and a new distribution

referred to as the length biased Burr XII distribution was obtained.

Anafo et al. (2021) derived a three-parameter equilibrium renewal Burr XII distribu-

tion using the equilibrium renewal method. The new distribution gave several shapes

of the PDF and FRF including increasing, decreasing, unimodal, upside down bath-

tub, among others.

The generalisation of the Lindley and Burr XII distributions was obtained by multi-

plying the survival function of the Lindley with the Burr XII distributions through

the competing risk model. The new model obtained had a FRF that was increasing,

decreasing and bathtub as introduced and reported by Makubate et al. (2021).

Hassan et al. (2018) used the Bayesian analysis to obtain a mixture of the Burr XII

and Burr X distributions. The Bayesian estimators for the unknown parameters had

good statistical properties.

A new lifetime distribution was obtained by compounding the Burr XII distribution

and the geometric distribution. The new distribution known as the Burr XII geo-

metric distribution as obtained by Korkmaz and Erisoglu (2014) had FRF that is
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decreasing and unimodal.

An extension of the Burr XII distribution was derived and studied by Ghosh and

Bourguinon (2017) with application in survival analysis was obtained using the gen-

eral type I half logistic family of distributions proposed by Cordeiro et al. (2016). The

parameter estimates were obtained from the maximum likelihood estimation method.

The Topp-Leone Burr XII distribution was proposed by Reyad and Othman (2017)

and was obtained by replacing the CDF in the Topp-Leone generated family with the

CDF of the Burr XII distribution. The PDF assumes different shapes when different

values of the parameters are used.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

Chapter Three of the thesis introduces several key definitions and concepts related

to the methods, distributions, and data sets used in the study. The purpose of this

chapter is to provide a foundational understanding of the methodologies and frame-

works employed to achieve the research objectives. The topics discussed include the

PDF, CDF, FRF and quantile functions of the Gompertz, Fréchet and Burr XII

distributions. Some statistical techniques used which include Maximum Likelihood

Estimation (MLE) method, Ordinary Least Squares (OLSS), Weighted Least Squares

(WLSS), Cramér-von Mises Estimation (CVM) and Anderson-Darling Estimation

(AD), and Total Time on Test (TTT) transform are also presented.

3.2 Gompertz Distribution

The Gompertz distribution was proposed by Benjamin Gompertz in 1825 and was

connected to analysing human mortality and generating actuarial tables. The Gom-

pertz distribution is a modification of the exponential distribution and have received

a lot of attention in recent times in analysing medical and actuarial data sets.

The Gompertz distribution is both left and right skewed with its FRF monotoni-

cally increasing (Eraikhuemen et al., 2021). Undeniably, in real life, there could be

scenarios with data sets having non-monotonically increasing FRF or some having

heavy-tailed characteristics (Eghwerido, 2020).

The CDF and the corresponding PDF of the Gompertz distribution are given by

Equations (3.1) and (3.2) respectively.

FG(x; f, g) = 1− exp

[
− g

f

(
efx − 1

)]
, x > 0, f > 0, g > 0, (3.1)
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and

fG(x; f, g) = gefxexp

[
− g

f

(
efx − 1

)]
, x > 0, f > 0, g > 0, (3.2)

where f is a scale parameter and g is a shape parameter.

The survival function (SF) of the Gompertz distribution can be expressed as Equation

(3.3).

SG(x; f, g) = exp

[
− g

f

(
efx − 1

)]
, x > 0, f > 0, g > 0, (3.3)

and the FRF is given by Equation (3.4).

hG(x; f, g) =
fG(x)

SG(x)
= gefx, x > 0, f > 0, g > 0. (3.4)

The quantile function of the Gompertz distribution for p ∈ (0, 1) by definition is given

as

QG(p) = P(X ≤ xp) = p.

Hence,

p = 1− exp

[
g

f

(
1− efxp

)]
. (3.5)

By solving equation (3.5) and substituting xp = QG(p), we obtain the quantile func-

tion of the Gompertz distribution given as Equation (3.6).

QG(p) =
1

f

[
1− f

g
log(1− p)

]
, f > 0, g > 0. (3.6)

3.3 Fréchet Distribution

The Fréchet distribution, which belongs to the group of commonly used extreme

value distributions (EVD). It finds application in modelling extreme events such as

annual rainfall, earthquakes, floods, and more. When considering the PDF of the

Fréchet distribution, it can take on two possible shapes: unimodal or decreasing. The

specific shape is determined by the value of the shape parameter associated with the

distribution. However, regardless of the shape parameter, the FRF of the Fréchet
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distribution consistently exhibits a unimodal shape (Hussein et al., 2021b). There is

therefore the need to extend the Fréchet distribution to model the variety of the data

sets in many of the applied fields like engineering, geology, medicine, among others.

The PDF and the corresponding CDF of a two-parameter Fréchet distribution can be

expressed as Equations (3.7) and (3.8) respectively.

fFr(x; d, g) = dgdx−d−1e−(
g
x)

d

, x > 0, d > 0, g > 0, (3.7)

and

FFr(x; d, g) = exp

(
−
(g
x

)d)
, x > 0, (3.8)

where d and g > 0 are shape and scale parameters respectively.

The SF of the Fréchet distribution can be expressed as Equation (3.9).

SFr(x; d, g) = 1− exp

(
−
(g
x

)d)
, x > 0, d > 0, g > 0, (3.9)

and the FRF is given by Equation (3.10).

hFr(x; d, g) =
fFr(x; d, g)

SFr(x; d, g)
=

dgdx−d−1e−(
g
x)

d

1− exp
(
−
(
g
x

)d) , x > 0, d > 0, g > 0. (3.10)

The Fréchet distribution’s quantile function for q ∈ (0, 1) by definition can be ex-

pressed as

QFr(q) = P(X ≤ xq) = q.

Hence,

q = exp
(
−x−dgd

)
. (3.11)

By solving equation (3.11) and substituting xq = QFr(q), we obtain the quantile

function of the Fréchet distribution given as Equation (3.12).

QFr(q) = g(− log q)−
1
d , d > 0, g > 0. (3.12)
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3.4 Burr XII Distribution

Introduced by Burr (1942), the Burr XII distribution has gained substantial attention

and recognition in several fields. This two-parameter distribution has been widely

employed in a range of fields including actuarial sciences, reliability analysis, modelling

income distributions, and several branches of physics. Its flexibility and versatility

make it a valuable tool for modelling a wide range of data types encountered in

these domains. Researchers and practitioners have extensively used the Burr XII

distribution to analyse and interpret complex phenomena, making it an important

distribution in various disciplines.

The Burr XII distribution has been used in different field as a result of its flexibility

in fitting data sets with heavy tails and monotone failure rates, however, it does not

provide a better fit for non-monotone failure rates (Nasir et al., 2018). This limitation

have resulted in the increasing development of more models that in the end increase

its versatility.

The CDF of the Burr XII can be expressed as Equation (3.13).

FBr(x; d, w) = 1−
(
1 + xd

)−w
, x > 0, d > 0, w > 0, (3.13)

and the PDF is given as Equation (3.14).

fBr(x; d, w) = dwxd−1
(
1 + xd

)−w−1
, x > 0, d > 0, w > 0, (3.14)

where both d and w are shape parameters.

The SF of the Burr XII distribution is given as Equation (3.15).

SBr(x; d, w) =
(
1 + xd

)−w
, x > 0, d > 0, w > 0, (3.15)
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and the FRF is given by Equation (3.16).

hBr(x; d, w) =
fBr(x; d, w)

SBr(x; d, w)
= dwxd−1

(
1 + xd

)−1
, x > 0, c > 0, k > 0. (3.16)

The quantile function of the Burr XII distribution for q ∈ (0, 1) by definition can

expressed as

QBr(q) = P(X ≤ xq) = q.

Hence,

q = 1−
(
1 + (xq)

d
)−w

. (3.17)

By solving equation (3.17) and substituting xq = QBr(q), we obtain the quantile

function of the Burr XII distribution given as Equation (3.18).

QBr(q) =
[
(1− q)−

1
w − 1

] 1
d
, d, w > 0. (3.18)

3.5 Harmonic Mixture Family of Distributions

Kharazmi et al. (2022) developed a new mixture distribution family by applying the

weighted harmonic means of two SFs. This was referred to as the Harmonic Mixture-

G (HMG) family. Based on the work of Kharazmi et al. (2022), the SF of the HMG

family can be expressed as (3.19).

S̄Hm(x) =
1

ρ
F̄ (x)

+ 1−ρ
F̄α(x)

=
F̄α(x)

1− ρ
(
1− F̄α−1(x)

) , (3.19)

x ∈ R, α ≥ 0, 0 ≤ ρ ≤ 1,

where F̄ (x) is the SF of the baseline distribution, F̄α(x) is the SF for the proportional

hazard (PH) model relative to the SF of the baseline distribution F̄ (x) and ρ, the

weight of the function.

The corresponding CDF and PDF respectively can be expressed as Equations (3.20)
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and (3.21).

FHm(x) = 1− F̄α(x)

1− ρ
(
1− F̄α−1(x)

) , (3.20)

and

fHm(x) = f(x)F̄α−1(x)
α (1− ρ) + ρF̄α−1(x)[
1− ρ

(
1− F̄α−1(x)

)]2 . (3.21)

The FRF of the HMG family is given by Equation (3.22).

hHm(x) =
f(x)

F̄ (x)

α (1− ρ) + ρF̄α−1(x)

1− ρ
(
1− F̄α−1(x)

) . (3.22)

The quantile function of the HMG family for p ∈ (0, 1) by definition can be expressed

as

QHm(p) = P(X ≤ xp) = p.

Hence,

1− F̄α(xp)

1− ρ
[
1− F̄α−1(xp)

] = p. (3.23)

By solving equation (3.23) and substituting xq = QHm(q), we obtain the quantile

function of the HMG family given as Equation (3.24).

F̄α(QHm(q)) = (1− q)
[
1− ρ+ ρF̄α(QHm(q))F̄

−1(QHm(q))
]
. (3.24)

The availability of a closed-form inverse for the quantile function of the HMG family,

as expressed in equation (3.24), depends on the specific baseline distribution chosen.

3.6 Parameter Estimation Methods

Parameter estimation is a study area that provides tools that helps to efficiently

use data and intend aid in statistical modelling of real life events (Zhang, 1997).

In point estimation,the popular methods for estimating parameters include method

of moments, maximum likelihood estimation, least square estimation and Bayesian

estimation. In this study we discuss the maximum likelihood estimation, the ordinary
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least square estimation, the weighted least square estimation, the Cramér-Von Mises

estimation, the Anderson-Darling estimation and the total time on test transform.

3.6.1 Maximum Likelihood Estimation

The MLE is a point estimation of an unknown parameter as it gives a single value

for estimating the unknown parameter. The MLE was introduced in 1912 by an En-

glish statistician called R.A. Fisher. The MLE method is widely used and applied to

various real life problems. For large sample values, the method provides an excellent

estimator for the unknown parameter, say φ (Miura, 2011).

Given that x1, x2, ..., xn are independently and identically distributed random obser-

vations sampled from a given distribution with PDF P (x|φ) which satisfies P (X ≤

r|φ) =
∫ r

−∞ P (x|φ)dx, and joint density function

P (x1, x2, ..., xn|φ) = P (x1|φ)P (x2|φ)...P (xn|φ) =
n∏

a=1

P (xa|φ), (3.25)

equation (3.25) will then be the likelihood function which depends on the unknown

parameter, φ, which can be denoted as L(φ).

Even though the MLE method maximises the likelihood function L(φ) with respect

to φ, the log of the likelihood function, which is called the log likelihood function is

easier to maximise than the likelihood function. The log likelihood function, l(φ) is

given as Equation (3.26).

ℓ(φ) = logL(φ) = log
n∏

a=1

P (xa|φ) =
n∑

a=1

logP (xa|φ). (3.26)

The MLE estimate, φ̂ is derived by taking the derivative of the log likelihood function

with respect to the parameter and setting it to zero thus l′(φ) = 0. In situations where

φ is a vector of parameters, the initial partial derivatives of log likelihood function are

taken with respect to the various parameters (φ1, φ2, ..., φn) and set to zero to obtain

the MLE estimates φ̂1, φ̂2, ..., φ̂n thus ∂ℓ/∂φa = 0, where a = 1, 2, ..., n.
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3.6.2 Ordinary Least Squares

In this section, we discuss the OLSS estimation of unknown parameters. This regres-

sion based estimation method of unknown parameters was proposed by Swain et al.

(1988) when they estimated the parameters of the beta distribution.

Suppose t1, t2, ..., tn is a random sample of size n from a distribution function G(·)

and t(1) < t(2) < ... < t(n) represents the order statistics of the observed sample.

For the sample of size n, we have the expectation, the variance and the covariance

respectively as,

E
[
G
(
t(b)|φ

)]
=

b

n+ 1
, (3.27)

V
[
G
(
t(b)
)
|φ
]
=

b(n− b+ 1)

(n+ 1)2(n+ 2)
, (3.28)

and

Cov
[(
G
(
t(b)
)
|φ
)
,
(
G
(
t(k)
)
|φ
)]

=
b(n− k + 1)

(n+ 1)2(n+ 2)
; b < k, (3.29)

where b = 1, 2, ..., n.

The OLSS estimator(s) can then be obtained by minimising Equation (3.30)

LS(φ) =
n∑

b=1

{(
G
(
t(b)
)
|φ
)
− b

n+ 1

}2

, (3.30)

with respect to the unknown parameter. The function G
(
t(b)
)
need not be necessarily

a linear function of the order statistics. The OLS estimate, φ̂ is derived by taking the

derivative of the OLS function and setting it to zero thus LS ′(φ) = 0. In situations

where φ is a vector of parameters, the initial partial derivatives of OLS function are

taken with respect to the various parameters (φ1, φ2, ..., φn) and set to zero to obtain

the OLS estimates φ̂1, φ̂2, ..., φ̂n thus ∂LS/∂φb = 0, where b = 1, 2, ..., n.

3.6.3 Weighted Least Squares

In this section, we discuss the WLSS of unknown parameters. In this method, the

weights are computed as the inverse of the approximate variance of the function of
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an order statistics.

Suppose t1, t2, ..., tn is a random sample of size n from a distribution function G(·)

and t(1) < t(2) < ... < t(n) represents the order statistics of the observed sample, then

the expectation and the variance respectively are given as,

E
[
G
(
t(b)|φ

)]
=

b

n+ 1
, (3.31)

and

V
[
G
(
t(b)
)
|φ
]
=

b(n− b+ 1)

(n+ 1)2(n+ 2)
. (3.32)

The WLS estimator(s) can then be obtained by minimising Equation (3.33).

WLS(φ) =
n∑

b=1

wb

{(
G
(
t(b)
)
|φ
)
− b

n+ 1

}2

, (3.33)

with respect to the unknown parameter, where wb = 1

V (G(t(b)))
= (n+1)2(n+2)

b(n−b+1)
and

b = 1, 2, ..., n. The function G
(
t(b)
)
need not be necessarily a linear function of the

order statistics. The WLSS estimate, φ̂ is derived by taking the derivative of the

WLSS function and setting it to zero thus WLS ′(φ) = 0. In situations where φ is a

vector of parameters, the initial partial derivatives of WLSS function are taken with

respect to the various parameters (φ1, φ2, ..., φn) and set to zero to obtain the WLSS

estimates φ̂1, φ̂2, ..., φ̂n thus ∂WLS/∂φb = 0, where b = 1, 2, ..., n.

3.6.4 Cramér-von Mises Estimation

Cramér-von Mises Estimation (CVM) is a minimum distance estimation technique

that involves measuring the discrepancy between the estimated CDF and the empirical

distribution function (EDF) Louzada et al. (2016). Macdonald (1971) asserts that the

CVM provides a smaller bias compared to the other minimum distance estimators.

Suppose y1, y2, ..., yn is a random sample of size n from an EDF with CDF G(yb) and

y(1) < y(2) < ... < y(n) represents the order statistics of the observed sample, the
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Cramér-Von Mises estimates are obtained by minimising Equation (3.34).

CVM(φ) =
1

12n
+

n∑
b=1

{(
G
(
y(b)
)
|φ
)
− 2b− 1

2n

}2

, (3.34)

with respect to the parameter, where b = 1, 2, ..., n. The CVM, φ̂ is derived by taking

the derivative of the CVM function and setting it to zero thus CVM ′(φ) = 0. In

situations where φ is a vector of parameters, the initial partial derivatives of CVM

function are taken with respect to the various parameters (φ1, φ2, ..., φn) and set

to zero to obtain the CVM estimates φ̂1, φ̂2, ..., φ̂n thus ∂CVM/∂φb = 0, where

b = 1, 2, ..., n.

3.6.5 Anderson-Darling Estimation

The Anderson–Darling estimation (AD) just like the Cramér–von Mises estimation

belong to the class of quadratic EDF and also a minimum distance estimation method.

The AD was proposed by Anderson and Darling (1952).

Suppose y1, y2, ..., yn is random sample of size n from an EDF with CDF G(yb) and

y(1) < y(2) < ... < y(n) represents the order statistics of the observed sample, the

Anderson-Darling estimates are obtained by minimising Equation (3.35).

AD(φ) = −n− 1

n

n∑
b=1

(2b− 1)
{(

logG
(
y(b)
))

+ log
(
1−G

(
y(n+1−b)

))}
, (3.35)

with respect to the parameter, where b = 1, 2, ..., n. The AD, φ̂ is derived by taking

the derivative of the AD function and setting it to zero thus AD′(φ) = 0. In situations

where φ is a vector of parameters, the initial partial derivatives of AD function are

taken with respect to the various parameters (φ1, φ2, ..., φn) and set to zero to obtain

the AD estimates φ̂1, φ̂2, ..., φ̂n thus ∂AD/∂φb = 0, where b = 1, 2, ..., n.
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3.7 Total Time on Test Transform

The total time on test (TTT) transform was proposed by Richard E. Barlow and

Raphael Campo in 1975 to deduce the shape of a failure rate function and how close

a data distribution is to the model (Chaubey and Zhang, 2013).

If G(·) is the CDF of a distribution with G−1(·), Ḡ(·) as its quantile function and

survival function respectively, then the TTT transform function defined on [0, 1] is

given by

H−1
G (p) =

∫ G−1(p)

0

(1−G(x)) dx. (3.36)

The scaled TTT transform is obtained using

ΦG(p) =
H−1

G (p)

H−1
G (1)

. (3.37)

If G is a life distribution with a finite mean µ, then H−1
G (1) = µ, the scale TTT

transform of G can also be expressed as

ΦG(p) =
1

µ

∫ G−1(p)

0

(1−G(x)) dx. (3.38)

Suppose y(1) ≤ y(2) ≤ ... ≤ y(n) represents the order statistics of the observed sample,

the TTT plots can be computed in the following way;

i. First compute the TTT values tb = ny(b) + (n − 1)(y(2) − y(1)) + ... + (n − b +

1)(y(b) − y(b−1)) for b = 1, 2, ..., n and t0 = 0.

ii. Compute ϕb = tb/tn for b = 0, 1, 2, ..., n to normalise the TTT values.

iii. Plot (b/n, ϕb) for b = 0, 1, 2, ..., n.

The TTT plots could be seen to be approximately either linear, concave, convex,

convex-concave or concave-convex. A linear shape shows the exhibiting of no trend,

a concave shape shows the exhibiting of an increasing failure rate function, a convex

shape shows the exhibiting of a decreasing failure rate function, a convex-concave
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shape shows the exhibiting of a bathtub failure rate function while a concave-convex

shape shows the exhibiting of an upside down bathtub failure rate function.

3.8 Data and Source

In the study, eleven (11) complete data sets were employed. The data set descriptions

and sources are presented in this section.

3.8.1 Data sets for First Model Developed

The first four data sets were used to ascertain how applicable the harmonic mixture

Gompertz distribution and its regression model are. They include the 63 observations

of the strength of 1.5cm glass fibres, the failure times (103h) of 40 turbochargers in

a type of diesel engine, the transformed total production of milk recorded in the first

birth of cows (107) used in the SINDI race and the relationship between Survival time

(T) and duration of diabetes(DUR) in years of 40 male patients. The strength of 1.5cm

glass fibres data set were employed by (Eghwerido et al., 2021b) and (Khaleel et al.,

2020), the turbochargers failure times data set were employed by (Guerra et al., 2021),

the transformed total milk production data set were employed by Nasiru et al. (2021)

and the survival time and duration of diabetes data set were retrieved from Lee and

Wang (2003).

3.8.2 Data sets for Second Model Developed

The next three data sets were employed to demonstrate the applicability of the har-

monic mixture Fréchet distribution. Firstly, the dataset consists of yearly maximum

temperature records from a specific location in the Upper East Region of Ghana,

which is known for its relatively high yearly temperature values. The temperature

data spans from 1970 to 2020 and is measured in degrees Celsius (◦C). These tem-

perature records were generated based on the given latitude (10.9922) and longitude

(-1.1133) of the location from https://www.globalclimatemonitor.org/. Secondly,
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the dataset includes yearly unemployment rate data for Ghana, covering the period

from 1991 to 2021. The unemployment rate data provide insights into the employ-

ment situation in Ghana over the specified time frame from the World Bank database.

Lastly, the study incorporates survival times data from 128 patients diagnosed with

bladder cancer. The survival times represent the duration between the diagnosis of

bladder cancer and either the occurrence of an event (such as death) or the end of

the study period. These survival times are crucial for analysing the progression and

outcomes of bladder cancer patients. The bladder cancer data set were employed by

Anafo et al. (2021) and Nasiru and Abubakari (2022).

3.8.3 Data sets for Third Model Developed

The last four data sets were employed to assess the applicability of the harmonic

mixture Burr XII distribution and its regression model. These datasets include the

taxes revenues (Bhatti et al., 2018b), the failure times of epoxy strands (Ghosh and

Bourguinon, 2017), the precipitation (in inches) in Minneapolis (Nasir et al., 2019)

and a regression data set regarding proportion of fat in the arms from http://www.

leg.ufpr.br/doku.php/publications:papercompanions:multquasibeta.

3.9 Software Packages

The study extensively utilises the R programming language as a key tool for data

analysis and computations. Throughout the research, the R package, along with

the Mathematica package, is employed to perform various calculations and statistical

operations. Specifically, the R package is utilised for generating plots, shapes, and

conducting simulations. The package’s robust functionality enables the creation of

visual representations, such as graphs and charts, to visualise data patterns and re-

lationships. Additionally, the R package provides tools for conducting simulations,

allowing researchers to explore different scenarios and assess the behaviour of modified

distributions. On the other hand, the Mathematica package is utilised in the study
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for specific computations and analyses. This software provides a powerful environ-

ment for mathematical and statistical computations, offering a range of specialised

functions and capabilities.
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CHAPTER 4

THEORETICAL RESULTS

4.1 Introduction

This chapter presents the theoretical results of the Harmonic Mixture Gompertz (HM-

GOM), Harmonic Mixture Fréchet (HMFR) and Harmonic Mixture Burr XII (HM-

BRXII) distributions. Some statistical properties associated with the developed dis-

tributions are presented. By exploring these properties, researchers can gain a deeper

understanding of the distribution’s moments, quantiles, variability, reliability, and

order-based statistics. Estimators for the parameters of the proposed distributions

are derived using the estimation techniques discussed in chapter 3. Regression models

of the HMGOM and HMBRXII distributions are derived.

We can prove from Theorem 4.1 that the HMG family is heavy-tailed.

Proposition 4.1. A random variable Y from the HMG family is heavy-tailed.

Proof. For a random variable Y from the HMG family with complementary cumu-

lative distribution function (CCDF), F̄Hm(y),

lim
y→∞

F̄Hm(y)e
λy = ∞,

implies the random variable Y is heavy-tailed.

By substitution,

lim
y→∞

F̄Hm(y)e
λy = lim

y→∞

Ḡα(y)

1− ρ
(
1− Ḡα−1(y)

)eλy.
Since 0 ≤ ρ ≤ 1,

lim
y→∞

F̄Hm(y)e
λy = ∞.

The proof is complete.
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4.2 The Development of the Harmonic Mixture

Gompertz Distribution

This sections presents the PDF, CDF, FRF and SF of the HMGOM distribution. The

substitution of equations (3.2) and (3.3) into equation (3.21) gives the PDF of the

HMGOM distribution as Equation (4.1).

f(y) =
gα (1− ρ) efye−

gα
f
(efy−1) + gρefye−

g(2α−1)
f

(efy−1)[
1− ρ

(
1− e−

g(α−1)
f

(efy−1)
)]2 , (4.1)

where α > 0, f > 0 , g > 0, y > 0 and 0 < ρ < 1.

Figure 4.1 displays the density plots of the HMGOM distribution. The densities

exhibited decreasing, left-skewed and right-skewed shapes.
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α = 49  ρ=0.6  f=0.02  g=0.02
α = 48  ρ=0.99  f=0.02  g=0.011

Figure 4.1: The density plots of the HMGOM

To obtain the CDF of the HMGOM distribution, substitute equation (3.3), the SF of

the Gompertz distribution into equation (3.20). By performing this substitution, we
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can derive the expression given as Equation (4.2).

F (y) = 1− e−
gα
f
(eay−1)[

1− ρ
(
1− e−

g(α−1)
f

(efy−1)
)] , y > 0. (4.2)

The Figure 4.2 displays the CDF of the HMGOM distribution for various parameter

values. As x approaches 0 the CDF approaches 0 and approaches 1 as y approaches

infinity.
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α = 1.6  ρ=0.06  f=0.3  g=0.03
α = 0.7  ρ=0.9  f=0.8  g=0.04

Figure 4.2: The CDF plot of the HMGOM

The SF of the HMGOM distribution can be derived as the complement of the CDF

of the HMGOM distribution. The SF is given by Equation (4.3).

S(y) =
e−

gα
f
(efy−1)[

1− ρ
(
1− e−

g(α−1)
f

(efy−1)
)] , y > 0. (4.3)

To obtain the FRF, we substitute equations (3.2) and (3.3) into equation (3.22).The

FRF of the HMGOM distribution is expressed as Equation (4.4).

h(y) =
gα (1− ρ) efye−

gα
f
(efy−1) + gρefye−

g(2α−1)
f

(efy−1)

e−
gα
f
(efy−1)

[
1− ρ

(
1− e−

g(α−1)
f

(efy−1)
)] , y > 0. (4.4)
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Figure 4.3 illustrates the plots of the FRF for the HMGOM distribution. By manip-

ulating certain parameters, the FRF plots exhibit distinct patterns, thus increasing

trends.
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α = 14.5  ρ=0.98  f=0.06  g=0.01

Figure 4.3: The FRF plots of the HMGOM

We assess the improvement of the introduction of the extra parameters from the HMG

family brings to the Gompertz distribution (black curve) in Figure 4.4. While varying

the values of the parameters ρ and α and keeping the values of the parameters from

the Gompertz distribution constant, the plots showed an improvement in the kurtosis

(peakness) and skewness of the Gompertz Distribution.
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Figure 4.4: Assessing the densities of the HMGOM Distribution and the Gompertz
Distribution

Lemma 4.1. The linear representation of the PDF of the HMGOM distribution

provided α > 1 is given by Equation (4.5).

f(y) =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklmy
me−fly, (4.5)

where ϖabklm = [gα(1− ρ)τabklm + gρτ ∗abklm],

τabklm = (−1)b+k+l

k!m!
(a+ 1)

(
a
b

)(
l
k

)
ρa
(

g
f
(α(b+ 1)− b

)k
(f(k + 1))m,

τ ∗abklm = (−1)b+k+l

k!m!
(a+ 1)

(
a
b

)(
l
k

)
ρa
(

g
f
(α(b+ 2)− (b+ 1)

)k
(f(k + 1))m,

y > 0, f > 0, g > 0, α > 1 and 0 < ρ < 1.

Proof. Given that η > 0, the Taylor series for (1 − w)−η,(1 − w)λ for |w| < 1

and e−t are (1 − w)−η =
∑∞

a=0

(
η+a−1

a

)
(w)a, (1 − w)λ =

∑∞
b=0(−1)b

(
λ
b

)
(w)b and

e−h =
∑∞

t=0
(−1)t

t!
(h)t. Since 0 < e−

g(α−1)
f

(efy−1) < 1 provided α > 1, we use the Taylor
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series twice to obtain

[
1− ρ

(
1− e−

g(α−1)
f

(efy−1)
)]−2

=
∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρae

−g(α−1)b
f

(efy−1).

It follows that

f(y) = gα(1− ρ)
∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρaefye−

g
f
(α(b+1)−b)(efy−1)

+ gρ
∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρaefye−

g
f
(α(b+2)−(b+1))(efy−1).

(4.6)

We then use Taylor series expansion to obtain

e−
g
f
(α(b+1)−b)(efy−1) =

∞∑
k=0

(−1)k

k!

(
g

f
(α(b+ 1)− b)

)k

(efy − 1)k

and

e−
g
f
(α(b+2)−(b+1))(efy−1) =

∞∑
k=0

(−1)k

k!

(
g

f
(α(b+ 2)− (b+ 1))

)k

(efy − 1)k.

Similarly,

(efy − 1)k = efky
(
1− e−fy

)k
= efky

k∑
l=0

(−1)l
(

l
k

)
e−fly

and

efy · efky = ef(k+1)y =
∞∑

m=0

(f(k + 1))m

m!
xm

Substituting these expansions into equation (4.6) and applying the Taylor series ex-

pansion once more, we obtain

f(y) = gα(1−ρ)
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ωabklmy
me−fly+gρ

∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ω∗
abklmy

me−fly.
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4.3 Statistical Properties of the HMGOM distri-

bution

The statistical properties of the HMGOM distribution are derived in this section.

Properties such as the quantile function, non-central moments, incomplete moments,

inequality measures, mean and median deviations, moment generating functions, char-

acteristic function, entropy, stress-strength reliability, order statistics and identifiabil-

ity are deduced.

4.3.1 Quantile Function

The quantile function, also known as the inverse CDF, operates in the opposite di-

rection of the CDF. It also provides another way for describing the shapes and char-

acteristics of a distribution.

Lemma 4.2. The quantile function of the HMGOM distribution can be expressed as

Equation 4.7.

(1− p)
[
1− ρ

(
1− e−

g(α−1)
f

(efyp−1)
)]

− e−
gα
f
(efyp−1) = 0, (4.7)

where p ∈ (0, 1) and Q(p) = yp is the quantile function.

Proof. By definition, the quantile function is defined by

Q(p) = P(Y ≤ yp) = p.

To obtain the quantile function of the HMGOM distribution, we substitute equation

(3.1) into equation (3.24) and letting Q(p) = yp.

The quantile function of the HMGOM distribution is without an analytical expres-

sion or closed form. This means that there is no direct formula available to calculate

the exact quantiles of the HMGOM distribution. Instead, numerical methods or

approximation techniques may be employed to estimate the quantiles based on the
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distribution’s parameters and desired probability values.

4.3.2 Moments

In this section, we focus on deriving the rth moments of the HMGOM distribution for

the random variable Y . Obtaining the moments are essential as they aid in statistical

analysis. Measures including mean(µ), variance (σ2), coefficient of variation (CV),

coefficient of skewness (CS) and coefficient of kurtosis (CK) can be obtained using

moments. The µ, σ2, CV, CS and CK respectively are defined by

µ = µ
′

1,

σ2 = µ
′

2 − (µ)2,

CV =

√
µ

′
2 − (µ)2

µ
,

CS =
E(Y − µ)3

[E(Y − µ)2]
3
2

=
µ

′
3 − 3µµ

′
2 + 2µ3

(µ
′
2 − µ2)

3
2

and

CK =
E(Y − µ)4

[E(Y − µ)2]2
=
µ

′
4 − 4µµ

′
3 + 6µ2µ

′
2 − 3µ4

(µ
′
2 − µ2)2

.

Proposition 4.2. The rth non-central moment of the HMGOM distribution for α > 1

is expressed as Equation (4.8).

µ
′

r =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)r+m+1

Γ(r +m+ 1), r = 1, 2, .... (4.8)

Proof. Mathematically,

µ
′

r = E(Y r) =

∫ ∞

0

yrf(y)dy. (4.9)
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The substitution of equation (4.5) into equation (4.9) produces

E(Y r) =

∫ ∞

0

yr
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklmy
me−flydy.

We then obtain

µ
′

r =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

∫ ∞

0

yr+me−flydy.

Letting u = fly, which implies y = u
fl

and dy = du
fl
, we obtain

µ
′

r =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)r+m+1 ∫ ∞

0

ur+me−udu.

Using the identity

Γ(S) =
∫ ∞

0

yS−1e−ydy,

we obtain

µ
′

r =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)r+m+1

Γ(r +m+ 1).

The Table 4.1 shows some measures of dispersion and asymmetry for the HMGOM

distribution obtained through the use of the non-central moments. The HMGOM dis-

tribution could exhibit high skewness, moderate skewness and even could be approx-

imately symmetric. As ρ approaches one, the distribution exhibits negative skewness

and as ρ approaches zero, positive skewness. Furthermore, the HMGOM distribution

demonstrates different characteristics, such as platykurtic or leptokurtic behaviour.

40

Digitized by UMaT Library



Table 4.1: Moments of the HMGOM for Different Parameter Values

r
α=12, ρ=0.99,
f=0.35, g=0.05

α=10,ρ=0.90,
f=0.35,g=0.05

α=10, ρ=0.80,
f=0.35,g=0.05

α=55, ρ=0.60,
f=0.60, g=0.05

α=55, ρ=0.60,
f=0.60, g=0.55

µ
′
1 3.2339 2.5583 2.1978 0.4476 4.9056× 10−2

µ
′
2 11.8953 7.9458 6.1421 0.2947 3.8992× 10−3

µ
′
3 46.5277 27.2857 19.4507 0.2400 4.1385× 10−4

µ
′
4 189.6091 100.4260 67.1160 0.2268 5.4523× 10−5

µ
′
5 797.5481 390.1568 247.4523 0.2405 8.5639× 10−6

σ2 1.4372 1.4007 1.3116 0.0943 0.0015
CV 0.3707 0.4626 0.5211 0.6861 0.7895
CS -0.7174 -0.1263 0.1238 0.6916 1.3199
CK 2.0360 1.7190 1.8317 3.4754 5.4944

4.3.3 Incomplete Moments

We derive the HMGOM distribution’s incomplete moments. Incomplete moments play

a crucial role in various fields, including finance, economics, and actuarial science.

Proposition 4.3. The rth incomplete moments of the HMGOM distribution for α > 1

can be expressed as Equation (4.10).

mr(z) =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)r+m+1

γ(r +m+ 1, f lz), r = 1, 2, 3, ...,

(4.10)

γ(·, ·) is an lower incomplete gamma function.

Proof. Mathematically,

mr(z) = E(Y r|Y ≤ z) =

∫ z

0

yrf(y)dy. (4.11)

When equation (4.5) is substituted into equation (4.11), we have

mr(z) =

∫ z

0

yr
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklmy
me−flydy.

We then obtain

mr(z) =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

∫ z

0

yr+me−flydy.
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Letting u = fly, which implies x = u
fl

and dy = du
fl
, we obtain

µ
′

r =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)r+m+1 ∫ flz

0

ur+me−udu.

The identity

γ(a, x) =

∫ x

0

ta−1e−tdt,

helps obtain

µ
′

r =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)r+m+1

γ(r +m+ 1, f lz).

4.3.4 The measures of Inequality

By utilising both the Lorenz curve and the Bonferroni curve, researchers can gain

insights into income inequality trends, analyse income distributions across nations or

over time, and make more accurate and meaningful comparisons by accounting for

differences in population sizes.

Proposition 4.4. The Lorenz curve for the HMGOM distribution for α > 1 is given

by Equation (4.12).

L(y) =
1

µ

∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)m+2

γ(m+ 2, f lz). (4.12)

Proof. By definition the Lorenz curve is given by

LF (y) =
1

µ

∫ z

0

yf(y)dy.

∫ z

0
yf(y)dy can be obtained using the first incomplete moment.

Proposition 4.5. The Bonferroni curve for the HMGOM distribution for α > 1 can

42

Digitized by UMaT Library



be expressed as Equation (4.13).

B(y) =
1

µF (y)

∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)m+2

γ(m+ 2, f lz). (4.13)

Proof.

B(y) =
L(y)

F (y)
. (4.14)

The substitution of equation (4.12) completes the proof.

4.3.5 Mean Deviation and Median Deviation

By considering both mean and median deviations, researchers can gain a compre-

hensive understanding of the variation present in distributions. These measures help

quantify the extent to which data points deviate from the central tendency, providing

valuable insights into the overall spread and dispersion of the data.

Proposition 4.6. The mean deviation of the HMGOM distribution for α > 1 can be

expressed as Equation (4.15).

∆1(y) = 2µF (µ)− 2
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)m+2

γ(m+ 2, f lµ). (4.15)

Proof. Mathematically,

∆1(y) =

∫ ∞

0

|y − µ|f(y)dy

=

∫ µ

0

(µ− y)f(y)dy +

∫ ∞

µ

(y − µ)f(y)dy

= µ

∫ µ

0

f(y)dy −
∫ µ

0

yf(y)dy + µ

∫ µ

0

f(y)dy −
∫ µ

0

yf(y)dy

+

∫ ∞

0

yf(y)dx− µ

∫ ∞

0

f(y)dy

= 2µF (µ)− 2

∫ µ

0

yf(y)dy.
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∫ µ

0
yf(y)dy is obtained using the first rth incomplete moment of the HMGOM distri-

bution.

Proposition 4.7. The median deviation for the HMGOM distribution for α > 1 can

be expressed as Equation (4.16).

∆2(y) = µ− 2
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)m+2

γ(m+ 2, f lH). (4.16)

Proof. Mathematically,

∆2(y) =

∫ ∞

0

|y −H|f(y)dy

=

∫ H

0

(H − y)f(y)dy +

∫ ∞

H

(y −H)f(y)dy

= H

∫ H

0

f(y)dy −
∫ H

0

yf(y)dy +H

∫ H

0

f(y)dy −
∫ H

0

yf(y)dy

+

∫ ∞

0

yf(y)dy −H

∫ ∞

0

f(y)dy.

Using the identity F (H) = 0.5, we have

∆2(y) = µ− 2

∫ H

0

yf(y)dy.

The integral
∫ H

0
yf(y)dy is derived using the first incomplete moment.

4.3.6 Mean Residuals

The mean residuals provide an estimate of the remaining lifespan beyond time t for an

individual or unit that has already survived up to time t. It quantifies the expected

added lifetime, on average, from the current time t onwards.

Proposition 4.8. The mean residuals of the HMGOM distribution for α > 1 can be
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expressed as Equation (4.17).

m(t) =
1

SG(t)

[
µ−

∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

ϖabklm

(
1

fl

)m+2

γ(m+ 2, f lt)

]
−t. (4.17)

Proof. The mean residual life of a non-negative random variable Y is defined as

m(t) = E(Y − t|Y > t) =
1

S(t)

∫ ∞

t

(y − t)f(y)dy, t ≥ 0.

It follows that

m(t) =
1

SG(t)

[
µ−

∫ t

0

(y)f(y)dy

]
− t. (4.18)

Substituting equation (3.3) and
∫ t

0
yf(y)dy, which is the first rth incomplete moment

into equation (4.18) completes the proof.

4.3.7 Moment Generating Function

The MGF is one of the powerful tools used to derive the moments of a probability

distribution, provided the MGF exists for that distribution.

Proposition 4.9. The MGF for the HMGOM distribution for α > 1 is given by

Equation (4.19).

MG(t) =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

∞∑
r=0

ϖabklm
tr

r!

(
1

fl

)r+m+1

Γ(r +m+ 1). (4.19)

Proof. Using the identity

etY =
∞∑
r=0

trY r

r!
,

the MGF can be deduced as

MG(t) = E(etY ) =
∞∑
r=0

trE(Y r)

r!
=

∞∑
r=0

tr

r!
µ

′

r. (4.20)

The substitution of equation (4.9) completes the proof.
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4.3.8 Characteristic Function

In situations where the moment generating function fails to exist, characteristic func-

tions provide a reliable means to characterise the distribution of heavy-tailed random

variables.

Proposition 4.10. The characteristic function of the HMGOM distribution for α > 1

is given by (4.21).

C(t) =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

∞∑
r=0

ϖabklm
(zt)r

r!

(
1

fl

)r+m+1

Γ(r +m+ 1). (4.21)

Proof. Using the identity

eztY =
∞∑
r=0

zrtrY r

r!
,

where z =
√
−1. We can define the characteristic function as

C(t) = E(eztY ) =
∞∑
r=0

(zt)rE(Y r)

r!
=

∞∑
r=0

(zt)r

r!
µ

′

r. (4.22)

The substitution of equation (4.9) completes the proof.

4.3.9 Entropy

By examining the entropy of the HMGOM distribution, researchers can gain insights

into the level of uncertainty or variability inherent in the random variable. This

information can be valuable for decision-making, risk assessment, and understanding

the overall characteristics of the distribution.

Proposition 4.11. The Rényi entropy of the HMGOM distribution for α > 1 is given

by Equation (4.23).

IR(λ) =
1

1− λ
log

[
∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
l=0

l∑
m=0

∞∑
n=0

ψ∗
abklmn

(
1

fm

)n+1

Γ(n+ 1)

]
, λ ̸= 1,

(4.23)
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where

ψ∗
abklmn = (−1)b+l+m

l!n!

(
2λ+a−1

a

)(
a
b

)(
k
λ

)(
m
l

)
ρa+kgλ(α(1−ρ))λ−k

(
g
f
(α(λ+ b+ k)− (b+ k))

)l
(f(l + 1))n.

Proof. Mathematically,

IR(λ) =
1

1− λ
log

∫ ∞

0

fλ(y)dy, λ ̸= 1. (4.24)

The PDF of HMGOM to the power λ is given as

fλ(y) =

gλeλfye−
gαλ
f

(efy−1)(α(1− ρ))λ
(
1 + ρe

− g(α−1)
f

(efy−1)

α(1−ρ)

)λ

[
1− ρ

(
1− e−

g(α−1)
f

(efy−1)
)]2λ

Using Taylor series, we obtain

[
1− ρ

(
1− e−

g(α−1)
f

(efy−1)
)]−2λ

=
∞∑
a=0

a∑
b=0

(−1)b
(
2λ+a−1

a

)(
a
b

)
ρae

−g(α−1)j
f

(efy−1)

and (
1 +

ρe−
g(α−1)

f
(efy−1)

α(1− ρ)

)λ

=
∞∑
k=0

(
k
λ

)
ρk(α(1− ρ))−ke−

g(α−1)k
f

(efy−1)

Also,

e−
g
f
(α(λ+b+k)−(b+k))(efy − 1) =

∞∑
l=0

(−1)l

l!

(
g

f
(α(λ+ b+ k)− (b+ k))

)l

(efy − 1)l,

(efy − 1)l = efly(1− e−fy)l = efly
l∑

m=0

(−1)m
(
m
l

)
e−fmy

and

efy · efly = ef(l+1)y =
∞∑
n=0

1

n!
(f(l + 1))nyn

We then obtain

fλ(y) =
∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
l=0

l∑
m=0

∞∑
n=0

ψ∗
abklmny

ne−fmy, (4.25)
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We substitute equation (4.25) into equation (4.24) and obtain

IR(λ) =
1

1− λ
log

∫ ∞

0

∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
l=0

l∑
m=0

∞∑
n=0

ψ∗
abklmny

ne−fmydy. (4.26)

Letting u = fmy, which implies y = u
fm

and dy = du
fm

, we obtain

fλ(y) =
∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
l=0

l∑
m=0

∞∑
n=0

ψ∗
abklmn

(
1

fm

)n+1 ∫ ∞

0

une−udu.

But
∫∞
0
une−udu = Γ(n+ 1).

We obtain the Rényi entropy of the HMGOM distribution after correctly substituting

into equation (4.26).

4.3.10 Stress-Strength Reliability

This concept is particularly relevant in various fields such as engineering, structural

analysis, and reliability engineering. By quantifying the stress-strength reliability,

engineers and analysts can make informed decisions regarding the design, operation,

and maintenance of systems to ensure they can withstand the anticipated stresses and

perform reliably under normal or extreme conditions.

Proposition 4.12. The stress-strength reliability of the HMGOM distribution for

α > 1 is given as Equation (4.27).

Rss = 1−
[ ∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

δabklm

(
1

fl

)m+1

Γ(m+ 1)

]
, (4.27)

where δabklm = [gα(1− ρ)ηabklm + gρη∗abklm],

ηabklm = (−1)b+k+l

k!m!

(
a+2
2

)(
a
b

)(
l
k

)
ρa
(

g
f
(α(b+ 2)− b

)k
(f(k + 1))m,

η∗abklm = (−1)b+k+l

k!m!

(
a+2
2

)(
a
b

)(
l
k

)
ρa
(

g
f
(α(b+ 3)− (b+ 1)

)k
(f(k + 1))m.
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Proof. By definition

Rss =

∫ ∞

0

f(y) · F (y)dy = 1−
∫ ∞

0

f(y) · S(y)dy. (4.28)

Multiplying equations (3.2) and (3.3), we have

f(y) · S(y) = gα(1− ρ)efye−
2gα
f

(efy−1) + gρefye−
g(3α−1)

f
(efy−1)[

1− ρ
(
1− e−

g(α−1)
f

(efy−1)
)]3 . (4.29)

Simplifying equation(4.29) using the Taylor series, we obtain

f(y) · S(y) =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

δabklmy
me−fly. (4.30)

We substitute equation (4.30) into equation (4.28) and obtain

Rss = 1−
[ ∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

δabklm

∫ ∞

0

yme−flydy

]
.

Letting u = fly, which implies x = u
fl

and dy = du
fl
, we obtain

Rss = 1−
[ ∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
l=0

∞∑
m=0

δabklm

(
1

fl

)m+1 ∫ ∞

0

ume−udu

]
. (4.31)

But
∫∞
0
ume−udu = Γ(m+ 1).

We obtain the stress-strength reliability of the HMGOM distribution after correctly

substituting into equation (4.31).

4.3.11 Order Statistics

Order statistics can help identify maximum and minimum values of a random variable.

Proposition 4.13. If Y1, Y2, Y3, ..., Yn is a random variable from the HMGOM distri-

bution for α > 1 with order statistics Y(1), Y(2), Y(3), ..., Y(n), then the PDF of the pth
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order statistics YP is given as Equation (4.32).

fp:n(y) =
1

β(p, n− p+ 1)

[ ∞∑
a=0

a∑
b=0

∞∑
k=0

n−p∑
l=0

p+l−1∑
m=0

k∑
q=0

∞∑
s=0

γabklmqsy
se−fqy

]
, (4.32)

where γabklmqs =
[
gα(1− ρ)ψabklmqs + gρψ∗

abklmqs

]
,

ψabklmqs =
(−1)b+k+l+m+q

k!s!

(
n−p
l

)(
p+l−1

m

)(
m+a−1

a

)(
a
b

)(
q
k

)
ρa
(

g
f
(α(m+ b+ 1)− j

)k
(f(k+

1))s and ψ∗
abklmqs =

(−1)b+k+l+m+q

k!s!

(
n−p
l

)(
p+l−1

m

)(
m+a−1

a

)(
a
b

)(
q
k

)
ρa
(
β
a
(α(m+ b+ 2)− (b+ 1)

)k
(f(k + 1))s.

Proof. By definition

fp:n(y) =
1

β(p, n− p+ 1)
(F (y))p−1 (1− F (y))n−p f(y). (4.33)

Applying the Taylor series,

(1− F (y))n−p =

n−p∑
l=0

(−1)l
(
n−p
l

)
(F (y))l.

We then obtain,

fp:n(y) =
1

β(p, n− p+ 1)

n−p∑
l=0

p+l−1∑
m=0

(−1)l+m
(
n−p
l

)(
p+l−1

m

)
(S(y))mf(y). (4.34)

Raising equation (3.3) to the power m and subsequently multiplying it with equation

(3.2), we obtain

(S(y))mf(y) =
gα(1− ρ)efye−

gα(m+1)
f

(efy−1) + gρefye−
g(α(m+2)−1)

f
(efy−1)[

1− ρ
(
1− e−

g(α−1)
f

(efy−1)
)]m+2

Applying the expansion series equations, we have

(S(y))mf(y) =
∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
q=0

∞∑
s=0

τabkqsy
se−fqy +

∞∑
a=0

a∑
b=0

∞∑
k=0

k∑
q=0

∞∑
s=0

τ ∗abkqsy
se−fqy,

(4.35)
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where τabkqs = βα(1−ρ) (−1)b+k+q

k!s!

(
m+a−1

a

)(
a
b

)(
q
k

)
ρa
(

g
f
(α(m+ b+ 1)− b

)k
(f(k+1))s

and

τ ∗abkqs = gρ (−1)b+k+q

k!s!

(
m+a−1

a

)(
a
b

)(
q
k

)
ρa
(

g
f
(α(m+ b+ 2)− (b+ 1)

)k
(f(k + 1))s.

Substituting equation (4.35) into equation (4.34) completes the proof.

Proposition 4.14. The rth moment of the pth order statistics can be expressed as

Equation (4.36).

µp:n
r =

1

β(p, n− p+ 1)

[ ∞∑
a=0

a∑
b=0

∞∑
k=0

n−p∑
l=0

p+l−1∑
m=0

k∑
q=0

∞∑
s=0

γabklmqs

(
1

fq

)r+s+1

Γ(r + s+ 1)

]
.

(4.36)

Proof. By definition

µp:n
r =

∫ ∞

0

yrfp:n(y)dy. (4.37)

We substitute equation (4.32) into equation (4.37), obtaining

µp:n
r =

1

β(p, n− p+ 1)

[ ∞∑
a=0

a∑
b=0

∞∑
k=0

n−p∑
l=0

p+l−1∑
m=0

k∑
q=0

∞∑
s=0

γabklmqs

∫ ∞

0

yr+se−fqydy

]
.

∫∞
0
yr+se−fqydy is derived from the method used to derive the non-central moment.

We then obtain the desired equation after substituting correctly and that completes

the proof.

4.3.12 Identifiability

To ensure that accurate inferences are made, the HMGOM distribution’s identifiability

property is presented.

Proposition 4.15. If Y1 and Y2 are random variables from the HMGOM distribution

with CDF FY (y;α1, ρ1, f1, g1) and FY (y;α2, ρ2, f2, g2) respectively, then the HMGOM

distribution is identifiable if and only if α1 = α2, ρ1 = ρ2, f1 = f2 and g1 = g2.
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Proof. For HMGOM distribution to be idenfiable, FY (y;α1, ρ1, f1, g1) = FY (y;α2, ρ2, f2, g2).

Then

1− e
− g1α1

f1
(ef1y−1)[

1− ρ1

(
1− e

− g1(α1−1)
f1

(ef1y−1)

)] = 1− e
− g2α2

f2
(ef2y−1)[

1− ρ2

(
1− e

− g2(α2−1)
f2

(ef2y−1)

)] .

If α1 = α2, ρ1 = ρ2, f1 = f2 and g1 = g2, then

e
− g1α1

f1
(ef1y−1)[

1− ρ1

(
1− e

− g1(α1−1)
f1

(ef1y−1)

)] − e
− g2α2

f2
(ef2y−1)[

1− ρ2

(
1− e

− g2(α2−1)
f2

(ef2y−1)

)] = 0.

The identifiability requirement has been met.

4.4 Estimation of Parameters of the HMGOM Dis-

tribution

This section focuses on obtaining estimates of the parameters for the HMGOM distri-

bution. By applying these estimation techniques, we aim to determine the most suit-

able parameter values that best fit the HMGOM distribution to the given data. Each

method offers a different approach to parameter estimation, allowing for a comprehen-

sive analysis of the distribution and the selection of the most appropriate estimation

method based on the specific characteristics of the data.

4.4.1 Maximum Likelihood Estimation

By applying the MLE to the HMGOM distribution, researchers can obtain parameter

estimates that are optimal in terms of maximising the likelihood of the observed data

and capturing the underlying characteristics of the distribution. For the HMGOM

distribution, the likelihood function can be expressed as Equation (4.38).

L (y, α, ρ, f, g) =
n∏

a=1

f(ya, α, ρ, f, g). (4.38)
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We substitute equation (4.1) into (4.38) and thereafter obtain the log-likelihood func-

tion given as Equation (4.39).

l(y, α, ρ, f, g) = n ln g + f

n∑
a=1

ya −
g

f
α

n∑
a=1

(
efya − 1

)
+

n∑
a=1

ln
[
α(1− ρ) + ρe−

g(α−1)
f

(efya−1)
]

− 2
n∑

a=1

ln
[
1− ρ

(
1− e−

g(α−1)
f

(efya−1)
)]
.

(4.39)

To estimate the parameters using the MLE approach, we utilise the method of differ-

entiation. By differentiating equation (4.39) with respect to the parameters (α, ρ, f, g)

and setting the equations obtained to zero, we can derive a system of equations. These

equations when solved using numerical methods gives the parameter estimates. The

derivatives obtained are as follows

∂l

∂α
= − g

f

n∑
a=1

(
efya − 1

)
+

n∑
a=1

(1− ρ)− gρ
f

(
efya − 1

)
e−

g(α−1)
f

(efya−1)

α(1− ρ) + ρe−
g(α−1)

f
(efya−1)

−
n∑

a=1

gρ
(
efya − 1

)
e−

g(α−1)
f

(efya−1)

f
[
1− ρ+ ρe−

g(α−1)
f

(efya−1)
] ,

∂l

∂ρ
=

n∑
a=1

e−
g(α−1)

f
(efya−1) − 1

1− ρ+ ρe−
g(α−1)

f
(efya−1)

+
n∑

a=1

e−
g(α−1)

f
(efya−1) − α

α(1− ρ) + ρe−
g(α−1)

f
(efya−1)

,

∂l

∂f
=

n∑
a=1

ya −
n∑

a=1

αg(efya − 1)

f 2
−

n∑
a=1

gρ(α− 1)
(
1 + efya(fya − 1)

)
e−

g(α−1)
f

(efya−1)

f 2
[
α(1− ρ) + ρe−

g(α−1)
f

(efya−1)
]

−
n∑

a=1

αgyae
fya

f
−

n∑
a=1

gρ(α− 1)
(
1 + efya(fya − 1)

)
e−

g(α−1)
f

(efya−1)

f 2
[
1− ρ+ ρe−

g(α−1)
f

(efya−1)
] ,

∂l

∂g
=
n

g
−

n∑
a=1

ρ(α− 1)(efya − 1)e−
g(α−1)

f
(efya−1)

f
[
α(1− ρ) + ρe−

g(α−1)
a

(efya−1)
] −

n∑
a=1

ρ(α− 1)(efya − 1)e−
g(α−1)

f
(efya−1)

f
[
1− ρ+ ρe−

g(α−1)
f

(efya−1)
]

−
n∑

a=1

α(efya − 1)

f
.
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4.4.2 Ordinary Least Squares

To perform the OLSS estimation, a specific objective function is defined, which rep-

resents the discrepancy between the observed data and the model predictions. The

goal is to minimise Equation (4.40).

LS(α, ρ, f, g) =
n∑

a=1

{(
F (y(a))

)
− a

n+ 1

}2

. (4.40)

The method of differentiation is employed to minimise equation (4.40). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂LS

∂α
=

n∑
a=1

{(
F (y(a))

)
− a

n+ 1

}
· Λ1(y(a);α, ρ, f, g) = 0, (4.41)

∂LS

∂ρ
=

n∑
a=1

{(
F (y(a))

)
− a

n+ 1

}
· Λ2(y(a);α, ρ, f, g) = 0, (4.42)

∂LS

∂f
=

n∑
a=1

{(
F (y(a))

)
− a

n+ 1

}
· Λ3(y(a);α, ρ, f, g) = 0, (4.43)

∂LS

∂g
=

n∑
a=1

{(
F (y(a))

)
− a

n+ 1

}
· Λ4(y(a);α, ρ, f, g) = 0, (4.44)

where

Λ1(y(a)) =
g(efy(a) − 1)

{
ρe−

g(2α−1)
f

(e
fy(a)−1) + e−

gα
f
(e

fy(a)−1)
[
1− ρ(1− e−

g(α−1)
f

(e
fy(a)−1))

]}
f
[
1− ρ

(
1− e−

g(α−1)
f

(e
fy(a)−1)

)]2 ,

(4.45)

Λ2(y(a)) =
e−

gα
f
(e

fy(a)−1)
(
e−

g(α−1)
f

(e
fy(a)−1) − 1

)
[
1− ρ

(
1− e−

g(α−1)
f

(e
fy(a)−1)

)]2 , (4.46)
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Λ3(y(a)) =
gρ(α− 1)(1 + efy(a)(fy(a) − 1))e−

g(2α−1)
f

(e
fy(a)−1)

f 2
[
1− ρ

(
1− e−

g(α−1)
f

(e
fy(a)−1)

)]2
+
αg(1 + efy(a)(fy(a) − 1))e−

gα
f
(e

fy(a)−1)
[
1− ρ(1− e−

g(α−1)
f

(e
fy(a)−1))

]
f 2
[
1− ρ

(
1− e−

g(α−1)
f

(e
fy(a)−1)

)]2 ,

(4.47)

Λ4(y(a)) =
ρ(α− 1)(efy(a) − 1)e−

g(2α−1)
f

(e
fy(a)−1)

f
[
1− ρ

(
1− e−

g(α−1)
f

(e
fy(a)−1)

)]2
+
α(efy(a) − 1)e−

gα
f
(e

fy(a)−1)
[
1− ρ(1− e−

g(α−1)
f

(e
fy(a)−1))

]
f
[
1− ρ

(
1− e−

g(α−1)
f

(e
fy(a)−1)

)]2 .

(4.48)

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.4.3 Weighted Least Squares

The WLSS estimates are obtained by solving the minimisation problem, which in-

volves finding the parameter values that minimise the weighted discrepancy between

the observed data and the predictions of the HMGOM distribution.The minimisation

function is given as Equation (4.49).

WLS(α, ρ, f, g) =
n∑

a=1

(n+ 1)2(n+ 2)

a(n− a+ 1)

{(
F (y(a))

)
− a

n+ 1

}2

. (4.49)

The method of differentiation is employed to minimise equation (4.49). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂WLS

∂α
=

n∑
a=1

(n+ 1)2(n+ 2)

a(n− a+ 1)

{(
F (y(a))

)
− a

n+ 1

}
· Λ1(y(a);α, ρ, f, g) = 0, (4.50)
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∂WLS

∂ρ
=

n∑
a=1

(n+ 1)2(n+ 2)

a(n− a+ 1)

{(
F (y(a))

)
− a

n+ 1

}
· Λ2(y(a);α, ρ, f, g) = 0, (4.51)

∂WLS

∂f
=

n∑
a=1

(n+ 1)2(n+ 2)

a(n− a+ 1)

{(
F (y(a))

)
− a

n+ 1

}
· Λ3(y(a);α, ρ, f, g) = 0, (4.52)

∂WLS

∂g
=

n∑
a=1

(n+ 1)2(n+ 2)

a(n− a+ 1)

{(
F (y(a))

)
− a

n+ 1

}
· Λ4(y(a);α, ρ, f, g) = 0. (4.53)

Λm(y(a);α, ρ, f, g), (m = 1, 2, 3, 4), can be obtained through equations (4.45), (4.46),

(4.47) and (4.48).

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.4.4 Cramér-von Mises Estimation

The CVM estimates are obtained by solving the minimisation problem, which involves

finding the parameter values that minimise the discrepancy between the observed data

and the HMGOM distribution as measured by the Cramér-von Mises statistic. The

minimisation function is given as Equation (4.54).

CVM(α, ρ, f, g) =
1

12n
+

n∑
a=1

{(
F (y(a))

)
− 2a− 1

2n

}2

. (4.54)

The method of differentiation is employed to minimise equation (4.54). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂CVM

∂α
=

n∑
a=1

{(
F (y(a))

)
− 2a− 1

2n

}
· Λ1(y(a);α, ρ, f, g) = 0, (4.55)

∂CVM

∂ρ
=

n∑
a=1

{(
F (y(a))

)
− 2a− 1

2n

}
· Λ2(y(a);α, ρ, f, g) = 0, (4.56)
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∂CVM

∂f
=

n∑
a=1

{(
F (y(a))

)
− 2a− 1

2n

}
· Λ3(y(a);α, ρ, f, g) = 0, (4.57)

∂CVM

∂g
=

n∑
a=1

{(
F (y(a))

)
− 2a− 1

2n

}
· Λ4(y(a);α, ρ, f, g) = 0, (4.58)

Λm(y(a);α, ρ, f, g), (m = 1, 2, 3, 4), can be obtained through equations (4.45), (4.46),

(4.47) and (4.48).

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.4.5 Anderson-Darling Estimation

The AD estimates are obtained by solving the minimisation problem, which involves

finding the parameter values that minimise the discrepancy between the observed

data and the HMGOM distribution as measured by the Anderson-Darling statistic.

The minimisation function is given as Equation (4.59).

AD(α, ρ, f, g) = −n− 1

n

n∑
a=1

(2a− 1)
{(

logF (y(a))
)
+ log

(
1− F (y(n+1−a))

)}
. (4.59)

The method of differentiation is employed to minimise equation (4.59). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂AD

∂α
=

n∑
a=1

(2a− 1)

{
Λ1(y(a);α, ρ, f, g)(

F (y(a))
) −

Λ1(y(n+1−a);α, ρ, f, g)

1−
(
F (y(n+1−a))

) }
= 0, (4.60)

∂AD

∂ρ
=

n∑
a=1

(2a− 1)

{
Λ2(y(a);α, ρ, f, g)(

F (y(a))
) −

Λ2(y(n+1−a);α, ρ, f, g)

1−
(
F (y(n+1−a))

) }
= 0, (4.61)

∂AD

∂f
=

n∑
a=1

(2a− 1)

{
Λ3(y(a);α, ρ, f, g)(

F (y(a))
) −

Λ3(y(n+1−a);α, ρ, f, g)

1−
(
F (y(n+1−a))

) }
= 0, (4.62)

∂AD

∂g
=

n∑
a=1

(2a− 1)

{
Λ4(y(a);α, ρ, f, g)(

F (y(a))
) −

Λ4(y(n+1−a);α, ρ, f, g)

1−
(
F (y(n+1−a))

) }
= 0, (4.63)
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where Λm(y(·);α, ρ, f, g), (m = 1, 2, 3, 4), can be derived from the equations (4.45),

(4.46), (4.47) and (4.48).

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.5 HMGOM Regression Model

The HMGOM distribution is used to study the impact some explanatory variables

have on the response variable. To achieve this, we introduce the HMGOM regression

model considering the parameters f, g and α are varying across observations using

the logarithmic link functions log(fa) = xTa fa, log(ga) = xTa ga and log(αa) = xTaαa,

a = 1, 2, 3..., n.

The survival function of the HMGOM regression model is obtained through a sub-

stitution of the logarithmic link functions into the survival function of the HMGOM

distribution and given as Equation (4.64).

S(y|x) = e
− exp (xTa ga) exp (xTa αa)

exp (xTa fa)
(eexp (xTa fa)y−1)[

1− ρ

(
1− e

− exp (xTa ga)(exp (xTa αa)−1)

exp (xTa fa)
(eexp (xTa fa)y−1)

)] . (4.64)

By maximising log-likelihood function, the MLE provides estimates for the parameters

that best align with the observed data and the assumed HMGOM regression model.

The log-likelihood function is given by Equation (4.65).

ℓ = n
n∑

a=1

ln ga +
n∑

a=1

faxa −
n∑

a=1

ga
fa
αa

(
efxa − 1

)
+

n∑
a=1

ln
[
αa(1− ρ) + ρe−

ga(αa−1)
fa

(efaxa−1)
]

− 2
n∑

a=1

ln
[
1− ρ

(
1− e−

ga(αa−1)
fa

(efaxa−1)
)]
.

(4.65)
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4.6 Development of the Harmonic Mixture Fréchet

Distribution

In this section, we explore the the PDF, CDF, FRF and SF of the HMFR distribution.

To obtain the PDF of the HMFR distribution, we substitute equations (3.7) and (3.9)

into equation (3.21). This substitution allows us to express the PDF in terms of the

parameters and the corresponding equations that define the HMFR distribution. The

PDF of the HMFR distribution is expressed as Equation (4.66).

fHMFR(x) =
α (1− ρ) dgdx−d−1e−α( g

x
)d
(
1− e−( g

x
)d
)α−1

+ ρdgdx−d−1e−( g
x
)d
(
1− e−( g

x
)d
)2α−2

[
1− ρ

(
1−

(
1− e−( g

x
)d
)α−1

)]2 ,

(4.66)

where d > 0, α > 0 , g > 0, x > 0, 0 < ρ < 1.

The density plot visually represents how the distribution’s shape can be influenced

by adjusting the parameters. Different combinations of parameter values result in

distinct shapes of the probability density function as shown in 4.5. This variability in

shape highlights the flexibility and versatility of the HMFR distribution in modelling

a wide range of data patterns.
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Figure 4.5: The density plot of the HMFR

The CDF of the HMFR distribution is derived by the substitution of equation (3.9)

into equation (3.20). The CDF of the HMFR distribution can therefore be expressed

as Equation (4.67).

FHMFR(x) = 1−

(
1− e−( g

x
)d
)α[

1− ρ

(
1−

(
1− e−( g

x
)d
)α−1

)] , x > 0. (4.67)

The Figure 4.6 offers a visual representation of the CDF of the HMFR distribution

for a range of parameter values. The CDF approaches 0 as x approaches 0 and ap-

proaches 1 as x approaches infinity.
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Figure 4.6: The CDF plot of the HMFR

The SF of the HMFR distribution can be derived from the CDF of the HMFR distri-

bution. The survival function is given by Equation (4.68).

SHMFR(x) =

(
1− e−( g

x
)d
)α[

1− ρ

(
1−

(
1− e−( g

x
)d
)α−1

)] , x > 0. (4.68)

The substitutions of equations (3.7) and (3.9) into equation (3.22) gives the FRF of

the HMFR distribution.The FRF of the HMFR distribution can then be expressed as

Equation (4.69).

hHMFR(x) =
dgdx−d−1e−( g

x
)d
(
1− e−( g

x
)d
)α−1

(
1− e−( g

x
)d
)α α (1− ρ) + ρ

(
1− e−( g

x
)d
)α−1[

1− ρ

(
1−

(
1− e−( g

x
)d
)α−1

)] , x > 0.

(4.69)

Figure 4.7 gives the visual representation of the FRF for the HMFR distribution. By

exploring different parameter values, the plots exhibit a range of desirable shapes,

including decreasing, increasing, and unimodal patterns. The FRF of the HMFR dis-

tribution can take on various forms, such as being monotonically increasing, monoton-

ically decreasing, or resembling an upside-down bathtub shape. The flexibility of the
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HMFR distribution allows it to accurately model both monotonic and non-monotonic

failure rates. Depending on the specific parameter values chosen, the HMFR distri-

bution can effectively capture different types of failure rate behaviours observed in

real-world scenarios.
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α = 1.7  ρ=1e−08  d=6  g=2.1
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α = 18  ρ=0.006  d=1.8  g=2
α = 18  ρ=0.06  d=2.6  g=2
α = 3.2  ρ=0.9  d=1.6  g=0.013

Figure 4.7: The FRF plot of the HMFR

We examined the impact of incorporating additional parameters from the HMG family

on the Fréchet distribution (black curve) in Figure 4.8. By varying the values of the

parameters ρ and α while keeping the Fréchet distribution parameters constant, we

observed notable improvements in terms of kurtosis (peakness) and skewness. These

enhancements indicate that the introduction of the extra parameters from the HMG

family contributes to a more refined and flexible modelling of the distribution.
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Figure 4.8: Assessing the densities of the HMFR Distribution and the Fréchet Distri-
bution

Lemma 4.3. The linear representation of the PDF for the HMFR distribution is

given by Equation (4.70).

fHMFR(x) =
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabkdg
dx−g−1e−( g

x
)d(k+1), (4.70)

where Ωabk = [α(1− ρ)τabk + ρτ ∗abk], τabk = (−1)b+k(a + 1)
(
a
b

)(
(α−1)(b+1)

k

)
ρa, τ ∗abk =

(−1)b+k(a+ 1)
(
a
b

)(
(α−1)(b+2)

k

)
ρa, x > 0, d > 0, g > 0, α > 0 and 0 < ρ < 1.

Proof. For η > 0, the Taylor series for (1− z)−η, for |z| < 1 is

(1− z)−η =
∞∑
a=0

(−1)a
(
−η
a

)
(z)a. (4.71)

For 0 <
(
1− e−( g

x
)d
)
< 1, the Taylor series can be employed to obtain

[
1− ρ

(
1−

(
1− e−( g

x
)d
)α−1

)]−2

=
∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρa
(
1− e−( g

x
)d
)b(α−1)

.

(4.72)
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Substituting equation (4.72) into equation (4.66) yields

fHMFR(x) = α (1− ρ) dgdx−d−1e−( g
x
)d

∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρa
(
1− e−( g

x
)d
)(b+1)(α−1)

+ ρdgdx−d−1e−( g
x
)d

∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρa
(
1− e−( g

x
)d
)(b+2)(α−1)

.

(4.73)

Applying equation (4.71) again,

(
1− e−( g

x
)d
)(α−1)(b+1)

=
∞∑
k=0

(−1)k
(
(α−1)(b+1)

k

)
e−k( g

x
)d (4.74)

and (
1− e−( g

x
)d
)(α−1)(b+2)

=
∞∑
k=0

(−1)k
(
(α−1)(b+2)

k

)
e−k( g

x
)d . (4.75)

The substitution of equation (4.74) and equation (4.75) into equation (4.73) gives

fHMFR(x) = α (1− ρ) dgdx−d−1

∞∑
a=0

a∑
b=0

∞∑
k=0

(−1)b+k(a+ 1)
(
a
b

)(
(α−1)(b+1)

k

)
ρae−( g

x
)d(k+1)

+ ρdgdx−d−1

∞∑
a=0

a∑
b=0

∞∑
k=0

(−1)b+k(a+ 1)
(
a
b

)(
(α−1)(b+2)

k

)
ρae−( g

x
)d(k+1).

Hence,

fHMFR(x) = α (1− ρ) dgdx−d−1

∞∑
a=0

a∑
b=0

∞∑
k=0

τabke
−( g

x
)d(k+1)

+ ρdgdx−d−1

∞∑
a=0

a∑
b=0

∞∑
k=0

τ ∗abke
−( g

x
)d(k+1).

4.7 Statistical Properties of HMFR Distribution

This section is dedicated to deriving the statistical properties of the HMFR distribu-

tion.These properties include the quantile function, non-central moments, incomplete

moments, inequality measures, mean and median deviations, moment generating func-

tions, characteristic function, entropy, stress-strength reliability, order statistics, and
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identifiability. Through our analysis, we explore and derive these properties, which

provide valuable insights into the distribution’s behaviour and characteristics.

4.7.1 Quantile Function

A distribution’s quantile function is its CDF’s inverse. It provides another means of

explaining the some features and shapes of the HMFR distribution.

Lemma 4.4. The expression for the quantile function of the HMFR distribution can

be expressed as Equation (4.76).

(1− p)

{
1− ρ+ ρ

[
1− e−x−d

p gd
]α−1

}
−
[
1− e−x−d

p gd
]α

= 0, (4.76)

where p ∈ (0, 1) and pHMFR(p) = xp is the quantile function.

Proof. Mathematically,

QHMFR(p) = p(X ≤ xp) = p.

The quantile function of the HMFR distribution can be obtained through the substi-

tution of equation (3.8) into equation (3.24) and letting QHMFR(p) = xp.

It is apparent that the quantile function of the HMFR distribution cannot be ex-

pressed in a closed form. Numerical techniques involving iterative algorithms that

aim to find the value of the quantile corresponding to a given probability level are

used to estimate the quantiles.

4.7.2 Moments

Moments play a crucial role in statistical analysis as they are instrumental in deriving

some essential measures of the HMFR distribution.

Proposition 4.16. The rth non-central moment of the HMFR distribution is given
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as Equation (4.77).

µ
′

r = gr
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
r
dΓ(1− r/d), r < d. (4.77)

Proof. Mathematically,

µ
′

r = E(Xr) =

∫ ∞

0

xrfHMFR(x)dx. (4.78)

After substituting equation (4.70) into equation (4.78) gives

E(Xr) =

∫ ∞

0

xr
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabkdg
dx−d−1e−( g

x
)d(k+1)dx,

= dgd
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk

∫ ∞

0

xr−d−1e−( g
x
)d(k+1)dx.

Letting v = ( g
x
)d(k + 1), which implies x = ( v

bd(k+1)
)−

1
d and dx = −dv

dgd(k+1)x−d−1 . x →

0, v → ∞ while x→ ∞, v → 0. Which gives

µ
′

r = gr
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
r
d

∫ ∞

0

u−
r
d e−udu.

Using the identity

Γ(S) =
∫ ∞

0

xS−1e−xdx,

we obtain

µ
′

r = gr
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
r
dΓ(1− r/d).

The σ2, CV, CS and CK for the HMFR distribution are displayed in the Table 4.2.

The HMFR distribution can exhibit significant skewness, indicated by a coefficient

of skewness (CS) lower than −1 or higher than +1. In some cases, the distribution

shows moderate skewness, with CS values ranging between −1 and −0.5, or between

0.5 and 1. For certain parameter values, the HMFR distribution appears approxi-

mately symmetric, with CS values between −0.5 and +0.5. Furthermore, depending

on the parameter values, the HMFR distribution can demonstrate positive skewness
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or negative skewness. This indicates that the distribution’s tail may be elongated

towards the right or the left, respectively. Regarding kurtosis, the HMFR distribu-

tion can exhibit platykurtic behaviour, characterised by a kurtosis coefficient (CK)

less than 3, for specific parameter values. Alternatively, the distribution can display

leptokurtic behaviour, with CK values greater than 3, for other parameter values.

Platykurtic distributions have lighter tails and a flatter peak, while leptokurtic dis-

tributions have heavier tails and a sharper peak.

Table 4.2: First Five Moments of the HMFR

r
α=9, ρ=0.45,
d=6, g=1.5

α=3.5,ρ=0.4,
d=10,g=2.0

α=6.5, ρ=0.03,
d=10.0,g=2.5

α=10.0, ρ=0.04,
d=11.0, g=0.5

α=5.4, ρ=0.004,
d=8.00, g=0.05

µ
′
1 1.3124 1.9338 2.3091 0.4577 1.7195× 10−6

µ
′
2 1.7315 3.7557 5.3444 0.2098 1.004× 10−7

µ
′
3 2.2963 7.3266 12.3991 0.0963 6.2950× 10−9

µ
′
4 3.0614 14.3573 28.8352 0.0442 4.1241× 10−10

µ
′
5 4.1028 28.2661 67.2217 0.0204 2.7705× 10−11

σ2 0.0091 0.0161 0.0125 3.1071× 10−4 1.004× 10−7

CV 0.0727 0.0657 0.0483 0.0385 1.8427× 10−4

CS -0.0261 0.7287 0.5870 -1.8047 197.8694
CK 9.3037 -1.3403 -3.0848 -602.9542 4.0911× 104

4.7.3 Incomplete Moments

The Lorenz curve, the Bonferroni curve, the mean deviation, and the median deviation

can all be obtained using the incomplete moments.

Proposition 4.17. The rth incomplete moment of the HMFR distribution can be

expressed as Equation (4.79).

mr(y) = gr
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
r
dΓ
(
(1− r/d) , (g/y)d(k + 1)

)
, r < d, r = 1, 2, ...

(4.79)

Γ(·, ·) is the upper incomplete gamma function.

Proof. Mathematically,

mr(y) = E(Xr|X ≤ y) =

∫ y

0

xrfHMFR(x)dx. (4.80)
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After substituting equation (4.70) into equation (4.80), gives

mr(y) = dgd
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk

∫ y

0

xr−d−1e−( g
x
)d(k+1)dx.

Let v = ( g
x
)d(k + 1), then x = ( v

gd(k+1)
)−

1
d and dx = −dv

dgd(k+1)x−d−1 . x → 0, v → ∞

while x→ y, v → ( g
y
)d(k + 1). This gives

mr(y) = gr
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
r
d

∫ ∞

( g
y
)d(k+1)

v−
r
d e−vdv.

Using the identity

Γ(d, z) =
∫ ∞

z

td−1e−tdt,

we obtain

mr(y) = gr
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
r
dΓ
(
(1− r/d) , (g/y)d(k + 1)

)
.

4.7.4 Inequality Measures

By utilising both the Lorenz and Bonferroni curves, researchers gain insights into

income inequality trends and make more accurate and meaningful comparisons by

accounting for differences in population sizes (Trapeznikova, 2019). They provide a

convenient descriptive tool to make these comparisons (Creedy, 2001).

Proposition 4.18. The Lorenz curve for the HMFR distribution can be expressed

as Equation (4.81).

LHMFR(y) =
g

µ

∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
1
dΓ
(
(1− 1/d) , (g/y)d(k + 1)

)
, d > 1. (4.81)

Proof. By definition the Lorenz curve is given by

LF (y) =
1

µ

∫ y

0

xfHMFR(x)dx.
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∫ y

0
xfHMFR(x)dx is the first incomplete moment of the HMFR distribution.

Proposition 4.19. The Bonferroni curve for the HMFR distribution is Equation

(4.82).

BHMFR(y) =
g

µF (y)

∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
1
dΓ
(
(1− 1/d) , (g/y)d(k + 1)

)
, d > 1.

(4.82)

Proof.

BHMFR(y) =
LHMFR(y)

F (y)
. (4.83)

After substituting equation (4.81) into equation (4.83), we obtain the Bonferroni curve

of the distribution.

4.7.5 Mean Deviation and Median Deviation

The mean and median deviations serve as useful measures for quantifying the total

variation present in distributions. These statistical measures provide insights into the

dispersion or spread of data points around the central tendency of the distribution.

Proposition 4.20. The mean deviation of the HMFR distribution can be expressed

as Equation (4.84).

∆1(x) = 2µFHMFR(µ)−2g
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k+1)
1
dΓ
(
(1− 1/d) , (g/µ)d(k + 1)

)
, d > 1.

(4.84)
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Proof. Mathematically,

∆1(x) =

∫ ∞

0

|x− µ|fHMFR(x)dx

=

∫ µ

0

(µ− x)fHMFR(x)dx+

∫ ∞

µ

(x− µ)fHMFR(x)dx

= µ

∫ µ

0

fHMFR(x)dx−
∫ µ

0

xfHMFR(x)dx+ µ

∫ µ

0

fHMFR(x)dx−
∫ µ

0

xfHMFR(x)dx

+

∫ ∞

0

xfHMFR(x)dx− µ

∫ ∞

0

fHMFR(x)dx

= 2µFHMFR(µ)− 2

∫ µ

0

xfHMFR(x)dx.

∫ µ

0
xfHMFR(x)dx as the first incomplete moment gives the mean deviation.

Proposition 4.21. The median deviation of the HMFR distribution can be expressed

as Equation (4.85).

∆2(x) = µ− 2g
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
1
dΓ
(
(1− 1/d) , (g/H)d(k + 1)

)
, (4.85)

where H is the median.

Proof. Mathematically,

∆2(x) =

∫ ∞

0

|x−H|fHMFR(x)dx

=

∫ H

0

(M − x)fHMFR(x)dx+

∫ ∞

H

(x−H)fHMFR(x)dx

= H

∫ H

0

fHMFR(x)dx−
∫ H

0

xfHMFR(x)dx+H

∫ H

0

fHMFR(x)dx−
∫ H

0

xfHMFR(x)dx

+

∫ ∞

0

xfHMFR(x)dx−H

∫ ∞

0

fHMFR(x)dx.

Using the identity F (H) = 0.5, we have

∆2(x) = µ− 2

∫ H

0

xfHMFR(x)dx.
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∫ H

0
xfHMFR(x)dx as the first incomplete moment gives the median deviation.

4.7.6 Mean Residuals

The mean residuals at a specific time, denoted as t, provides an estimate of the

expected additional lifespan that a unit has survived up to that time (Gupta and

Bradley, 2003). This function is particularly important in the field of survival or

reliability analysis, as it offers valuable insights into the remaining lifetime of a unit

or system at a given point in time. By considering the mean residuals, analysts can

make informed decisions regarding maintenance, replacement, or other reliability-

related considerations.

Proposition 4.22. The mean residuals for the HMFR distribution can be expressed

as Equation (4.86).

mHMFR(t) =
1

SHMFR

[
µ−g

∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k+1)
1
dΓ
(
(1− 1/d) , (g/t)d(k + 1)

)]
−t, d > 1.

(4.86)

Proof. Mathematically,

m(t) = E(X − t|X > t) =
1

S(t)

∫ ∞

t

(x− t)f(x)dx, t ≥ 0.

Hence,

m(t) =
1

S(t)

[
µ−

∫ t

0

(x)f(x)dx

]
− t. (4.87)

The substitution of the equation (3.9) and

∫ t

0

xf(x)dx = g
∞∑
a=0

a∑
b=0

∞∑
k=0

Ωabk(k + 1)
1
dΓ
(
(1− 1/d) , (g/t)d(k + 1)

)

into equation (4.87) completes the proof.
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4.7.7 Moment Generating Function

The MGF is one of the powerful tools used to derive the moments of a probability

distribution, provided the MGF exists for that distribution.

Proposition 4.23. The moment generating function of the HMFR distribution can

be expressed as Equation (4.88).

MHMFR(t) =
∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
r=0

Ωabk
(k + 1)

r
d (gt)r

r!
Γ(1− r/d), r < d. (4.88)

Proof. Using the identity

etX =
∞∑
r=0

trXr

r!
.

We deduce the MGF as

MHMFR(t) = E(etX) =
∞∑
r=0

trE(Xr)

r!
=

∞∑
r=0

tr

r!
µ

′

r. (4.89)

After substituting equation (4.78) into equation (4.89), we obtain the MGF.

4.7.8 Characteristic Function

Characteristic functions are valuable in dealing with heavy-tailed random variables

that lack a moment generating function (Nadarajah and Pogány, 2013).

Proposition 4.24. The characteristic function of the HMFR distribution is given as

Equation (4.90).

CHMFR(t) =
∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
r=0

ϖabk
(k + 1)

r
d (zgt)r

r!
Γ(1− r/d), r < d. (4.90)

Proof. Using the identity

eztX =
∞∑
r=0

zrtrXr

r!
,
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where z =
√
−1. We can define the characteristic function as

CHMF (t) = E(eztX) =
∞∑
r=0

(zt)rE(Xr)

r!
=

∞∑
r=0

(zt)r

r!
µ

′

r. (4.91)

After substituting equation (4.78) into equation (4.91), we obtain the characteristic

function.

4.7.9 Entropy

By examining the entropy of the HMFR distribution, researchers can gain insights

into the level of uncertainty or variability inherent in the random variable. A lower

entropy value indicates less uncertainty and a higher level of predictability, while a

higher entropy value indicates greater uncertainty and a lower level of predictability.

Proposition 4.25. The Rényi entropy of the HMFR distribution can be expressed

as Equation (4.92).

IR(λ) =
1

1− λ
log

{
K∗

∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
m=0

ψ∗
abkmΓ

(
λ+

1

d
(λ− 1)

)}
, (4.92)

where K∗ = (dgd)λ−1g(d+1)(1−λ)(α(1− ρ))λ and

ψ∗
abkm = (−1)b+k

(
2λ+a−1

a

)(
a
b

)(
(α−1)(λ+m+b)

k

)(
λ
m

)
(λ+ k)(1−λ)(1+ 1

d
) ρa+m(α(1− ρ))−m.

Proof. Mathematically,

IR(λ) =
1

1− λ
log

∫ ∞

0

fλ
HMFR(x)dx. (4.93)

The PDF of HMFR to the power λ is given as

fλ
HMFR(x) =

(dgd)λx−λ(d+1)e−λx−dgd(1− ex
−dgd)λ(α−1)(α(1− ρ))λ

(
1 + ρ(1−e−x−dgd )α−1

α(1−ρ)

)λ

[
1− ρ

(
1−

(
1− e−x−dgd

)α−1
)]2λ .
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The Taylor series in equation (4.71) helps to obtain

[
1− ρ

(
1−

(
1− e−( g

x
)d
)α−1

)]−2λ

=
∞∑
a=0

a∑
b=0

(−1)b
(
2λ+a−1

a

)(
a
b

)
ρa
(
1− e−( g

x
)d
)b(α−1)

and

(
1 +

ρ(1− e−( g
x
)d)α−1

α(1− ρ)

)λ

=
∞∑

m=0

(
λ
m

)
ρm(α(1− ρ))−m(1− e−( g

x
)d)m(α−1).

We then obtain

fλ
HMFR(x) = (dgd)λ(α(1− ρ))λx−λ(d+1)

∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
m=0

ψabkme
−( g

x
)d(k+λ), (4.94)

where ψabkm = (−1)b+k
(
2λ+a−1

a

)(
a
b

)(
(α−1)(λ+m+b)

k

)(
λ
m

)
ρa+m(α(1− ρ))−m.

Substituting equation (4.94) into equation (4.93), we have

IR(λ) =
1

1− λ
log

∫ ∞

0

(dgd)λ(α(1− ρ))λx−λ(d+1)

∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
m=0

ψabkme
−( g

x
)d(k+λ)dx.

(4.95)

Let

ϕ(x) =

∫ ∞

0

(dgd)λ(α(1− ρ))λx−λ(d+1)

∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
m=0

ψabkme
−( g

x
)d(k+λ)dx.

Let v = ( g
x
)d(k + λ) then x =

(
v

gd(k+λ)

)− 1
d
and dx = −dv

dgd(k+λ)x−d−1 . x → 0, v → ∞

while x→ ∞, v → 0, This gives

ϕ(x) = K∗
∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
m=0

ψabkm (λ+ k)(1−λ)(1+ 1
d
)

∫ ∞

0

v−(1−λ)(1+ 1
d
)e−vdu,

where K∗ = (dgd)λ−1g(d+1)(1−λ)(α(1− ρ))λ.

Using the identity Γ(S) =
∫∞
0
xS−1e−xdx gives

ϕ(x) = K∗
∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
m=0

ψabkm (λ+ k)(1−λ)(1+ 1
d
)Γ
(
λ+

1

d
(λ− 1)

)
. (4.96)
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Substituting equation(4.96) into equation (4.95) completes the proof.

4.7.10 Stress-Strength Reliability

Stress-strength reliability is a measure that evaluates the capacity of a system to

endure the stress or load it encounters (Alamri et al., 2021). By comparing the

strength of the system to the stress it can handle, stress-strength reliability provides

an indication of the system’s ability to function without failure or breakdown.

Proposition 4.26. For HMFR distribution, the stress-strength reliability can be

expressed as Equation (4.97).

Rss = 1−
∞∑
a=0

a∑
b=0

∞∑
k=0

δabk
(k + 1)

, (4.97)

where δabk = [α(1− ρ)ηabk + ρη∗abk], ηabk = (−1)b+k
(
a+2
2

)(
a
b

)(
b(α−1)+(2α−1)

k

)
ρa, and

η∗abk = (−1)b+k
(
a+2
2

)(
a
b

)(
b(α−1)+(3α−2)

k

)
ρa.

Proof. By definition

Rss =

∫ ∞

0

fHMFR(x)FHMFR(x)dx = 1−
∫ ∞

0

fHMFR(x)SHMFR(x)dx. (4.98)

Multiplying equations (3.7) and (3.9) and using the series expansion equation (4.71),

we have

fHMFR(x) · SHMFR(x) = α (1− ρ) dgdx−d−1

∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(2α−1)

k

)
e−( g

x
)d(k+1)

+ ρdgdx−d−1

∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(3α−2)

k

)
e−( g

x
)d(k+1),

(4.99)

where ηabk = (−1)b+k
(
a+2
2

)(
a
b

)
ρa.
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The substitution of equation (4.99) into equation (4.98) gives

Rss = 1−
[
α (1− ρ) dgd

∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(2α−1)

k

) ∫ ∞

0

x−d−1e−( g
x
)d(k+1)dx

− ρdgd
∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(3α−2)

k

) ∫ ∞

0

x−d−1e−( g
x
)d(k+1)dx

]
.

Let v = ( g
x
)d(k + 1), then x =

(
v

gd(k+1)

)− 1
d
and dx = −dv

dgd(k+1)x−d−1 . As x→ 0, v → ∞

and as x→ ∞, v → 0, we obtain

Rss = 1−
[
α (1− ρ)

∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(2α−1)

k

) ∫ ∞

0

e−u

(k + 1)
du

− ρ

∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(3α−2)

k

) ∫ ∞

0

e−u

(k + 1)
du

]
.

Using the identity
∫∞
0
e−udu = 1, we obtain

Rss = 1−
[
α (1− ρ)

∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(2α−1)

k

) 1

(k + 1)

− ρ
∞∑
a=0

a∑
b=0

∞∑
k=0

ηabk
(
b(α−1)+(3α−2)

k

) 1

(k + 1)

]
.

4.7.11 Order Statistics

Order statistics play a significant role in identifying the maximum and minimum

values of a random variable within a set of observations. They involve arranging the

data points in ascending or descending order to determine the extreme values. By

utilising order statistics, analysts can gain insights into the distribution of extreme

events and evaluate their likelihood. This approach is particularly relevant in extreme

value theory, which focuses on the statistical analysis of rare and extreme events

(Abonongo, 2021).

Proposition 4.27. If X11, X12, X13, ..., X1n is a random variable from the HMFR

distribution with order statistics X(11), X(12), X(13), ..., X(1n), then the PDF of the rth
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order statistics X1r is given as Equation (4.100).

fr:n(x) =
1

β(r, n− r + 1)

∞∑
a=0

a∑
b=0

∞∑
k=0

n−r∑
l=0

r+l−1∑
m=0

∞∑
n=0

n∑
q=0

ϖabklmnqdg
dx−d−1e−( g

x
)d(k+1),

(4.100)

where ϖabklmnq =
[
α(1− ρ)ωabklmnq + ρω∗

abklmnq

]
,

ωabklmnq = (−1)b+k+l+m+q(a+1)
(
a
b

)(
mα+q+(α−1)(b+1)

k

)(
n−r
l

)(
r+l−1

m

)(
m+n−1

n

)(
n
q

)
(ρ)a+n

and

ω∗
abklmnq = (−1)b+k+l+m+q(a+1)

(
a
b

)(
mα+q+(α−1)(b+2)

k

)(
n−p
l

)(
p+l−1

m

)(
m+n−1

n

)(
n
q

)
(ρ)a+n.

Proof. By definition,

fr:n(x) =
1

β(r, n− r + 1)
(FHMFR(x))

r−1 (1− FHMFR(x))
n−r fHMFR(x). (4.101)

Applying the series expansion equation in (4.71),

(1− FHMFR(x))
n−r =

n−r∑
l=0

(−1)l
(
n−r
l

)
(FHMFR(x))

l.

We then obtain,

fr:n(x) =
1

β(r, n− r + 1)

n−r∑
l=0

r+l−1∑
m=0

(−1)l+m
(
n−r
l

)(
r+l−1

m

)
(SHMFR(x))

mfHMFR(x).

(4.102)

Applying the series expansion equation in (4.71) again and simplifying, we have

(SHMFR(x))
m · fHMFR(x) =

∞∑
a=0

a∑
b=0

∞∑
k=0

∞∑
n=0

n∑
q=0

φabknqdg
dx−d−1e−( g

x
)d(k+1), (4.103)

where φabknq =
[
α(1− ρ)Ωijknq + ρΩ∗

abknq

]
,

Ωabknq = (−1)b+k+q(a+ 1)
(
a
b

)(
mα+q+(α−1)(b+1)

k

)(
m+n−1

n

)(
n
q

)
(ρ)a+n and

Ω∗
abknq = (−1)b+k+q(a+ 1)

(
a
b

)(
mα+q+(α−1)(b+2)

k

)(
m+n−1

n

)(
n
q

)
(ρ)a+n.

Substituting equation (4.103) into equation (4.102) completes the proof.

Proposition 4.28. The tth non-central moment of the rth order statistics is given by
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Equation (4.104).

µr:n
t =

gt

β(r, n− r + 1)

∞∑
a=0

a∑
b=0

∞∑
k=0

n−r∑
l=0

r+l−1∑
m=0

∞∑
n=0

n∑
q=0

ϖabklmnq(k + 1)
t
dΓ
(
1− t

d

)
, t < d.

(4.104)

Proof. By definition

µr:n
t =

∫ ∞

0

xtfr:n(x)dx. (4.105)

The substitution of equation (4.100) into equation (4.105) gives

µr:n
t =

dgd

β(r, n− r + 1)

∞∑
a=0

a∑
b=0

∞∑
k=0

n−r∑
l=0

r+l−1∑
m=0

∞∑
n=0

n∑
q=0

ϖabklmnq

∫ ∞

0

xt−d−1e−( g
x
)d(k+1)dx.

∫∞
0
xt−d−1e−( g

x
)d(k+1)dx = gt(k+1)

t
d

dgd
Γ
(
1 − t

d

)
can be derived from the same method

used for deriving the non-central moment. We then obtain the desired equation after

substituting this equation.

The proof is complete.

4.7.12 Identifiability

To ensure that accurate inferences are made, the HMFR distribution’s identifiability

property is presented.

Proposition 4.29. If X1 and X2 are random variables from the HMF distribution

with CDF FX(x;α1, ρ1, d1, g1) and FX(x;α2, ρ2, d2, g2) respectively, then the HMFR

distribution is identifiable if and only if α1 = α2, ρ1 = ρ2, d1 = d2 and g1 = g2.

Proof. For HMFR distribution to be idenfiable, FX(x;α1, ρ1, d1, g1) = FX(x;α2, ρ2, d2, g2).

Then

1−

(
1− e−(

g1
x
)
d1
)α1[

1− ρ1

(
1−

(
1− e−(

g1
x
)
d1
)α1−1

)] = 1−

(
1− e−(

g2
x
)
d

2

)α2[
1− ρ2

(
1−

(
1− e−(

g2
x
)
d2
)α2−1

)]
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If α1 = α2, ρ1 = ρ2, d1 = d2 and g1 = g2, then(
1− e−(

g1
x
)
d1
)α1[

1− ρ1

(
1−

(
1− e−(

g1
x
)
d1
)α1−1

)] −

(
1− e−(

g2
x
)
d

2

)α2[
1− ρ2

(
1−

(
1− e−(

g2
x
)
d2
)α2−1

)] = 0

The identifiability requirement has been met and that completes the proof.

4.8 Estimation of Parameters of the Harmonic Mix-

ture Fréchet Distribution

This section is dedicated to estimating the parameters of the HMFR distribution.

The objective is to determine the optimal parameter values that provide the best fit

between the HMFR distribution and the given dataset. Various estimation techniques

are employed, each offering a different approach to parameter estimation. By consid-

ering multiple methods, a thorough analysis of the distribution and the selection of

the most suitable estimation technique based on the data’s unique characteristics can

be achieved.

4.8.1 Maximum Likelihood Estimation

By applying the MLE to the HMFR distribution, researchers can obtain parameter

estimates that are optimal in terms of maximising the likelihood of the observed

data and capturing the underlying characteristics of the distribution. For the HMFR

distribution, the likelihood function can be expressed as Equation (4.106).

L (x, α, ρ, d, g) =
n∏

a=1

fHMFR(xa, α, ρ, d, g). (4.106)
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We substitute equation (4.66) into (4.106) and thereafter obtain the log-likelihood

function given as Equation (4.107).

l(x, α, ρ, d, g) = n ln d+ dn ln g + (−d− 1)
n∑

a=1

lnxa + (α− 1)
n∑

a=1

ln

(
1− e−(

g
xa
)
d
)

+
n∑

a=1

ln

[
α(1− ρ) + ρ

(
1− e−(

g
xa
)
d
)α−1

]
− 2

n∑
a=1

ln

[
1− ρ

(
1−

(
1− e−(

g
xa
)
d
)α−1

)]
.

(4.107)

To estimate the parameters using the MLE approach, we utilise the method of differen-

tiation. By differentiating equation (4.107) with respect to the parameters (α, ρ, d, g)

and setting the equations obtained to zero, we can derive a system of equations. These

equations when solved using numerical methods gives the parameter estimates. The

derivatives obtained are as follows

∂l

∂α
=

n∑
a=1

ln

(
1− e−(

g
xa
)
d
)
+

n∑
a=1

(1− ρ) + ρ ln

(
1− e−(

g
xa
)
d
)

α(1− ρ) + ρ

(
1− e−(

g
xa
)
d
)α−1

−
n∑

a=1

2ρ ln

(
1− e−(

g
xa
)
d
)(

1− e−(
g
xa
)
d
)α−1

1− ρ+ ρ

(
1− e−(

g
xa
)
d
)α−1 ,

∂l

∂ρ
= −2

n∑
a=1

(
1− e−(

g
xa
)
d
)α−1

− 1

1− ρ+ ρ

(
1− e−(

g
xa
)
d
)α−1 −

n∑
a=1

(
1− e−(

g
xa
)
d
)α−1

− α

α(1− ρ) + ρ

(
1− e−(

g
xa
)
d
)α−1 ,

∂l

∂d
=
n

d
+ n ln g −

n∑
a=0

lnxa +
n∑

a=1

ρ(α− 1)
(

g
xa

)d
ln
(

g
xa

)
e−(

g
xa
)
d
(
1− e−(

g
xa
)
d
)α−2

α(1− ρ) + ρ

(
1− e−(

g
xa
)
d
)α−1

− α
n∑

a=1

(α− 1)
(

g
xa

)d
ln
(

g
xa

)
1− e−(

g
xa
)
d −

n∑
a=1

2ρ(α− 1)
(

g
xa

)d
ln
(

g
xa

)
e−(

g
xa
)
d
(
1− e−(

g
xa
)
d
)α−2

1− ρ+ ρ

(
1− e−(

g
xa
)
d
)α−1 ,
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∂l

∂g
=
nd

g
+

n∑
a=1

ρ(α− 1)
(

g
xa

)d (
d
g

)
e−(

g
xa
)
d
(
1− e−(

g
xa
)
d
)α−2

α(1− ρ) + ρ

(
1− e−(

g
xa
)
d
)α−1

+
n∑

a=1

(α− 1)
(

g
xa

)d (
d
g

)
e−(

g
xa
)
d

1− e−(
g
xa
)
d −

n∑
a=1

2ρ(α− 1)
(

g
xa

)d (
d
g

)
e−(

g
xa
)
d
(
1− e−(

g
xa
)
d
)α−2

1− ρ+ ρ

(
1− e−(

g
xa
)
d
)α−1 .

4.8.2 Ordinary Least Squares

To perform the OLSS estimation, a specific objective function is defined, which rep-

resents the discrepancy between the observed data and the model predictions. The

goal is to minimise Equation (4.108).

LS(α, ρ, d, g) =
n∑

b=1

{(
FHMFR(x(b))

)
− b

n+ 1

}2

. (4.108)

The method of differentiation is employed to minimise equation (4.108). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂LS

∂α
=

n∑
b=1

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ1(x(b);α, ρ, d, g) = 0, (4.109)

∂LS

∂ρ
=

n∑
b=1

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ2(x(b);α, ρ, d, g) = 0, (4.110)

∂LS

∂d
=

n∑
b=1

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ3(x(b);α, ρ, d, g) = 0, (4.111)

∂LS

∂g
=

n∑
b=1

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ4(x(b);α, ρ, d, g) = 0, (4.112)
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where

Λ1(x(b);α, ρ, d, g) =

(ρ− 1)log

(
1− e

−
(

g
x(b)

)d)(
1− e

−
(

g
x(b)

)d)α(
e

(
g

x(b)

)d

− 1

)2

[
(ρ− 1) + e

(
g

x(b)

)d (
1 + ρ

((
1− e

−
(

g
x(b)

)d)α

− 1

))]2 ,

(4.113)

Λ2(x(b);α, ρ, d, g) =

(
1− e

−
(

g
x(b)

)d)α
(1− e

(
g

x(b)

)d)α−1

− 1


1 + ρ

(1− e
−
(

g
x(b)

)d)α−1

− 1

2 , (4.114)

Λ3(x(b);α, ρ, d, g) =

(
g

x(b)

)d

log

(
g

x(b)

)(
1− e

−
(

g
x(b)

)d)α

×

[
α(ρ− 1) + e

(
g

x(b)

)d (
α + ρ(1− α)

(
1− e

−
(

g
x(b)

)d)α)]
[
(ρ− 1) + e

(
g

x(b)

)d (
1 + ρ

((
1− e

−
(

g
x(b)

)d)α

− 1

))]2 ,
(4.115)

Λ4(x(b);α, ρ, d, g) =
d

g

(
g

x(b)

)d
(
1− e

−
(

g
x(b)

)d)α

×

[
α(ρ− 1) + e

(
g

x(b)

)d (
α + ρ(1− α)

(
1− e

−
(

g
x(b)

)d)α)]
[
(ρ− 1) + e

(
g

x(b)

)d (
1 + ρ

((
1− e

−
(

g
x(b)

)d)α

− 1

))]2 .
(4.116)

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.
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4.8.3 Weighted Least Squares

The WLSS estimates are obtained by solving the minimisation problem, which in-

volves finding the parameter values that minimise the weighted discrepancy between

the observed data and the predictions of the HMF distribution.The minimisation

function is given as Equation (4.117).

WLS(α, ρ, d, g) =
n∑

b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
FHMFR(x(b))

)
− b

n+ 1

}2

. (4.117)

The method of differentiation is employed to minimise equation (4.117). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂WLS

∂α
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ1(x(b);α, ρ, d, g) = 0,

(4.118)

∂WLS

∂ρ
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ2(x(b);α, ρ, d, g) = 0,

(4.119)

∂WLS

∂d
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ3(x(b);α, ρ, d, g) = 0,

(4.120)

∂WLS

∂g
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
FHMFR(x(b))

)
− b

n+ 1

}
· Λ4(x(b);α, ρ, d, g) = 0.

(4.121)

Λm(x(b);α, ρ, d, g), (m = 1, 2, 3, 4), are obtained using equations (4.113), (4.114),

(4.115) and (4.116).

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.
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4.8.4 Cramér-von Mises Estimation

The CVM estimates are obtained by solving the minimisation problem, which involves

finding the parameter values that minimise the discrepancy between the observed

data and the HMF distribution as measured by the Cramér-von Mises statistic. The

minimisation function is given as Equation (4.122).

CVM(α, ρ, d, g) =
1

12n
+

n∑
b=1

{(
FHMFR(x(b))

)
− 2b− 1

2n

}2

. (4.122)

The method of differentiation is employed to minimise equation (4.122). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂CVM

∂α
=

n∑
b=1

{(
FHMFR(x(b))

)
− 2b− 1

2n

}
· Λ1(x(b);α, ρ, d, g) = 0, (4.123)

∂CVM

∂ρ
=

n∑
b=1

{(
FHMFR(x(b))

)
− 2b− 1

2n

}
· Λ2(x(b);α, ρ, d, g) = 0, (4.124)

∂CVM

∂d
=

n∑
b=1

{(
FHMFR(x(b))

)
− 2b− 1

2n

}
· Λ3(x(b);α, ρ, d, g) = 0, (4.125)

∂CVM

∂g
=

n∑
b=1

{(
FHMFR(x(b))

)
− 2b− 1

2n

}
· Λ4(x(b);α, ρ, d, g) = 0, (4.126)

Λm(x(b);α, ρ, d, g), (m = 1, 2, 3, 4), are obtained using equations (4.113), (4.114),

(4.115) and (4.116).

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.8.5 Anderson-Darling Estimation

The AD estimates are obtained by solving the minimisation problem, which involves

finding the parameter values that minimise the discrepancy between the observed

data and the HMFR distribution as measured by the Anderson-Darling statistic. The
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minimisation function is given as Equation (4.127).

AD(α, ρ, d, g) = −n− 1

n

n∑
b=1

(2b−1)
{(

logFHMFR(x(b))
)
+ log

(
1− FHMFR(x(n+1−b))

)}
.

(4.127)

The method of differentiation is employed to minimise equation (4.127). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂AD

∂α
=

n∑
b=1

(2b− 1)

{
Λ1(x(b);α, ρ, d, g)(
FHMFR(x(b))

) −
Λ1(x(n+1−b);α, ρ, d, g)

1−
(
FHMFR(x(n+1−b))

)} = 0, (4.128)

∂AD

∂ρ
=

n∑
b=1

(2b− 1)

{
Λ2(x(b);α, ρ, d, g)(
FHMFR(x(b))

) −
Λ2(x(n+1−b);α, ρ, d, g)

1−
(
FHMFR(x(n+1−b))

)} = 0, (4.129)

∂AD

∂d
=

n∑
b=1

(2b− 1)

{
Λ3(x(b);α, ρ, d, g)(
FHMFR(x(b))

) −
Λ3(x(n+1−b);α, ρ, d, g)

1−
(
FHMFR(x(n+1−b))

)} = 0, (4.130)

∂AD

∂g
=

n∑
b=1

(2b− 1)

{
Λ4(x(b);α, ρ, d, g)(
FHMFR(x(b))

) −
Λ4(x(n+1−b);α, ρ, d, g)

1−
(
FHMFR(x(n+1−b))

)} = 0, (4.131)

where Λm(x(·);α, ρ, d, g), (m = 1, 2, 3, 4), are obtain using equations (4.113), (4.114),

(4.115) and (4.116).

The ADE estimates are derived by solving these functions simultaneously employing

numerical methods.

4.9 Development of the Harmonic Mixture Burr

XII Distribution

This sections presents the PDF, CDF, FRF and SF of the HMBRXII distribution.

We can determine the PDF of the HMBRXII distribution by the substituting the

equations (3.14) and (3.15) into equation (3.21). The expression obtained is Equation
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(4.132).

f(x) =
α (1− ρ) dwxd−1

(
1 + xd

)−αw−1
+ ρdwxd−1

(
1 + xd

)−w(2α−1)−1[
1− ρ

(
1− (1 + xd)−w(α−1)

)]2 , (4.132)

where d > 0, w > 0, α > 0, 0 < ρ < 1, and x > 0 .

The density plots of the HMBRXII distribution are shown in Figure 4.9. By manip-

ulating the parameter values, the density exhibits distinct characteristics, primarily

either a decreasing trend or a right-skewed shape. This variation in density highlights

the flexibility of the HMBRXII distribution in capturing different data patterns and

distributions. It provides a visual representation of how different parameter settings

can influence the shape and behaviour of the distribution. Analysing the density

plots allows researchers to gain insights into the distribution’s characteristics and

make informed decisions regarding data analysis and modelling.

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

x

f(
x)

α = 57.6  ρ = 0.16  d = 0.92  w = 0.02
α = 38  ρ = 0.98  d = 2  w = 0.028
α = 15.8  ρ = 0.996  d = 4.21  w = 0.0495
α = 21.5  ρ = 0.996  d = 4.3  w = 0.031

Figure 4.9: The density plots of the HMBRXII

To obtain the corresponding CDF of the HMBRXII distribution, substitute equation

(3.15), the SF of the Burr XII distribution into equation (3.20). By performing this

86

Digitized by UMaT Library



substitution, we can derive the expression in Equation (4.133).

F (x) = 1−
(
1 + xd

)−αw[
1− ρ

(
1− (1 + xd)−w(α−1)

)] , x > 0. (4.133)

The Figure 4.10 displays the CDF of the HMBRXII distribution as parameter values

are varied. The CDF approaches 0 as x approaches 0 and approaches 1 as x approaches

infinity.
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Figure 4.10: The CDF plots of the HMBRXII

The SF is then given by Equation (4.134).

S(x) =

(
1 + xd

)−αw[
1− ρ

(
1− (1 + xd)−w(α−1)

)] , x > 0. (4.134)

To obtain the FRF, we substitute equations (3.14) and (3.15) into equation (3.22).The

FRF of the HMBRXII distribution is expressed as Equation (4.135).

h(x) =
α (1− ρ) dwxd−1

(
1 + xd

)−αw−1
+ ρdwxd−1

(
1 + xd

)−w(2α−1)−1

(1 + xd)−αw
[
1− ρ

(
1− (1 + xd)−w(α−1)

)] , x > 0.

(4.135)
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The plots of the FRF for the HMBRXII distribution are presented in Figure 4.11.

By manipulating certain parameter values, the failure rate plots exhibit distinct pat-

terns, primarily either a decreasing trend or an upside-down bathtub shape. These

variations in the failure rate provide insights into the behaviour and characteristics

of the distribution under different parameter settings.
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Figure 4.11: The FRF plots of the HMBRXII

In Figure 4.12, we investigated the effect of introducing additional parameters from

the HMG family to the Burr XII distribution (black curve). By modifying the val-

ues of the parameters α and ρ, while keeping the remaining parameters of the Burr

XII distribution constant, we observed significant enhancements in terms of kurtosis

(peakness) and skewness. These improvements indicate that the inclusion of the ad-

ditional parameters from the HMG family provides a valuable augmentation to the

Burr XII distribution, enabling a more accurate representation of data with varying

characteristics and tail behaviours.
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Figure 4.12: Assessing the densities of the HMBRXII Distribution and the BRXII
Distribution

Lemma 4.5. The linear representation for the PDF of the HMBRXII distribution

provided α > 1 is given as Equation (4.136).

f(x) =
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)dwxd−1 (1 + xc)−k(α(b+1)−b)−1 + ρdwxd−1

(
1 + xd

)−w(α(b+2)−(b+1))−1
]
,

(4.136)

where ϖab = (−1)b(a+ 1)
(
a
b

)
ρ, x > 0, d > 0, w > 0, α > 1 and 0 < ρ < 1.

Proof. For η > 0, the series expansions for (1 − u)−η for |u| < 1 is (1 − u)−η =∑∞
a=0

(
η+a−1

a

)
(u)a. Since 0 <

(
1 + xd

)−w
< 1 for α > 1,we use the Taylor series twice

to obtain

[
1− ρ

(
1−

(
1 + xd

)−w(α−1)
)]−2

=
∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρa
(
1 + xd

)−w(α−1)b
.
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We then obtain

f(x) = α(1− ρ)
∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρadwxd−1

(
1 + xd

)−w(α(b+1)−b)−1

+ ρ

∞∑
a=0

a∑
b=0

(−1)b(a+ 1)
(
a
b

)
ρadwxd−1

(
1 + xd

)−w(α(b+2)−(b+1))−1
.

(4.137)

4.10 Statistical Properties of the HMBRXII dis-

tribution

The statistical properties of the HMBRXII distribution are derived in this section.

Properties such as the quantile function, non-central moments, incomplete moments,

inequality measures, mean and median deviations, moment generating functions, char-

acteristic function, entropy, stress-strength reliability, order statistics and identifiabil-

ity are deduced.

4.10.1 Quantile Function

The quantile function, also known as the inverse CDF, operates in the opposite di-

rection of the CDF. By evaluating the quantile function, researchers can gain insights

into the various shapes and nature of a distribution.

Lemma 4.6. The quantile function of the HMBRXII distribution is given by Equation

(4.138).

(1− p)
[
1− ρ

(
1−

(
1 + xdp

)−w(α−1)
)]

−
(
1 + xdp

)−αw
= 0, (4.138)

where p ∈ (0, 1) and Q(p) = xp is the quantile function.

Proof. Mathematically,

Q(p) = P(X ≤ xp) = p.

The quantile function of the HMBRXII distribution can be obtained by the substitu-

tion of equation (3.13) into equation (3.24) and letting Q(p) = xp.
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There is no direct formula available to calculate the exact quantiles of the HMBRXII

distribution. Instead, numerical methods or approximation techniques may be em-

ployed to estimate the quantiles based on the distribution’s parameters and desired

probability values.

4.10.2 Moments

The determination of moments holds significant importance in statistical analysis. We

gain valuable insights into the behaviour and properties of the distribution, enabling

us to compute important statistical measures and make informed interpretations of

the data. The moments serve as fundamental building blocks for a wide range of

statistical analyses and provide a comprehensive understanding of the distribution’s

characteristics.

Proposition 4.30. The rth non-central moment of the HMBRXII distribution for

α > 1 can be expressed as Equation (4.139).

µ
′

r =
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)wB

(r
d
+ 1, w (α(b+ 1)− b)− r

d

)
+ ρwB

(r
d
+ 1, w (α(b+ 2)− (b+ 1))− r

d

)]
, r = 1, 2, 3, 4....

(4.139)

where B(·, ·) is a beta function.

Proof. Mathematically,

µ
′

r = E(Xr) =

∫ ∞

0

xrf(x)dx. (4.140)
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The substitution of equation (4.136) into equation (4.140) produces

E(Xr) =

∫ ∞

0

xr
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)dwxd−1

(
1 + xd

)−w(α(b+1)−b)−1

+ ρdwxd−1
(
1 + xd

)−w(α(b+2)−(b+1))−1
]
dx.

We then obtain

µ
′

r = dw
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)

∫ ∞

0

xr+c−1
(
1 + xd

)−w(α(b+1)−b)−1
dx

+ ρ

∫ ∞

0

xr+d−1
(
1 + xd

)−w(α(b+2)−(b+1))−1
dx

]
.

Let v = xd, then x = v1/d and dx = 1
d
v1/d−1du. We then have

µ
′

r = k
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)

∫ ∞

0

vr/d (1 + v)−w(α(b+1)−b)−1 dv

+ ρ

∫ ∞

0

vr/d (1 + v)−w(α(b+2)−(b+1))−1 dv

]
.

Using the identity (see Afify et al. (2018))

B(g, h) =
∫ ∞

0

vg−1(1 + v)−(g+h)dv, g > 0, h > 0

we obtain

µ
′

r =
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)kB

(r
d
+ 1, w (α(b+ 1)− b)− r

d

)
+ ρwB

(r
d
+ 1, w (α(b+ 2)− (b+ 1))− r

d

)]
.

Table 4.3 presents the values of σ2, CV, CS, and CK for the HMBRXII distribution.

We observe that the HMBRXII distribution is skewed to the right. Furthermore,

by varying certain parameter values, we observe different kurtosis characteristics.

Specifically, the distribution can exhibit either a platykurtic nature (when CK is less

than 3), indicating lighter tails and less extreme values, or a leptokurtic nature (when
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CK is greater than 3), indicating heavier tails and more extreme values. These insights

into the skewness and kurtosis properties of the HMBRXII distribution allow for a

better understanding of its behaviour and provide valuable information for statistical

analysis and modelling purposes.

Table 4.3: Moments for HMBRXII

r
α=8.50, ρ=0.20,
d=2.90, w=10.50

α=28.50,ρ=0.30,
d=1.90,w=15.00

α=8.50, ρ=0.80,
d=0.90,w=15.50

α=10.50, ρ=0.50,
d=1.20, w=20.50

α=10.50, ρ=0.55,
d=1.90, w=8.50

µ
′
1 1.980× 10−1 4.061× 10−2 9.402× 10−3 1.406× 10−2 1.037× 10−1

µ
′
2 4.500× 10−2 2.081× 10−3 1.475× 10−4 3.031× 10−4 1.323× 10−2

µ
′
3 1.100× 10−2 1.246× 10−4 3.052× 10−6 8.552× 10−6 1.938× 10−3

µ
′
4 3.000× 10−3 8.440× 10−6 8.315× 10−8 2.957× 10−7 3.156× 10−4

µ
′
5 1.000× 10−3 6.201× 10−7 2.820× 10−9 1.177× 10−8 5.610× 10−5

σ2 5.000× 10−3 4.000× 10−4 5.915× 10−5 1.000× 10−4 2.500× 10−3

CV 0.364 0.512 0.818 0.731 0.480
CS 0.147 0.558 1.214 1.221 0.428
CK 2.738 3.417 6.633 5.126 2.992

4.10.3 Incomplete Moments

By obtaining the incomplete moments, we gain insights into the distribution’s shape,

spread, and variability. The Lorenz curve, the Bonferroni curve, the mean deviation,

and the median deviation can all be obtained using the incomplete moments.

Proposition 4.31. The rth incomplete moment of the HMBRXII distribution for

α > 1 is given as Equation (4.141).

mr(y) =
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)wB

(
yd :

r

d
+ 1, (α(b+ 1)− b)− r

d

)
+ ρwB

(
yd :

r

d
+ 1, (α(b+ 2)− (b+ 1))− r

d

)]
, r = 1, 2, ...

(4.141)

where B(· : ·, ·) is an incomplete beta function.

Proof. Mathematically,

mr(y) = E(Xr|X ≤ y) =

∫ y

0

xrf(x)dx. (4.142)
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The substitution of equation (4.136) into equation (4.142) gives

mr(y) =

∫ y

0

xr
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)dwxd−1

(
1 + xd

)−w(α(b+1)−b)−1

+ ρdwxd−1
(
1 + xd

)−w(α(b+2)−(b+1))−1
]
dx.

We subsequently obtain

mr(y) = dw
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)

∫ y

0

xr+d−1
(
1 + xd

)−w(α(b+1)−b)−1
dx

+ ρ

∫ y

0

xr+d−1
(
1 + xd

)−w(α(b+2)−(b+1))−1
dx

]
.

Let v = xd, then x = v1/d and dx = 1
d
v1/d−1dv. It follows that

mr(y) = w
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)

∫ yd

0

vr/d (1 + v)−w(α(b+1)−b)−1 dv

+ ρ

∫ yd

0

vr/d (1 + v)−w(α(b+2)−(b+1))−1 dv

]
.

Using the identity

B(y : g, h) =

∫ y

0

vg−1(1 + v)−(g+h)dv,

we have

mr(y) =
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)wB

(
yd :

r

c
+ 1, w (α(b+ 1)− b)− r

d

)
+ ρwB

(
yd :

r

d
+ 1, w (α(b+ 2)− (b+ 1))− r

d

)]
.

4.10.4 Inequality Measures

Comparisons of income distributions across nations can be facilitated using the Lorenz

curve and the Bonfenorri curve. These graphical tools enable researchers to visually

assess the disparities and changes in income distribution patterns. By examining the

shape and positioning of the Lorenz curve, which depicts the cumulative distribution
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of income, researchers can gain insights into the level of income inequality and the

concentration of wealth within a country or across different countries.

Proposition 4.32. The Lorenz curve of the HMBRXII distribution for α > 1 is

Equation (4.143).

L(y) =
1

µ

∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)wB

(
yd :

1

d
+ 1, w (α(b+ 1)− b)− 1

d

)
+ ρwB

(
yd :

1

d
+ 1, w (α(b+ 2)− (b+ 1))− 1

d

)]
.

(4.143)

Proof. By definition the Lorenz curve is given by

LF (y) =
1

µ

∫ y

0

xf(x)dx.

∫ y

0
xf(x)dx as the first incomplete moment completes the proof

Proposition 4.33. The Bonferroni curve of the HMBRXII distribution for α > 1

can be expressed as Equation (4.144).

B(y) =
1

µF (y)

∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)wB

(
yd :

1

d
+ 1, w (α(b+ 1)− b)− 1

d

)
+ ρwB

(
yd :

1

d
+ 1, w (α(b+ 2)− (b+ 1))− 1

d

)]
.

(4.144)

Proof.

B(y) =
L(y)

F (y)
. (4.145)

After substituting equation (4.143) into equation (4.145), we complete the proof.

4.10.5 Mean and Median Deviations

The mean and median deviations serve as useful measures for quantifying the total

variation present in distributions. These measures enable researchers to assess the
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extent of variability or dispersion within a distribution, thereby providing valuable

information about the overall pattern and characteristics of the data.

Proposition 4.34. The mean deviation of the HMBRXII distribution for alpha > 1

can be expressed as Equation (4.146).

∆1(x) = 2µF (µ)− 2
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)wB

(
µd :

1

d
+ 1, w (α(b+ 1)− b)− 1

d

)
+ ρwB

(
µd :

1

d
+ 1, w (α(b+ 2)− (b+ 1))− 1

d

)]
.

(4.146)

Proof. Mathematically,

∆1(x) =

∫ ∞

0

|x− µ|f(x)dx

=

∫ µ

0

(µ− x)f(x)dx+

∫ ∞

µ

(x− µ)f(x)dx

= µ

∫ µ

0

f(x)dx−
∫ µ

0

xf(x)dx+ µ

∫ µ

0

f(x)dx−
∫ µ

0

xf(x)dx

+

∫ ∞

0

xf(x)dx− µ

∫ ∞

0

f(x)dx

= 2µF (µ)− 2

∫ µ

0

xf(x)dx.

∫ µ

0
xf(x)dx is the first incomplete moment and if substituted correctly completes the

proof.

Proposition 4.35. The median deviation for the HMBRXII distribution for α > 1

can be expressed as Equation (4.147).

∆2(x) = µ− 2
∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)kB

(
Hd :

1

d
+ 1, w (α(b+ 1)− b)− 1

d

)
+ ρwB

(
Hd :

1

d
+ 1, w (α(b+ 2)− (b+ 1))− 1

d

)
,

]
.

(4.147)

where H is the median.
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Proof. Mathematically,

∆2(x) =

∫ ∞

0

|x−H|f(x)dx

=

∫ H

0

(H − x)f(x)dx+

∫ ∞

H

(x−H)f(x)dx

= H

∫ H

0

f(x)dx−
∫ H

0

xf(x)dx+H

∫ H

0

f(x)dx−
∫ H

0

xf(x)dx

+

∫ ∞

0

xf(x)dx−H

∫ ∞

0

f(x)dx.

Using the identity F (H) = 0.5, we have

∆2(x) = µ− 2

∫ H

0

xf(x)dx.

∫ H

0
xf(x)dx as the first incomplete moment completes the proof.

4.10.6 Mean Residuals

The mean residual life function is a valuable tool in survival analysis and reliabil-

ity studies. At any given time point, the mean residual life represents the average

remaining lifespan of an individual or system that has already survived up to that

time. It provides insights into the additional life expectancy or durability that can be

expected for entities that have already reached a certain age.

Proposition 4.36. The mean residual life function of the HMBRXII distribution for

α > 1 can be expressed as Equation (4.148).

m(t) =
1

S(t)

[
µ−

∞∑
a=0

a∑
b=0

ϖab

[
α(1− ρ)kB

(
td :

1

d
+ 1, w (α(b+ 1)− b)− 1

d

)
+ ρwB

(
td :

1

d
+ 1, w (α(b+ 2)− (b+ 1))− 1

d

)]]
− t.

(4.148)
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Proof. Mathematically,

m(t) = E(X − t|X > t) =
1

S(t)

∫ ∞

t

(x− t)f(x)dx, t ≥ 0.

Hence,

m(t) =
1

S(t)

[
µ−

∫ t

0

(x)f(x)dx

]
− t. (4.149)

The substitution of equation (3.15) and
∫ t

0
xf(x)dx, the first incomplete moment into

equation (4.149) completes the proof.

4.10.7 Moment Generating Function

If the MGF exists for a given distribution, it serves as a useful tool for calculating

various moments of that distribution. By manipulating the MGF, we can obtain

important statistical measures and characteristics, such as the mean, variance, and

higher-order moments.

Proposition 4.37. The MGF of the HMBRXII distribution can be expressed as

Equation (4.150).

M(t) =
∞∑
a=0

a∑
b=0

∞∑
r=0

ϖab
tr

r!

[
α(1− ρ)wB

(r
d
+ 1, w (α(b+ 1)− b)− r

d

)
+ ρwB

(r
d
+ 1, w (α(b+ 2)− (b+ 1))− r

d

)]
,

(4.150)

Proof. Using the identity

etX =
∞∑
r=0

trXr

r!
,

we deduce the MGF as

M(t) = E(etX) =
∞∑
r=0

trE(Xr)

r!
=

∞∑
r=0

tr

r!
µ

′

r. (4.151)

After substituting equation (4.140) into equation (4.151), we complete the proof.
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4.10.8 Characteristic Function

Characteristic functions are particularly useful in situations where traditional mo-

ment generating functions are insufficient for describing heavy-tailed random vari-

ables. They provide a powerful tool for analysing and understanding the properties

of such distributions.

Proposition 4.38. The characteristic function of the HMBRXII distribution for α >

1 is given as Equation (4.152).

C(t) =
∞∑
a=0

a∑
b=0

∞∑
r=0

ϖab
(zt)r

r!

[
α(1− ρ)wB

(
w (α(b+ 1)− b)− r

d
,
r

d
+ 1
)

+ ρwB
(
w (α(b+ 2)− (b+ 1))− r

d
,
r

d
+ 1
)]
,

(4.152)

Proof. Using the identity

eztX =
∞∑
r=0

zrtrXr

r!
,

where z =
√
−1. We can define the characteristic function as

C(t) = E(eztX) =
∞∑
r=0

(zt)rE(Xr)

r!
=

∞∑
r=0

(zt)r

r!
µ

′

r. (4.153)

After substituting equation (4.140) into equation (4.153), we complete the proof.

4.10.9 Entropy

The entropy of the HMBRXII distribution allows us to quantify the level of variability

or uncertainty present in a distribution. A lower entropy value indicates a reduced

level of uncertainty, implying a more predictable distribution. On the other hand,

a higher entropy value suggests a greater degree of variation and uncertainty in the

distribution, indicating a wider spread of possible outcomes. Thus, the entropy serves

as a measure of the randomness within the HMBRXII distribution.

Proposition 4.39. The Rényi entropy of the HMBRXII distribution for α > 1 can
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be expressed as Equation (4.154).

IR(δ) =
(dw)δ

d(1− δ)
log

∞∑
a=0

a∑
b=0

∞∑
l=0

ψ∗
ablB

(
w (αδ + (α− 1)(b− l))− (δ − 1)

d
, δ − (δ − 1)

d

)
, δ ̸= 1,

(4.154)

where

ψ∗
abl = (−1)b

(
2δ+a−1

a

)(
a
b

)(
l
δ

)
ρa+l(α(1− ρ))δ−l.

Proof. Mathematically,

IR(δ) =
1

1− δ
log

∫ ∞

0

f δ(x)dx, δ ̸= 1. (4.155)

The PDF of HMBRXII to the power δ is given as

f δ(x) =

(dw)δxδ(d−1)
(
1 + xd

)−δ(αw+1)
(α(1− ρ))δ

(
1 +

ρ(1+xd)
−w(α−1)

α(1−ρ)

)δ

[
1− ρ

(
1− (1 + xd)−w(α−1)

)]2δ
We then use Taylor series to obtain

[
1− ρ

(
1−

(
1 + xd

)−w(α−1)
)]2δ

=
∞∑
a=0

a∑
b=0

(−1)b
(
2δ+a−1

a

)(
a
b

)
ρa
(
1 + xd

)−w(α−1)b

and (
1 +

ρ
(
1 + xd

)−w(α−1)

α(1− ρ)

)δ

=
∞∑
l=0

(
l
δ

)
ρl(α(1− ρ))−l

(
1 + xd

)−w(α−1)l
.

We then obtain

f δ(x) = (dw)δ
∞∑
a=0

a∑
b=0

∞∑
l=0

ψ∗
ablx

δ(c−1)
(
1 + xd

)−w(αδ+(α−1)(b−l))
, (4.156)

Substituting equation (4.156) into equation (4.155) gives

IR(δ) =
(dw)δ

1− δ
log

∫ ∞

0

∞∑
a=0

a∑
b=0

∞∑
l=0

ψ∗
ablx

δ(d−1)
(
1 + xd

)−w(αδ+(α−1)(b−l))
dx. (4.157)
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Let v = xd then x = v1/d and dx = 1
d
v1/d−1dv. We then obtain

∫ ∞

0

f δ(x)dx =
(dw)δ

d

∞∑
a=0

a∑
b=0

∞∑
l=0

ψ∗
ablv

δ−( δ−1
d

)−1 (1 + v)−w(αδ+(α−1)(b−l)) dv.

But B(g, h) =
∫∞
0
vg−1(1 + v)−(g+h)dv.

The Rényi entropy of the HMBRXII distribution is obtained after correctly substi-

tuting into equation (4.157).

4.10.10 Stress-Strength Reliability

The concept of stress-strength reliability is particularly relevant in fields such as engi-

neering, materials science, and structural analysis, where it is essential to ensure the

reliability and safety of systems and structures. It allows engineers and designers to

assess whether the strength of a system or component is sufficient to withstand the

expected stress or load it will encounter during its operational lifespan.

Proposition 4.40. For the HMBRXII distribution with α > 1, the stress-strength

reliability can be expressed as Equation (4.158).

Rss = 1−
[ ∞∑
a=0

a∑
b=0

δab

(
α(1− ρ)

(α(b+ 2)− b)
+

ρ

(α(b+ 3)− (b+ 1))

)]
., (4.158)

where δab = (−1)b
(
a+2
2

)(
a
b

)
ρa.

Proof. Mathematically,

Rss =

∫ ∞

0

f(x) · F (x)dx = 1−
∫ ∞

0

f(x) · S(x)dx. (4.159)

Multiplying equations (3.14) and (3.15), we have

f(x) · S(x) =
α (1− ρ) dwxd−1

(
1 + xd

)−2αw−1
+ ρdwxd−1

(
1 + xd

)−w(3α−1)−1[
1− ρ

(
1− (1 + xd)−w(α−1)

)]3 ,

(4.160)
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Using the Taylor series we simplify equation(4.160) as

f(x) · S(x) =
∞∑
a=0

a∑
b=0

δab

[
α(1− ρ)dwxd−1

(
1 + xd

)−w(α(b+2)−b)−1

+ ρdwxd−1
(
1 + xd

)−w(α(b+3)−(b+1))−1
]
.

(4.161)

The substitution of equation (4.161) into equation (4.159) yields

Rss = 1−
[ ∞∑
a=0

a∑
b=0

δab

∫ ∞

0

[
α(1− ρ)dwxd−1

(
1 + xd

)−w(α(b+2)−b)−1

+ ρdwxd−1
(
1 + xd

)−w(α(b+3)−(b+1))−1
]
dx

]
.

Let v = xd, then x = v1/d and dx = 1
d
v1/d−1dv. We then have

Rss = 1−
[ ∞∑
a=0

a∑
b=0

δabk

∫ ∞

0

[
α(1− ρ) (1 + v)−w(α(b+2)−b)−1

+ ρ (1 + v)−w(α(b+3)−(b+1))−1

]
dv

]
.

Simplifying further we obtain,

Rss = 1−
[ ∞∑
a=0

a∑
b=0

δab

(
α(1− ρ)

(α(b+ 2)− b)
+

ρ

(α(b+ 3)− (b+ 1))

)]
.

The proof is complete

4.10.11 Order Statistics

Order statistics play a valuable role in identifying both the maximum and minimum

values within a set of observations from a random variable. They provide a systematic

way to arrange the data in ascending or descending order, allowing us to determine

the extreme values within the dataset. This information is particularly useful in

analysing the distribution’s tail behaviour and understanding the range of values that

the random variable can take.

Proposition 4.41. If X11, X12, X13, ..., X1n is a random variable from the HMBRXII
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distribution with order statistics X(11), X(12), X(13), ..., X(1n), then the PDF of the pth

order statistics X1P for α > 1 is given as Equation (4.162).

fp:n(x) =
1

β(p, n− p+ 1)

[ ∞∑
a=0

a∑
b=0

n−p∑
l=0

p+l−1∑
m=0

ψ∗
ablm

(
α (1− ρ) dwxd−1

(
1 + xd

)−w(α(b+1)+m)−1

+ ρdwxd−1
(
1 + xd

)−w(α(b+2)+m−(b+1))−1
)]
,

(4.162)

where ψ∗
ablm = (−1)b+l+m

(
m+a−1

a

)(
a
b

)(
n−p
l

)(
p+l−1

m

)
ρa

Proof. By definition

fp:n(x) =
1

β(p, n− p+ 1)
(F (x))p−1 (1− F (x))n−p f(x). (4.163)

Applying Taylor series,

(1− F (x))n−p =

n−p∑
l=0

(−1)l
(
n−p
l

)
(F (x))l.

We then obtain,

fp:n(x) =
1

β(p, n− p+ 1)

n−p∑
l=0

p+l−1∑
m=0

(−1)l+m
(
n−p
l

)(
p+l−1

m

)
(S(x))mf(x). (4.164)

Raising equation (3.15) to the power m and subsequently multiplying it with equation

(3.14), we obtain

(S(x))mf(x) =
α (1− ρ) dwxd−1

(
1 + xd

)−w(α+m)−1
+ ρdwxd−1

(
1 + xd

)−w(2α+m−1)−1[
1− ρ

(
1− (1 + xd)−w(α−1)

)]m+2

Applying Taylor series , we have

(S(x))mf(x) =
∞∑
a=0

a∑
b=0

ψab

[
α (1− ρ) dwxd−1

(
1 + xd

)−w(α(b+1)+m)−1

+ ρdwxd−1
(
1 + xd

)−w(α(b+2)+m−(b+1))−1
]
,

(4.165)
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where ψab = (−1)b
(
m+a−1

a

)(
a
b

)
ρa

After substituting equation (4.165) into equation (4.164), we complete the proof.

Proposition 4.42. The rth non-central moment of the pth order statistics for α > 1

is given by Equation (4.166).

µp:n
r =

1

β(p, n− p+ 1)

[ ∞∑
a=0

a∑
b=0

n−p∑
l=0

p+l−1∑
m=0

ψ∗
ablm

(
α (1− ρ)wB(w(α(b+ 1) +m)− r

d
,
r

d
+ 1)

+ ρwB(w(α(b+ 2) +m− (b+ 1))− r

d
,
r

d
+ 1)

)]
.

(4.166)

Proof. By definition

µp:n
r =

∫ ∞

0

xrfp:n(x)dx. (4.167)

The substitution of equation (4.162) into equation (4.167) yields

µp:n
r =

1

β(p, n− p+ 1)

[ ∞∑
a=0

a∑
b=0

n−p∑
l=0

p+l−1∑
m=0

ψ∗
ablm

∫ ∞

0

(
α (1− ρ) dwxr+d−1

(
1 + xd

)−w(α(b+1)+m)−1

+ ρdwxr+d−1
(
1 + xd

)−w(α(b+2)+m−(b+1))−1
)
dx

]
.

The integral required can be derived from the method used in obtaining the non-

central moment. We then get the desired equation after substituting correctly.

4.10.12 Identifiability

To ensure that accurate inferences are made, the HMBRXII distribution’s identifia-

bility property is presented.

Proposition 4.43. If X1 and X2 are random variables from the HMBRXII distri-

bution with CDF FX(x;α1, ρ1, d1, w1) and FX(x;α2, ρ2, d2, w2) respectively, then the

HMBRXII distribution is identifiable if and only if α1 = α2, ρ1 = ρ2, d1 = d2 and

w1 = w2.
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Proof. For HMBRXII distribution to be idenfiable, FX(x;α1, ρ1, d1, w1) = FX(x;α2, ρ2, d2, w2).

Then

1−
(
1 + xd1

)−α1w1[
1− ρ1

(
1− (1 + xd1)−w1(α1−1)

)] = 1−
(
1 + xd2

)−α2w2[
1− ρ2

(
1− (1 + xd2)−w2(α2−1)

)]
If α1 = α2, ρ1 = ρ2, d1 = d2 and w1 = w2, then

(1 + xc1)−α1k1[
1− ρ1

(
1− (1 + xd1)−w1(α1−1)

)] − (
1 + xd2

)−α2k2[
1− ρ2

(
1− (1 + xd2)−w2(α2−1)

)] = 0

The identifiability requirement has been met.

4.11 Estimation of Parameters of the Harmonic

Mixture Burr XII Distribution

In this section, we employ five different estimation methods to obtain the parameter

estimates for the HMBRXII distribution. These methods include MLE, OLS, WLS,

CVM, and ADE. By employing these estimation techniques, we can determine the

most appropriate parameter values that best fit the observed data and characterise

the HMBRXII distribution.

4.11.1 Maximum Likelihood Estimation

By applying the MLE to the HMBRXII distribution, researchers can obtain parameter

estimates that are optimal in terms of maximising the likelihood of the observed data

and capturing the underlying characteristics of the distribution. For the HMBRXII

distribution, the likelihood function can be expressed as Equation (4.168).

L (x, α, ρ, d, w) =
n∏

a=1

f(xa, α, ρ, d, w). (4.168)

105

Digitized by UMaT Library



We substitute equation (4.132) into (4.168) and thereafter obtain the log-likelihood

function given as Equation (4.169).

l(x, α, ρ, d, w) = n ln(dw) + (d− 1)
n∑

a=1

lnxa +
n∑

a=1

ln
[
α(1− ρ) + ρ

(
1 + xda

)−w(α−1)
]

− 2
n∑

a=1

ln
[
1− ρ

(
1−

(
1 + xda

)−w(α−1)
)]
.

(4.169)

To estimate the parameters using the MLE approach, we utilise the method of differen-

tiation. By differentiating equation (4.169) with respect to the parameters (α, ρ, d, w)

and setting the equations obtained to zero, we can derive a system of equations. These

equations when solved using numerical methods gives the parameter estimates. The

derivatives obtained are as follows

∂l

∂ρ
=

n∑
a=1

(
1 + xda

)−w(α−1)−α

α(1− ρ) + ρ (1 + xda)
−w(α−1)

−
n∑

a=1

2
(
−1 +

(
1 + xda

)−w(α−1)
)

[
1− ρ+ ρ (1 + xda)

−w(α−1)
] ,

∂l

∂α
=

n∑
a=1

(
1 + xda

)−w(α−1)
[

2ρw ln(1 + xda)

1− ρ+ ρ
(
1 + xdi

)−w(α−1)

−
(ρ− 1)

(
1 + xda

)−w(α−1)
+ ρw ln(1 + xda)

α(1− ρ) + ρ (1 + xda)
−w(α−1)

]
,

∂l

∂d
=
n

d
+

n∑
a=1

lnxa +
n∑

a=1

wρ(α− 1)xda lnxa
(
1 + xda

)−w(α−1)−1
[

2

1− ρ+ ρ (1 + xda)
−w(α−1)

− 1

α(1− ρ) + ρ (1 + xda)
−w(α−1)

]
,

∂l

∂w
=
n

w
+

n∑
a=1

ρ(α− 1) ln(1 + xda)
(
1 + xda

)−w(α−1)
[

2

1− ρ+ ρ (1 + xda)
−w(α−1)

− 1

α(1− ρ) + ρ (1 + xda)
−w(α−1)

]
.

4.11.2 Ordinary Least Squares

The OLSS method is used to estimate the unknown parameters of the HMBRXII

distribution by minimising a specific function. The objective of this minimisation is

to find the parameter values that minimise the discrepancies between the observed
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data and the predicted values based on the HMBRXII distribution. These estimates

are derived by minimising Equation (4.170).

LS(α, ρ, d, w) =
n∑

b=1

{(
F (x(b))

)
− b

n+ 1

}2

. (4.170)

The method of differentiation is employed to minimise equation (4.170). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂LS

∂α
=

n∑
b=1

{(
F (x(b))

)
− b

n+ 1

}
· Λ1(x(b);α, ρ, d, w) = 0, (4.171)

∂LS

∂ρ
=

n∑
b=1

{(
F (x(b))

)
− b

n+ 1

}
· Λ2(x(b);α, ρ, d, w) = 0, (4.172)

∂LS

∂d
=

n∑
b=1

{(
F (x(b))

)
− b

n+ 1

}
· Λ3(x(b);α, ρ, d, w) = 0, (4.173)

∂LS

∂w
=

n∑
b=1

{(
F (x(b))

)
− b

n+ 1

}
· Λ4(x(b);α, ρ, d, w) = 0, (4.174)

where

Λ1(x(b)) =
w ln(1 + xdb)

[(
1 + xdb

)−wα
(
1− ρ

(
1−

(
1 + xdb

)−w(α−1)
))

− ρ
(
1 + xdb

)−w(2α−1)
]

[
1− ρ

(
1−

(
1 + xdb

)−w(α−1)
)]2 ,

(4.175)

Λ2(x(b)) =

(
1 + xdb

)−wα
((

1 + xdb
)−w(α−1) − 1

)
[
1− ρ

(
1−

(
1 + xdb

)−w(α−1)
)]2 , (4.176)

Λ3(x(b)) =
kxdb lnxb

[
α
(
1 + xdb

)−w(α+1)
(
1− ρ

(
1−

(
1 + xdb

)−w(α−1)
))

− ρ(α− 1)
(
1 + xdb

)−w(2α−1)
]

[
1− ρ

(
1−

(
1 + xdb

)−w(α−1)
)]2 ,

(4.177)
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Λ4(x(b)) =
ln(1 + xdb)

[
α
(
1 + xdb

)−wα
(
1− ρ

(
1−

(
1 + xdb

)−w(α−1)
))

− ρ(α− 1)
(
1 + xdb

)−w(2α−1)
]

[
1− ρ

(
1−

(
1 + xdb

)−w(α−1)
)]2 .

(4.178)

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.11.3 Weighted Least Squares

The WLSS method is utilised to estimate the unknown parameters of the HMBRXII

distribution by minimising a specific function. This minimisation process aims to find

the parameter values that minimise the discrepancies between the observed data and

the predicted values based on the HMBRXII distribution, taking into account the

weights assigned to each data point. The minimisation function is given as Equation

(4.179).

WLS(α, ρ, d, w) =
n∑

b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
F (x(b))

)
− b

n+ 1

}2

. (4.179)

The method of differentiation is employed to minimise equation (4.179). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂WLS

∂α
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
F (x(b))

)
− b

n+ 1

}
· Λ1(x(b);α, ρ, d, w) = 0, (4.180)

∂WLS

∂ρ
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
F (x(b))

)
− b

n+ 1

}
· Λ2(x(b);α, ρ, d, w) = 0, (4.181)

∂WLS

∂d
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
F (x(b))

)
− b

n+ 1

}
· Λ3(x(b);α, ρ, d, w) = 0, (4.182)
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∂WLS

∂w
=

n∑
b=1

(n+ 1)2(n+ 2)

b(n− b+ 1)

{(
F (x(b))

)
− b

n+ 1

}
· Λ4(x(b);α, ρ, d, w) = 0. (4.183)

Λp(x(b);α, ρ, d, w), (p = 1, 2, 3, 4), can be obtained through equations (4.175), (4.176),

(4.177) and (4.178).

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.11.4 Cramér-Von Mises Estimation

The CVM method is employed to estimate the unknown parameters of the HMBRXII

distribution by minimising a specific function. This minimisation process aims to find

the parameter values that minimise the discrepancy between the observed data and

the theoretical distribution based on the HMBRXII distribution. The minimisation

function is given as Equation (4.184).

CVM(α, ρ, d, w) =
1

12n
+

n∑
b=1

{(
F (x(b))

)
− 2b− 1

2n

}2

. (4.184)

The method of differentiation is employed to minimise equation (4.184). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂CVM

∂α
=

n∑
b=1

{(
F (x(b))

)
− 2b− 1

2n

}
· Λ1(x(b);α, ρ, d, w) = 0, (4.185)

∂CVM

∂ρ
=

n∑
b=1

{(
F (x(b))

)
− 2b− 1

2n

}
· Λ2(x(b);α, ρ, d, w) = 0, (4.186)

∂CVM

∂d
=

n∑
b=1

{(
F (x(b))

)
− 2b− 1

2n

}
· Λ3(x(b);α, ρ, d, w) = 0, (4.187)

∂CVM

∂w
=

n∑
b=1

{(
F (x(b))

)
− 2b− 1

2n

}
· Λ4(x(b);α, ρ, d, w) = 0, (4.188)

Λp(x(b);α, ρ, d, w), (p = 1, 2, 3, 4), can be obtained through equations (4.175), (4.176),

(4.177) and (4.178).
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These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.

4.11.5 Anderson-Darling Estimation

The AD method is utilised to estimate the unknown parameters of the HMBRXII

distribution by minimising a specific function. This minimisation process aims to

find the parameter values that minimise the difference between the observed data and

the theoretical distribution based on the HMBRXII distribution. The minimisation

function is given as Equation (4.189).

AD(α, ρ, d, w) = −n− 1

n

n∑
b=1

(2b−1)·
{(

logF (x(b))
)
+ log

(
1− F (x(n+1−b))

)}
. (4.189)

The method of differentiation is employed to minimise equation (4.189). We differ-

entiate with respect to each parameter and equate the resulting equations to zero,

obtaining

∂AD

∂α
=

n∑
b=1

(2b− 1)

{
Λ1(x(b);α, ρ, d, w)(

F (x(b))
) −

Λ1(x(n+1−b);α, ρ, d, w)

1−
(
F (x(n+1−b))

) }
= 0, (4.190)

∂AD

∂ρ
=

n∑
b=1

(2b− 1)

{
Λ2(x(b);α, ρ, d, w)(

F (x(b))
) −

Λ2(x(n+1−b);α, ρ, d, w)

1−
(
F (x(n+1−b))

) }
= 0, (4.191)

∂AD

∂d
=

n∑
b=1

(2b− 1)

{
Λ3(x(b);α, ρ, d, w)(

F (x(b))
) −

Λ3(x(n+1−b);α, ρ, d, w)

1−
(
F (x(n+1−b))

) }
= 0, (4.192)

∂AD

∂w
=

n∑
b=1

(2b− 1)

{
Λ4(x(b);α, ρ, d, w)(

F (x(b))
) −

Λ4(x(n+1−b);α, ρ, d, w)

1−
(
F (x(n+1−b))

) }
= 0, (4.193)

where Λp(x(·);α, ρ, d, w), (p = 1, 2, 3, 4), can be derived from the equations (4.175),

(4.176), (4.177) and (4.178).

These equations obtained are solved simultaneously using numerical methods to ob-

tain the parameter estimates.
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4.12 The Log-Harmonic Mixture Burr XII Regres-

sion Model

By applying a log transform to the random variable X that follows the HMBRXII

distribution, we define a new variable Y as the natural logarithm of τX, where τ is a

positive parameter. This transformation results in a log-linear regression model. To

characterise the distribution of Y , we redefine the parameters as d = 1/σ and τ = eµ.

This redefinition allows us to express the density function of Y in terms of the new

parameters σ and µ in Equation (4.194).

f(y) =
αw(1−ρ)

σ
exp(y−µ

σ
)
(
1 + exp(y−µ

σ
)
)−αw−1

+ ρw
σ
exp(y−µ

σ
)
(
1 + exp(y−µ

σ
)
)−w(2α−1)−1[

1− ρ
(
1−

(
1 + exp(y−µ

σ
)
)−w(α−1)

)]2 ,

(4.194)

where y > 0, σ > 0, w > 0, α > 0, 0 < ρ < 1 and µ ∈ R.

The equation (4.194) represents the PDF of the Log-Harmonic Mixture Burr XII

(LHMBXII) distribution. In this distribution, the parameter µ represents the location

parameter, while σ represents the scale parameter.

If a random variable X follows the HMBRXII distribution with parameters (α, ρ, d, w),

then the logarithmically transformed variable Y, defined as Y = log(τX), follows the

LHMBRXII distribution with parameters (α, ρ, w, σ, µ).

The SF of the LHMBRXII can be expressed as Equation (4.195).

S(y) =

(
1 + exp(y−µ

σ
)
)−αw[

1− ρ
(
1−

(
1 + exp(y−µ

σ
)
)−w(α−1)

)] . (4.195)

We present a log-linear regression model that incorporates the response variable yi

and covariates ZT
a = (1, za1, ..., zap). The model is defined as

ya = ZT
a β + σχi.
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Here, for each observation a ranging from 1 to n, we have the coefficients of the

regression of the covariates denoted as β = (β1, β2, ...βp)
T . The scale parameter is

represented as σ, and χa corresponds to the random error. The location parameter of

ya is defined as µa = ZT
a β. By maximising log-likelihood function, the MLE provides

estimates for the parameters that best align with the observed data and the assumed

HMGOM regression model. The log-likelihood function, which is used to estimate the

parameters Ω = (α, ρ, w, σ, βT )T of the model, can be written as Equation (4.196).

l(Ω) = n (ln(w)− ln(σ)) +
n∑

a=1

ya − µa

σ

+
n∑

a=1

ln

[
α(1− ρ) + ρ

(
1 + e

ya−µa
σ

)−w(α−1)
]
− 2

n∑
a=1

ln

[
1− ρ

(
1−

(
1 + e

ya−µa
σ

)−w(α−1)
)]

.

(4.196)
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CHAPTER 5

SIMULATIONS AND APPLICATIONS

5.1 Introduction

In this chapter, we present the findings of the Monte Carlo simulations and the prac-

tical applications of the proposed distributions and regression models on datasets

related to lifetimes. We calculate the Average Bias (AB) and their respective Mean

Square Error (MSE) for the estimation methods such as MLE, OLSS, WLSS, CVM,

and AD with:

AB =
1

1000

1000∑
i=1

|V̂i − V |,

and

MSE =
1

1000

1000∑
i=1

(
V̂i − V

)2
.

The goodness-of-fit of the chosen distributions was evaluated using the Kolmogorov-

Smirnov Test (KS), Anderson-Darling Test (A) and Cramér-von Mises Test (W) statis-

tics. The selection of the most suitable model for the dataset was based on the least

Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC)

and Bayesian Information Criterion (BIC). Furthermore, the model with the lowest

values for the KS, A, and W test statistics was considered the best fit for the data.

AIC = −2 log(θ̂) + 2k,

AICC = AIC +
2k(k + 1)

n− k − 1

and

BIC = −2 log(θ̂) + k log(n).
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5.2 Monte Carlo Simulations of the Harmonic Mix-

ture Gompertz Distribution

In this section, we conduct simulation experiments to evaluate the accuracy of the esti-

mated parameters in the HMGOM distribution. The experiments are performed using

three different parameter combinations: (α, ρ, f, g) = (0.2, 0.6, 0.5, 0.9), (α, ρ, f, g) =

(0.3, 0.7, 0.6, 1.0) and (α, ρ, f, g) = (0.09, 0.6, 0.6, 1.2). We replicate the experiments

1000 times using various sample sizes: 30, 80, 200, 500, and 1000. The goal is to as-

certain the precision of the estimated parameters in the HMGOM distribution across

these different sample sizes.

The results are shown in Table 5.1, 5.2 and 5.3. As the sample sizes increase, we

observe a general trend of decreasing ABs and MSEs for the estimators of parame-

ters. Although there may be deviations, the MLE consistently exhibit the least ABs

and MSEs, indicating their superior performance as the best estimators. The OLSS

and WLSS estimators can be considered as viable alternatives, although they exhibit

slightly higher ABs and MSEs at some points compared to the MLE estimators.

Table 5.1: ABs and MSEs for (α, ρ, f, g) = (0.2, 0.6, 0.5, 0.9)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.1728 0.1205 0.1627 6.4661 8.0753 0.0334 0.0212 0.0299 111.9517 110.6284
80 0.1318 0.1361 0.1391 4.1971 10.7874 0.0226 0.0255 0.0251 78.0884 176.0832
200 0.1446 0.1610 0.1564 7.8795 9.9169 0.0260 0.0300 0.0291 104.5699 124.4208
500 0.1815 0.1210 0.1449 8.1356 10.8938 0.0353 0.0208 0.0262 88.6376 156.9742
1000 0.1158 0.1229 0.1362 9.2244 13.7704 0.0181 0.0212 0.0263 133.2229 248.2210

ρ

30 1.1881 1.5707 0.2873 5.5736 3.0961 7.3793 12.6514 0.1332 56.9280 20.4026
80 0.3462 0.4027 0.3402 4.9603 4.2490 0.1539 0.1958 0.1498 78.0884 40.1785
200 0.2893 0.2389 0.8352 2.8981 2.7631 0.1152 0.1101 3.1619 18.4375 12.4311
500 0.2234 0.3470 0.3437 2.6610 4.0440 0.0784 0.1693 0.1587 9.8217 35.6852
1000 0.4123 1.0902 0.3187 2.2845 2.4518 0.1977 6.3851 0.1316 16.7158 13.1933

f

30 0.4276 0.3338 0.2213 13.5653 14.4995 0.2762 0.1290 0.0896 354.1072 332.2690
80 0.2649 0.2384 0.2379 13.0908 19.3098 0.0808 0.0814 0.0817 240.0828 393.2078
200 0.1946 0.2266 0.3252 15.6499 22.3086 0.0498 0.0666 0.1827 259.1609 513.1973
500 0.1286 0.1755 0.2052 19.5030 28.1683 0.0271 0.0466 0.0597 423.2970 832.7475
1000 0.1532 0.3147 0.1559 20.2267 24.1433 0.0315 0.1743 0.0410 431.5102 642.7975

g

30 1.3945 2.0766 0.6055 2.1069 2.7606 3.7484 6.4942 0.6311 9.2455 31.06869
80 1.0232 1.3251 0.8992 2.6983 2.9982 2.2029 3.0258 1.2445 18.4101 17.4671
200 0.5734 0.8506 0.8384 1.9363 3.2026 0.5469 1.6251 1.0584 6.0719 21.4858
500 0.3220 0.7811 0.7332 1.8616 2.9325 0.2337 1.1423 0.9002 7.1347 14.5020
1000 0.7011 0.7927 0.4509 4.9613 5.2361 0.6855 1.0064 0.3930 46.0868 43.8423
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Table 5.2: ABs and MSEs for (α, ρ, f, g) = (0.3, 0.7, 0.6, 1.0)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.2698 0.2086 0.2371 13.5748 11.3711 0.0765 0.0535 0.0626 268.6568 316.3286
80 0.2434 0.2228 0.1806 9.1300 22.3308 0.0721 0.0592 0.0522 118.6071 852.4057
200 0.1193 0.2180 0.1889 10.4509 24.6038 0.0296 0.0621 0.0534 169.6483 827.6018
500 0.1397 0.1681 0.1404 10.3455 50.9891 0.0303 0.0464 0.0269 142.2032 2916.036
1000 0.2252 0.1344 0.1347 14.3517 47.1094 0.0639 0.0366 0.0305 228.4411 2465.843

ρ

30 0.6286 0.9968 0.7317 2.0432 1.7773 0.9680 1.8621 0.8903 14.6218 3.927465
80 1.7077 0.3892 0.7359 3.8029 3.1668 10.4070 0.2265 0.9102 30.5244 33.1390
200 0.6937 0.7383 1.4451 1.6958 2.3850 0.9408 1.6021 9.0287 6.0972 21.4689
500 0.4377 0.4484 0.5215 1.7016 1.0061 0.2873 0.2574 0.3233 5.1822 1.0276
1000 0.3213 0.3698 0.4537 3.0081 0.9283 0.1630 0.2007 0.2708 21.2171 0.8722

f

30 0.2747 0.2936 0.3492 15.8928 33.1261 0.1085 0.1238 0.1403 282.8019 1818.799
80 0.4215 0.3381 0.3341 18.4690 30.9019 0.3003 0.1424 0.1359, 362.4512 1226.404
200 0.2751 0.3129 0.3832 20.5009 45.3442 0.0896 0.1304 0.2566 438.7893 2332.963
500 0.2473 0.2401 0.1923 25.0683 63.0271 0.0955 0.0830, 0.0608 681.9098 4284.441
1000 0.2464 0.1539 0.2285 27.7694 60.2618 0.0912 0.0392 0.0749 831.2347 3756.44

g

30 1.1085 1.7054 1.9748 2.8332 5.2564 2.3895 3.8585 6.2019 11.2405 35.7389
80 1.0250 1.6933 1.7599 2.3893 12.2858 2.3002 5.6833 4.8018 9.5992 218.7645
200 1.2550 0.9142 0.9964 3.5006 9.4239 2.2481 1.0905 1.3969 16.8369 147.4287
500 1.3039 0.9597 0.9226 4.6598 8.7626 2.8990 1.4930 1.1654 23.3329 96.9149
1000 0.7671 0.7618 0.9021 4.4774 11.0793 1.1059 1.0287 1.2151 28.0616 127.5515

Table 5.3: ABs and MSEs for (α, ρ, f, g) = (0.09, 0.6, 0.6, 1.2)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.1770 0.0866 0.1261 6.8844 8.2518 0.0920 0.0082 0.0403 154.6483 328.7511
80 0.1177 0.1156 0.1328 6.2260 7.8029 0.0174 0.0163 0.0276 76.2661 624.4194
200 0.1091 0.1307 0.1958 34.8841 12.0235 0.0141 0.0227 0.0695 2127.1410 871.7330
500 0.1931 0.1717 0.1205 38.9986 8.6312 0.0426 0.0411 0.0171 1703.0270 1613.0910
1000 0.1461 0.1360 0.1042 38.1071 15.9033 0.0258 0.0310 0.0140 1983.5160 2087.4670

ρ

30 0.4422 0.4012 0.6517 2.4265 3.7611 0.2241 0.1877 0.8865 6.5368 7.8770
80 0.3175 1.5238 0.9379 3.4599 3.0609 0.1481 7.4845 2.8595 19.3756 1.7426
200 0.3290 0.3253 0.8595 2.9609 2.6205 0.1565 0.1496 2.6383 18.5418 8.2478
500 0.4113 0.2667 0.2709 1.2788 3.4027 0.1997 0.1280 0.1171 1.9222 1.4919,
1000 0.3412 0.2653 0.1630 1.4268 1.0641 0.1470 0.1157 0.0525 2.8537 3.1897

f

30 0.3906 0.3747 0.3571 24.5892 15.7007 0.2112 0.1805 0.1794 996.1070 1381.2740
80 0.2590 0.5830 0.2799 36.7441 17.1816 0.0858 0.5543 0.1098 1676.7490 1976.1740
200 0.2571 0.2001 0.3173 46.5741 25.3394 0.1028 0.0699 0.2288 3191.3390 1735.7010
500 0.2485 0.1196 0.2000 64.976 27.5783 0.0728 0.0230, 0.0730 4509.726 4166.6540
1000 0.2220 0.1921 0.1527 58.3461 26.8826 0.0730 0.0692 0.0328 3723.1460 4159.4110

g

30 1.9877 1.3929 0.8649 4.8021 2.0102 7.7005 2.8022 1.5389 26.0589 28.7388
80 1.1326 2.2593 1.4422 3.7218 4.2053 2.3862 7.6344 2.8845 17.6698 39.0680
200 1.1010 0.8142 0.6987 12.9255 2.4309 2.0429 1.1326 0.6208 266.0319 40.1133
500 0.9911 0.3840 0.7037 14.2448 5.1270 1.3039 0.2913 0.9114 242.6935 50.1873
1000 0.6830 0.6279 0.3421 12.2556 4.5462 0.7551 0.8821 0.2334 178.4128 598.3489

5.3 Applications of the Harmonic Mixture Gom-

pertz Distribution

In this section, we apply the HMGOM distribution to three datasets to assess its

empirical importance and evaluate its performance in modelling lifetime data. The
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HMGOM distribution is compared with nine(9) other models. These nine(9) distri-

butions can be seen in Table 5.4.

Table 5.4: Compared Models

Models References

Odd Lindley-Gompertz distribution (OLINGOMD) Atanda et al. (2020)

Kumaraswamy Gompertz distribution (KWGO) Silva et al. (2021)

Rayleigh Gompertz (RGO) Al-Noor et al. (2022)

Exponentiated generalised Weibull-Gompertz distribution (EGWGD) El-Bassiouny et al. (2017)

Rayleigh Gamma Gompertz distribution (RGGOM) Al-Noor and Assi (2021)

Inverse power Gompertz (IPG) Abdelhady and Amer (2021)

Odd generalised exponential Gompertz distribution (OGEG) El-Damcese et al. (2015)

Inverted shifted Gompertz distribution(ISGZ) Chaudhary et al. (2020)

Nadarajah Haghighi Gompertz distribution (NHGD) Ogunde et al. (2020b)

5.3.1 The strengths of 1.5 cm glass fibres

The strength 1.5cm glass fibres dataset ranges from a minimum value of 0.5500 to a

maximum value of 2.4000. The CS for the dataset is calculated as -0.9220, indicating

a negative skew. This suggests that the dataset is skewed towards the left, with a

longer tail on the left side of the distribution. Additionally, the CK is determined to

be 1.1031. This value implies that the dataset exhibits less peak or concentration in

comparison to the normal distribution curve. The flatter peak signifies a platykurtic

distribution, indicating that the dataset has lighter tails and lacks extreme outliers.

The failure rate behaviour of the strengths of the 1.5cm glass fibres was examined

through a TTT plot. The TTT plot displayed an upward trend, indicating an in-

creasing pattern. This observation is evident from the concave shape observed above

the 45◦ line in Figure 5.1.
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Figure 5.1: The TTT plot of the strengths of 1.5cm glass fibres

Table 5.5 presents the MLEs for the fitted models along with their respective standard

errors (SE). The statistical significance of the estimated parameters was assessed at

a significance level of 5%. In the case of the HMGOM model, the parameters α and

ρ, for KWGO the parameter θ and b, for RGO the parameter α, for EGWGD the

parameters a, b, c, and d, and for OGEG the parameters α and β, were found to be

statistically insignificant. This means that these estimated parameters do not have a

significant impact on the model at the 5% level.
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Table 5.5: MLEs for strengths of 1.5cm glass fibres

Models Estimates SE Z-Value P-Value

HMGOM

α 0.0151 0.0282 0.5341 0.5933
ρ 0.0089 0.0078 1.1426 0.2532
f 1.2271 0.0892 13.7637 2.0000× 10−16*
g 0.9833 0.0468 21.0250 2.0000× 10−16*

OLINGOMD
α 3.0487 0.9701 3.1426 0.0017 *
θ 0.0106 0.0066 1.6112 0.1071
λ 2.6598 0.2773 9.5926 2.2000× 10−16*

KWGO

γ 2.9869 0.3959 7.5455 4.5060× 10−14*
θ 0.0265 0.0142 1.8675 0.0618
a 1.5130 0.3648 4.1476 3.3600× 10−5*
b 1.0979 0.5843 1.8790 0.0603

RGO
α 0.0265 0.0131 2.0189 0.4350
λ 2.3014 0.2785 8.2634 2.2000× 10−16*
θ 1.0171 0.3288 3.0937 0.0020 *

EGWGD
θ 0.6915 0.3349 2.0651 0.0389*
a 0.1820 0.4658 0.3908 0.6960
b 5.4824 7.8627 0.6973 0.4856
c 0.1133 0.3182 0.3561 0.7217
d 1.4886 5.1564 0.2887 0.7728

RGGOM
α 2.2785 0.7811 2.9170 0.0035*
λ 0.4422 0.1516 2.9170 0.0035*
θ 21.0836 7.0275 3.0002 0.0027*

IPG

α 2.4742 0.2257 10.9619 2.2000× 10−16*
β 0.2177 0.0713 3.0542 0.0023*
θ 6.9429 2.6243 2.6456 0.0082*

OGEG
α 11.5380 6.1085 1.8889 0.0589
β 4.7064 3.1616 1.4886 0.1366
λ 0.0287 0.0133 2.1578 0.0309 *
c 1.4186 0.4852 2.9234 0.0035 *

ISGZ
α 33.7053 9.4491 3.5670 0.0004 *
θ 5.7713 0.4573 12.6200 2.2000× 10−16*

NHGD
α 0.0937 0.0326 2.8738 0.0041*
λ 0.0919 0.0320 2.8738 0.0041 *
β 2.9280 0.4258 6.8757 6.1670× 10−12*
δ 2.0318 0.9085 2.2366 0.0253*

* means significant at 5%.
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Based on multiple evaluation criteria as shown in Table 5.6, the HMGOM model

demonstrates a better fit than the other models considered. It achieves the highest log-

likelihood value, the lowest values for AIC, AICC, and BIC, and the lowest values for

A, KS, and W. These results indicate that the HMGOM model provides an improved

fit to the dataset, making it a preferred choice for analysing the data.

Table 5.6: Comparison criteria for strengths of 1.5cm glass fibres

Models ℓ AIC AICC BIC KS A W
HMGOM -12.0840 32.1681 32.5749 40.7406 0.0918 0.3785 0.0611

OLINGOMD -18.7784 43.5567 43.9635 49.9861 0.1447 1.7788 0.3092
KWGO -14.2142 36.4284 45.0009 37.1180 0.1119 0.8936 0.1441
RGO -16.8399 41.3723 41.7791 47.8017 0.1637 1.7808 0.3074

EGWGD -14.6649 39.3298 40.3824 50.0455 0.1457 1.0828 0.1966
RGGOM -34.4107 74.8214 75.2281 81.2508 0.2181 4.9108 0.9045

IPG -51.5801 109.1601 110.2127 115.5895 0.2646 7.7531 1.5242
OGEG -16.4297 40.8594 41.5490 49.4319 0.1402 1.4076 0.2103
ISGZ -27.2560 58.5120 58.8363 62.7983 0.2192 3.8317 0.7204
NHGD -16.9935 41.9869 42.6766 50.5595 0.1434 1.5199 0.2678

Figure 5.2 and Figure 5.3 present the fitted PDFs and CDFs of the compared models.

These figures offer a visual representation of the goodness of fit for each model. Upon

examination, it is evident that the HMGOM model demonstrates a better fit to the

strengths of the 1.5cm glass fibres. The PDF and CDF curves of the HMGOM model

align more closely with the observed data, indicating a higher level of agreement.

This suggests that the HMGOM model effectively captures the underlying patterns

and distribution characteristics of the dataset.
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Figure 5.2: The fitted PDFs for strengths of 1.5cm glass fibres
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Figure 5.3: The fitted CDFs for strengths of 1.5cm glass fibres

The profile log-likelihood plots in Figure 5.4 provide visual evidence that the esti-

mated parameter values of the HMGOM distribution correspond to the real maxima,

validating the accuracy of the estimation process for analysing the strengths of the

1.5cm glass fibres.
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Figure 5.4: Profile log-likelihood plots of HMGOM for strengths of 1.5cm glass fibres

5.3.2 Turbochargers failure time

The dataset pertaining to turbochargers failure time exhibits a range from a minimum

value of 1.6000 to a maximum value of 9.0000. The CS for this dataset is calculated

as -0.6887, indicating a negative skew. This implies that the data distribution is

skewed towards the left, with a longer tail on the left side. Moreover, the CK for the

dataset is determined to be -0.2418. This suggests that the dataset has a flatter peak

compared to the normal distribution curve, indicating a platykurtic distribution. In

other words, the dataset displays lighter tails and a reduced concentration of values

compared to a normal distribution.

The failure rate behaviour of the turbochargers failure time was examined through

a TTT plot. The TTT plot displayed an upward trend, indicating an increasing

pattern. This observation is evident from the concave shape observed above the 45◦
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line in Figure 5.5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

i/n

T
(i/

n)

Figure 5.5: The TTT plot of the turbochargers failure time

Table 5.7 presents the MLEs for the fitted models along with their corresponding SEs.

The statistical significance of the estimated parameters was assessed at a significance

level of 5%. In the case of the HMGOM model, the parameters α, ρ, and g were found

to be statistically insignificant. Similarly, for the RGGOM model, the parameters α

and λ were not significant. Additionally, the parameters α and θ for the RGO model,

θ for the IPG model, β and λ for the OGEG model, and α for the NHGD model were

also not significant at the 5%.
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Table 5.7: MLEs for turbochargers failure time

Models Estimates SE Z-Value P-Value

HMGOM

α 0.2402 0.2521 0.9528 0.3407
ρ 0.0014 0.0162 0.0889 0.9292
f 0.5403 0.1061 5.0915 3.5520× 10−7*
g 0.0441 0.0580 0.7607 0.4469

OLINGOMD
α 19.9310 3.7279× 10−3 5346.4782 2.0000× 10−16*
θ 8.1407× 10−4 7.7504× 10−4 1.0504 0.2936
λ 0.5089 0.1485 3.4271 0.0006 *

KWGO

γ 0.1979 0.0694 2.8521 0.0043 *
θ 0.0538 0.0245 2.1940 0.0282*
a 2.8612 0.7997 3.5776 0.0003*
b 4.5520 2.1160 2.1512 0.0315*

RGO
α 0.0208 0.0218 0.9547 0.3397
λ 0.3267 0.1300 2.5130 0.0120*
θ 1.2114 0.9450 1.2819 0.1999

EGWGD
θ 1.6283 0.3982 4.0888 4.3370× 10−5*
a 6.4060 0.0435 147.2327 2.2000× 10−16*
b 1.9263 0.0737 26.1349 2.2000× 10−16*
c 0.0014 0.0004 3.3205 0.0009*
d 0.6035 0.0739 8.1687 3.1170× 10−16*

RGGOM
α 6.2600 8.1329 0.7697 0.4415
λ 0.0245 0.0319 0.7697 0.4415
θ 5.0530 1.7069 2.9603 0.0031*

IPG

α 1.8488 0.1983 9.3250 2.0000× 10−16*
β 0.6525 0.3035 2.1500 0.0316*
θ 24.3526 12.6022 1.9324 0.0533

OGEG
α 12.2469 0.7449 16.4421 2.0000× 10−16*
β 3.4789 1.8425 1.8881 0.0590
λ 0.0089 0.0064 1.3793 0.1678
c 0.2348 0.1027 2.2862 0.0222*

ISGZ
α 17.4313 7.3819 2.3613 0.01821 *
θ 19.3358 2.6878 7.1939 6.2980× 10−13*

NHGD
α 0.8923 0.5065 1.7617 0.0781
λ 0.0037 0.0021 1.7617 0.0781 *
β 0.5336 0.0871 6.1245 9.0960× 10−10*
δ 2.6972 1.3429 2.0085 0.0446*

* means significant at 5%.
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Once again, the proposed HMGOM model demonstrated superior goodness of fit, as

illustrated in Table 5.8. Among the compared models, the HMGOM model exhibited

several favourable characteristics. It achieved the highest log-likelihood value, indi-

cating a better fit to the data and suggesting that it captured the underlying patterns

more effectively. Furthermore, the HMGOMmodel showcased the lowest values across

various evaluation criteria, including AIC, AICC, and BIC. These criteria are com-

monly used for model selection, with lower values indicating a better balance between

model complexity and fit to the data. Additionally, the HMGOM model displayed

superior performance in terms of other assessment metrics such as A , KS , and W .

These statistics are employed to evaluate the agreement between the model and the

observed data, and lower values suggest a closer fit.

Table 5.8: Comparison criteria for turbochargers failure times

Models ℓ AIC AICC BIC KS A W
HMGOM -78.2964 164.5928 165.7359 171.3483 0.0537 0.0971 0.0139

OLINGOMD -80.7292 167.4584 172.5250 168.1251 0.1157 0.7601 0.1354
KWGO -82.1978 172.3956 173.5385 179.1511 0.0837 0.4691 0.0399
RGO -83.8853 173.7705 174.4372 178.8372 0.1027 0.7847 0.0986

EGWGD -85.7540 181.5080 183.2727 189.9524 0.1595 1.2566 0.1393
RGGOM -92.6762 191.3525 192.0192 196.4191 0.1900 2.2561 0.3829

IPG -102.4359 210.8718 211.5385 215.9384 0.2405 3.8758 0.7149
OGEG -82.5932 173.1865 174.3293 179.9420 0.0919 0.5940 0.0582
ISGZ -91.5428 187.0855 187.4098 190.4633 0.1456 1.9066 0.2681
NHGD -79.3480 166.6960 167.8389 173.4515 0.0744 0.2379 0.0388

The visual comparison of the fitted PDFs in Figure 5.6 and CDFs in Figure 5.7 is

made. The close alignment between the model curves and the observed data supports

the conclusion that the HMGOM model provides a better fit and is more suitable for

analysing the dataset.
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Figure 5.6: The fitted PDFs for turbochargers failure time
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Figure 5.7: The fitted CDFs for turbochargers failure time

The profile log-likelihood plots in Figure 5.8 provide visual evidence that the esti-

mated parameter values of the HMGOM distribution correspond to the real maxima,

validating the accuracy of the estimation process for analysing the the turbochargers

failure time.
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Figure 5.8: Profile log-likelihood plots of HMGOM for turbochargers failure time

5.3.3 Transformed total milk production

The transformed total milk production dataset ranges from a minimum value of 0.0168

to a maximum value of 0.8781. The CS is calculated as -0.3401, suggesting a slight

negative skew. This indicates that the dataset is approximately symmetric, with a

slightly longer tail on the left side. The CK is determined to be -0.2708, indicating

a platykurtic distribution. This means that the dataset has a flatter peak compared

to the normal distribution curve, implying a lower concentration of values near the

mean and lighter tails compared to a normal distribution.

The failure rate behaviour of the turbochargers failure time dataset was examined

through a TTT plot. The TTT plot displayed an upward trend, indicating an in-

creasing pattern. This observation is evident from the concave shape observed above

the 45◦ line in Figure 5.9.
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Figure 5.9: The TTT plot of the transformed total milk production

Table 5.7 presents the MLEs for the fitted models, along with their respective SEs.

The statistical significance of the estimated parameters was assessed at a 5% signif-

icance level. Upon examination, it was found that some parameters across different

models were not statistically significant at the 5% level. In the HMGOM model,

the parameters α and ρ did not demonstrate significant effects. Similarly, in the

RGGOM model, the parameters α and λ were not significant. The RGO model had

a non-significant parameter, namely α. Furthermore, the KWGO model showed non-

significant parameters θ and b. The EGWGD model had non-significant parameters

a, b, c, and d. Similarly, the NHGD model had non-significant parameters α, λ, and

δ. Lastly, the OGEG model had non-significant parameters α and λ.
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Table 5.9: MLEs for transformed total milk production

Models Estimates SE Z-Value P-Value

HMGOM

α 0.0525 0.0422 1.2440 0.2135
ρ 0.0350 0.0302 1.1581 0.2468
f 1.5058 0.6701 2.2472 0.0246 *
g 4.4138 1.7451 2.5293 0.0114 *

OLINGOMD
α 19.4207 0.0568 342.1120 2.0000× 10−16*
θ 0.0042 0.0016 2.5350 0.0112 *
λ 7.7273 0.6355 12.1590 2.0000× 10−16*

KWGO

γ 5.2184 1.0590 4.9276 8.3240× 10−7*
θ 0.1913 0.1976 0.9682 0.3330
a 0.9924 0.2390 4.1515 3.3030× 10−5*
b 1.5953 1.5336 1.0402 0.2983

RGO
α 0.0586 0.0436 1.3462 0.1782
λ 5.5583 1.0720 5.1852 2.1500× 10−7*
θ 0.3049 0.1015 3.0048 0.0027 *

EGWGD
θ 0.2927 0.1136 2.5777 0.0099 *
a 17.0403 13.7372 1.2405 0.2148
b 5.3236 4.5239 1.1768 0.2393
c 0.4434 0.2942 1.5073 0.1317
d 0.6923 3.2949 0.2101 0.8336

RGGOM
α 1.2819 1.5692 0.8169 0.4140
λ 1.0251 1.2549 0.8169 0.4140
θ 1.7727 0.3305 5.3631 8.1790× 10−8*

IPG

α 0.8106 0.0792 10.2297 2.0000× 10−16*
β 0.0528 0.0264 2.0044 0.0450 *
θ 5.6909 2.3721 2.3991 0.0164 *

OGEG
α 11.3691 7.8930 1.4404 0.1498
β 1.1768 0.2787 4.2222 2.4190× 10−5*
λ 0.0423 0.0338 1.2506 0.2111
C 4.2717 0.8151 5.2408 1.5990× 10−7*

ISGZ
α 1.4859 0.6540 2.2719 0.0231 *
θ 0.4904 0.0789 6.2162 5.0930× 10−10*

NHGD
α 0.9620 0.7516 1.2800 0.2005
λ 0.3211 0.2508 1.2800 0.2005
β 5.0467 1.2835 3.9319 8.4270× 10−5*
δ 1.0470 0.5951 1.7595 0.0785

* means significant at 5%.
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As demonstrated in Figure 5.10, the proposed HMGOM model once again exhibited

a superior fit. The HMGOM model achieved the highest log-likelihood value and

the lowest values for the AIC, AICC, and BIC criteria, indicating its superior per-

formance in terms of model selection and goodness-of-fit measures. Moreover, the

HMGOM model yielded the lowest values for the A-statistic, KS-statistic, and W-

statistic. This further supports the conclusion that the HMGOM model outperforms

the other models in accurately capturing the distribution of the transformed total

milk production.

Table 5.10: Comparison criteria for transformed total milk production

Models ℓ AIC AICC BIC KS A W
HMGOM 29.3006 -50.6013 -50.2091 -39.9100 0.0492 0.1745 0.0264

OLINGOMD 12.4678 -18.9356 -18.7025 -10.9171 0.1976 8.0068 1.3375
KWGO 29.1187 -50.2373 -49.8451 -39.5460 0.0496 0.2426 0.0370
RGO 26.2360 -46.4719 -46.2389 -38.4535 0.0792 0.9227 0.1544

EGWGD 27.7457 -45.4913 -44.8972 -32.1272 0.0728 0.5437 0.0854
RGGOM -6.6205 19.2410 19.4740 27.2594 0.1833 6.7351 1.2164

IPG -62.5657 131.1314 131.3644 139.1499 0.2911 15.5810 3.0403
OGEG 28.9825 -49.9651 -49.5729 -39.2738 0.0504 0.2767 0.0385
ISGZ -47.3555 98.7109 98.8263 104.0565 0.2521 11.8160 2.2307
NHGD 29.0995 -50.1989 -49.8067 -39.5076 0.0521 0.2537 0.0397

Figure 5.10 displays the fitted PDFs of the compared models, while Figure 5.11

presents the corresponding CDFs. Upon examination, it is evident that the HM-

GOM model provides a better fit for the transformed total milk production. The

fitted PDF plot in Figure 5.10 demonstrates that the HMGOM model closely aligns

with the observed data distribution, capturing its shape and characteristics more ac-

curately compared to the other models. Similarly, the fitted CDF plot in Figure 5.11

shows that the HMGOM model exhibits a closer match to the empirical cumulative

distribution of the transformed total milk production. This indicates that the HM-

GOM model better captures the overall distributional behaviour and provides a more

accurate representation of the data compared to the alternative models.
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Figure 5.10: The fitted PDFs for transformed total milk production
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Figure 5.11: The fitted CDFs for transformed total milk production

The profile log-likelihood plots in Figure 5.12 provide visual evidence that the esti-

mated parameter values of the HMGOM distribution correspond to the real maxima,

validating the accuracy of the estimation process for analysing the transformed total

milk production.
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Figure 5.12: Profile log-likelihood plots of HMGOM for transformed total milk pro-
duction

5.4 Application of the HMGOM Regression Model

The HMGOM regression model was applied to a real dataset and compared with the

Gompertz regression model proposed by Azid et al. (2021). The selection of the most

appropriate model was based on evaluating both the AIC and BIC, with the aim of

choosing the model with the lowest values for both criteria. These criteria provide

measures of model fit and complexity, allowing for a comprehensive assessment of the

competing models. To evaluate the adequacy of the fitted model, residual analysis

was performed. Cox Snell residuals, which are a type of standardised residuals, were

generated and used as a diagnostic tool. The behaviour of these residuals should

closely resemble that of a sample from a standard exponential distribution if the model
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is appropriate and captures the underlying data patterns effectively, as suggested by

Nasiru et al. (2021). The fitted model was further assessed using the W and KS

goodness-of-fit measures of the Cox Snell residuals. These measures provide insights

into how well the model aligns with the observed data. A well-fitted model would

exhibit the least W and KS values indicating a close correspondence between the

expected and observed values of the residuals.

The relationship between Survival time (T) and duration of diabetes(DUR) in years of

40 male patients, was assessed using the HMGOM regression model. Table 5.11 shows

the estimates of the HMGOM regression model and the Gompertz regression model

and their corresponding goodness-of-fit. The coefficients for DUR were significant for

the models fitted. However, the HMGOM regression model provides a better fit than

the GZ regression model. The variable DUR in the HMGOM regression model, had

a significant negative effect on the shape parameter f and scale parameter g. On the

other hand, the variable Dur had a positive effect on the shape parameter α. By using

the parameter estimates derived from the HMGOM regression model, we obtain the

following results:

log(fa) = −0.4898− 0.0763DURa

log(ga) = −8.2899− 1.1961DURa

log(αa) = 0.5695 + 1.5167DURa
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Table 5.11: Comparison statistics

Models Estimates P-values

HMGOM

ρ 0.6631(0.4168) 0.1116

ℓ= -91.9595
AIC =197.9190
BIC=209.7411

a0 -0.4898(0.2178) 0.0245
a1 -0.0763(0.0179 1.983× 10−5

β0 -8.2899(1.5124) 4.218× 10−8

β1 -1.1961(0.2763) 1.497× 10−5

α0 0.5695(0.2741) 0.7351
α1 1.5167(0.2741) 3.1280× 10−8

GZ
γ 0.3933(0.0581) 1.282× 10−11 ℓ=-101.2672

AIC= 208.5345
BIC= 213.6011

λ0 -6.3683(0.7022) 2.2× 10−16

λ1 0.0673(0.0339) 0.0471

To assess the suitability of the HMGOM regression model and GZ regression model,

Cox-Snell residuals were obtained. The empirical probabilities of these residuals

were compared to those of the standard exponential distribution using a probability-

probability (P-P) plot, as depicted in Figure 5.13. Upon inspection of the P-P plot,

it is evident that the residuals from the HMGOM regression model closely align with

the diagonal line, indicating a better fit to the dataset. In contrast, the residuals from

the GZ regression model deviate further from the diagonal line, suggesting a poorer

fit.
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Figure 5.13: P-P plot of residuals

The diagnostic results of the fitted models are summarised in Table 5.12, revealing

that the HMGOM regression model offers a better fit for the dataset.

Table 5.12: Goodness-of-fit statistics for residuals

Model
KS W

Statistic P-value Statistic P-value
HMGOM 0.0939 0.8719 0.0530 0.8607

GZ 0.1554 0.2889 0.1685 0.3389

5.5 Monte Carlo Simulations of the Harmonic Mix-

ture Fréchet Distribution

In this section, we conduct simulation experiments to evaluate the accuracy of the es-

timated parameters in the HMFR distribution. The experiments are performed using

three different parameter combinations: (α, ρ, d, g) = (0.1, 0.8, 2.5, 3.0), (α, ρ, d, g) =

(0.3, 0.6, 1.9, 2.5) and (α, ρ, d, g) = (0.03, 0.42, 2.2, 2.6). We replicate the experiments

1000 times using various sample sizes: 30, 80, 200, 500, and 1000. The goal is to

ascertain the precision of the estimated parameters in the HMFR distribution across
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these different sample sizes.

The results are shown in the Table 5.13, 5.14 and 5.15. As the sample sizes increase,

we observe a general trend of decreasing ABs and MSEs for the estimators of various

parameters. Although there may be deviations, the MLE consistently exhibit the

least ABs and MSEs, indicating their superior performance as the best estimators.

Table 5.13: ABs and MSEs for (α, ρ, d, g) = (0.1, 0.8, 2.5, 3.0)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.0303 0.1292 0.1007 0.1780 0.1012 0.0029 0.0915 0.0623 0.1371 0.0711
80 0.0176 0.0578 0.0747 0.0399 0.0839 0.0033 0.0432 0.0581 0.0269 0.0665
200 0.0084 0.0244 0.0317 0.0196 0.0368 0.0020 0.0174 0.0237 0.0137 0.0285
500 0.0051 0.0048 0.0139 0.0033 0.0102 0.0021 0.0027 0.0150 0.0015 0.0076
1000 0.0021 0.0027 0.0065 0.0031 0.0041 0.0007 0.0015 0.0050 0.0020 0.0027

ρ

30 0.9495 0.6509 0.4967 0.4217 0.6104 8.6865 2.0680 1.0813 0.7608 2.6243
80 0.1080 0.1548 0.2072 0.2570 0.2772 0.1111 0.5255 0.5853 0.8537 0.8980
200 0.3186 0.0805 0.0500 0.0907 0.0774 17.0596 0.2452 0.0558 0.3699 0.1284
500 0.0175 0.0207 0.0222 0.0184 0.0232 0.0663 0.0242 0.0274 0.0183 0.0285
1000 0.0038 0.0094 0.0155 0.0088 0.0118 0.0027 0.0094 0.0364 0.0080 0.0147

d

30 0.4058 0.7828 0.7553 0.7914 0.7884 1.1336 1.8417 1.7393 1.8804 1.8697
80 0.1866 0.2984 0.2801 0.2962 0.2937 0.3763 0.7129 0.6427 0.7023 0.6903
200 0.0368 0.1171 0.1189 0.1195 0.1183 0.0388 0.2745 0.2831 0.2860 0.2800
500 0.0074 0.0482 0.0475 0.0487 0.0482 0.0036 0.1163 0.1131 0.1185 0.1160
1000 0.0026 0.0244 0.0224 0.0245 0.0243 0.0009 0.0595 0.0523 0.0594 0.05893

g

30 0.4053 0.4591 0.6006 0.4153 0.2776 0.7561 0.7929 1.5635 0.6343 0.4020
80 0.0948 0.1731 0.2546 0.1889 0.2344 0.0784 0.3260 0.6412 0.3359 0.4829
200 0.0993 0.0728 0.1101 0.0546 0.1141 1.2128 0.1384 0.2688 0.0759 0.2750
500 0.0066 0.0312 0.0470 0.0225 0.0386 0.0034 0.0582 0.1182 0.0298 0.0859
1000 0.0024 0.0135 0.0223 0.0112 0.0168 0.0008 0.0204 0.0569 0.0126 0.0352

Table 5.14: ABs and MSEs for (α, ρ, d, g) = (0.3, 0.6, 1.9, 2.5)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.0397 0.1725 0.1411 0.1804 0.1593 0.0052 0.0963 0.0716 0.1028 0.0862
80 0.0252 0.0643 0.0547 0.0471 0.0605 0.0101 0.0356 0.0265 0.0216 0.0321
200 0.0085 0.0226 0.0281 0.0170 0.0212 0.0022 0.0115 0.0166 0.0069 0.0102
500 0.0033 0.0086 0.0108 0.0079 0.0104 0.0009 0.0043 0.0084 0.0036 0.0058
1000 0.0021 0.0040 0.0054 0.0028 0.0031 0.0007 0.0019 0.0030 0.0012 0.0015

ρ

30 0.1962 0.7792 1.5758 1.8964 0.7341 0.1157 3.7316 14.0697 43.3902 2.5628
80 0.1201 0.2833 0.4779 0.1195 0.1885 0.3647 1.5290 5.5306 0.1259 0.3187
200 0.0137 0.0580 0.1401 0.0682 0.0713 0.0064 0.0713 1.1412 0.1221 0.1154
500 0.0087 0.0293 0.0294 0.0234 0.0391 0.0049 0.0540 0.0633 0.0294 0.0847
1000 0.0028 0.0147 0.0160 0.0135 0.0144 0.0011 0.0239 0.0349 0.0201 0.0226

d

30 0.9392 0.5772 0.5310 0.5936 0.6302 3.1812 1.0034 0.9115 1.0588 1.2182
80 0.0835 0.2250 0.2071 0.2223 0.2251 0.0941 0.4054 0.3508 0.3960 0.4058
200 0.0194 0.0911 0.0872 0.0922 0.0899 0.0175 0.1660 0.1527 0.1700 0.1619
500 0.0060 0.0366 0.0366 0.0368 0.0364 0.0026 0.0671 0.0672 0.0678 0.0664
1000 0.0016 0.0183 0.0179 0.0185 0.0185 0.0005 0.0335 0.0319 0.0342 0.0342

g

30 0.2714 0.5297 0.4047 0.7922 0.5353 0.2494 0.9186 0.6813 2.7916 1.0165
80 0.0731 0.2240 0.3997 0.2248 0.1938 0.0841 0.4433 4.3132 0.4282 0.3957
200 0.0155 0.1049 0.0778 0.0932 0.0554 0.0078 0.2259 0.1350 0.1807 0.1010
500 0.0061 0.0353 0.0344 0.0312 0.0342 0.0022 0.0714 0.0876 0.0620 0.0740
1000 0.0016 0.0120 0.0208 0.0108 0.0114 0.0004 0.0240 0.0439 0.0192 0.0192
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Table 5.15: ABs and MSEs for (α, ρ, d, g) = (0.03, 0.42, 2.2, 2.6)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.0397 0.1725 0.1411 0.1804 0.1593 0.0052 0.0963 0.0716 0.1028 0.0862
80 0.0252 0.0643 0.0547 0.0471 0.0605 0.0101 0.0356 0.0265 0.0216 0.0321
200 0.0085 0.0226 0.0281 0.0170 0.0212 0.0022 0.0115 0.0166 0.0069 0.0102
500 0.0033 0.0086 0.0108 0.0079 0.0104 0.0009 0.0043 0.0084 0.0036 0.0058
1000 0.0021 0.0040 0.0054 0.0028 0.0031 0.0007 0.0019 0.0030 0.0012 0.0015

ρ

30 0.1962 0.7792 1.5758 1.8964 0.7341 0.1157 3.7316 14.0697 43.3902 2.5628
80 0.1201 0.2833 0.4779 0.1195 0.1885 0.3647 1.5290 5.5306 0.1259 0.3187
200 0.0137 0.0580 0.1401 0.0682 0.0713 0.0064 0.0713 1.1412 0.1221 0.1154
500 0.0087 0.0293 0.0294 0.0234 0.0391 0.0049 0.0540 0.0633 0.0294 0.0847
1000 0.0028 0.0147 0.0160 0.0135 0.0144 0.0011 0.0239 0.0349 0.0201 0.0226

d

30 0.9392 0.5772 0.5310 0.5936 0.6302 3.1812 1.0034 0.9115 1.0588 1.2182
80 0.0835 0.2250 0.2071 0.2223 0.2251 0.0941 0.4054 0.3508 0.3960 0.4058
200 0.0194 0.0911 0.0872 0.0922 0.0899 0.0175 0.1660 0.1527 0.1700 0.1619
500 0.0060 0.0366 0.0366 0.0368 0.0364 0.0026 0.0671 0.0672 0.0678 0.0664
1000 0.0016 0.0183 0.0179 0.0185 0.0185 0.0005 0.0335 0.0319 0.0342 0.0342

g

30 0.2714 0.5297 0.4047 0.7922 0.5353 0.2494 0.9186 0.6813 2.7916 1.0165
80 0.0731 0.2240 0.3997 0.2248 0.1938 0.0841 0.4433 4.3132 0.4282 0.3957
200 0.0155 0.1049 0.0778 0.0932 0.0554 0.0078 0.2259 0.1350 0.1807 0.1010
500 0.0061 0.0353 0.0344 0.0312 0.0342 0.0022 0.0714 0.0876 0.0620 0.0740
1000 0.0016 0.0120 0.0208 0.0108 0.0114 0.0004 0.0240 0.0439 0.0192 0.0192

5.6 Applications of the Harmonic Mixture Fréchet

Distribution

In this section, we apply the HMFR distribution to three datasets to assess its empir-

ical importance and evaluate its performance in modelling lifetime data. The HMFR

distribution is compared with the Fréchet distribution and eight(8) other models.

These eight(8) distributions can be seen in Table 5.16.
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Table 5.16: Compared Models

Models References

Burr X Fréchet (BRXFR) Abouelmagd et al. (2018b)

Odd Lomax Fréchet (OLXF) Hamed et al. (2020)

Type II Topp-Leone Fréchet Distribution (TIITLFD) Shanker and Rahman (2021)

New exponential-X Fréchet (NEXF) Alzeley et al. (2021)

Weibull Fréchet (WFR) Afify et al. (2016)

Modified Fréchet-Rayleigh distribution (MFRD) Ali et al. (2022)

Marshall-Olkin Fréchet distribution (MOF) Krishna et al. (2013a)

Modified Fréchet (MF) Tablada and Cordeiro (2017)

5.6.1 Annual Maximum Temperature

The range of annual maximum temperature values for the selected location was from

the lowest value of 27.14 and the highest value of 29.15. The dataset exhibits a

negative skewness of -0.72174, indicating a longer tail towards the left side of the dis-

tribution. Furthermore, it is characterised as platykurtic with a kurtosis of -0.13901,

implying a flatter peak compared to a normal distribution.

The failure rate behaviour of the turbochargers failure time dataset was examined

through a TTT plot. The TTT plot displayed an upward trend, indicating an in-

creasing pattern. This observation is evident from the concave shape observed above

the 45◦ line in Figure 5.14.
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Figure 5.14: The TTT plot of the annual maximum temperature

Table 5.17 presents the MLEs for the fitted models, along with their respective SEs.

Among the models, the parameters α and β for OLXF, θ for BRXFR, β for NEXF, θ

for POF, a for WFR, and α for MOF were not found to be statistically significant at

the 5% . However, all other parameters in their respective models exhibited statistical

significance at the 5% level.
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Table 5.17: MLEs for annual maximum temperature

Models Estimates SE Z-value P-Value

HMFR

α 40.0790 13.1322 3.0520 0.0023*
ρ 0.9078 0.1543 5.8852 3.9750× 10−9*
d 15.8698 3.0785 5.1551 2.5350× 10−7*
g 30.2495 0.3419 88.4697 2.2000× 10−16*

FR
a 45.3511 4.8769 9.2992 2.2000× 10−16*
b 28.0735 0.0894 314.0711 2.2000× 10−16*

OLXF

α 23.1059 37.9831 0.6083 0.5430
β 0.5630 0.7048 0.7988 0.4244
a 30.5067 0.9192 33.1895 2.2000× 10−16*
b 18.3522 3.9236 4.6774 2.9050× 10−16*

BRXFR
θ 2.3847 2.6714 0.8927 0.3720
a 27.4810 0.8143 33.7497 2.0000× 10−16*
b 17.1136 8.2853 2.0655 0.0389 *

NEXF
λ 15.0636 3.1043 4.8525 1.2190× 10−6*
α 31.4570 1.0673 29.4723 2.2000× 10−16*
β 100.2569 97.1546 1.0319 0.3021

TIITLFD
λ 29.4032 8.7019 3.3789 0.0007*
α 29.9191 6.6003 4.5330 5.8150× 10−6*
β 0.8415 0.0680 12.3756 2.2000× 10−16*

WFR

α 19.9392 0.0962 207.3052 2.0000× 10−16*
β 3.9803 0.4549 8.7500 2.0000× 10−16*
a 0.0011 0.0011 1.0360 0.3002
b 5.3437 0.6344 8.4235 2.0000× 10−16 *

MFRD
α 2.1947× 102 3.2926× 10−8 6.6655× 109 2.2000× 10−16 *
λ 8.0889× 10−2 9.5331× 10−4 84.8500 2.2000× 10−16 *

MF
α 100.7435 12.8332 7.8502 4.1530× 10−15 *
β 16.2220 1.9915 8.1454 3.7790× 10−16*
λ 0.7396 0.1342 5.5096 3.5960× 10−8 *

MOF
α 0.1000 0.1388 0.7206 0.4712
a 31.0754 9.7647 3.1824 0.0015 *
b 29.0203 0.7679 37.7920 2.0000× 10−16*

* means significant at 0.05 .
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Based on multiple evaluation criteria shown in Table 5.18, the HMFR model demon-

strates a better fit than the other models considered. It achieves the highest log-

likelihood value, the lowest values for AIC, AICC, and BIC, and the lowest values for

A, KS, and W. These results indicate that the HMFR model provides an improved

fit to the dataset, making it a preferred choice for analysing the data.

Table 5.18: Comparison criteria for annual maximum temperature

Models ℓ AIC AICC BIC KS A W
HMFR -28.7909 65.5842 66.4537 73.3115 0.0645 0.3396 0.0470
FR -42.5651 89.1302 89.4635 92.9938 0.2157 3.1804 0.5432

OLXF -30.9246 69.8492 70.7188 77.5765 0.1355 0.9605 0.1814
BRXFR -30.2993 66.5986 67.1092 74.3941 0.1247 0.7475 0.1410
NEXF -30.9869 67.9738 68.4844 73.7692 0.1180 0.7227 0.1284

TIITLFD -165.2245 336.4489 336.9596 342.2444 0.5138 18.4430 3.9403
WFR -80.5159 169.0318 169.4529 176.7591 0.3604 12.0360 2.4098
MFRD -95.5231 195.0461 195.2961 198.9098 0.4651 14.0050 2.9005
MF -47.3878 100.7756 101.2862 106.5711 0.2596 4.4583 0.8034
MOF -41.8305 89.6610 90.1716 95.4564 0.1770 2.5015 0.4127

The fitted PDFs and CDFs of the models are depicted in Figure 5.15 and 5.16, respec-

tively. These plots visually demonstrate that the HMFR model exhibits a superior fit

to the annual maximum temperature compared to the other models.
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Figure 5.15: The fitted PDFs for annual maximum temperatures
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Figure 5.16: The fitted CDFs for annual maximum temperature

The profile log-likelihood plots in Figure 5.17 provide visual evidence that the esti-

mated parameter values of the HMFR distribution correspond to the real maxima,

validating the accuracy of the estimation process for analysing the annual maximum

temperatures.
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Figure 5.17: Profile log-likelihood plots of HMFR for annual maximum temperature

5.6.2 Annual Unemployment Rates Data

The unemployment rates in Ghana (1991-2021) ranged from a minimum value of 3.49

to a maximum value of 10.46. The distribution of the data set exhibited positive

skewness with a value of 0.9636, indicating a longer tail on the right side of the

distribution. Additionally, the data set was characterised by platykurtic behaviour

with a value of 0.3614, indicating a flatter peak compared to a normal distribution.

The failure rate behaviour of the turbochargers failure time dataset was examined

through a TTT plot. The TTT plot displayed an upward trend, indicating an in-

creasing pattern. This observation is evident from the concave shape observed above

the 45◦ line in Figure 5.18.
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Figure 5.18: The TTT plot of the unemployment rates

Table 5.19 presents the MLEs for the fitted models along with their respective SEs.

In the HMFR model, the parameters α, ρ, and d were not found to be statistically

significant at 5%. Similarly, in the OLXF model, the parameters α, β, and b, in the

BRXFR model, the parameters θ and a, in the NEXF model, the parameter β, in

the POF model, the parameter θ, in the WFR model, the parameters α, a, and b, in

the MFRD model, the parameter α, and in the MOF model, the parameter α, were

not statistically significant at the 5% level. However, all other parameters in their

respective models were found to be statistically significant at 5%.
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Table 5.19: MLEs for unemployment rates

Models Estimates SE Z-value P-Value

HMFR

α 0.1154 0.8423 0.1370 0.8911
ρ 0.2124 0.7075 0.3002 0.7641
d 5.6793 3.3105 1.7156 0.0862
g 4.4458 0.7415 5.9958 2.0250× 10−9 *

FR
a 5.4461 0.6784 8.0280 9.9060× 10−16 *
b 5.0578 0.1832 27.6010 2.2000× 10−16 *

OLXF

α 2.3256 2.9759 0.7815 0.4345
β 2.0566 2.7620 0.7446 0.4565
a 5.5703 1.6870 3.3020 0.0010*
b 3.3100 1.7213 1.9229 0.0545

BRXFR
θ 10.6357 14.1366 0.7524 0.4518
a 1.7521 1.3559 1.2922 0.1963
b 0.6209 0.2418 2.5684 0.0102 *

NEXF
λ 1.9451 0.8683 2.2402 0.0251*
α 8.9273 3.7989 2.3500 0.0188*
β 5.8575 6.7416 0.8689 0.3849

TIITLFD
λ 9.7855 5.2663 1.8581 0.0632
α 16.3877 8.2967 1.9752 0.0483 *
β 1.3993 0.3549 3.9432 8.0410× 10−5*

WFR

α 13.7276 7.2129 1.9032 0.0570
β 1.9702 0.6160 3.1981 0.0014 *
a 6.5422 4.6380 1.4106 0.1584
b 0.4098 0.2851 1.4376 0.1506

MFRD
α 14.5074 15.3008 0.9481 0.3431
λ 0.2866 0.0616 4.6511 3.3020× 10−6 *

MF
α 107.7300 3.0280× 10−4 3.5577× 105 2.2000× 10−16*
β 1.0345 0.1405 7.3647 1.7750× 10−13*
λ 0.5833 8.6299× 10−2 6.7595 1.3850× 10−11*

MOF
α 6.3818 9.7604 0.6539 0.5132
a 5.8467 1.2352 4.7336 2.2060× 10−6*
b 4.1640 0.7496 5.5551 2.7740× 10−8 *

* means significant at 0.05.
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After evaluating multiple criteria shown in Table 5.20, it has been determined that the

HMFR model outperforms the other models under consideration. The HMFR model

achieves the highest log-likelihood value, indicating a better fit to the data compared

to the alternative models. Additionally, it exhibits lower values for various model

selection criteria such as AIC , AICC, and BIC . Furthermore, the HMFR model

demonstrates lower values for statistical measures like A , KS , and W. These results

collectively suggest that the HMFR model provides an improved fit to the dataset

and is considered the preferred choice for analysing the data.

Table 5.20: Comparison criteria for unemployment rates

Models ℓ AIC AICC BIC KS A W
HMFR -56.3771 120.7541 122.2926 126.4901 0.0617 0.1603 0.0170
FR -59.9664 123.9328 124.3614 126.8008 0.1518 1.1522 0.1766

OLXF -57.7204 123.4408 124.9793 129.1767 0.0629 0.1706 0.0198
BRXFR -58.1791 122.7959 122.3581 126.6601 0.0884 0.3128 0.0404
NEXF -58.5243 123.0486 123.9375 127.3506 0.0706 0.1885 0.0247

TIITLFD -58.5613 123.1226 123.6333 127.4246 0.0997 0.3643 0.0603
WFR -57.8635 123.7270 125.2655 129.4629 0.0624 0.1750 0.0207
MFRD -63.5791 131.1581 131.5867 134.0261 0.1485 2.2053 0.1855
MF -58.1597 122.3194 123.2083 128.6214 0.0668 0.1854 0.0227
MOF -58.4460 122.8920 123.7808 127.1940 0.0630 0.1942 0.0228

Figures 5.19 and 5.20 present the fitted PDFs and CDFs of the models, respectively,

for the annual unemployment rates. From these figures, it is evident that the HMFR

model provides a superior fit to the data set.

145

Digitized by UMaT Library



Unemployment rate

D
en

si
ty

4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Emperical
HMFR
FRECH
MFRD
TIITLFD
OLXF
WFR
NEXF
BRXFR
MF
MOF

Figure 5.19: The fitted PDFs for annual unemployment rates
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Figure 5.20: The fitted CDFs for annual unemployment rates

The profile log-likelihood plots in Figure 5.21 provide visual evidence that the esti-

mated parameter values of the HMFR distribution correspond to the real maxima,

validating the accuracy of the estimation process for analysing the annual unemploy-

ment rates.
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Figure 5.21: Profile log-likelihood plots of HMFR for annual unemployment rates

5.6.3 Bladder Cancer Remission Time

The range of remission time values for the given data set is a minimum value of 0.08

and a maximum value of 79.05. The data set exhibits a high level of positive skewness

(3.3257) and a significant degree of kurtosis (16.1537), indicating a distribution that

is heavily skewed and has a heavy tail.

The failure rate characteristics of the bladder cancer remission times were analysed

using a TTT plot. The TTT plot revealed an inverted bathtub pattern, characterised

by a concave shape above the 45◦ line and a convex shape below the 45◦ line. This

pattern is visually depicted in Figure 5.22.
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Figure 5.22: The TTT plot of the bladder cancer remission times

Table 5.21 presents the MLEs for the fitted models along with their standard errors.

Among the models, the HMFR distribution had non-significant estimates for α and

ρ, the OLXF distribution had non-significant estimates for α, β, and a, the BRXFR

distribution had a non-significant estimate for a, and the WFR distribution had non-

significant estimates for α and a, all at a significance level of 5%. However, the

remaining models had significant estimates for their respective parameters at the

same significance level.
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Table 5.21: MLEs for bladder cancer remission times

Models Estimates SE Z-value P-Value

HMFR

α 0.0075 0.0059 1.2571 0.2087
ρ 0.0011 0.0013 0.8759 0.3811
d 1.7943 0.1688 10.6313 2.0000× 10−16*
g 0.1438 0.0627 2.2948 0.0217 *

FR
a 0.7521 0.0424 17.7277 2.2000× 10−16 *
b 3.2582 0.4074 7.9968 1.2770× 10−15*

OLXF

α 10.9599 10.7136 1.0230 0.3063
β 7.3718 6.7480 1.0924 0.2746
a 6.3765 11.1471 0.5720 0.5673
b 0.5934 0.2278 2.6048 0.00919*

BRXFR
θ 10.5872 3.4611 3.0589 0.0022 *
a 0.0420 0.0319 1.3171 0.1878
b 0.1537 0.0156 9.8552 2.2000× 10−16*

NEXF
λ 0.3706 0.0308 12.0272 2.2000× 10−16 *
α 105.1600 49.2872 2.1336 0.0329*
β 12.5056 3.6673 3.4101 0.0006*

TIITLFD
λ 27.7208 13.1839 2.1026 0.0355*
α 3.1026 0.2671 11.6141 2.2000× 10−16*
β 0.2904 0.0367 7.9188 2.3980× 10−15*

WFR

α 9.7511 18.5793 0.5248 0.5997
β 0.2546 0.0673 3.7826 0.0001*
a 4.2136 0.9775 0.6039 0.5459
b 2.5171 0.9359 2.6894 0.0072*

MFRD
α 0.4386 0.0398 11.0260 2.2000× 10−16 *
λ 0.0439 0.0039 11.3270 2.2000× 10−16*

MF
α 11.1133 3.8318 2.9003 0.0037 *
β 0.4190 0.0563 7.4434 9.8150× 10−15*
λ 0.0942 0.0145 6.5211 6.9800× 10−11*

MOF
α 23.3227 8.0536 2.8959 0.0038*
a 1.2732 0.0805 15.8166 2.2000× 10−16*
b 0.4479 0.0888 5.0422 4.6030× 10−7*

* means significant at 5%.
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The HMFR model outperforms the other models in terms of multiple evaluation

criteria in Table 5.22. It exhibits the highest log-likelihood value and demonstrates

lower values for model selection criteria such as AIC, AICC, and BIC. Additionally,

it achieves lower values for statistical measures like A, KS, and W. These findings

collectively indicate that the HMFR model offers a superior fit to the dataset, making

it the preferred choice for data analysis.

Table 5.22: Comparison criteria for bladder cancer remission times

Models ℓ AIC AICC BIC KS A W
HMFR -410.0725 828.1450 828.4702 839.5531 0.0331 0.1562 0.0171
FR -444.0008 892.0015 890.0975 897.7056 0.1408 6.1182 0.9787

OLXF -421.0557 850.1114 850.4366 861.5196 0.1108 2.4023 0.4409
BRXFR -415.4706 836.9412 837.1347 845.4973 0.0680 0.9021 0.1446
NEXF -417.0997 840.1993 840.3928 848.7554 0.0711 1.0378 0.1646

TIITLFD -413.2888 832.5775 833.0882 841.1336 0.0540 0.5619 0.0818
WFR -411.7882 831.5763 831.9015 842.9844 0.0608 0.5332 0.0840
MFRD -422.7039 849.4077 849.5037 855.1118 0.1272 3.1031 0.5959
MF -413.8641 833.7281 833.9216 842.2842 0.0753 0.8232 0.1275
MOF -422.5995 851.1991 851.3926 859.7552 0.1062 2.7168 0.44012

Figure 5.23 displays the fitted PDFs of the models, while Figure 5.24 shows the corre-

sponding CDFs for the bladder cancer remission times. As observed in these figures,

the HMFR model provides the best fit to the data, as its PDF closely matches the

observed distribution and its CDF follows the empirical distribution function. Among

the alternative models, including BRXFR, NEXF, WFR, and MF, they also exhibit

reasonably good fits to the data, with their PDFs and CDFs showing similarities to

the observed distribution, albeit not as close as the HMFR model.
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Figure 5.23: The fitted PDFs for bladder cancer remission times
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Figure 5.24: The fitted CDFs for bladder cancer remission times

Figure 5.25 presents the profile log-likelihood plots. These plots provide valuable

insights into the behaviour of the estimated parameters and their impact on the

likelihood function. From the figures, it is evident that the estimated parameter values

align with the peaks of the log-likelihood function, indicating that they correspond
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to the true maxima of the distribution. This further supports the suitability of the

HMFR model for describing the remission time data set.
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Figure 5.25: Profile log-likelihood plots of HMF for bladder cancer remission times

5.7 Monte Carlo Simulations of the Harmonic Mix-

ture Burr XII Distribution

In this section, we conduct simulation experiments to evaluate the accuracy of the

estimated parameters in the HMBRXII distribution. The experiments are performed

using three different parameter combinations: (α, ρ, d, w) = (0.50, 0.20, 2.60, 1.20),

(α, ρ, d, w) = (0.90, 0.50, 2.60, 1.02) and (α, ρ, d, w) = (0.45, 0.30, 2.05, 1.20). We repli-

cate the experiments 1000 times using various sample sizes: 30, 80, 200, 500, and 1000.

The goal is to assess the accuracy of the estimated parameters in the HMBRXII dis-

tribution across these different sample sizes.
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The results are shown in Table 5.23, 5.24 and 5.25. As the sample sizes increase, we

observe a general trend of decreasing ABs and MSEs for the estimators of various

parameters. Although there may be deviations, the MLE consistently exhibit the

least ABs and MSEs, indicating their superior performance as the best estimators.

Table 5.23: ABs and MSEs for (α, ρ, d, w) = (0.50, 0.20, 2.60, 1.20)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.2095 0.3210 0.1973 0.3039 0.2254 0.1193 0.3842 0.1157 0.3334 0.1568
80 0.0837 0.1185 0.0970 0.0963 0.0720 0.1374 0.2800 0.1928 0.2141 0.1146
200 0.0173 0.0354 0.0346 0.0387 0.0442 0.0562 0.1565 0.1487 0.1836 0.2660
500 0.0058 0.0118 0.0145 0.0116 0.0213 0.0394 0.1129 0.1964 0.1435 0.3456
1000 0.0031 0.0060 0.0071 0.0061 0.0114 0.0473 0.1279 0.1872 0.1408 0.3778

ρ

30 0.1049 0.1138 0.1917 0.1312 0.0982 0.0282 0.0327 0.1171 0.0538 0.0322
80 0.0474 0.0407 0.0594 0.0387 0.0593 0.0446 0.0361 0.1100 0.0327 0.0977
200 0.0192 0.0174 0.0140 0.0097 0.0274 0.0508 0.0392 0.0436 0.0163 0.1183
500 0.0067 0.0068 0.0066 0.0070 0.0135 0.0351 0.0489 0.0579 0.0522 0.1461
1000 0.0022 0.0031 0.0039 0.0038 0.0053 0.0280 0.0311 0.0775 0.0638 0.1117

d

30 0.6061 2.5971 2.5128 2.5805 2.5668 0.5243 6.7452 6.3828 6.6663 6.5950
80 0.2929 2.5662 2.5650 2.5744 2.5588 0.1264 6.5958 6.6027 6.6398 6.5543
200 0.2449 2.5906 2.5777 2.5942 2.5999 0.0800 6.7126 6.6533 6.7301 6.7592
500 0.1202 2.5892 2.5664 2.5968 2.5911 0.0239 6.7054 6.6078 6.7435 6.7147
1000 0.0975 2.5981 2.5398 2.5995 2.5968 0.0179 6.7502 6.4968 6.7572 6.7434

w

30 1.5589 0.3573 0.2025 0.3194 0.1875 1.5863 2.1662 2.0779 2.1360 2.0263
80 0.7502 0.2424 0.1754 0.2555 0.1475 1.3973 2.3678 2.1691 2.1124 2.0728
200 0.4360 0.2324 0.2308 0.1947 0.2007 1.3507 1.9656 2.0370 2.1451 2.3965
500 0.3919 0.2024 0.2766 0.3416 0.2118 1.3666 1.7739 2.0492 1.5906 2.6104
1000 0.1257 0.3361 0.2325 0.1993 0.2189 1.6405 1.7688 2.0521 1.9289 2.5952

Table 5.24: ABs and MSEs for (α, ρ, d, w) = (0.90, 0.50, 2.60, 1.02)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.3864 0.1206 0.1146 0.2967 0.2300 0.4450 0.0599 0.0471 1.3988 0.2195
80 0.1226 0.0441 0.0470 0.0622 0.0340 0.3550 0.0456 0.0531 0.1649 0.0343
200 0.0468 0.0206 0.0427 0.0246 0.0271 0.3151 0.0922 0.6318 0.1157 0.2055
500 0.0160 0.0203 0.0133 0.0158 0.0167 0.1979 0.6006 0.2604 0.7425 0.3018
1000 0.0037 0.0049 0.0047 0.0084 0.0056 0.0970 0.1725 0.1007 0.6187 0.2482

ρ

30 0.1827 0.1280 0.0969 0.1391 0.1454 0.1199 0.0608 0.0311 0.0697 0.0634
80 0.0440 0.0396 0.0525 0.0506 0.0563 0.0653 0.0405 0.0616 0.0581 0.0715
200 0.0165 0.0196 0.0205 0.0220 0.0221 0.0573 0.0469 0.0631 0.0615 0.0713
500 0.0137 0.0089 0.0096 0.0092 0.0083 0.1579 0.0643 0.0792 0.0728 0.0652
1000 0.0038 0.0039 0.0052 0.0044 0.0047 0.0625 0.0658 0.0870 0.0740 0.0815

d

30 0.6399 2.5304 2.3095 2.5051 2.5391 0.7009 6.4324 5.6597 6.3179 6.4772
80 0.3121 2.6000 2.5844 2.5993 2.5745 0.1874 6.7600 6.6838 6.7562 6.6340
200 0.1854 2.5987 2.5359 2.6000 2.6000 0.0619 6.7531 6.4688 6.7600 6.7600
500 0.0866 2.5875 2.5461 2.5999 2.5938 0.0103 6.6959 6.5373 6.7593 6.7281
1000 0.1151 2.5985 2.6000 2.5988 2.5955 0.0200 6.7524 6.7600 6.7535 6.7365

w

30 2.1154 0.4273 0.0746 0.0546 0.1623 6.0270 4.1687 2.4208 2.6104 2.4577
80 0.8363 0.0510 0.0433 0.1000 0.0574 1.6054 2.5507 2.6102 2.4850 2.5018
200 0.5378 0.0705 0.0799 0.0909 0.0793 1.6920 2.5944 2.4326 2.5093 2.5998
500 0.7724 0.1394 0.0815 0.0801 0.1187 1.1552 2.9596 2.5572 2.6029 2.3718
1000 0.2979 0.0628 0.0541 0.1396 0.1190 2.0218 2.5780 2.4886 2.6408 2.3721
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Table 5.25: ABs and MSEs for (α, ρ, d, w) = (0.45, 0.30, 2.05, 1.20)

Parameter N
AB MSE

MLE OLSS WLSS CVM AD MLE OLSS WLSS CVM AD

α

30 0.1885 0.4023 0.3328 0.4181 0.3547 0.0941 0.4076 0.3696 0.4413 0.3635
80 0.0595 0.1333 0.1310 0.1393 0.1087 0.0768 0.3305 0.3364 0.3501 0.2230
200 0.0168 0.0548 0.0513 0.0522 0.0508 0.0454 0.3529 0.2987 0.3146 0.3082
500 0.0059 0.0229 0.0196 0.0215 0.0262 0.0408 0.4820 0.2846 0.3351 0.4547
1000 0.0031 0.0125 0.0122 0.0102 0.0136 0.0530 0.4306 0.4547 0.3176 0.4642

ρ

30 0.1609 0.1187 0.1387 0.1241 0.1233 0.0629 0.0502 0.0751 0.0456 0.0563
80 0.0677 0.0426 0.0465 0.0475 0.0582 0.0775 0.0410 0.0549 0.0451 0.0929
200 0.0216 0.0225 0.0181 0.0120 0.0190 0.0602 0.0610 0.0547 0.0485 0.0713
500 0.0092 0.0085 0.0084 0.0072 0.0048 0.0635 0.0682 0.0652 0.0601 0.0308
1000 0.0026 0.0040 0.0038 0.0046 0.0029 0.0421 0.0677 0.0525 0.0821 0.0363

d

30 0.5270 2.0274 1.9810 2.0220 2.0053 0.4315 4.1201 3.9772 4.0987 4.0438
80 0.2356 2.0500 1.9693 2.0490 2.0466 0.1053 4.2025 3.9146 4.1984 4.1889
200 0.1421 2.0433 2.0161 2.0497 2.0322 0.0346 4.1759 4.0736 4.2011 4.1324
500 0.1162 2.0453 2.0088 2.0500 2.0480 0.0238 4.1835 4.0508 4.2024 4.1943
1000 0.1013 2.0465 2.0153 2.0495 2.0457 0.0143 4.1883 4.0714 4.2006 4.1850

w

30 2.3595 0.2819 0.2415 0.2515 0.2697 6.7571 1.1769 0.9350 1.2204 1.0038
80 1.0508 0.2318 0.2163 0.2175 0.1544 0.8475 1.052 1.0525 1.1285 1.0085
200 0.4050 0.2138 0.1908 0.2273 0.2068 0.3997 1.1003 1.0776 1.0416 1.1099
500 0.4281 0.3246 0.2487 0.2577 0.2714 0.3679 1.1316 1.0712 1.0932 1.2624
1000 0.2975 0.3252 0.2545 0.2458 0.2824 0.5682 1.2391 1.2135 1.1125 1.2843

5.8 Applications of the Harmonic Mixture Burr

XII Distribution

In this section, we apply the HMBRXII distribution to three datasets to assess its

empirical importance and evaluate its performance in modelling lifetime data. The

HMBRXII distribution is compared with nine(9) other models. These nine(9) distri-

butions can be seen in Table 5.26.

Table 5.26: Compared Models

Models References

Marshall-Olkin exponentiated Burr XII (MOEBRXII) (Cordeiro et al., 2017)

Exponentiated Burr XII Poisson distribution (EBRXIIP) (Nasir et al., 2019)

Marshall-Olkin Generalized Burr XII distribution (MOGBRXII) (Afify and Abdellatif, 2020)

Weibull Burr XII distribution (WBRXII) (Afify et al., 2018)

Kumaraswamy exponentiated Burr XII distribution (KEBRXII) (Afify and Mead, 2017)

Kumaraswamy Burr XII distribution (KWBRXII) (Paranáıba et al., 2013)

exponentiated Exponential Burr XII distribution (EEBRXII) (Badr and Ijaz, 2021)

Gompertz-modified Burr XII distribution (GMBRXII) (Abubakari et al., 2021)

odd exponentiated half-logistic Burr XII distribution (OEHLBRXII) (Aldahlan and Afify, 2018)
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5.8.1 Taxes Revenues

The minimum value of the tax revenues was 0.3900, while the maximum value was

5.5600. The CS for the data set is 0.3985, indicating a positive skewness. Additionally,

the CK is 0.2492, suggesting that the data set is platykurtic and has a flatter peak

compared to a normal distribution curve.

The failure rate behaviour of the taxes revenues was examined through a TTT plot.

The TTT plot displayed an upward trend, indicating an increasing pattern. This

observation is evident from the concave shape observed above the 45◦ line in Figure

5.26.
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Figure 5.26: The TTT plot of the taxes revenues

Table 5.27 presents the MLEs for the fitted models and their respective SEs. Among

the models, the parameters ρ for HMBRXII, α, λ, and k for MOEBRXII, α for

EBRXIIP, δ for MOGBRXII, α and a for WBRXII, k for KEBRXII, k for KWBRXII,

a for EEBRXII, λ for GMBRXII, and λ and a for OEHLBRXII were found to be not

statistically significant at a significance level of 5%.
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Table 5.27: MLEs for taxes revenues

Models Estimates SE Z-value P-Value

HMBRXII

α 0.048 0.016 3.031 0.002*
ρ 0.002 0.002 0.664 0.507
d 4.125 1.224 3.369 0.001*
w 1.522 0.424 3.588 3.0× 10−4*

MOEBRXII
α 60.086 46.704 1.287 0.198
λ 4.228 5.779 0.732 0.464
c 1.518 0.693 2.191 0.028 *
k 3.436 1.980 1.736 0.083

EBRXIIP

α 7.176 6.368 1.127 0.260
θ -4.806 1.489 -3.228 0.001 *
c 1.402 0.487 2.881 0.004 *
k 2.595 1.140 2.276 0.023 *

MOGBRXII
α 2.137 0.697 3.068 0.002 *
β 0.373 0.159 2.351 0.019 *
δ 114.463 97.270 1.177 0.239
a 6.063 2.579 2.351 0.019 *

WBRXII
α 1.500 0.791 1.897 0.058
β 0.642 0.238 2.698 0.007 *
a 0.166 0.175 0.945 0.345
b 2.351 0.987 2.383 0.017 *

KEBRXII
a 1.407 0.310 4.543 5.5× 10−6*
β 10.322 2.272 4.543 5.5× 10−6*
b 24.338 10.918 2.229 0.026 *
c 0.726 0.264 2.755 0.006 *
k 1.415 0.756 1.873 0.061

KWBRXII

a 0.533 0.234 2.277 0.023 *
b 0.821 0.627 1.309 0.191
c 4.867 1.551 3.138 0.002 *
k 2.254 1.710 1.318 0.187
s 3.532 0.691 5.110 3.2× 10−7*

EEBRXII
a 19.705 11.021 1.788 0.074
b 178.164 0.032 5.62× 103 2.2× 10−16*
c 0.479 0.152 3.160 0.002 *
k 1.502 0.650 2.310 0.021 *

GMBRXII
λ 0.153 0.361 0.425 0.671
θ 0.842 0.265 3.178 0.002 *
c 2.822 0.761 3.710 2.0× 10−4*
d 0.043 0.011 4.007 6.1× 10−5*

OEHLBRXII
a 6.086 3.618 1.682 0.093
α 0.776 0.256 3.034 0.002*
b 0.399 0.186 2.147 0.032*
λ 0.099 0.094 1.057 0.291

* means significant at 5%.
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Table 5.28 demonstrates that the proposed HMBRXII model outperforms the other

competing models. It achieves the highest log-likelihood value, the lowest values for

AIC, AICC, and BIC, and the lowest values for A, KS, and W. Additionally, the

HMBRXII model exhibited the lowest A, KS, and W values, further supporting its

superior goodness-of-fit compared to the other models.

Table 5.28: Metrics for evaluation for taxes revenues

Models ℓ AIC AICC BIC KS A W

HMBRXII -140.724 289.448 289.869 299.869 0.049 0.304 0.047

MOEBRXII -143.086 294.172 294.593 304.592 0.082 0.765 0.134

EBRXIIP -149.778 307.556 307.977 317.977 0.119 1.773 0.299

MOGBRXII -143.251 294.502 294.923 304.922 0.077 0.781 0.130

WBRXII -140.791 289.583 290.004 300.004 0.062 0.446 0.075

KEBRXII -143.341 296.682 297.320 309.708 0.090 0.795 0.145

KWBRXII -140.535 291.070 291.708 304.095 0.057 0.358 0.061

EEBRXII -141.600 291.200 291.621 301.621 0.088 0.636 0.129

GMBRXII -141.446 290.892 291.313 301.312 0.084 0.691 0.109

OEHLBRXII -141.325 290.649 291.070 301.070 0.064 0.493 0.078

Figure 5.27 and 5.28 present the fitted PDFs and CDFs of the models, respectively,

for the taxes revenues. Upon examining these figures in detail, it is apparent that

the HMBRXII model exhibits a significantly better fit to the data compared to the

other models. The PDF curve of the HMBRXII model closely follows the distribution

of the observed data points, indicating a high degree of accuracy in capturing the

underlying patterns and characteristics of the data. Similarly, the CDF curve of the

HMBRXII model accurately represents the cumulative probabilities of the data set,

further confirming its superior fit.
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Figure 5.27: The fitted PDFs for taxes revenues
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Figure 5.28: The fitted CDFs for taxes revenues
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The profile log-likelihood plots of the HMBRXII distribution, applied to the tax rev-

enues, are depicted in Figure 5.29. These plots serve as a visual assessment of the

estimated values and their correspondence to the actual maxima of the data. Upon

careful examination of the figures, it is evident that the estimated parameter val-

ues closely align with the observed maxima. The profile log-likelihood plots exhibit

distinct peaks or plateaus around the estimated values, indicating that these values

accurately capture the essential characteristics of the tax revenues.
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Figure 5.29: Profile log-likelihood plots of HMBRXII for taxes revenues

5.8.2 Precipitation in Minneapolis

The minimum value in the precipitation in Minneapolis is 0.3200, while the maximum

value is 4.7500. The CS for the data set is 1.1447, indicating a positive skew. The CK

is 1.6653, suggesting that the data set is platykurtic, meaning it has fewer extreme

values and a flatter peak compared to a normal distribution curve.
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The failure rate behaviour of the precipitation in Minneapolis was examined through

a TTT plot. The TTT plot displayed an upward trend, indicating an increasing

pattern. This observation is evident from the concave shape observed above the 45◦

line in Figure 5.30.
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Figure 5.30: The TTT plot of the precipitation in Minneapolis

In Table 5.29, the MLEs and their corresponding standard errors are presented for the

fitted models. Among the models, the parameters ρ for HMBRXII, α, λ, and k for

MOEBRXII, α, θ, and k for EBRXIIP, δ and a for MOGBRXII, α and b for WBRXII,

b, c, and k for KEBRXII, a and s for KWBRXII, a, b, and k for EEBRXII, λ, θ, and

d for GMBRXII, and λ for OEHLBRXII were found to be statistically non-significant

at the 5% significance level.
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Table 5.29: MLEs for precipitation in Minneapolis

Models Estimates SE Z-value P-Value

HMBRXII

α 0.2153 0.0932 2.3104 0.0209 *
ρ 0.0138 0.0492 0.2803 0.7792
d 2.7434 0.8156 3.3637 0.0008*
w 2.0127 0.9895 2.0341 0.0419 *

MOEBRXII
α 8.4755 10.7738 0.7867 0.4315
λ 11.8805 20.3697 0.5832 0.5597
c 0.8339 0.4231 1.9708 0.0487 *
k 5.4476 3.3016 1.6500 0.0989

EBRXIIP

α 3.2341 2.8006 1.1548 0.2482
θ -2.2210 2.4519 -0.9058 0.3650
c 1.3024 0.6100 2.1351 0.0328 *
k 2.5781 1.5266 1.6887 0.09127

MOGBRXII
α 2.1205 1.0414 2.0362 0.0417 *
β 2.9777 0.0793 37.5387 2× 10−16*
δ 6.2105 8.6193 0.7205 0.4712
a 0.5598 0.4209 1.3302 0.1835

WBRXII
α 7.3965 6.6295 1.1157 0.2645
β 0.6732 0.2726 2.4697 0.0135 *
a 0.3856 0.1464 2.6346 0.0084 *
b 0.3221 0.2919 1.1036 0.2698

KEBRXII
a 1.3161 0.4666 2.8209 0.0048 *
β 8.8604 3.1410 2.8209 0.0048 *
b 10.3081 11.0407 0.9336 0.3505
c 0.5475 0.5605 0.9768 0.3287
k 1.9585 2.6041 0.7521 0.4520

KWBRXII

a 3.0600 2.3867 1.2821 0.1998
b 4.6300 1.4464 3.2010 0.0014 *
c 0.9600 0.3687 2.6034 0.0092 *
k 4.7500 0.8365 5.6784 1.36× 10−8*
s 9.2800 8.7099 1.0655 0.2867

EEBRXII
a 6.5384 5.1732 0.2063 0.2063
b 3.8550 3.0890 1.2480 0.2120
c 0.8343 0.3642 2.2909 0.0220 *
k 1.6775 0.9982 1.6806 0.0928

GMBRXII
λ 0.2538 0.7446 0.3409 0.7332
θ 0.2980 0.2587 1.1518 0.2494
c 2.5256 0.7829 3.2258 0.0013 *
d 0.3509 0.1949 1.8004 0.0718

OEHLBRXII
a 11.6035 5.7152 2.0303 0.0423 *
α 0.2672 0.1145 2.3338 0.0196 *
b 0.1684 0.0599 2.8123 0.0049 *
λ 0.1932 0.2563 0.7538 0.4510

* means significant at 5%.
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According to the results presented in Table 5.30, the HMBRXII model demonstrates

a superior fit compared to the other competing models. This conclusion is supported

by several criteria: the HMBRXII model achieved the highest log-likelihood value

and the lowest values for AIC, AICC, and BIC. Additionally, the HMBRXII model

obtained the smallest values for A, KS, and W, indicating a better overall goodness

of fit compared to the alternative models.

Table 5.30: Metrics for evaluation for precipitation in Minneapolis

Model ℓ AIC AICC BIC K-S AD CVM
HMBRXII -38.1548 84.3095 85.9095 89.9143 0.0664 0.1024 0.0140
MOEBRXII -38.34203 84.6841 86.2841 90.2889 0.0769 0.1490 0.0222
EBRXIIP -38.7648 85.5295 87.1295 91.1343 0.0932 0.2183 0.0381

MOGBRXII -38.6445 85.2891 86.8891 90.8938 0.0686 0.1355 0.0188
WBRXII -38.2047 84.4094 86.0095 90.0143 0.0678 0.1111 0.0151
KEBRXII -38.2047 86.4095 88.9094 93.4155 0.0712 0.1278 0.0182
KWBRXII -38.1967 86.3934 88.8934 93.3994 0.0700 0.1442 0.0196
EEBRXII -38.5193 85.0386 86.6386 90.6434 0.0880 0.1703 0.0262
GMBRXII -38.1606 84.3212 85.9212 89.9260 0.0701 0.1529 0.0200

OEHLBRXII -39.3450 86.6900 88.2900 92.2948 0.1230 0.3444 0.0576

Figure 5.31 displays the fitted PDFs of the compared distributions, while Figure 5.32

shows the fitted CDFs. Upon examining these figures in detail, it is apparent that the

HMBRXII model exhibits a significantly better fit to the data compared to the other

models. The curves of the HMBRXII distribution closely align with the observed data

points, indicating a strong agreement between the model and the empirical data.
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Figure 5.31: The fitted PDFs for precipitation in Minneapolis

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

y

F
(y

) Emperical
HMBRXII
MOEBRXII
EBRXIIP
MOGBRXII
WBRXII
KEBRXII
KWBRXII
EEBRXII
GMBRXII
OEHLBRXII

Figure 5.32: The fitted CDFs for precipitation in Minneapolis
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The profile log-likelihood plots in Figure 5.33 provide visual evidence that the esti-

mated parameter values of the HMBRXII distribution correspond to the real maxima,

validating the accuracy of the estimation process for analysing the precipitation data

set.
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Figure 5.33: Profile log-likelihood plots of HMBRXII for precipitation in Minneapolis

5.8.3 Failure Time of epoxy Strands

The minimum failure time in the dataset is 0.0100, and the maximum failure time

is 7.8900. The data set exhibits a positive skewness, as indicated by a CS of 3.0471.

This means that the distribution of failure times is skewed towards higher values.

Additionally, the data set is leptokurtic, with a CK of 14.4745. This implies that the

distribution has more peak and heavier tails compared to a normal distribution.

The behaviour of the failure rate in the epoxy strands was examined using a TTT

plot. The TTT plot exhibited a distinct convex-concave-convex pattern, as illus-
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trated in Figure 5.34. This pattern indicates fluctuations in the failure rate over time,

characterised by an initial increase, followed by a decrease, and then another increase.
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Figure 5.34: The TTT plot of the failure rate in the epoxy strands

The MLEs for the fitted models and their respective SEs are presented in Table 5.31.

Among the estimated parameters, the values of ρ for HMBRXII, α, λ, and k for

MOEBRXII, θ for EBRXIIP, δ for MOGBRXII, k for KEBRXII, b, c, and k for

KWBRXII, a and k for EEBRXII, θ and c for GMBRXII, and λ for OEHLBRXII

were not found to be statistically significant at the 5% significance level.
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Table 5.31: MLEs for failure time of epoxy strands

Models Estimate SE Z-value P-Value

HMBRXII

α 0.1055 0.0386 2.7360 0.0062 *
ρ 0.0061 0.0081 0.7502 0.4531
d 0.7341 0.1234 5.9469 2.73× 10−9 *
w 7.0748 1.7098 4.1378 3.51× 10−5 *

MOEBRXII
α 3.3778 1.7764 1.9016 0.0572
λ 0.2064 0.1113 1.8541 0.0637
c 2.5851 1.0257 2.5204 0.0117 *
k 0.8750 0.5031 1.7391 0.0820

EBRXIIP

α 0.2129 0.0845 2.5106 0.0121 *
θ -1.5830 0.8542 -1.8533 0.0638
c 2.9162 0.9253 3.1516 0.0016 *
k 0.6235 0.3028 2.0588 0.0395 *

MOGBRXII
α 0.7905 0.1671 4.7300 2.25× 10−6*
β 8.4341 0.0068 1235.0971 2.00× 10−16*
δ 7.5801 6.1041 1.2418 0.2143
a 0.4541 0.1245 3.6457 0.0003 *

WBRXII
α 3.6599 1.6549 2.2115 0.0270 *
β 1.2229 0.2756 4.4367 9.14× 10−6*
a 0.9114 0.1480 6.1594 7.30× 10−10*
b 0.2299 0.1064 2.1608 3.07× 10−2 *

KEBRXII
a 0.5289 0.0589 8.9870 2.00× 10−16*
β 5.3352 0.5937 8.9870 2.00× 10−16*
b 9.3028 4.2286 2.2000 2.78× 10−2 *
c 0.5175 0.2396 2.1598 3.08× 10−2 *
k 0.8782 0.5629 1.5602 1.19× 10−1

KWBRXII

a 0.1000 0.0378 2.6444 8.20× 10−3 *
b 0.7000 0.4937 1.4177 1.56× 10−1

c 5.8000 0.9572 6.0595 1.37× 10−9

k 0.5600 0.5033 1.1126 2.66× 10−1

s 1.5000 0.3766 3.9831 6.80× 10−5*

EEBRXII
a 0.1146 0.0615 1.8636 6.24× 10−2

b 0.3255 0.0981 3.3194 0.0009 *
c 4.5666 2.0305 2.2490 0.0245 *
k 1.4252 1.0232 1.3929 0.1636

GMBRXII
λ 49.2480 3.79× 10−5 1.30× 106 2.20× 10−16*
θ 8.14× 10−4 1.47× 10−3 0.5547 0.5791
c 0.1877 0.1580 1.1883 0.2347
d 0.0177 2.27× 10−3 7.8041 5.99× 10−15*

OEHLBRXII
a 2.9958 1.3454 2.2267 0.0260 *
α 0.2603 0.1192 2.1834 0.0290 *
b 0.2156 0.0900 2.3941 0.0167 *
λ 2.0530 1.2029 1.7067 0.0879

* means significant at 5% significance level.
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The comparison results presented in Table 5.32 confirm that the proposed HMBRXII

model outperforms the other fitted models. The HMBRXII model exhibits the high-

est log-likelihood value, indicating a better fit to the failure time of epoxy strands.

Additionally, the HMBRXII model shows the lowest values for the AIC, AICC, and

BIC criteria, further supporting its superior goodness of fit. Moreover, the HMBRXII

model demonstrates the lowest A, KS, and W values, indicating a closer match be-

tween the observed and predicted values.

Table 5.32: Metrics for evaluation for failure time of epoxy strands

Models ℓ AIC AICC BIC KS A W
HMBRXII -99.3723 206.7446 207.6537 217.2051 0.0547 0.3671 0.0450
MOEBRXII -102.2690 212.5380 214.1380 222.9984 0.0820 0.8305 0.1220
EBRXIIP -103.5217 215.0434 216.6434 225.5039 0.0902 1.2939 0.2317

MOGBRXII -103.7589 215.5178 217.1178 225.9782 0.0908 1.3305 0.1920
WBRXII 102.6317 213.2634 214.8634 223.7239 0.0876 0.9187 0.1629
KEBRXII -107.9973 225.9946 228.4946 239.0703 0.1249 2.2530 0.3895
KWBRXII -99.2130 208.4261 210.9261 221.5017 0.0559 0.3873 0.0584
EEBRXII -101.1276 210.2552 211.8552 220.7157 0.0736 0.6479 0.0943
GMBRXII -106.5181 221.0363 222.6363 231.4967 0.1065 1.9254 0.2023

OEHLBRXII -101.8226 211.6453 213.2453 222.1058 0.0704 0.8439 0.1335

The fitted PDFs and CDFs of the compared models are displayed in Figures 5.35 and

5.36. From these figures, it is evident that the HMBRXII model provides a better fit

to the failure time of epoxy strands compared to the other models. The PDF and

CDF curves of the HMBRXII model closely align with the observed data, indicating

a more accurate representation of the underlying distribution.
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Figure 5.35: The fitted PDFs for failure time of epoxy strands
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Figure 5.36: The fitted CDFs for failure time of epoxy strands
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The profile log-likelihood plots depicted in Figure 5.37 showcase the estimated pa-

rameter values of the HMBRXII distribution based on the failure time of the epoxy

strands. These plots offer a visual representation of the log-likelihood function as it

varies with each individual parameter, while keeping the other parameters fixed at

their estimated values.
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Figure 5.37: Profile log-likelihood plots of HMBRXII for failure time of epoxy strands

5.9 Assessment of the Log-Harmonic Mixture Burr

XII Distribution

The LHMBRXII distribution is assessed using a real data set previously analysed

by (Nasiru et al., 2022). The model is compared with the log-Weibull Burr XII

(LWBRXII) distribution proposed by (Afify et al., 2018) and the log-Gumbel Burr

XII (LGBRXII) distribution introduced by (Al-Aqtash et al., 2021).
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The fitted distribution is given by

ya = β0 + β1za1 + β2za2 + β3za3 + ϵa,

where:

• ya being the proportion of fat in the arms for the a-th observation.

• β0 is the intercept term, representing the expected proportion of fat in the arms

when all covariates are zero.

• β1, β2, β3 are the regression coefficients associated with age, body mass index,

and sex, respectively. They represent the expected change in the proportion

of body fat in the arms for a one-unit change in the corresponding covariate,

holding other covariates constant.

• za1, za2, za3 are the values of the covariates (age, body mass index, and sex) for

the a-th observation.

• ϵa is the error term, representing the random variation or unexplained part of

the distribution.

Table 5.33 displays the MLEs, SEs, and corresponding p-values of the fitted distri-

butions. In this context, when comparing the LHMBRXII distribution to the other

models under consideration, it consistently demonstrates lower AIC and BIC values.

This suggests that the LHMBRXII distribution provides a better fit to the data.

With the parameter estimates obtained from the LHMBRXII distribution, we can

obtain

ya = −0.1021 + 0.0011za1 + 0.0156za2 − 0.1714za3 + ϵa.

Based on the findings of the analysis, it can be inferred that age and body mass

index exhibit a statistically significant and positive correlation with the proportion of

body fat in the arms, while gender, using female as the reference category, displays a

statistically significant and negative association.
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Table 5.33: Evaluation of the quality of fit for regression models

Distributions Estimates P-values Goodness-of-fit

LHMBRXII

β0 -0.1021 (0.024) 2.5× 10−5

ℓ= 456.840
AIC = -897.680
BIC= -868.104

β1 0.0011 (0.0002) 7.8× 10−11

β2 0.0156 (0.0011) 2.2× 10−16

β3 -0.1714 (0.0061) 2.2× 10−16

ρ 0.4084 (0.0365) 2.2× 10−16

α 0.4323 (0.0423) 2.2× 10−16

w 0.9954 (0.1762) 1.6× 10−8

σ 0.0275 (0.0027) 2.2× 10−16

LWBRXII
β0 -0.1980 ( 0.0262) 4.6× 10−14

ℓ=453.053
AIC= -890.107
BIC= -860.530

β1 0.0013 (0.0002) 4.6× 10−13

β2 0.0163 (0.0011) 2.2× 10−16

β3 -0.1681 (0.0063) 2.2× 10−16

β 0.1359 (0.0325) 2.9× 10−5

a 4.6862 (0.0005) 2.2× 10−16

b 1.8952 (0.0027) 2.2× 10−16

σ 0.0399 (0.0071) 2.4× 10−8

LGBRXII
β0 -0.0880 (0.0247) 4.0× 10−3

ℓ=453.031
AIC= -890.062
BIC= -860.485

β1 0.0013 (0.0002) 7.8× 10−13

β2 0.0158 (0.0011) 2.2× 10−16

β3 -0.1705 (0.0063) 2.2× 10−16

β 3.2727 (0.0003) 2.2× 10−16

k 6.0574 (0.0003) 2.2× 10−16

σ 2.2967 (0.0009) 2.2× 10−16

τ 0.0537 (0.0024) 2.2× 10−16

To assess the appropriateness of the LHMBRXII, LWBRXII, and LGBRXII models,

Cox-Snell residuals were generated. When comparing the residuals of the three mod-

els, it is observed that the residuals of the LHMBRXII model exhibit closer alignment

with the diagonal line on the probability-probability (P-P) plot depicted in Figure

5.38. This indicates that the LHMBRXII model provides a superior fit to the dataset

in comparison to the LWBRXII and LGBRXII models.
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Figure 5.38: P-P plot of residuals

The diagnostic results presented in Table 5.34 indicate that the LHMBRXII model

provides a better fit for the data set.

Table 5.34: Residual analysis results

Models KS W A

LHMBRXII 0.034 0.032 0.229

LWBRXII 0.050 0.098 0.738

LGBRXII 0.038 0.070 0.652
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CHAPTER 6

CONCLUSIONS AND

RECOMMENDATIONS

6.1 Introduction

In this chapter, we bring together the key findings, implications, and practical sug-

gestions derived from our research. This is aimed at providing a comprehensive un-

derstanding of the topic and contribute to the existing knowledge in the field. The

conclusions and recommendations presented herein serve as a culmination of the ef-

forts made and pave the way for further exploration and application of the research

outcomes.

6.2 Conclusion

Addressing weaknesses in classical distributions have been of interest in recent times.

When these classical distributions are modified they are made much more adaptive

to modelling various types of data sets.

The study proposed three special distributions from the harmonic mixture-G family

of distributions thus the harmonic mixture Gompertz, harmonic mixture Fréchet and

harmonic mixture Burr XII distributions. These distributions are heavy-tailed as the

family they were developed from was heavy-tailed. Assessing the density plots and

plots of the failure rate functions of the proposed distributions indicate that the new

distributions addressed either the weaknesses in skewness, kurtosis or ability to model

non-monotonic failure rates.

Some statistical properties of the proposed distributions such as moments, incom-

plete moments, quantile functions, entropy, mean deviation, median deviation, mean

residual life, inequality measures, moment generating function (MGF), stress-strength

reliability and order statistics were obtained.
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The study as well adopted some estimators thus the maximum likelihood estima-

tion, the ordinary least squares estimation, the weighted least squares estimation,

the Cramér-von Mises estimation and the Anderson-Darling estimation to estimate

the parameters of the proposed distributions. A simulations study was performed to

assess these estimators and the maximum likelihood estimation method adjudged the

best estimator of the proposed distribution.

In the final step of the analysis, each of the proposed probability distributions was

applied to three distinct lifetime data sets. The goal was to assess how well these

distributions suited the data. Moreover, these distributions were compared against

nine other modified models derived from the baseline distribution from which they

originated. The results indicated that the three unique distributions proposed in

the study were highly competitive and displayed a better fit when compared to the

other distributions. This was evident through the lowest values of selection criteria

such as the Akaike information criterion, Corrected Akaike information criteria, and

Bayesian information criterion. Additionally, these special distributions exhibited the

best fit according to goodness-of-fit test statistics, including the Kolmogorov-Smirnov

test, Anderson-Darling test, and Cramér-von Mises test. Apart from the distribution

analysis, the study also involved the development and application of two regression

models on the lifetime data sets. The assessment of the Cox-Snell residuals from these

models revealed that they provided a superior fit compared to the alternative models

that were considered.

6.3 Contributions to Knowledge

This thesis makes several significant contributions to the field of probability distribu-

tions by modifying and enriching the Gompertz, Fréchet, and Burr XII distributions

using the HMG family. The research outcomes provide valuable insights and advance-

ments that contribute to the existing knowledge in the following ways:

i. Flexibility and Versatility: The modifications achieved through the integration
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of the HMG family add a new level of flexibility and versatility to the Gom-

pertz, Fréchet, and Burr XII distributions. The modified distributions exhibit

improved abilities to accommodate a wide range of data characteristics, includ-

ing skewed and heavy-tailed data. This enhanced flexibility opens doors for

researchers and practitioners to apply these modified distributions in diverse

domains and empowers them to more effectively model and analyse complex

data sets.

ii. Framework for Further Research: The modifications made to the Gompertz,

Fréchet, and Burr XII distributions using the HMG family provide a foundation

for further research in distribution theory. The success of this thesis in modifying

these distributions prompts further exploration of other probability distributions

and the integration of the HMG family into additional models. This research

opens avenues for investigating the performance, applicability, and advantages

of modified distributions in diverse contexts, encouraging future researchers to

build upon these findings and expand the knowledge base in this area.

6.4 Recommendations

Based on the findings and outcomes of this research, the following recommendations

are proposed for further exploration and utilisation of the modified distributions in-

corporating the HMG family:

i. Practical Applications: It is recommended that researchers and practitioners in

fields such as finance, economics, environmental sciences, and engineering con-

sider adopting these modified distributions in their respective domains. Further

studies and practical applications can be pursued to evaluate the effectiveness

and benefits of the modified distributions in specific applications, thereby en-

abling more accurate and precise modelling of data that exhibits skewness and

heavy tails.

ii. Estimation Methods: As the modified distributions are introduced, it is crucial
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to develop robust and efficient estimation methods specific to these distributions.

Researchers should focus on exploring other estimation methodologies, such

as Bayesian approaches which can intend contribute to the practical adoption

of these modified distributions, making them accessible to a wider range of

researchers and practitioners.

iii. Extension to Other Distributions: The success achieved in modifying the Gom-

pertz, Fréchet, and Burr XII distributions with the HMG family suggests the po-

tential for similar enhancements to other probability distributions. Researchers

are encouraged to explore the applicability of the HMG family in modifying

other commonly used distributions.
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divergence”, IEEE Transactions on Information Theory, Vol. 60, No. 7, pp. 3797-

3820.

Yamaguchi, Y., Okamura, H., and Dohi, T. (2010), ”A variational Bayesian approach

for estimating parameters of a mixture of Erlang distribution”, Communications

in Statistics—Theory and Methods, Vol. 39, No. 13, pp. 2333-2350.

Yousof, H. M., Altun, E., and Hamedani, G. (2018), ”A new extension of Fréchet dis-
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