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ABSTRACT 

 

The heating value of natural gas is used to determine the quality of the gas sample, hence 

accurate prediction of heating value helps in controlling the issue of under billing and 

overbilling between a gas aggregator and an off-taker. The current method of determining 

heating value with gas chromatograph comes with many limitations as there can be carrier 

gas leaks, calibration gas issue and many more which can affect the prediction accuracy. The 

research focused on predicting the high heating value of natural gas based on percentage gas 

compositions obtained from Ghana’s offshore oil fields using different algorithms with the 

aid of Colab Notebook Software and selecting the best performing model from the algorithms 

used. Seven Algorithms namely Artificial Neural Networks (ANN), AdaBoost, XGBoost, 

Linear Regression, Random Forest, Bagging Regressor and Stacking Regressor (Hybrid 

model) were modelled to determine the best predictive model using 2021 sample data on Gas 

specifications obtained from Ghana’s offshore field, of which 80% of the data was used for 

training and the remaining 20% was used for testing. The performance of each algorithm was 

evaluated using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), R2 and Adjusted R2. Random Forest 

model performed better than all the other predictive models with an R2 and adjusted R2 of 

91.66% and 91.43% respectively and RMSE, MAE and MAPE of 1.6821, 0.5517 and 0.57% 

respectively during the testing stage. The hybrid model and the XGBoost Model equally did 

very well during the testing and can be relied on for the prediction of heating values of natural 

gas. The incorporation of this method provides a diverse approach to the analysis of the 

pipeline dynamic results of the heating value of natural gas. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

 

Natural gas is a multi-component fossil fuel that is created underneath the earth's surface. 

(Holloway, 2001). Methane (CH4), the largest component of natural gas constitutes a carbon ( 

C) atom and four hydrogen (H) molecules (Baker and Lokhandwala, 2008). Natural gas is also 

known to contain insignificant quantities of natural gas liquids (NGL). Gases made up of 

hydrocarbon liquids also form this NGL. "Father of Natural Gas" William Hart dug the first 

natural gas well in Fredonia, United States, in 1821 (Kidnay and Parrish, 2006; Tronci et al., 

2020). Initially, natural gases were locally adopted as the energy source for light but was 

subsequently transported for utilisation widely as a result of current advancement in engineering 

after World War II that saw to safety and allowed for long-coverage pipelines transportation of 

gas (Faramawy, Zaki, and Sakr, 2016).  

 

Natural gas is considered to be colourless, odourless and amorphous and gives off valuable 

amount of energy when it undergoes combustion (Economides, 2009; Faramawy et al., 2016).  

The combustion of fossil fuels like coal or oil emits large quantities of harmful compounds like 

nitrous oxide, carbon dioxide and sulphur oxide. Comparatively, during the combustion of 

natural gas the emission of sulphur oxide is negligible as well as lower emission of nitrous 

oxide and carbon dioxide which helps reduce the problem of acid rains, greenhouse effects 

(Faramawy et al., 2016). 

The world shift in energy preference from fossil fuels to natural gas is a result that, natural gas 

serves as a cleaner source of energy (Perera, 2018). 

 

With reference to the BP statistical review of World Energy 2022 edition, global natural gas 

demand grew 5.3% in 2021, recovering above pre-pandemic 2019 levels and crossing the 4 

trillion cubic meter mark for the first time. Its share in primary energy in 2021 was unchanged 

from the previous year at 24% (Dale, 2022). Also in Ghana, the production of natural gas has 

increased significantly since 2014 when full commercial production of natural gas started. From 

a production volume of 2 trillion Btu in 2014 to 107.83 trillion Btu in 2021 at an annual average 
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growth of 76.3% (Oscar, 2022). This statistic shows the increasing demand for natural gas as a 

source of fuel over the years. Natural gas has evolved from its primarily used as local energy 

for heat and electricity to a more robust used in residential, industrial and commercial heating 

globally dominating in the world economic growth (Mokhatab, Poe and Speight, 2006).  

 

Natural gas is utilised as a petrochemical industry fuel and feedstock for organic chemical 

industry operations in the manufacture of ethylene and propylene (Siirola, 2010). Natural gas 

is also used in fertiliser industry to produce ammonia. Natural gas may also be used to produce 

gases like carbon black, syngas, carbon sulfide, hydrogen, and sulphur (Faramawy et al., 2016; 

Siirola, 2010). In Ghana, natural gas is obtained from the Jubilee, TEN and Sankofa Fields. 

Ghana’s natural gas is predominantly used for domestic power supply for industries, transports 

and cooking. This has increased natural gas consumptions exponentially over the decades. Over 

two decades, Ghana’s natural gas consumption increased by 52.6%. This is the result of increase 

in industrial and residential demands for natural gas as their source of energy. The country has 

ten thermal power plants out of which two run solely on natural gas and five uses gas/oil. In an 

effort to ensure cleaner and progressive supply of energy, the country anticipates a shift from 

more environmental unfriendly fuels to a relative cheaper and cleaner natural gas-based fuel for 

its energy supply (Ayaburi and Bazilian, 2020). It appears that most of the research carried out 

in Ghana are concerned with the use and safety of natural gas.  

 

 By typical laboratory measurement with a bomb calorimeter, the heating value of a natural gas 

is calculated based on the mass rather than the volume consumed. The quantity of heat released 

during the combustion of one volume of gas is referred to as the heating value and is measured 

in btu/scf. Total, gross, and net calorific values are used to illustrate how effective a natural gas 

is at heating a space based on the amount of water present or consumed. While the existence of 

vapour as the liquid is referred to as net calorific value, the heating value of a natural gas is 

referred to as having gross calorific value when there is water present. However, net calorific 

value is considered more efficient in energy calculation as it shows features of real operational 

situation (Armstrong, 1966; Lett and Ruppel, 2004; Ludtke, 1986).   

 

The quality of a natural gas material may be determined by considering its composition as well 
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as its heating value. The same materials that make up the gas are used in analytical laboratory 

processes to determine both the heating value and composition of these components. (Ringen, 

Lanum and Miknis, 1979).  

 

1.2 Problem Statement 

 

It is important to consider a natural gas's heating value while assessing its quality. Tools such 

as the Gas Chromatography, Moisture analysers, Gravitometers, Hydrogen Sulphur Monitor 

are used but the most widely used instrument is the Gas Chromatography (GC). In the 

petrochemical industry, GC is used to determine the quality of the gas which is dependent on 

the selling price of the gas. Also, GC is used to predict the quality of a gas at any strategic 

position down a pipeline (Ewing, 2001). With reference to Ghana’s gas industries, most 

terminal stations along the gas pipeline network where custody transfer takes place are equipped 

with an online GC at the end of the pipeline close to the customer or the off-taker. The GC is 

incorporated with a flow computer for the estimation of the heating value and energy of the 

natural gas; therefore, an accurate estimation of the heating value solely depends on the proper 

functioning of the GC. 

 

In unusual situations, the GC develops fault due to corona (partial discharge), thermal heating 

and arching. This results in error GC reading consequently resulting in wrong diagnosis of gas 

quality (composition) and pricing. There are also situations where the auxiliaries, such as gas 

carrier leaks or calibration gas running out, lead to incorrect analyses of the gas composition 

and therefore influence the natural gas's heating properties.  

 

The proper maintenance of the GC is essential as this ensures the availability and reliability of 

the equipment. However, in most cases, it takes a longer time to get the GC fixed and running 

when it breaks down due to constraints like; delayed procurement and the delivery of parts as 

well as the availability of skilled personnel to fix the issue. The prediction of the heating value 

of natural gas using Machine Learning models will not only be used when the GC is out of 

service but will also serve as a check for the accuracy of the heating values provided by the GC. 

The data required for the Machine Learning models can be either from historical data usually 
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over a period of years (for the trend/ pattern) or better still real time data of the gas composition 

obtained from upstream. 

 

According to the ISO 6976:2016 standard, the conventional method of calculating the heating 

values of natural gas uses a correction of pressure and temperature at the reference point and 

addresses the assessment of the uncertainties related to the heating value. The estimation of the 

uncertainties associated with the heating values makes it very time consuming and laborious 

and even does not usually promise an accurate estimation as errors can occur, as such more 

time friendly and less tedious approach must be adopted. This therefore requires a better and 

more relying method of predicting the heating value instead of depending on the historical data 

(data picked from a particular day and time when the GC was working) for billing. This study 

seeks to propose an alternative approach to predict the heating values of natural gas from 

different oil/gas fields in Ghana using machine learning models.  

 

1.3 Relevance of the Study 

 

In relation to the issues associated with Gas Chromatograph, many gas companies select the 

heating value from a specific date and then a specific time when the GC worked well to serve 

as reference for billing when it comes to custody transfer. Contrary to this, the application of 

Machine Learning models rather use the trend/pattern of the heating value obtained from a 

selected period of years for the prediction of the heating value hence providing a much more 

accurate value when there is an issue with the GC or the auxiliaries to control under billing or 

overbilling between the aggregator and off taker, and determine the actual quality of the natural 

gas which is the basis of this study. 

 

1.4 Research Objectives 

 

The objectives of this research are to: 

i. Determine the heating value of a commingled gas; and 

ii. Prediction of heating value of natural gas using supervised machine learning techniques. 
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1.5 Methods Used 

 

The research methods used include: 

i. Review of relevant literature; 

ii. Gathering of data at Ghana Gas Company at Atuabo; 

iii. Predict the heating value of natural gas from Ghana’s offshore oilfields. 

 

1.6  Organisation of Thesis 

 

This Thesis contain five chapters. Chapter one is an introductory chapter to the thesis work. 

It states the issue the work is aimed at addressing. Background of the Study, Problem 

Statement, Relevance of the Study, Objective of the research, Methods Used and 

Organisation of Thesis are the main contents of this chapter. Chapter two presents precise 

and thorough literature review on topics pertaining to this research. The materials and 

procedures used to construct the correlation for calculating the heating values of natural gas 

from various oil and gas fields are explained in the third chapter. The results and debates 

from the methodologies used are provided in the fourth chapter, and the conclusions and 

suggestions derived from the research effort are covered in chapter five. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1    Introduction 

 

A naturally occurring gas that is high in carbon and hydrogen is known as natural gas. Most 

naturally occurring gas is found in coal beds, natural gas fields, and oil fields (Faramawy et al., 

2016). It is formed deep underneath the earth's crust and is a rich fossil energy source. Natural 

gases are utilised to provide heat and power for businesses and industries. Natural gas liquids 

(NGLs) and gases composed of non-hydrocarbons such carbon dioxide (C02) and water vapor 

are present in trace amounts. It is basically used as fuel and in the production of chemicals and 

materials. 

 

Both sweet and sour gases can be used to describe natural gas. This is determined by the 

quantity of sulfur present in the gas component. Sweet gas contains traces or smaller amounts 

of hydrogen sulfide whereas sour gas has large amounts of sulfur-containing hydrogen. Sweet 

natural gas is less acidic, non-corrosive, and less difficult to handle, unlike sour gas. Gas 

sweetening is a procedure that removes the acid component of sour gas to transform it into 

sweet natural gas (Faramawy et al., 2016). 

 

Dry and moist gas are additional categories for natural gas. The wetness or dryness of natural 

gas is dependent on the concentration of methane compounds. Methane makes up at least 85% 

of dry natural gas. In the creation of liquid natural gas (LNG) and compressed natural gas 

(CNG), dry natural gas is crucial (Weaver and Miller, 2019). On the other hand, wet natural gas 

has a lower methane content (less than 85 %) than water vapor and natural gas components 

such as propane, butane, and pentane as part of its components.  

 

Wet natural gas is processed in pipelines to remove water vapor and LNG to ensure that they 

are safe for home consumption and transportation. However, wet natural gas can be used to 

produce plastics and other products as well as for outdoor grills (Welker, 2015). 
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2.2 Properties of Natural Gas 

 

Gas is a homogeneous fluid with low density and less viscous property and irregular volume 

but can easily expand completely to take the shape of the container it is occupying. 

Understanding the links between pressure, volume, and temperature as well as the gas' other 

chemical and physical characteristics is essential for understanding how natural gas behaves. 

Natural gases are also known to be colorless, odorless, and have a weight lighter than air 

(Pellegrini et al., 2019). The characteristics of natural gas include gas-specific density, gas 

molecular weight, gas viscosity, gas compressibility, and gas pressure and temperature. 

 

2.2.1 Specific Gravity/Density 

 

The mass of a unit volume of a gas divided by the mass of a unit volume of dry air at absolute 

temperature (273.15 K) and pressure (60 °F) is known as the gas specific density. Gas specific 

density is also termed as Gas specific density (Dembicki, 2017). Gas density is the ratio of the 

weight of the gas molecules to the weight of the air molecules in relation to ideal gas behaviour. 

Finding the average molecular weight of the gas's constituent parts yields the molecular weight 

of the gas (Dembicki, 2016). Equation 2.1 is the formula for calculating natural gas's molecular 

weight. 

 

                                                  𝑀𝑎 = 𝑋𝑖𝑀𝑖                                                           (2.1) 

          

In the formula, Mi stands for the components' molecular weights, Xi is for the gas component's 

mole fraction, i for the gas component, and n for the total number of compounds in the gas 

component (Guo, 2011). Once the Molecular Weight (Ma) is determined, the gas specific 

gravity can be determined by using Equation 2.2. 

 

                                                        γ =  
Ma

M𝑎𝑖𝑟
                                                              (2.2) 

 

Where M is the apparent molecular weight of the gas, γ is the gas-specific density, and Mair is 

the molecular weight of air (Mokhatab et al., 2018). A molecular weight of 28.96 is assigned 
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to air. The gas's chemical makeup may be used to compute the molecular weight. (Debye, 

1947). This is usually determined in the laboratories and the results are reported in mole 

fractions of the gas component. 

  

2.2.2 Molecular Weight 

 

The mass of one mole of an element or compound is what is used to determine a gas's molecular 

weight. It is also termed molecular mass. The molecular weight of a substance is measured in 

grams per mole (g mol–1). By measuring the gas particle's mass and dividing it by Avogadro's 

number (6.02 x 1023), the molar mass of the gas particle is determined (Kolb, 1978). The 

molecular weight of a gas mixture may be calculated using the relative ratio and molar mass of 

each individual gas component. By combining the mole fraction of the gas mixture and 

multiplying it by the molar mass of each component, the average molecular weight of the gas 

mixture is determined. Equation 2.3 is used to determine the molecular weight of a gas 

 

                                                       𝑀 = ∑𝑋𝑖𝑀𝑖                                                    (2.3) 

 

Xi is the mole fraction, Mi is the molar mass, and M is the molecular weight of each gas 

component (Alamooti and Malekabadi, 2018). 

The same molar volumes but different molar masses are seen for gases measured at the same 

temperature and pressure at STP. The molecular weight of an ideal gas may also be calculated 

using the ideal gas law (PV=nRT). According to Lautier and Garai (2007) and Lower (2011), 

the formula for calculating the number of moles is n=m/M, where n is the mole of the 

compound, m is the mass of the gas compound, and M is the molecular mass. 

 

2.2.3 Wobbe Index 

 

The Wobbe Index of a gas is calculated as the product of the gas's gross heating value and its 

specific gravity, squared. It provides a measurement of the heat contained in a material through 

a certain hole at a specified gas pressure. The Wobbe index serves as an important parameter 

during the exchange of gasses in an engine (Klimstra, 1986). It is also regarded as a measure of 

changes between gases when they are used as fuels. The Wobbe index gauges the power 

Digitized by UMaT Library



9 
 

production of various gases during combustions. Wobbe index is vital in examining the effect 

of changeover in fuel and it is required conditions that accompany devices that transport gases 

(Mokhatab et al., 2018). A higher heating value (HHV) and the gas-specific gravity are needed 

to determine the Wobbe index of gas. The combustion properties of a gas can be determined by 

the Wobbe index (Zachariah-Wolff et al., 2007). Equation 2.4 is used to determine the Wobbe 

Index of a gas. 

 

                                           Wobbe index =  
Calorific value

√Relative density
                                       (2.4) 

  

2.2.4 Gas Viscosity 

 

Viscosity is defined as the frictional forces within gas because of cohesion in fluids that impedes 

the flow of the gas substance. The mechanism of viscosity is crucial in designing a pipeline for 

the transport of materials (Dembicki Jr, 2017). A measurement of the resistance to fluid flow is 

called viscosity. Fluids have the ability that enables them to resist the flow of objects that are 

immersed in them and exhibit self-resistance to the movement of layers with varying velocities 

within them. The scientific unit (SI) of viscosity is Pascal (Pa). In practical and scientific 

publications Pascal is rarely used. The more frequent unit used to represent viscosity is the 

Poise (P) which is named after Jean Louis Poiseille who was a French Physiologist and it is 

expressed as dyne second per square centimeter (dyne s/c). Viscosity comes into play as a result 

of the transition of molecules from one layer of gas to another. During the process, there is a 

transfer of energy of molecules from a faster surface to a slower surface and vice versa (Dimri 

et al., 2012). The viscosity (ŋ) of a gas is determined by Equation 2.5.  

 

                                               Ŋ =  
𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
                                                    (2.5) 

 

According to Newton's equation of motion, the fluid's shear is inversely related to its viscosity 

and directly proportional to the force applied (Towell, 2020). The temperature, pressure, and 

gas composition all affect the viscosity of natural gas, which may also be determined by 

laboratory testing. However, empirical data that is already accessible can be utilised to estimate 

the viscosity of the gas in the absence of laboratory data. Low pressure causes the viscosity to 
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rise with temperature because the gas molecules are being stirred up. On the other hand, a gas's 

viscosity reduces with high pressure and falling temperatures. When the pressure is 

intermediate, the gas's internal movement increases more when the temperature rises than when 

the pressure is low (Hanafy et al., 1997; Vazquez and Beggs, 1977). 

  

2.2.5 Gas Compressibility 

 

A compressibility factor is necessary for many petrochemical engineering calculations, 

including those involving a recently found formula that is being tested, a drop in gas flow 

pressure through a pipe, a pressure gradient in gas wells, gas processing, and compression. 

Additionally, the compressibility factor is used into formulae to calculate the initial gas material 

balance. The Z-factor, commonly known as the gas compressibility factor, is calculated 

experimentally as a percentage of any typical PVT report. Mostly (Shokir et al., 2012), data on 

gas composition is used to determine the Z-factor in cases when the PVT report is missing. 

Compressibility is defined as the quantity of volume that decreases when placed under pressure. 

 

 Practically, gases are more compressible than liquid and solids due to the presence of larger 

spaces between the gas particles. It is estimated that at standard pressure and temperature, the 

spaces between gas molecules are ten times apart. This analogue is the reason why gas particles 

are easily compressed. When gas molecules are pressed against each other vertically, the 

pressure exerted by the gas mount on each other through linear and nonlinear mechanisms 

(Gabitto and Tsouris, 2010). Gas compressibility (Z-factor) is the quantity of deviation from 

the ideal gas behaviour. Equation 2.6 is used to estimate the compressibility of a real gas in 

terms of density, pressure, temperature and molecular weight of the gas. 

 

                                       Z =  
𝑃𝑀

 ρRT
                                            (2.6) 

 

The variable Z is the gas compressible factor, P represents the pressure, ρ is the density, R is 

the constant gas pressure, M is the molecular weight of gas and the T is an absolute temperature 

(Winter, 2014). 
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 2.2.6 Relative Density 

 

The density of a gas substance is divided by the density of a reference item expressed in the 

same unit to get its relative density. Standard pressure (101.325 KPa) and room temperature 

(20 °C) are often used to assess density. Relative density has no unit. Relative density is used 

to quantify the weight of a sample that is required for the preparation a solution with a specified 

concentration. Relative density can be defined in terms of both real and ideal situations. When 

the gas and the air particles are viewed as gaseous and follow the ideal gas law, the ideal relative 

density of a gas is measured. However, when they are seen as real fluids, they are known to be 

real relative density. If a relative density of a substance is less than 1 then the substance can 

easily flow on water and vice versa. A relative density of 1 means they are the same as water 

(Riazi, 2005; Webb, 2001). 

Equation 2.7 is used to estimate the relative density (RD) of a substance. 

 

                                                   𝑅𝐷 =  
 ρsubstance

ρreference
                                                                (2.7) 

 

Where RD is the relative density of the substance, ρsubstance represents density of the substance, 

and ρreference is the compared density of the substance (Picard et al., 2008; Skempton, 1986). 

 

2.3 Behaviour of Natural Gas 

 

Natural gas is used to describe a hydrocarbon combination that is often present under the earth's 

crust. Natural gas exhibits a variety of behaviours as a result of its composition and origins. 

Temperature and pressure have an impact on how natural gas behaves. 

 

2.3.1 Ideal Gas Law 

 

The connection between temperature, pressure, and gas volume is expressed by the ideal gas 

law. The laws of Boyle's Law, Charles' Law, and Gay-Lussac's Law are all combined in these 

interactions. These relationships were obtained from the laws of gases established by Gay-

Lussac, Charles, and Boyle. Volume and temperature are directly proportional at constant 

pressure, as demonstrated by Charles' law. Boyle's Law asserts that pressure and volume are 
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inversely proportional at constant temperature, whereas the Gay-Lussac Law states that 

temperature and pressure are directly proportional at constant volume (Laugier and Garai, 2007; 

Woody, 2013). The Ideal Gas Law is made up of these rules in combination. In the equation 

PV=NRT, P stands for pressure, V for volume, N for the number of moles of gas, R for the 

universal gas constant, and T for absolute temperature (Laugier and Garai, 2007).  

 

When the force between individual atoms or molecules is fully elastic and there is no attractive 

force between the molecules, gas is said to be ideal. In order for a gas to be considered “ideal”, 

it must meet all four requirements which include, its volume must be negligible, the particles 

within the gas must be of equal size, and must have a non-existing force of attraction or 

repulsion between/within the molecules, the gas molecules must be fully elastic with no energy 

loss, and the gas particles must move in accordance with an existent Newton's Law of Motion. 

(Tenny and Cooper, 2017). The concepts of “ideal” gases are strictly theoretical and do not 

exist in reality. This is because all existing natural gases violate the governing assumptions of 

natural gas principles. This is true because there is an existing volume in any gas participles 

(Tenny and Cooper, 2017). Also, gas particles exist in different sizes and there is an 

intermolecular force of attraction or repulsion between neighbouring gas particles. It is clear 

gas molecules move randomly, there is periodic preservation of energy and forces within the 

gas system hence a non-existing perfect elastic collision (Levine, 1985). The relationship 

between pressure and volume of a gas at constant temperature was established by Robert Boyle 

in 1662. The formula for Boyle’s law is presented in Equation 2.8 and Equation 2.9. 

 

                                                                    𝑝 ∝
1

𝑉
                                                                  (2.8) 

, where P stands for pressure and V stands for volume. Boyle's law may be applied to determine 

a gas's initial pressure and volume, which are known as; 

 

                                                        𝑃1𝑉1 = 𝑃2𝑉2                                                                  (2.9) 

 

Another French scientist, Joseph Louis Gay-Lussac, gave Jacques Charles credit for his 

unpublished work in 1970. The volume of a gas is directly proportional to its temperature while 

the pressure is constant, according to that statement. Equations 2.10 and 2.11 were derived from 
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Charles Law. 

This is stated as:  

                                                                𝑉 ∝ 𝑇                                                         (2.10) 

Using Charles Law to calculate the volume and temperature of a known initial volume and 

temperature of a gas, it is presented as: 

 

                                                             
𝑉1

𝑇1
=

𝑉2

𝑇2
                                                          (2.11) 

 

An extension of the Charles Law was done by Joseph Louis Gay-Lussac by relating temperature 

and pressure.  Gay-Lussac also proved that a gas's pressure and temperature are directly related 

at constant volume. The pressure and temperature of a gas are computed because this is 

represented as PT. Equation 2.12 shows the formula proposed by Gay-Lussac 

 

                                                                
𝑃1

𝑇1
 =

𝑃2

𝑇2
.                                                           (2.12) 

 

Lastly, Amedeo Avogadro postulated in 1811 that a gas's volume is exactly proportional to the 

number of moles it contains. According to this law, gases with the same volume, temperature, 

and pressure have an equal number of molecules. The sum of the formulas mentioned above is 

the ideal gas law, which Emile Clapeyron first presented in 1834. The ideal gas law is written 

as PV = nRT, where n is the number of moles of gas, R is the universal gas constant, and T is 

the absolute temperature (Laugier and Garai, 2007; Levine, 1985; Tenny and Cooper, 2017). 

  

2.3.2 Real Gas 

 

Real gases deviate from the ideal gas behaviours. They can be defined as gases that assume the 

shape of their container and interacts with each other. A gas that under all standard pressure 

and temperature does not obey the real gas law is said to be a real gas. Real gases have mass, 

volume, and velocity. The extent of deviation of real gases from ideal gases is measured by the 

use of the compressibility factor. 

Real gases at higher temperatures pull closer to each other in the container in which they are 

stored. This result in a higher intermolecular force of attraction between the gas molecules. 
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These intermolecular forces hold the gas molecules together reducing the force and the rigorist 

collision with the container walls. This presents a pressure value lowers than the ideal gas value. 

Additionally, at greater pressures, a bigger portion of the container's capacity is occupied by 

the volume of the gas. The pressure inside the container is too high due to the reduced volume 

present. 

 

Figure 2.1 Compressibility factors of three different gasses at the same temperature of 

250 K. (Key and Ball, 2014) 

 

The temperature of gas also contributes to the deviation of ideal gas behaviour. The average 

kinetic energy of a gas decreases with a decreasing temperature. As a result, more gas molecules 

lack the kinetic energy necessary to repel the intermolecular interactions created by atoms in 

the same container. As a result of the gas molecules colliding with the container walls in this 

situation, the pressure of the gas decreases (Key and Ball, 2014). 
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Figure 2.2 Compressibility Factor of nitrogen Gas with Different Temperatures. 

(Key and Ball, 2014) 
 

Johannes Van der Waals a Dutch physicist 1973 proposed a formula that compensates for the 

deviations of the ideal gas behaviour by demonstrating the effects of the size of molecules and 

the force of attraction between the forces. The intermolecular forces and the volume of gas 

molecules are corrected using the Van der Waals equation, which combines two constants. The 

Van der Waals formula is shown in Equation 2.13. 

                                                      (𝑃 +
𝑎𝑛2

𝑉2 ) (𝑉 − 𝑛𝑏) = 𝑛 

 

Where P represent the gas pressure, a is the correction of the intermolecular forces between the 

gas molecules, V is the volume, n is the quantity of gas molecules, R is the constant of universal 

gas, and T is the temperature of the gas. The Van der Waals force has an ultimate impact on gas 

properties and results in the force of attraction between two or more objects that are separated 

by minute gaps. In establishing the colloid's stability and adhesion of a gas molecule, the 

concept of Van der Waals forces plays an important role. 

  

2.4    Heating Value of Natural Gas 

 

Natural gas's entire thermal energy output determines how effective it is as a heater. Caloric 

value is another name for the heating value. The energy generated during the combustion of 

one cubic meter of natural gas is referred to as the heating value and is expressed in mega joules 

(2.13) 
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per cubic meter (MJ/m3). Gas chromatography is used to test natural gas's heating value. 

(Armstrong and Jobe, 1982). Heating values are directly dependent on the content of methane 

in the gas, that is the higher the methane content the lower the caloric value (Moharir et al., 

2019). Basically, two types of heating values of gas exist. These are gross heating values (higher 

heating values) and net heating values (lower heating values) (Gupta and Mondal, 2020). 

  

2.4.1 Gross Heating Values 

 

The amount of heat produced when a gas completely burns in the presence of oxygen under 

constant pressure is known as the gross heating value, and the entire combusted products are 

cooled at a specific temperature and the water present in the resultant gaseous products are 

condensed to a liquid state (Francis and Peters, 2013). The gross heating value is also termed 

as total heating value (Almarri et al., 2013). The gross calorific value is presented in Equation 

2.14. 

 

GHV of gas (MJ/m3) =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 (𝐾𝑔) 𝑥 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑖𝑠𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟(°𝐶)𝑥 4.186

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑔𝑎𝑠 (𝑚3 𝑎𝑡 𝑆𝑇𝑃) 𝑥 100
                 (2.14) 

 

The standard measurement of a gas's energy content is its gross or greater heating value. The 

gross heating value is crucial in determining the energy analysis of the system. Higher heating 

values are obtained using a bomb calorimeter by means of sophisticated and costly laboratory 

methods. However, more advanced and less costly methods such as ultimate and proximate 

analysis have been adopted for estimating higher heating values (Nhuchhen and Salam, 2012). 

  

2.4.2 Net Heating Value 

 

The inferior or lower calorific value is another name for the net heating value. The amount of 

heat emitted after the full combustion of a certain volume of gas under constant pressure is 

known as the net calorific or heating value and the all the burnt product are reversed to the same 

temperature as the reactants and assumes a gaseous state as the product is recovered.  Net 

heating value is obtained under the same condition as gross heating value except that the 

quantity of heat that may be recovered from the water vapour released after the gas is burnt 

(Jenkins, 2020). The link between a fuel's weighted percentage (W) of hydrogen fuel (H) and 

Digitized by UMaT Library



17 
 

its weighted net heating value (LHV) and gross heating value (GHV) is established in Equation 

2.15. 

 

                                     LHV =  GHV –  10.55(W +  9H)                                                 (2.15) 

Where LHV is the Low Heating Value, GHV is the Gross Heating Value, W is the weighted 

percentage of fuel and H is the hydrogen fuel. 

 

2.4.3 Inferior Heating Value 

 

This is the amount of heat that would be generated following the full combustion of a certain 

amount of gas at constant pressure (p1), the result of combustion being reversed to a common 

specific temperature (t1), and the combustion producing a gaseous state as the end result.  

 

2.4.4 Superior Heating Value 

 

This is the amount of heat that would be generated following the complete combustion of a 

certain amount of gas under constant pressure (p1) and the outcome of combustion reversed to 

a common specific temperature (t1) except for water, which is formed and later condenses into 

a liquid state. 
 

 

Figure 2.3 Gross Calorific Value and Net Calorific Value of Gas (ISO 6976:2016) 
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2.5    Standard for Estimating Heating Values of Natural Gas 

 

The internationally recognised standard for estimating the heating values of natural gas is the 

International Organisation Standardisation (ISO). The technical committee for the ISO standard 

was created to carry out the standard and to represent the committee, government, and non-

governmental organisations. To produce standards for electrotechnical, ISO collaborates 

closely with the International Electrotechnical Commission (IEC). Drafting of international 

standards is in accordance with regulations established by ISO and IEC. The drafted standards 

are circulated to the electorate by the technical committee who cast their vote and it requires 

approval from not less than 75 % of the electorate casting the vote (SS-1SO-6976, 1996). 

 

Several versions of ISOs have existed since the 1980s which have served as an established 

standard for the manufacturing of gas. These standards also determine the prices of natural gas 

on a volumetric basis. The concept of using thermal energy as the basis of billing natural gas 

has become important due to the differences in the quality of gases produced in different parts 

of the world as well as the value of energy on the world market. Calorific values are calculated 

using a number of techniques for this purpose. Determining the energy of natural gas is always 

considered an important parameter during regulation, at the point of production, processing, 

and through to consumption. In determining the thermal energy of a gas, a measure of the 

product by volume or by mass or the calculation of its calorific value is required.  

 

Six parts make up ISO-6974, according to the standardisation's text. It teaches how to use 

analysis to forecast how unpredictable natural gas is. This procedure is best to quantify heating 

values and other physical properties of the gas showing an uncertainty that is definable. Part 

two of the ISO-6947 outlines the measure of the system quality and qualitative approach to the 

handling of data and computation of errors. Gas chromatography is used to determine the level 

of uncertainty by using the 10 outlined procedures. 

i. Defining the working range 

ii. Defining the requirements of the analytical methods 

iii. Selecting equipment and working conditions 

iv. Performing type I (primary calibration) and type II (performance evaluation) analysis 
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v. Assigning relative response 

vi. Applying quality assurance procedures 

vii. Sample analysis 

viii. Calculation of component mole fraction 

ix. Calculating the uncertainty in the mole ratio 

x. Calculating the expanded uncertainty in mole fraction. 

 

The final part (part 3-6) postulate methodologies that target the analysis and can be applied in 

combination with section one and two of the ISO-6974. 

 

There are several ISO standards that ensure quality system management requirements which 

sees to the design, production, processing, transportation, and services in the operation of the 

petroleum, petrochemicals, and natural gas industries. International standards give consumers 

or traders in gas commodities the confidence that the traded goods are reliable, good quality, 

and meet internationally accepted requirements. Natural gas products that certify ISO mean the 

product can operate beyond borders (Zawada, 2014). 

  

2.6    Methods of Estimating Heating Values 

 

In response to the global climate crisis, many countries worldwide have heavily promoted the 

use of alternate fuel sources than fossil fuels. This has become necessary due to the increased 

environmental effect and fossil fuel non-renewability (Han et al., 2017). These are measures to 

mitigate global challenges on global warming and the depletion of fossil fuels (Yin, 2011). 

 

The combustion of biomass such as natural gas modelling and operations heavily relies on 

several characteristics such as heating values, ash, moisture, and elementary compositions. The 

heating values of natural gas components are reported in either lower or higher heating values 

(Han et al., 2017). Through laboratory testing, the quantity of heat in gas components may be 

determined. A bomb calorimeter does this by calculating the difference in enthalpy between the 

reactants and the products (Xing et al., 2019; Yin, 2011). Measuring heating values through 

experimentation using a bomb calorimeter is relatively easier and more accurate, however, due 
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to unavailability, alternative methods known as proximate or ultimate analysis are conducted. 

Results obtained from the proximate and ultimate analysis are subsequently used to determine 

heating values through empirical correlations (Sheng and Azevedo, 2005).  

 

In contrast to ultimate analysis, which determines the weight percent of elements such as 

hydrogen, carbon, oxygen, nitrogen, and sulphur present in a natural gas product, proximate 

analysis determines the weight of moisture in percentage (wt%), fixed carbon (FC), volatile 

matter (VM), and ash content of the gas product (Yin, 2011). Both experimental and ultimate 

analysis determination of heating values require special instrumentation whiles the proximate 

analysis determination can be relatively easily obtained using simple equipment in the 

laboratories (Demirbaş and Demirbaş, 2004). 

 

In most countries. Pricing for the quantity of gas is determined by calculating the thermal energy 

of the metric value product using a standard reference and a higher heating value depending on 

volume. Therefore, the heating value of the natural gas products is determined by various 

principles, volume base, molar base, and Mass base methods. 

  

2.6.1 Molar Basis 

 

In determining the heating value of natural gas using the molar base method, the individual 

molecular species present in the gas mixture are weighed in reference to its mole fraction, and 

all molecules in the compound are added to obtain the average mole fraction of the natural gas 

mixture on a molar basis. Subsequently, a conversion is done to change the average mole 

fraction of the gas mixture to its net caloric value. When determining the gross calorific value 

of a mixture with known composition at temperature t1, the ideal gas law is used to determine 

the mole of a gas ingredient in Equation 2.16. 

 

                                                               n =
𝑃𝑉

𝑅𝑇
                                                             (2.16) 

2.6.2 Mass Basis 

 

The mass of a gas also known as the molar weight is defined as the weight of one mole of a 
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sample. The mass of a substance is obtained by multiplying the mass of the equal volume of 

the substance by its relative density. During the calculating of density and relative density for 

various species of a gas mixture, the molar mass of the sample is weighed in line with its mole 

fraction, all the molecules present are summed up to obtain the average mole fraction of the gas 

quantity. The values are then converted into the relative density of the gas compound. Density 

and relative density values of the gas are then obtained by applying a volumetric correction 

factor or compression factor.  

  

2.6.3 Volume Basis 

 

The measure of the energy of natural gas is determined by its volume. The volume of a gas is 

measured in cubic meter or cubic feet. The volume or cubic foot of a gas is defined as the 

quantity of gas requires to fill one cubic volume under standard temperature and pressure. The 

volume of nature is dependent on the atmospheric temperature and pressure. People in gas 

industries have developed standards for measuring natural gases. Natural gas is traded by means 

of a cubic foot. Per the United States (U.S) standards the quantity of the occupies imaginary 

box one foot on either side at a temperature of 60° Fahrenheit and a pressure at sea level. Gas 

volume helps determine the amount of heat that can be generated from a gas. A cubic foot is 

equivalent to 1,020 British thermal units (BTU).  

 

A BTU is referred to as the quantity of heat energy that is required to increase the temperature 

of one by 1 °Fahrenheit and pressure at sea level. Natural gas energy content varies in different 

locations. To ensure they are comparable, 1 cubic foot of natural gas is equal to 1,000 BTU of 

heat energy. This standard efficient trade between countries.  

 

2.7   Mathematical Model for heating value of Natural Gas 

 

Several formulae for determining the HHV or LHV of natural gas from the results produced 

during elementary analysis have been proposed. Dulong (1980) developed the first model for 

calculating the heating value of a coal sample. In Dulong's formula, the mass of ash-free dry 

weights of carbon, hydrogen, oxygen, and sulfur were combined linearly (Buckley, 1991; 

Vargas-Moreno et al., 2012). Dulong’s model has undergone several revisions by different 
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scientists and proposed variations have been derived to include new coefficients and new 

expressions. The original model proposed by Dulong was based on ultimate analysis. Dulong’s 

formula for calculating the HHV of a coal was expressed as HHV = 8080C + 34,460H - 4,308O 

+ 2250S. Where C, H, O, and S stand for carbon, hydrogen, oxygen, and sulfur, respectively, 

and HHV is the higher heating value. The unit of measure is expressed in kcal/kg (Kathiravale 

et al., 2003). 

 

The Institute for Gas Technology (IGT) and Lloyd's, respectively, presented models toward the 

end of the 1970s and the beginning of the 1980s that each contained a fraction of ash. All earlier 

models were conducted on coal samples (Channiwala and Parikh, 2002; Francis and Lloyd, 

1983). Current models include a quadratic equation that included C, H, and N for biomass 

samples proposed by Friedl et al. in 2005. The equation is expressed as HHV= 0.00355[C] 2 − 

0.232[C] − 2.230[H] + 0.0512[C·H] + 0.131[N] + 20.600 (Friedl et al., 2005). In addition, two 

models were presented by Sheng and Azevedo in 2005 based on the findings of the elementary 

analysis. One of the equations is based on the concentration of carbon whiles the other into 

consideration of other variables such as carbon, hydrogen, and oxygen. The equations proposed 

by Sheng and Avezedo are; 

 

Equation 1: HHV= 0.3259[C] + 3.4597 and 

Equation 2: HHV= −1.3675 + 0.3137[C] + 0.7009[H] + 0.0318[O]. 

(Sheng and Azevedo, 2005) 

 

In the same year, Thipkhunthod et al. (2005) reviewed earlier publications and proposed five 

models with novel and simplified coefficients. These experiments were done on sewage 

sludges. The five models are outlined as follows: 

Equation 1: HHV= 0.4912[C] − 0.9119[H] + 0.1177[O] 

Equation 2: HHV= 0.4925[C] − 0.9260[H] + 0.1176[O] + 0.0193[S] 

Equation 3: HHV= 0.4148[C] − 0.1841[H] + 0.1789[O] − 2.1595 

Equation 4: HHV= 0.4259[C] − 0.0698[H] + 0.1817[O] − 0.1805[N] − 2.2770 

Equation 5: HHV= 0.4302[C] − 0.1867[H] − 0.1274[N] + 0.1786[S] + 0.1842[O] − 2.3799 

(Thipkhunthod et al., 2005). 
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Yin in 2011 recognised the advancement in the work of Sheng and Azevedo and proposed a 

new model through experimentation with several materials. Equation 2.17 was used by Yin to 

calculate heating value (Yin, 2011). 

 

                                        HHV =  0.2949[C]  +  0.8250[H]                                                       2.17 

 

Lastly, Callejón-Ferre et al. (2011) investigations examined the energy contained in intensive 

horticulture wastes that contributed to the production of greenhouse gases in specific regions 

of Spain. The results of the experiment produced six equations which were expressed are: 

Equation 1: HHV= −3.147 + 0.468[C] 

Equation 2: HHV= −2.907 + 0.491[C] + 0.261[H] 

Equation 3: HHV= −3.393 + 0.404[C] − 0.341[H] + 0.067[N] 

Equation 4: HHV= −3.440 + 0.517[C+N] − 0.433[H+N] 

Equation 5: HHV= 5.736 + 0.006[C] 

Equation 6: HHV= −5.290 + 0.493[C] + 5.052[H] 

(Callejón-Ferre et al., 2011; Vargas-Moreno et al., 2012) 

 

2.8    Natural Gas Analysis 

 

Natural gas is analysed using gas chromatography introduced by Martin and James in 1952. 

Natural gas is examined for a variety of purposes, including as determining the quality of a gas 

and assessing its specificity, components, sources, and physical qualities (Bartle and Myers, 

2002). Due to impurities of non-hydrocarbon components like carbon dioxide, hydrogen 

sulfide, and other components, as well as the existence of hydrocarbon components such gas 

condensate and natural gasoline, natural gas samples are also tested. In a similar vein, analytical 

techniques are used to determine the gas's heating value (McNair et al., 2019; Snow and Slack, 

2002). 

 

2.8.1 Analytical Methods 
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In addition to understanding its physical and chemical characteristics, understanding the 

reactivity of pollutants in the gas component is crucial to ensuring that production and 

processing of natural gas meets the requirements for the sale of gas products. Natural gas differs 

in composition and properties because of derivation from different parts of the world. Due to 

this, the reactivity of the gas molecule can vary chemically and physically. The purity of a 

natural gas stream is dependent on its physical and chemical composition. In cases like 

condensate and gasoline which have a complex chemical mixture of hydrocarbon and non-

hydrocarbon compounds present in the gas may not be seen in its composition. To ensure that 

the product meets standards, the gas goes through processes to determine its true boiling point, 

specific gravity, viscosity, density, water contents and sediments, and other tests (Shepherd, 

1947; Wallis, 2013). 

  

2.8.2 Gas Chromatograph Analysis 

 

Gas chromatography is an analytical technique that is used to examine unstable substances 

when they are in the gaseous phase. It remains the primary technique to determine the 

distribution of carbon and hydrogen in a hydrocarbon liquid. Gas chromatography also serves 

the reason for determining the purity of the gas. Due to its inefficiency to determine absolute 

purity, distillation and solidification become the best method for determining absolute purity. 

Even though, gas chromatography lacks this quality it is the widely adopted technique that is 

used to determine and measure derivatives of hydrocarbon in crude oils products (Wallis, 2013). 

 

Gas-liquid chromatography is mostly used to separate volatile components of organic 

compounds in solution. This method is in fact, the most adopted and efficient technique to 

separate organic compounds. It is mostly suitable for quantitative analysis of a compound with 

known components where each component is determined independently. Gas chromatography 

combined with mass spectrometry becomes an extremely useful tool to determine the 

compositions of an organic compound (Chemistry LibreTexts, 2020). 

 

The operation of gas-liquid chromatography requires the injection of the compound of interest 

into the sample port where vaporisation takes place. An inert gas mostly helium or nitrogen 
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transport the injected vaporise sample where it travels through a gas chamber loaded with silica 

that is liquid coated. The liquid's solubility now controls how quickly results appear. This 

module's significance is in providing a clearer grasp of the measurement and separation 

technique and its use. Due to the gas's thermal expansion, the temperature of the gas 

chromatography oven affects how quickly the gas flows. The centre of the gas chromatography 

is the point where the separation of the gas molecules takes place. At this phase, the samples 

are separated into individual components and exit the column. The detector in the gas 

chromatographic results in an output signal. In a chromatogram, the signal results in the gas 

chromatography peak characteristics. The chromatogram's peaks show a proportionate 

depiction of the concentration of the target gas. Gas chromatography software and hardware 

are connected to the gas chromate graph to aid in diagnosing, reporting, and output of the 

products (Ying et al., 2019).  

 

2.9 Machine Learning (ML) 

 

Machine learning has over the past two decades witnessed a dramatic progress in various facet 

of life. It is undoubtedly and undebatable one of currents rising subjects in the areas of 

technology and undeniably the most advanced areas in the study of computer and data sciences. 

The field of machine learning has advanced from laboratory novelty to a more robust 

technological practices for wider output and use commercially (Jordan and Mitchell, 2015). ML 

emerged as one of the important fields under artificial intelligence and has been useful in the 

arena of computer science disciplines and has played a crucial role in the development of 

practical software for controlling and visualisation of more advance technologies including 

robots, languages encryption and other beneficial application. There are two basic branches of 

machine learning which are the supervised and unsupervised machine learning (Zhou, 2021). 

The development of a mathematical model to evaluate the heating values of natural gas is the 

main goal of this thesis. The mathematical models that will enable making predictions for the 

heating value of natural and comingled gas will be developed as part of this thesis using a 

supervised machine learning method and inputs. These methods were selected because of its 

accuracy in predicting heating values. To buttress this claim, many studies have revealed the 

application of machine learning in predicting Higher Heating Values (HHV) of materials. Xing 
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et al., (2019) used ANN, Support Vector Machines (SVM), and Random Forest Regression 

(RFR) to predict the HHV of biomass based on their proximate and ultimate analyses. The 

authors used R2 to compare the accuracy of the models and the RFR Algorithm performed better 

with R2 > 0.94. Taki and Rohani (2022) used Radial Bias Function Artificial Neural Network 

(RBF-ANN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), Support Vector 

Machine (SVM) and Adaptive Nero-Fuzzy Inference System (ANFIS) to predict the HHV of 

Municipal Waste (MW) for waste -to- energy evaluation. The authors used six different inputs 

which were carbon, water, hydrogen, oxygen, nitrogen, sulphur and ash. The results revealed 

that RBF-ANN can predict the HHV of MSW with higher accuracy than other models. Birgen 

et al. (2021), also used ML based modelling to predict the Lower Heating Value (LHV) of 

municipal waste. In their work, the Gaussian Processes Regression (GPR) was used. 

 

2.9.1 Supervised Machine learning  

 

Supervised or Inductive machine learning develops a target function that can be used to forecast 

the value of a particular values of class of interests (Muhammad and Yan, 2015). The main goal 

of supervised machine learning is to create a function that links an expected output to an input. 

Supervised machine learning is classified as the commonly used type of machine learning by 

classification because their aim is to enable the computer or technology in use to learn a pattern 

or classified system that has been generated. In data aggression using supervised machine 

learning, the first step include generating the datasets to be used for the programming to obtain 

the desired outputs. This involves an expert selection of appropriate input variables or 

measuring all variables available to obtained relevant data that will be of interest for the 

programming. The later process is mostly referred to as “brute-force” method. After the 

required data set is acquired, the data is then prepared and processed. This is an important level 

in supervised machine learning. There are numerous techniques proposed by a lot of researchers 

to help correct and deal with missing data during the data generation process. The next step is 

the selection of algorithm for obtaining the outputs (Muhammad and Yan, 2015; Osisanwo et 

al., 2017). 

 

Generally, in order for a supervised learning works properly, the model must be trained to 
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produce reliable predictions. In order to avoid overfitting, it is usual practice to randomly 

partition the available data, using half for training and the remaining half for verification. 

Overfitting is the phenomena of fitting a model to the training data so closely that it does not 

function well in general (Saleh, 2022). Some of the machine learning techniques that will be 

considered in this paper includes AdaBoost, XG Boost, and Random Forest, Artificial Neural 

Network, Linear Regression and bagging regression.  

 

2.9.2 Adaptive Boosting (AdaBoost) 

 

This machine learning boosting model merged many weak and incorrect comparing rules to 

build a very accurate prediction rule. AdaBoost is the first boosting algorithm and widely used 

practical boosting model and it has serves numerous multifaceted purposes in different fields. 

AdaBoost algorithm was developed by Yoav Freund and Robert E Schapire (Freund, Schapire, 

and sciences, 1997; Schapire, 2013). The AdaBoost works on principle that the final outcome 

of interest is dependent on the repetitive measure of previous outcomes i.e the power of 

prediction is slightly increased based on output from previous test. AdaBoost's weak learners 

create a single-split decision tree called the decision stump from a single input attribute. Each 

observation receives the same amount of weight when creating the first decision stump. By 

adding weights to data and models, AdaBoost modifies the basic idea of boosting. AdaBoost 

uses the steps below during its operationalisation;  

1. AdaBoost selects authentic learning data and weights each row by 1/n, where n 

represents the total number of data points; 

2. It uses the aforementioned predictive model to make forecasts about the aforementioned 

subgroup; 

3. It then uses the sample drawn at random from the initial data and builds the decision 

stump predictive model; 

4. The modified weight of the original data is then increased by increasing the weight of 

incorrectly predicted row and decreasing the weight of successful prediction row; 

5. It selects rows from the original datasets, giving those with more weight a higher 

priority. There rows reflect the errors in the prior forecasting model’ 

6. It then generates a new model using the previously chosen dataset; and   

7. Then, steps (i) through (v) are repeated until a reliable accuracy is attained or the 
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maximum number of iterations is reached (Hashmi, 2019.  

    

 

 

2.9.3 XG Boost 

 

Extreme Gradient Boosting (XG Boost) is a large-scale machine learning system for tree 

boosting. The XG Boost comprises of an effective linear solver and a tree learning algorithms 

which enable several operations, such as ranking, classification and regression. The XG Boost 

package is designed to be extendable, allowing users to quickly specify their own goals. The 

scalable tree boosting machine learning technique is openly available and it is generally 

acknowledged in a variety of data mining and machine learning challenges (Chen and Guestrin, 

2016; Chen et al., 2015). XG Boost has several features which includes; 

1. Speed: With openmp, XG Boost can perform parallel computation instantly on Linus 

and Windows with its speed more than ten times quicker than gbm. 

2. Inputs: It has the capacity to accommodate different types of input data which includes: 

a. Dense matrix 

b. Sparse matrix 

c. Data file 

d. xgb.Dmatrix 

3. Sparsity: It can acknowledge sparse inputs from linear and tree booster with maximum 

optimisation for sparse inputs. 

4. Customisation: It supports objective and evaluation functions of customisation.  

5. Performance: When processed on different database, XG Boost produce better 

performance (Chen et al., 2015).     

Generally, XG Boost is widely used in different discipline due to its ability to produce state-of-

the-art results and provide solution to many problems. XGBoost works by enhancing 

computation and making boosting techniques faster. The following steps describe how 

XGBoost works: 

i. Builds a prediction model X1 using all of the Learning data and the target variable and 

then computes the distinction between the predicted and the original target variable as 
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G1; 

ii. Develops a new predictive model X2 using G1 as the goal variable, which represents the 

gradient of the errors made by model X1. It then finds the distinction between the 

predicted and the original target variable as G2; 

iii. It then repeats these steps in (i) and ii until the error is zero or the highest number of 

iterations is achieved; and 

 

The final prediction value will be the total of all the predictions made by the models X1, X2, … 

and Xn (Hashmi, 2019). 

 

2.9.4 Random Forest 

 

The Random Forest algorithm proposed by Breiman (2001) has been used widely for 

predictions in machine learning. This algorithm puts together different randomised decision 

trees and combining their prediction by finding averages of the combined predictions. Random 

decision forest has been identified as better prediction tool compared to linear regression 

because of its ability to adapt to nonlinear conformity and produces better results when dealing 

with medium to larger datasets. It utilises the aggregation of multiple machine learning 

algorithm by combining the unit prediction of the most frequent outcomes from a series of 

classified trees and combining the predictions to produce the final results. Results produce from 

random forest are accurate, shows tolerable outliers and sound well and do not produce 

overfitting (Biau and Scornet, 2016; Liu, Wang and Zhang, 2012; Schonlau and Zou, 2020)  ..     

This supervised machine learning is a classifier composing of different tree-structured 

classifiers {h (x, Өk), k =1} where {Өk} are different and independent random vectors, x is the 

input cast by each decision tree and k is the position of each of the casted input on the decision 

tree (Wang and Zhang, 2012).  

 

2.9.5 Artificial Neural Network  

 

Artificial Neural Network (ANN) has over the years obtain some level of success in its 

application to solving problems related to engineering. ANN is an artificial intelligence tool 

which is designed to reduce the involvement of the human brain and nervous system from stress 
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and strain by solving complex problems where there is an unknown relationship between 

modeled variables. It is likened to the build-up of the human brain and the nervous system 

where networks of various connections called nodes are connected (weights) to each other to 

process information or inputs and produce desirable or meaningful output. In ANN, the 

connection of networks, the value of the weight, and other important functions determine the 

strength of the output produced. ANN is a complex and robust tool that is used in broad range 

of disciplines in solving computational, traditional and conventional mathematical problems 

(Abiodun et al., 2018; Shahin, Jaksa, and Maier, 2001; Wu and Feng, 2018).  

 

2.9.6 Linear Regression and bagging analysis 

 

Regression analysis is a statistical technique used to calculate potential connection variables of 

interest that demonstrate cause-and-effect relationships. Regression analysis can be univariate 

or multivariate depending on the number of independent variables being tested. A univariate 

regression has a dependent variable and one independent variable whereas a multivariate 

regression analysis considers an independent variable against more than one independent 

variables. To prove a linear relationship between the dependent and independent variables, 

univariate regression analysis is performed. Nevertheless, synchronic accounting for the 

variations between the dependent and independent variables is attempted in multivariate 

regression analysis (Maulud et al., 2020; Uyanık et al., 2013). A multivariate regression 

analysis is shown in Equation 2.18.  

 

𝑦 =  β
o

+ β
1
X1 +  β

η
xη +  ℇ                                               2.18 

where: 

y is the dependent variable 

X1….Xn are the independent variable 

B0, B1…Bn are the co-efficient variables 

ℇ is the error. 

Linear regression analysis is very important that it allows the use of multiple independent 

variables (Uyanık et al., 2013). 
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Bagging in machine learning is a method used to improve results during classification 

algorithm. Using random subsets of the original data set, a collective meta-estimator known as 

a bagging classifier updates basic classifiers one at a time, combining the individual predictions 

into a single prediction. To increase the system's overall performance, machine learning 

techniques like bagging typically combine the predictions of many models. This treats each 

model in a separate subset and then combines the prediction from each subset to gain the final 

prediction. The bagging model is important because by averaging the forecasts from different 

models, it can lower the variance of the model. By reducing the correlation between the models 

when the models are trained on different subsets of the data, overfitting may also be reduced 

(Dey, 2023; Machová et al., 2006). 
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CHAPTER 3 

MATERIALS AND METHODS USED 

 

3.1 Data Acquisition 

 

An unpublished secondary data on heating values and other related parameters by the Gas 

Chromatograph were obtained from Ghana’s Offshore Oil Fields through Ghana National Gas 

Company for the prediction. Standard heating values at reference conditions of 20 °C 

temperature and 101.325 KPa were as well obtained. All data used were in their acceptable field 

units. Appendix A shows the first one hundred data points on average daily gas specification 

recorded by the Gas Chromatograph. All data used were in their standard unit. 

 

3.2 Processing-Aided Tools 

 

3.2.1 Microsoft Excel 

 

Microsoft Excel Spreadsheet Software was used for all the calculations involved in this project. 

Microsoft produced the spreadsheet program Microsoft Excel for Windows, Android, and iOS. 

It includes computations, graphing tools, pivot tables, and Visual Basic for Application, a macro 

programming language. In many different sectors across the world, it has been used extensively. 

Together with Microsoft PowerPoint, Excel is a component of the Microsoft Office package. 

This software was selected because of its high accuracy, reliability, and user-friendliness. It 

also provides a wide range of computation and graphical applications. Figure 1 shows an excel 

interface. 
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Figure. 3.1 Excel Spreadsheet Interface 

 

3.2.2 Python Google Colab Notebook Tool 

 

The Google colab notebook is a popular data science platform for analysing, processing, 

classifying, modelling, and visualising data. One of Google Research's products is called 

Colaboratory, or "Colab" for short. Colab is extremely useful for machine learning, data 

analysis, and teaching since it enables anybody to create and run arbitrary Python code through 

the browser. Technically speaking, Colab is a hosted Colab notebook service that requires no 

installation and offers free access to computational resources, including GPUs. Colab Notebook 

supports multiple programming languages like R, Julia, and Python. For this thesis, python 

language was employed. Figure 3.2 shows the interface of the Colab Notebook. 
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Figure. 3.2 Colab Notebook User Interface  

  

3.3 Heating Value Estimation using ISO 6976:2016 

 

The calculation of heating values was done at a reference condition of 20 °C temperature and 

101.325 KPa which is specific to West Africa. The heating value was expressed in three forms 

namely molar basis, mass basis, and volume basis. This thesis focused more on the volume 

basis. 

The execution of this was done in the following stages: 

 Estimation of Commingled Gas Composition; 

 Estimation of Heating Values (Molar, Mass, and Volume Basis); 

 Calculation of Gas Compressibility Factor (Z); 

 Estimation of Relative Gas Density;  

 Estimation of Real Gas Density; and 

 Estimation of Wobbe Index. 

 

The chronological procedure presented above was done according to such stages, just like in 

mathematical calculation, the values obtained from the first is needed to calculate the next 

value. The commingled gas composition is needed to estimate the heating value as well as the 
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calculation the compressibility factor. This is the standard procedure for the calculation of the 

values presented above. 

 

3.3.1 Estimation of Commingled Gas Composition 

 

The constituents of a comingled gas sample was determined to ensure accuracy. The gas 

obtained is usually from two or three sources namely JUBILEE, TEN, and Sankofa Fields based 

on the location. The composition of the comingled gas was calculated as follows: 

 The total volume of gas was multiplied by the individual composition. For example, 

Gas A with 85% methane and a total volume of 200 MMSCF will yield 170 MMSCF 

of Methane in the mixture (0.85x200MMSCF). This simply means out of 200 MMSCF 

of gas transported, 170 MMSCF is methane. Gas B with 50% methane and a total 

volume of 100 MMSCF will similarly have 50MMSCF methane in the mixture. 

 Compositional volume of each gas stream is added and divided by the total g as in the 

two streams to determine the comingled composition. The comingled gas composition 

can be estimated using equation 3.1. 

 

Mathematically: 

 

𝐶𝑜𝑚𝑖𝑛𝑔𝑙𝑒𝑑 𝐺𝑎𝑠 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
(𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐺𝑎𝑠 𝐴∗𝐶 )+𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐺𝑎𝑠 𝐵∗𝐷

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐺𝑎𝑠 𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵
                 (3.1) 

 

Where; 

C = Individual Composition of gas A (Methane, Ethane, Propane, etc.) 

D = Individual Composition of gas B (Methane, Ethane, Propane, etc.) 

 

3.3.2 Estimation of Heating Values 

 

The heating value calculation was done simply by multiplying the individual gas compositions 

and their respective standard heating values using Equations 3.2, 3.3 and 3.4. 

 

                                           𝑉𝑜𝑙𝑢𝑚𝑒 𝐵𝑎𝑠𝑖𝑠 =
𝑀𝑜𝑙𝑎𝑟 𝐻𝑉∗𝑃

𝑧∗𝑅∗𝑇
                                           (3.2) 
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Where; 

P = Reference Pressure in KPa 

R = Gas Constant (8.31451JMol^-1K^-1) 

T = Metering Temperature in K 

 

𝑀𝑜𝑙𝑎𝑟 𝐵𝑎𝑠𝑖𝑠 = ∑ 𝐻𝑉𝑖 ∗ 𝑋𝑖𝑛
𝑖=1                                 (3.3) 

 

Where: 

HVi = Component heating value in KJ/mol 

Xi= Component Mole fraction 

n= the number of constituents in gas sample 

 

𝑀𝑎𝑠𝑠 𝐵𝑎𝑠𝑖𝑠 =  
𝐻𝑉𝑚𝑜𝑙𝑎𝑟

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠  𝑜𝑓 𝑀𝑖𝑥𝑡𝑢𝑟𝑒
                        (3.4) 

 

    𝑀𝑎 = ∑ 𝑀𝑖 ∗ 𝑋𝑖𝑛
𝑖=1     (3.5)                                                  

  

 

Where: 

Ma = Molecular Mass of Mixture 

Mi = Component Molecular mass 

Xi = Component Mole Fraction 

n= the number of constituents in gas sample 

 

3.3.3 Estimation of Gas Compressibility Factor (Z) 

 

The compressibility factor of the mixture was calculated using Equation 3.6. 

 

𝑍𝑚𝑖𝑥 = 1 − (∑ 𝑋𝑖𝐵𝑖)^2𝑛
𝑖=1                                                         (3.6) 

 

Where: 

Xi = Component Mole Fraction 
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Bi = Component Summation Factor 

 

3.3.4 Estimation of Relative Gas Density 

 

The relative gas density at reference conditions was calculated using Equation 3.7. 

 

                                                           ρg =
𝑀𝑎𝑍𝑎𝑖𝑟

𝑀𝑎𝑖𝑟𝑍𝑚𝑖𝑥
                             (3.7) 

 

Where, Ma = Apparent Molecular weight of the gas mixture 

             Zair = Compressibility of air 

             Mair = Molecular Weight of Air (28.9626 Kg/Kmol) 

             Z=Gas mixture Compressibility factor 

             ρg = Relative Gas Density 

 

3.3.5 Estimation of Real Gas Density 

 

The real gas density of the mixture was estimated at reference conditions of 101.325 KPa and 

a temperature of 20 °C using Equation 3.8. 

 

                                                                ρ𝑔 =
𝑃𝑀𝑎

𝑍𝑅𝑇
                                         (3.8) 

Where: 

P = Reference Pressure in KPa 

               Ma = Apparent Molecular weight of the gas mixture 

               Z=Gas mixture Compressibility factor 

               T = Reference temperature in K 

               R= Gas Constant  

 

3.4 Pre-processing and Statistical Analysis of Data 

 

Different algorithms were used to train the data set with the aid of the Colab notebook, and the 

best algorithm was selected based on the R-squared, Adjusted R-Squared value, Mean Absolute 
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Percentage Error (MAPE) value, Mean Absolute Error (MAE) value and Root Mean Square 

Error (RMSE). The methods used in preparing the data for the different algorithms are 

Exploratory Analysis of Data, Processing of Data, and finally Model Development and 

Evaluation. 

 

3.4.1 Data Pre-processing and Approaches Used 

 

The data set was explored to check if there are abnormalities within the data. The main objective 

of this analysis was to provide a statistical description of the data, determine outliers within the 

data set to check for missing values as well as to provide correlation analysis. For accuracy in 

results, this step was carried out before model development. 

 

Statistical Description 

 

For each column in the data set, the mean, standard deviation, minimum and maximum values, 

and percentiles were all calculated as part of the statistical description of the data. To achieve 

this, the “data. describe” coding function in python language was used. 

 

Outliers Determination 

 

Outlier determination is very crucial in data analysis. In this research, outliers were determined 

to know the values which are far from the normal sets of data. If a dataset has huge number of 

outliers, it affects the results negatively. In the determination of outliers, the box plot obtained 

was used in checking for the outliers. Further work on outliers was done during the Data 

Processing Stage. 

 

Missing Values Determination  

 

Missing values were determined to see if there were any of the data sets missing between the 

predictors and dependent variable which is the High Heating Value in this case. To verify this, 

the total count of values should be the same for all parameters. This is all part of the pre-
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processing stage. To achieve this, “data.info” code function was entered. 

 

Correlation Analysis 

 

Another important thing that was checked before data processing was Correlation Analysis. 

This was done to check the issue of Multicollinearity, which is a strong correlation between 

predictors which affect the results when not resolved. 

 

3.4.2 Statistical Analysis of Data and Approaches Used  

 

Data processing is a very important part of the modelling. This is where the dataset used for the 

prediction of the heating value of natural gas is being processed to make important conclusions 

and findings. Data processing is made up of Outlier Determination and Fixing, Multicollinearity 

Test, Input and Output variable selection, Data Splitting, Data Normalisation, Model 

Development and Prediction, Evaluation on training and testing dataset, and Plotting of 

predicted heating value and Actual Heating Value. 

 

Outlier Determination and Fixing 

 

An outlier is a data point that substantially varies from other observations in statistics. An outlier 

might result from measurement variability, or it could be an indication of an experimental 

mistake; the latter is sometimes removed from the data set. An outlier in statistical analysis 

might result in significant issues. The dataset for this project was a real-time field of daily values 

recorded by a Gas Chromatograph, however, there were several outliers in the dataset which 

could have affected the prediction if not fixed. Outliers can skew the results of the model and 

lead us towards wrong interpretations, to identify the outliers in the dataset, visualisations with 

boxplots, a statistical approach using interquartile ranges, and imputation of the values of the 

outliers were used. 

 

Due to the irregular distribution of the data from the Gas Chromatograph, outliers were 

calculated using the interquartile ranges rather than Z-scores. Equations 3.9, 3.10 and 3.11 were 
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used to estimate the outliers from the dataset using Inter-Quartile Range (IQR) Approach. 

 

                                                   𝑄1 − 1.5 ∗ 𝐼𝑄𝑅                                   (3.9) 

                                                   𝑄3 + 1.5 ∗ 𝐼𝑄𝑅                                   (3.10) 

                                                  𝐼𝑄𝑅 = 𝑄3 − 𝑄1                                  (3.11) 

 

IQR is for interquartile range, while Q1 represents the lower quartile (25th percentile) and Q3 

represents the upper quartile (75th percentile). Outliers are values that fall outside of the range 

of Equations 3.9 and 3.10. A straightforward Python function that accepts our column from the 

data frame and produces the outliers using the handy pandas can be built. In resolving the 

outliers in the dataset, an imputation approach was used whereby the mean value of each 

parameter was determined and used to replace the outlier.  

 

Multicollinearity  

 

When there is a significant connection between two or more independent variables in multiple 

linear regression, the dataset has multicollinearity. When a researcher or analyst tries to figure 

out which independent variable may be utilised to predict or comprehend the dependent variable 

in a statistical model, multicollinearity can result in skewed or misleading results.  

 

A multiple regression model's collinearity may be identified and quantified using a statistical 

method known as the variance inflation factor (VIF). When the predictor variables are not 

linearly connected, the variance of the predicted regression coefficients is less inflated, as 

measured by the VIF. Variables that have a VIF of 1 are not correlated, whereas those that have 

a VIF between one and five are moderately linked, and those between five and ten are strongly 

correlated. 

 

 

Input and Output Variable Selection 

 

This is where the data is segregated into two. One part is the dependent variable or output 
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variable and the independent variable or predictors. In machine learning, there is always an 

input and output variable which is being studied and used for further predictions. For the sake 

of this thesis work, the predictors used were methane (C1), Ethane (C2), Propane (C3), Isobutane 

(iC4), Normal Butane (n-C4), Isopentanes (iC5), Normal Pentane (nC5), Hexane (C6+), Nitrogen 

(N2) and Carbon dioxide (CO2) and the independent or output variable was High Heating Value 

(HHV). In the coding, “Label” was used for the output variable which in our case is High 

Heating Value and “Features” was used for the predictors. 

 

Data Splitting  

 

At this stage, the data was randomly split into training and testing. The quality of the training 

data impacts directly the accuracy and reliability of the algorithms. . The dataset's training 

portion was used for 80% of the computations, and the testing portion for 20%. The total dataset 

used for the work was 2021, out of which 1617 representing 80% were used for training and 

404 representing 20% were used for testing. The training dataset was used to train the various 

algorithms, and the testing dataset was used to evaluate their accuracy.  

 

Data Normalisation 

 

Data Normalisation was done to scale the dataset between 0 and 1 for easy prediction. This 

scaling was done so that there wouldn’t be many outliers in the dataset. This was done to ensure 

fairness in the dataset for better prediction. In this project, The MinMax Scaler function in 

learns pre-processing library was used in normalizing the dataset in (0, 1) intervals.  Equation 

3.12 shows the formula for MinMax Scaler. 

 

                                                              𝑌 =
𝑌𝑎𝑐𝑡𝑢𝑎𝑙−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
                               (3.12) 

 

Where: 

Y= Normalised value for the parameter (C1, C2, C3…) 

Yactual = Value for individual parameter 

Ymin = Minimum Value for the parameter 
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Ymax = Maximum Value for the parameter 

 

3.4.3 Accuracy Measures 

 

The model was then evaluated on the training and testing datasets using Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), R-Squared (Coefficient of determination) 

Adjusted R-Squared, and Mean Absolute Percentage Error. 

 

After model development and evaluation, a crossplot of the estimated heating value and actual 

heating value was made and a line of best fit was drawn to determine the equation for prediction. 

The crossplot provides the visual representations of the relationship between the predicted and 

the actual heating value 

 

Root Mean Square Error (RMSE) 

 

The standard deviation of the errors is measured by the Root Mean Square Error (RSME). This 

measurement, which reveals how effectively a regression model can forecast an absolute value 

for a response variable, is crucial for prediction. The predicted heating values from each model 

were exported to excel to estimate the RMSE for both training and testing datasets using 

Equation 3.13. 

 

                                        𝑅𝑆𝑀𝐸 =  √
1

𝑛
∑ (𝐻𝐻𝑉𝑎𝑐𝑡 − 𝐻𝐻𝑉𝑝𝑟𝑒)

2𝑛
1                                           (3.13) 

 

Where RSME represent the root mean square error, n is the number of data samples, HHVpre 

predicted heating value and HHVact is the actual heating value.  

 

Mean Absolute Error (MAE) 

 

The total disparity between a dataset's actual and anticipated values is averaged out to get the 

Mean Absolute Error (MAE). The predicted heating values from each model were exported to 
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excel to estimate the Mean Absolute Error for both training and testing datasets using Equation 

3.14. 

 

                                    𝑀𝐴𝐸 =  
1

𝑛
∑ |𝐻𝐻𝑉𝑎𝑐𝑡 − 𝐻𝐻𝑉𝑝𝑟𝑒|𝑛

1                                     (3.14) 

 

Where MAE is the mean absolute error, n is the number of data samples, HHVpre predicted 

value and HHVact is the actual value. 

 

Coefficient of Determination (R2) 

 

The amount of the dependent variable's (Heating Value) variation that the linear regression 

model accounts for is represented by the coefficient of determination (R2). R2 is always less 

than 1. The predicted heating values from each model were exported to excel to estimate the R2 

for both training and testing datasets using Equation 3.15. 

 

                               𝑅2 = 1 −
∑ (𝐻𝐻𝑉𝑎𝑐𝑡−𝐻𝐻𝑉𝑝𝑟𝑒)

2𝑛
1

∑ (𝐻𝐻𝑉𝑎𝑐𝑡−𝐻𝐻𝑉𝑎𝑣𝑝)
2𝑛

1

                                                              (3.15) 

 

Where R2 is the coefficient of determination, n is the number of data samples, HHVpre predicted 

heating value, HHVact is the actual value and HHVavp is the average of the predicted heating 

value. 

 

Mean Absolute Percentage Error (MAPE) 

 

In regression analysis, the mean absolute percentage error is used to gauge how well a 

predicting approach will perform. MAPE is always in percentage (%). The predicted heating 

values from each model were exported to excel to estimate the MAPE for both training and 

testing datasets using Equation 3.16. 

 

                                               𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |𝐻𝐻𝑉𝑎𝑐𝑡−𝐻𝐻𝑉𝑝𝑟𝑒|𝑛

1

𝐻𝐻𝑉𝑎𝑐𝑡
                                                  (3.16) 
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Adjusted R2 

 

A modified version of the coefficient of determination (R2) known as "adjusted R2" is primarily 

modified for the number of variables that are independent in the model.  Mostly, Adjusted R2 

will be less than or equal to R2. In this project, the predicted heating values from each model 

were exported to excel to estimate the Adjusted R2 for both training and testing datasets using 

Equation 3.17. 

 

                                                      𝐴𝑑𝑗 𝑅2 = 1 −
(1−𝑅2)(𝑛−1)

𝑛−𝑘−1
                                                 (3.17) 

 

Where Adj R2 is the Adjusted R2, n is the number of data samples, k is the number of predictors, 

and R2 is the sample R2. 

 

3.5 Model Development and Prediction of HHV 

 

Using Colab Notebook and the Python programming language, several techniques were utilised 

to forecast the natural gas heating value. There were 2021 datasets utilised in all; 1617 of those 

were used to train the different models, and 404 were used to test and assess the model. Various 

algorithms, including Random Forest, Artificial Neural Networks (ANN), Multiple Linear 

Regression, Bagging Regressor, ADABOOST, and Extreme Gradient Boosting, were employed 

in this study. 

 

3.5.1 Model Description  

 

This portion of the research provides a brief explanation of the approaches taken by each model 

to forecast the heating value using the Colab Notebook. The models are Linear Regression, 

Bagging Regressor, Extreme Gradient Boosting, Adaboost, Artificial Neural Networks (ANN), 

Random Forest and Stacking Regressor for hybrid model. 

 

3.5.2 Hyperparameters 

 

A machine learning model's behaviour and performance are controlled by hyperparameters, 
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which are parameters that are established before the model is trained. Hyperparameters, in 

contrast to model parameters, are set by the practitioner and have to be carefully chosen to 

achieve the best outcomes. Model parameters are learnt from the data during training.  

Some common hyperparameters in machine learning models include:  

 

Learning rate: The step size of the optimisation technique utilised for updating the model's 

parameters during training is controlled by the learning rate. Faster convergence is produced by 

greater learning rates, whereas slower convergence but potentially superior solutions are 

produced by lower learning rates. 

 

Regularisation: Regularisation involves modifying the loss function by including a penalty 

term to avoid overfitting. The L1 or L2 regularisation strength, for example, can be used as a 

hyperparameter to control the regularisation term, which regulates the model's complexity. 

 

Number of hidden units: The number of hidden units in a neural network determines how 

complicated the model will be. A more complex model, which may capture more intricate 

interactions between the inputs and outputs, is produced by adding more hidden units, although 

this can also result in overfitting. 

 

Number of trees: The number of trees determines the complexity of the model in tree-based 

algorithms like decision trees and random forests. A more complicated model is created by 

using more trees, but it also increases the risk of overfitting.  

 

Depth of the tree: The depth of the tree influences the model's complexity in decision trees and 

random forests. A deeper tree produces a more complicated model, which can depict more 

intricate connections between inputs and outputs but may also result in overfitting. 

 

3.5.3 Hyperparameter tuning. 

 

It involves choosing the ideal hyperparameters for a particular machine learning issue. This is 

typically done through a combination of trial and error, guided by some performance metric 

such as accuracy or mean squared error. To adjust hyperparameters, methods including grid 

search, random search, and Bayesian optimisation are frequently employed. In summary, 
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hyperparameters are important components of machine learning models that control their 

behaviour and performance. Properly setting the hyperparameters is crucial for obtaining the 

best results for a given problem.  

 

3.5.4 Hyperparameter Optimisation 

 

Finding the optimal hyperparameters for a given machine learning algorithm that produces the 

best results when evaluated against a validation set is referred to as hyperparameter 

optimisation. The best hyperparameter combinations for training the model were discovered 

using the Bayesian optimisation approach. The Bayesian optimisation method entails creating 

a surrogate of the objective function, a probabilistic model, and using this model to iteratively 

choose the next point to assess based on an acquisition function that balances both exploration 

and extraction. Bayesian optimisation may quickly find the optimal function with just a few 

evaluations by iteratively adding fresh evaluations to the probabilistic model. 

 

Random Forest 

 

Random forest is an ensemble technique that utilises bagging, also known as Bootstrap 

Aggregation. Bagging involves randomly selecting subsets of data from the original dataset 

with replacement, a process known as bootstrap, to generate independent models. These models 

are trained separately to produce results, which are then combined using majority voting or 

averaging. This aggregation step generates the final output. 

 

The steps involved in the random forest algorithm: 

 

Data preparation: A training set and a validation set are created from the data. The validation 

set is used to assess the performance of the model after it has been built using the training set. 

 

Tree building: A decision tree is constructed using a portion of the training data that is chosen 

at random. The best feature is used to split the data at each node of the tree, where a random 

subset of the characteristics is picked. Recursively repeating this method until the tree is fully 

formed.  
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Ensemble building: Various subsets of the training data and characteristics are used to construct 

a number of decision trees. Every tree is trained separately from the rest. 

 

Prediction: To make a prediction, each decision tree in the forest is evaluated using the input 

data, and their predictions are combined to produce a final output. In regression problems, this 

can be the average of the tree predictions, while in classification problems, the majority vote of 

the tree predictions is used. 

 

Performance evaluation: The validation set is used to assess the random forest model's 

performance. To evaluate the model's quality, measures like as accuracy, precision, recall, F1 

score, and others are calculated. 

 

The random forest model was imported from sklearn. ensemble package and was trained on the 

training set consisting of 10 features with 1617 records and a test set consisting of the HHV 

values also having 404 records. The data was normalised before training (models tend to 

perform badly when the data is in different ranges) using the MinMax Scaler, all of the data 

were balanced to be in the range of 0 and 1.  

 

Bayesian Optimisation was used to obtain the most optimal hyperparameters, after several 

different ranges were explored, the most optimal combination was chosen to train the model. 

Table 3.1 shows the optimal hyperparameter for random forest model.  

 

Table 3.1 Optimal hyperparameters for Random Forest Model 

 

Number of Estimators Random State Max Depth 

500 26 57 

 

The training was completed in 1.69 seconds. Model performance was then evaluated for both 

training and testing using metrics like RMSE, MAE, MAPE, R Squared and Adjusted R 

Squared. Predictions made by the model on test data were further processed, tabulated, and 

visualised using scatter plots and line plots.  
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 Multiple Linear Regression Model 

 

The linear regression model was set up for training by importing the Linear Regression Model 

from sklearn. linear package. The training was done using the training set (consisting of 10 

features with 1617 records representing 80% of the dataset) and training labels (HHV values). 

In the training process, the model coefficients were estimated from the data using the ordinary 

least squares method. Each feature in the dataset had a corresponding coefficient. The linear 

relationship in Equation 3.18 establishes the connection between the answer and predictions. 

To reduce the residual sum of squares between the observed targets in the dataset and the 

expected by linear approximation, the linear regression model fits a linear model with 

coefficients w = (β1... βk). 

 

                                           Y =  β0 +  β1X1 +  β2X2 + · · ·  + βkXk +  ε                           (3.18) 

 

Where: 

The y-intercept (β0), indicating what happens when all of the variables from x1 to xk are zero, 

determines the slope of y. The slope coefficient of all independent variables is 0; the regression 

coefficients β1 and β2 show the change in y due to one-unit changes in x1 and x2, respectively; 

and the term ε explains the random error (residual) in the model. 

 

The training was completed in 58.7 milli seconds. Model performance was then evaluated for 

both training and testing using metrics like RMSE, MAE, MAPE, R Square and Adjusted R 

Square. Predictions made by the model on test data were further processed, tabulated, and 

visualised using scatter plots and line plots. Figure, 3.3 shows the linear regression model 

diagram for this work. 
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Figure 3.3 Diagram of a Linear Regression Model. 

 

Artificial Neural Networks 

 

A form of machine learning technique known as an Artificial Neural Network (ANN) is 

designed after the composition and operation of biological neurons in the human brain. 

Artificial neurons (ANNs) are networks of linked nodes that collaborate to process and analyse 

complicated data. 

 

An ANN's structure is divided into layers, generally comprising an input layer, one or more 

hidden layers, and an output layer. Each neuron in the input layer represents a characteristic or 

characteristic of the data, and each neuron in the output layer represents a grouping or prediction 

based on the input data. Between the input and output layers are the hidden layers, where the 

neurons process the input data and extract useful features. 

 

The neurons in an ANN are connected by weighted edges, which represent the strength of the 

relationship between the neurons. Each edge has a weight that determines how much influence 

the input from one neuron has on the output of another. The weights of the edges are changed 
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during training to improve the network's performance. The output of each neuron is determined 

by its activation function given the inputs it receives. A step function or another basic threshold 

function, like a sigmoid function or a rectified linear unit (ReLU) function, can serve as the 

activation function. The issue being addressed, and the properties of the data determine the 

activation function to be used. 

 

The ANN model was constructed using a sequential model, with four layers of dense neurons 

stacked or connected. It comprises of an input, hidden, and output layer. The input layer 

included 60 neurons, a "relu" activation function, and the standard kernel_initialiser. The 

second hidden layer also contained 60 neurons, a "relu" activation function, and the standard 

kernel_initialiser. The output layer had one neuron for prediction and a linear activation 

function. Two dropout layers were included with a dropout of 0.2. Artificial Neural Network 

model followed a sequential model architecture as in figure 3.4, with an input, hidden and 

output layer. 

 

 

Figure 3.4 Diagram of a Deep Neural Network  

 

The model was compiled using mean square error to measure the loss. With a learning rate of 

0.01 and momentum of 0.9, Adam Optimiser was employed as an optimiser. These measures 

included MSE, MAE, and RMSE. 
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The model was trained on the training set (consisting of 10 features with 1617 records) and 

training labels (HHV values), for 150 epochs. The data were normalised using the 

StandardScaler before training. Validations were performed during training using the test_set 

and test_labels. Table 3.2 shows the ANN model compilation configuration.  

 

Table 3.2 ANN Model Compilation Configuration 

Optimizer Loss Metrics Epochs 

Adam Mean Squared Error MAE, Root Mean 

Squared Error 

150 

 

 

 

Figure 3.5 Flowchart of a Deep Neural Network Training Process. 

 

 

The training was completed in 42.1 seconds. Both training and Validation loss computed during 

training were plotted. Loss is plotted concerning the number of epochs and shows how the 
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model loss changed while training the model. Model performance was evaluated for both 

training and testing using metrics like RMSE, MAE, MAPE, R Square, and Adjusted R Square. 

Predictions made by the model on test data were further processed, tabulated, and visualised 

using scatter plots and line plots. Figure 3.5 shows the flowchart for deep neural network 

training process. 

 

AdaBoost 

 

For classification and regression issues, a common machine learning technique called 

AdaBoost (Adaptive Boosting) is utilised. Several weak learners (base classifiers) are combined 

in this ensemble learning technique to create a strong classifier. AdaBoost is a boosting 

algorithm, which means it works by increasing the weight of samples that are misclassified by 

the previous base classifiers.  

 

To be used for this project, the AdaBoost Regressor model was imported from sklearn.ensemble 

package and trained on the training dataset consisting of 10 features with 1617 records. The 

model was developed by fitting a regressor on the supplied dataset, followed by fitting further 

replicas of the regressor on the same dataset with the weights of the instances being changed in 

accordance with the error of the current prediction. To improve their predictions, succeeding 

regressors concentrated more on data points with incorrect predictions. 

 

The hyperparameters used in training are the combination that provided the best model 

performance. The learning rate was very sensitive and affected the model performance to much 

extent, but the chosen values were found to give the best results. 

Bayesian Optimisation was used to obtain the most optimal hyperparameters, after several 

different ranges were explored, the most optimal combination was chosen to train the model. 
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Figure 3.6 Flowchart of Bayesian Optimisation. 

 

Table 3.3 Optimal hyperparameters for AdaBoost Model 

 

Number of Estimators Random State Learning Rate 

459 27 0.03 

 

 

Adaboost algorithm’s model training process is as described as follows: 

Each feature in the training set is associated with a particular weight, which determines the 

extent to which that feature affects the HHV value to be predicted. At the beginning of the 

algorithm, the weights of the samples are initialised to be equal, which means that each sample 

has the same importance. The weights of the samples are updated at each iteration of the 

algorithm. A weak learner is a base classifier that is trained on the current sample weights. The 

goal is to find a weak learner that performs better than chance. The weak learner can be any 

simple classifier such as a decision tree or a linear regression model in this case. The sample 

weights are changed to reflect the performance of the weak learner after training. The samples 
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which the weak learner incorrectly predicts are given heavier weights than the ones that are 

properly predicted.The weight of the weak learner is calculated based on its accuracy. The 

weight is given by Equation 3.19. 

 

                                                                𝛼𝑡 =
1

2
ln (

1−𝜖𝑡

𝜖𝑡
)                                                   (3.19) 

 

Where: t is the iteration number and 𝜖𝑡 is the misclassification rate of the weak learner.The final 

classifier is updated by a combination of the weighted predictions of the weak learners. The 

prediction for a sample is given by Equation 3.20. 

 

                                                   𝑓(𝑥) = sign(∑ 𝛼𝑡
𝑇
𝑡=1 ℎ𝑡(𝑥))                                            (3.20) 

 

Where, T represent the number of weak learners, ℎ𝑡(𝑥) is the prediction of the 𝑡𝑡ℎ    weak 

learner, where "sign" refers to the sign function, which yields a value of 1 for values that are 

positive and a value of -1 for negative values. 

The second and fifth phases of the method are repeated until a stopping requirement, such as a 

maximum number of iterations or a minimum accuracy level, is satisfied. 

 

AdaBoost is a fast and effective algorithm that can handle imbalanced datasets and non-linearly 

separable classes. However, it is sensitive to outliers and can be prone to overfitting if the 

number of weak learners is too large. 

 

The training was completed in 2.55 seconds. Model performance was then evaluated for both 

training and testing using metrics like RMSE, MAE, MAPE, R Squared and Adjusted R 

Squared. Predictions made by the model on test data were further processed, tabulated, and 

visualised using scatter plots and line plots. Figure 3.6 shows the Bayesian optimisation 

flowchart. 

 

Extreme Gradient Boosting 

 

The gradient boosting technique has been refined to produce Extreme Gradient Boosting 
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(XGBoost). For both regression and classification issues, it is a robust and scalable machine 

learning approach that is often utilised. XGBoost is a tree-based algorithm that works by 

constructing an ensemble of decision trees that are trained in a sequential manner to improve 

the predictive performance. Figure 3.7 shows the model structure for an XGBoost. 

 

 

Figure 3.7 Diagram of the Model Structure of XGBoost (Guo et al., 2020). 

 

 

The hyperparameters used in training was the combination that provided the best model 

performance. The learning_rate, gamma, max_dept, min_child_weight was, max_delta_step 

very sensitive and affected the model performance to much extent, but the chosen combinations 

gave the best results. Table 3.4 shows the optimal hyperparameters for XGBoost Model.  

 

Table 3.4 Optimal hyperparameters for XGBoost Model 

Number of Estimators Random State Max Depth 

339 388 6 
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Bayesian Optimisation was used to obtain the most optimal hyperparameters, after several 

different ranges were explored, the most optimal combination was chosen to train the model. 

The model training process of the Extreme Gradient Boosting algorithm is as described as 

follows: 

 

The base learners are first set with a value that remains constant, such as the mean or median 

of the target variable before the start of the process. On the residuals (difference between 

predicted values and true values) of the prior base learners, a decision tree model is trained. The 

objective function, which is the sum of the squared residuals, is defined as the objective function 

to be minimised by the decision tree model. A new set of base learners is created by combining 

the forecasts of the decision tree model with the predictions of the prior base learners. For the 

next iteration, the new residuals are formed by the updated base learners. 

 

Calculate the weight of the tree model: The weight of the tree model is calculated based on the 

reduction in the objective function after adding its predictions to the base learners. The weight 

of the tree model is given by Equation 3.21. 

𝜂 = learning rate 

                                      Objective Function = ∑ 𝐿(𝑦𝑖 , 𝑦�̂� + 𝜂𝑓(𝑥𝑖))𝑛
𝑖=1                                           (3.21) 

 

Where: L is the loss function, 𝑦𝑖 is the true value of the 𝑖𝑡ℎ sample, 𝑦�̂� is the prediction of the 

base learners for the 𝑖𝑡ℎ sample, and 𝑓(𝑥𝑖) is the prediction of the decision tree model for the 

𝑖𝑡ℎ sample.   

 

The second stages of the method are repeated until a stopping requirement, such as a maximum 

number of iterations or a minimal error threshold, is achieved. XGBoost is highly scalable and 

efficient, and it has several built-in regularisation methods to prevent overfitting, such as early 

stopping and pruning. XGBoost is also equipped with a parallel processing engine that enables 

it to handle large datasets efficiently. However, it can be sensitive to noisy data and may not 

perform well with highly correlated features. The Training completed in 1.07 seconds. Model 

performance was then evaluated for both training and testing using metrics like MSE, MAE, 

MAPE, R Square and Adjusted R Square. Predictions made by the model on test data were 
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further processed, tabulated, and visualised using scatter plots and line plots. 

 

Bagging Regressor 

 

An ensemble learning approach for regression issues is the bagging regressor. By merging different 

instances of a regression model, a technique known as bootstrap aggregating makes it easier and more 

efficient to analyse data. A regressor is trained on each of these samples via the Bagging Regressor using 

several bootstrapped samples of the training data. The average of the individual regressors' estimates 

makes up the final forecast. 

These hyperparameters used in training as the combination that provided the best model 

performance. The n_estimators and random_state was more responsible for the variation in the 

model performance, but the chosen values were found to give the best results. Bayesian 

Optimisation was used to obtain the most optimal hyperparameters, after several different ranges were 

explored, the most optimal combination was chosen to train the model. Table 3.5 shows the optimal 

hyperparameters for Bagging regressor model 

 

Table 3.5 Optimal hyperparameters for Bagging Regressor Model 

 

Number of Estimators Random State 

13 16 

 

 

The model training process of the Bagging Regressor algorithm is as described below: 

 

A randomly selected portion of the training data which is obtained with replacement is referred 

to as a bootstrapped sample. Although duplicate samples may be present, the bootstrapped 

samples are the same size as the initial training data. Bagging Regressor creates multiple 

bootstrapped samples of the training data to train the individual regressors. A regressor was 

trained on each bootstrapped sample to predict the target variable. Any fundamental regression 

model, such as linear regression or decision trees, can be used as the regressor.  

Calculate the final prediction: The final prediction for a sample is given by the average of the 

predictions of the individual regressors. The prediction for a sample is given by Equation 3.22. 
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                                                                    𝑓(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)𝐵

𝑏=1                                                    (3.22) 

 

Where B is the number of individual regressors,𝑓𝑏(𝑥) is the prediction of the 𝑏𝑡ℎ     regressor. 

Bagging Regressor is a simple and effective algorithm that is less prone to overfitting compared 

to other complex algorithms. It is also less sensitive to outliers and noisy data compared to 

individual regressors. Bagging Regressor is also highly scalable and efficient, making it suitable 

for large datasets. However, it may not perform well if the correlation between the features is 

high or if the data has a complex structure. The Training completed in 172 milli seconds. Model 

performance was then evaluated for both training and testing using metrics like MSE, MAE, 

MAPE, R Square and Adjusted R Square. Predictions made by the model on test data were 

further processed, tabulated, and visualised using scatter plots and line plot. 

 

Hybrid Machine Learning 

 

To benefit from their strengths and overcome their weaknesses, hybrid machine learning 

models combine two or more machine learning algorithms or methodologies.  

Hybrid machine learning models are designed to combine the benefits of two or more machine 

learning algorithms, such as improved accuracy, better stability, and faster convergence. In 

general, hybrid models can be categorised into two types: ensemble models and integrated 

models. 

 

Ensemble models combine multiple models to improve the prediction accuracy. The most 

popular ensemble model is the Random Forest, which combines multiple decision trees to 

provide better prediction results. Other ensemble models include boosting, bagging, and 

stacking. 

 

Integrated models combine multiple techniques to address the limitations of individual 

algorithms. For example, hybrid models can combine rule-based systems and machine learning 

algorithms to take advantage of their complementary strengths. Another example is combining 

deep learning and reinforcement learning to create models that can learn from experience and 
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make complex decisions. 

 

For this project a hybrid model was constructed using the mlxtend package. 

The StackingRegressor module from mlxtend takes a list of regressors and a meta regressor to 

fit to the training set. Multiple Linear Regression, Adaboost Regressor, Bagging Regressor and 

RandomForest Regressor, were used as the regressors and the XGBoost Regressor was used as 

a meta regressor. 

 

The training was completed in 9.17 seconds. 

 

Named_regressoers  

{'linearregression': LinearRegression(), 'adaboostregressor': 

AdaBoostRegressor(learning_rate=0.03, n_estimators=459, random_state=27), 

'baggingregressor': BaggingRegressor(n_estimators=13, random_state=16), 

'randomforestregressor': RandomForestRegressor(max_depth=57, n_estimators=500, 

random_state=26)}   
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

The results obtained from this thesis are in two sections, the first section focuses on the 

estimation of heating value using ISO 6976: 2016 at reference conditions of 20 oC and 101.325 

KPa. In this section, each composition of gas has its specific standard heating value at the stated 

reference condition, so the various percentage composition was key in determining the heating 

value of the gas mixture. The commingled gas composition from different sources in Ghana, 

namely TEN Field, Jubilee Field, and Sankofa Fields are estimated. 

 

The second section focuses on the predictive models. This is where the results obtained from 

each model in the Colab notebook are presented and further discussions are made using the 

metrics (MAPE, RMSE, R2, Adjusted R2, MAE). The best method with the highest accuracy 

and low error margin was selected to predict the heating value of natural gas for Ghana’s 

Offshore Fields. 

 

4.1.1 Results from ISO 6976:2016 

 

This section of the project provides the results obtained from the estimation of heating value at 

specified reference conditions used in Ghana. The reference condition used in the calculation 

of heating values is 101.325 KPa and 20oC. This is the same approach used by the Gas 

Chromatograph in calculating the daily Heating Values in the Gas Industry. Table 4.1 shows 

the results from the Commingled Gas Composition Calculation. 
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  Table 4.1 Results from Commingled Gas Composition Calculation 

 

 

In accordance with ISO 6976:2016, the results of the computation of the commingled gas 

composition were utilised as the final gas composition at the gas terminal stations to determine 

the heating value of natural gas under standard reference circumstances.  

 

Table 4.2 shows the results obtained in calculating the heating value and other gas parameters. 

The heating values were calculated in three bases namely Mass basis, Molar Basis, and Volume 

basis; the focus was on the volume basis. A factor of 1.008 was used as compensation for the 

heating value (Volume basis). Equation 4.1 was used as a conversion factor in converting the 

heating value from MJ/m3 to BTU/SCF. 

 

                              1𝑀𝐽/𝑚3 =  26.83𝐵𝑇𝑈/𝑆𝐶𝐹                                         (4.1)

112.70 MMSCFD 147.83 MMSCFD 261 MMSCF

FIELD JUBILEE/ TEN AIS/S AIS/S mix

Component A % mmscfd S % mmscfd mmscfd xi 

N2 Nitrogen 0.39 0.440 0.44 0.650452 1.090 0.00418

CO2 Carbon Dioxide 0.91 1.026 0.42 0.620886 1.646 0.0063

C1 Methane 87.42 98.522 91.41 135.1314 233.654 0.8968

C2 Ethane 5.84 6.582 4.21 6.223643 12.805 0.0492

C3 Propane 4.09 4.609 2.27 3.355741 7.965 0.0306

iC4 i-Butane 0.43 0.485 0.34 0.502622 0.987 0.0038

nC4 n-Butane 0.78 0.879 0.61 0.901763 1.781 0.0068

iC5 i-Pentane 0.08 0.090 0.14 0.206962 0.297 0.0011

nC5 n-Pentane 0.04 0.045 0.11 0.162613 0.208 0.0008

C6 Hexane 0.01 0.011 0.01 0.014783 0.026 0.0001

TOTAL 100.0 112.7 100.0 147.8 260.5 1.0

VOLUMES

GAS COMPONENTS

SANKOFA

ATUABO -LEAN ENI (S) COMMINGLED
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Table 4.2 Results for Heating Value Calculation using ISO 6976:2016 

 

Enter 

Value 

Here 

(Mole%) Component

Mole 

Fraction 

(X)

Summatio

n Factor 

(B) X*B

Gross 

Calorific 

Value 

MJ/m
3
(H1) X*H1

Gross 

Calorific 

Value 

KJ/mol(H2) X*H2

Gross 

Calorific 

Value 

MJ/Kg(H3) X*H3

Molecular 

Weight 

Kg/Kmol 

(M) X*M

0.41837 Nitrogen 0.00418 0.0173 0.00007238 0.0000 0 0.0000 0 0.0000 0 28.0135 0.1172

0.63196 Carbon Dioxide 0.00632 0.0748 0.00047271 0.0000 0 0.0000 0 0.0000 0 44.0098 0.2781

89.684 Methane 0.89684 0.0447 0.04008875 37.7060 33.81625 891.5800 799.604668 55.5740 43.517796 16.0428 14.3878

4.9151 Ethane 0.04915 0.0922 0.00453173 66.0660 3.247213 1562.1400 76.7808209 51.9500 4.1787468 30.0696 1.4780

3.0573 Propane 0.03057 0.1338 0.00409066 93.9340 2.87184 2221.1000 67.9055821 50.3700 3.6958847 44.0970 1.3482

0.37893 i-Butane 0.00379 0.1789 0.00067791 121.4000 0.460024 2870.5800 10.8775513 49.3900 0.5920407 58.1234 0.2202

0.68354 n-Butane 0.00684 0.1871 0.00127890 121.7900 0.832482 2879.7600 19.6842699 49.5500 1.0714151 58.1234 0.3973

0.11405 i-Pentane 0.00114 0.2280 0.00026002 149.3600 0.170338 3531.7000 4.02773488 48.6300 0.2177799 72.1500 0.0823

0.07972 n-Pentane 0.00080 0.2510 0.00020010 149.6500 0.1193 3538.6000 2.82095133 49.0400 0.1535151 72.1500 0.0575

0.01 Hexane 0.00010 0.2510 0.00002510 149.6500 0.014965 3538.6000 0.35386 48.7200 0.0191313 72.1500 0.0072

Total 99.9730 0.9997  0.05169826 41.53241 982.055439 53.446309 18.3738

Mair = 28.9626 Kg/Kmol

Zair (293.15K, 101.325KPa)  =  0.999580.99963

Compressibility (Zmix)  = 0.99732729 0.6358636

Superior Calorific Value on volumetric basis   = 41.5324 MJ/m
3
(H) or1114.696 Btu/ft

3
0.7791545 Kg/m

3

Superior Calorific Value on mass basis = 53.4463 MJ/Kg 52.22368 MJ/m3

Superior Calorific Value on molar basis = 982.0554 KJ/mol   or 931.4321 BTU/mol

1123.614 Btu/ft3HHV with compensation   

Calculation of Calorific Value and other properties of Natural Gas at metering constant of 20°C

Density of Real Gas 

Relative Density of Real Gas  

Wobbe Index of Real Gas    
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4.2 Prediction Models 

 

The results obtained from the models in the Google Colab Notebook are presented here for 

further discussion. 

 

4.2.1 Pre-Processing Stage 

 

The data for the prediction was first explored to check for outliers, statistical description of the 

data, missing values checks, correlation analysis, and multicollinearity were all done to 

ascertain the quality of the dataset for better prediction using Google Colab with python as the 

coding language. 

 

Statistical Description 

 

Table 4.3 shows the statistical description of the dataset used in the prediction of the heating 

value of natural gas. The statistical description indicates the lowest value, mean value, standard 

deviation, maximum value, 50th percentile or median, upper quartile (75th percentile), lower 

quartile (25th percentile), and the total number of the dataset, which was 2021. The maximum 

value in the dataset for heating value was 1143.27 and the minimum value was 1014.73, with a 

mean and standard deviation of 1122.318095 and 12.776741 respectively.  

 

 Table 4.3 Statistical Description of Dataset for Prediction 

 

 

 

 

C1 C2 C3 IC4 NC4 IC5 NC5 C6+ N2 CO2 HHV

count 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00

mean 88.46 5.93 3.12 0.34 0.62 0.12 0.10 0.07 0.42 0.81 1122.33

std 0.66 0.41 0.22 0.02 0.04 0.01 0.01 0.01 0.01 0.08 12.78

min 86.89 0.00 2.29 0.28 0.47 0.04 0.03 0.01 0.40 0.43 1014.73

25% 88.05 5.85 3.01 0.33 0.60 0.11 0.10 0.07 0.42 0.80 1119.90

50% 88.47 5.98 3.10 0.34 0.61 0.12 0.10 0.07 0.42 0.82 1122.74

75% 88.65 6.15 3.28 0.35 0.63 0.13 0.11 0.08 0.43 0.85 1127.54

max 91.97 6.75 4.96 0.44 0.78 0.16 0.13 0.11 0.47 1.57 1143.27
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Outliers Determination in Dataset  

 

Outliers have a major effect on prediction effectiveness. A histogram was developed to get hint 

of how the data is distributed.  In the histogram, the data for each predictor and dependent 

variable (Heating Value) did not follow a normal distribution which showed either positive 

skewness or negative skewness. Figure 4.1 is the description of outliers in the dataset for the 

prediction of heating value. From Figure 4.1, HHV, CO2, N2, C1, C2, and C3 has a large number 

of outliers in the dataset but IC4, NC4, IC5, and NC5 have small outliers in the data. Further 

processing was done to remove the outliers in the dataset for better prediction, the result will 

be presented in the Data Processing Section of this thesis. 

 

 

 

Figure 4.1 Histogram for Dataset Explaining Outliers 

 

Correlation Analysis 

 

A correlation matrix was developed using Colab Notebook Software to determine the 

correlation that exists between the predictors and the dependent variable used in the prediction. 
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This is to show whether there’s a positive or negative correlation between them. Figure 4.2 

shows the correlation matrix obtained from the study. From the matrix, the correlation between 

CO2, N2, C1, C2, C3, iC4, nC4, iC5, nC5, C6+ and HHV are 0.28, -0.34, 0.18, 0.30, 0.29, 0.41, 

0.38, 0.35, 0.32, -0.39 respectively. It can be inferred that CO2, C2, C3, IC4, C6+, IC5, nC4 and 

nC5 have a positive correlation with the heating value and C1, and N2 have a negative 

correlation with the heating value. The correlation values show that N2 and C1 have a weakly 

negative correlation with HHV. 

 

 

Figure 4.2 Correlation Matrix for Dataset 

 

4.2.2 Data Processing 

 

Data processing was done by selecting the input and output variable, checking for 

multicollinearity, detecting, and handling outliers for a better prediction using regression, data 

splitting into training and testing datasets, and normalisation using MinMax Scaler and 

Standard Scaler. 

Digitized by UMaT Library



66 
 

 

Input and Output Variable Selection 

 

Table 4.4 shows a sample of the input or predictors used in the modelling. The output variable 

was heating value and was named “label” and the input variable in this project were CO2, N2, 

C1, C2, C3, iC4, nC4, iC5, nC5, and C6+ and were named “features” in the model. 

 

Table 4.4 Input Variables for the Model 

 

 

Multicollinearity 

 

Multicollinearity was checked among the predictors to achieve accurate prediction. This was 

done by using the Variance Inflation Factor (VIF). If the VIF is 1, the variables are not 

correlated; if it is between 1 and 5, the variables are moderately correlated; and if it is between 

5 and 10, the variables are highly linked. Table 4.5 shows the VIF obtained for the predictors 

using Google Colab Software. 

 

 

                  

 

 

C1 C2 C3 IC4 NC4 IC5 NC5 C6+ N2 CO2 HHV

0 88.80 5.74 3.00 0.33 0.60 0.12 0.10 0.08 0.43 0.80 119.80

1 88.88 5.75 2.92 0.33 0.59 0.12 0.10 0.08 0.43 0.80 1118.36

2 88.71 5.80 3.02 0.34 0.60 0.12 0.10 0.08 0.43 0.80 1120.71

3 88.68 5.80 3.04 0.34 0.61 0.12 0.10 0.08 0.43 0.80 1121.28

4 88.65 5.81 3.05 0.34 0.61 0.12 0.10 0.08 0.43 0.81 1121.59

… … … … … … … … … … … …

2019 87.90 6.58 3.07 0.34 0.60 0.11 0.09 0.05 0.40 0.85 1125.71

2020 87.90 6.58 3.07 0.34 0.60 0.11 0.09 0.05 0.40 0.85 1125.71

2021 87.90 6.58 3.07 0.34 0.60 0.11 0.09 0.05 0.40 0.85 1125.71

2022 87.90 6.58 3.07 0.34 0.60 0.11 0.09 0.05 0.40 0.85 1125.71

2023 87.90 6.58 3.07 0.34 0.60 0.11 0.09 0.05 0.40 0.85 1125.71

2024 rows X 11 columns
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Table 4.5 VIF Scores of Predictors 

 

 

From Table 4.5, it is observed that most of the variables have a high range of VIF scores which 

is above the normal range of VIF score for multicollinearity Although multicollinearity can 

skew the results of a model, it is also important to note that, its effect is not relevant if the model 

being developed is to be used solely for prediction purposes and the model parameter are not to 

be interpreted in a business context hence the impact would not be handled. 

 

Detection and Handling of Outliers in Predictor Variables and Dependent Variables  

 

Outliers have a major effect on prediction accuracy. For this study, outliers were determined 

within the predictors with the help of a box plot using Equations 3.9, 3.10, and 3.11. Figure 4.5 

shows the box plot for the data with outliers. From Figure 4.3, points that were found outsides 

the box plot are termed outliers. Figure 4.4 shows the exact number of outliers in each predictor 

variable. The outliers in the predictor variables and dependent variables were removed using 

the method of imputation, this is where every outlier in each predictor variable and dependent 

variables were replaced by the mean value of that variable. Figure 4.5 shows the box plot 

obtained after handling the outliers. The data description for features before and after outliers 

was removed are also presented in Tables 4.6 and 4.7 respectively.  After imputation, it was 

seen that the values for each predictor were scaled within a defined limit. For instance, before 

imputation, CO2 values were between 0.43 and 1.57 but after imputation, the values were 

between 0.73 and 0.92. Table 4.8 also shows the data description for the dependent variable 

(HHV) after imputation.  

VIF Scores

0 C1 13696.92

1 C2 593.04

2 C3 1310.56

3 IC4 4233.33

4 NC4 5653.67

5 IC5 449.24

6 NC5 875.56

7 C6+ 229.38

8 N2 9327.98

9 CO2 617.54

Independent Features
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Figure 4.3 Detecting Outliers in the Feature (Predictor Variables) 
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Figure 4.4 Number of Outliers in Each Predictor Variable 
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Figure 4.5 Distribution of Features without Outliers 

 

 

Table 4.6 Data Description for Predictor Variables before Outliers were Removed 
 

 

 

 

 

 

 

 

 

 

C1 C2 C3 IC4 NC4 IC5 NC5 C6+ N2 CO2

count 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00

mean 88.46 5.93 3.12 0.34 0.62 0.12 0.10 0.07 0.04 0.81

std 0.66 0.41 0.22 0.02 0.04 0.01 0.01 0.01 0.01 0.08

min 86.89 0.00 2.29 0.28 0.47 0.04 0.03 0.01 0.40 0.43

25% 88.05 5.85 3.01 0.33 0.60 0.11 0.10 0.07 0.42 0.80

50% 88.47 5.98 3.10 0.34 0.61 0.12 0.10 0.07 0.42 0.82

75% 88.65 6.15 3.28 0.35 0.63 13.00 0.11 0.08 0.43 0.85

max 91.97 6.75 4.96 0.44 0.78 0.16 0.13 0.11 0.47 1.57
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Table 4.7 Data Description for Predictor Variables after Imputation 

 

 

 

 

 

Table 4.8 Data Description for dependent variable (HHV) after imputation 

 

 

 

4.2.3 Model Development and Evaluation 

 

The models were developed and evaluated using line plots, metrics, and scatter plots with a line 

of best fit, and feature importance in each model. The models used were the Linear Regression 

Model, Bagging Regressor Model, Artificial Neural Networks, Extreme Gradient Boosting 

Model, AdaBoost Model, Random Forest Model and Stacking Regressor. 

 

 

C1 C2 C3 IC4 NC4 IC5 NC5 C6+ N2 CO2

count 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00 2021.00

mean 88.35 6.01 3.13 0.34 0.61 0.12 0.10 0.07 0.42 0.83

std 0.44 0.21 0.19 0.01 0.02 0.01 0.01 0.01 0.01 0.03

min 87.17 5.40 2.62 0.31 0.56 0.08 0.09 0.06 0.41 0.73

25% 88.06 5.89 3.02 0.33 0.60 0.11 0.10 0.07 0.42 0.81

50% 88.46 5.98 3.11 0.34 0.61 0.12 0.10 0.07 0.42 0.82

75% 88.61 6.15 3.28 0.35 0.62 0.13 0.11 0.08 0.43 0.84

max 89.55 6.58 3.68 0.37 0.67 0.16 0.12 0.09 0.44 0.92

HHV

count 2021.000000

mean 1123.625338

std 5.548656

min 1108.500000

25% 1120.300000

50% 1122.650000

75% 1127.400000

max 1138.620000
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Linear Regression 

 

For the dataset, a linear regression model was created. The model's output is reported in this 

part as results. Figure 4.8 displays the line plot created using linear regression for the actual and 

anticipated heating levels. 

 

 

 

 

 

 

Figure 4.6 Line Plot for Actual and Predicted HHV in Multiple Linear Regression 

 

From Figure 4.6, the model was not able to predict heating values lower than 1 110 BTU/SCF. 

As a result of this, the error margin for this model increased. Figure 4.7 shows the scatter plot 

for Actual HHV and Predicted HHV in the Linear Regression Model. A line of best fit was 

drawn with an R2 value determined. An equation for prediction was also generated from the 

model. Equation 4.2 is the linear equation generated for the linear regression model. 

 

𝐻𝐻𝑉  =  1116.7221 − 2.8079 × 𝐶1  −  1.4472 × 𝐶2  +  5.2744 × 𝐶3  +  1.0681 × 𝐼𝐶4 − 1.1064 ×
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𝑁𝐶4 + 4.2370 × 𝐼𝐶5 + 0.2595 × 𝑁𝐶5  + 2.8699 × 𝐶6 + + 0.5632 × 𝑁2 − 0.6045 ×

𝐶02                                                                                                                                               (4.2) 

 

Where (CO2, N2, C1…..C6) is the composition of the gas sample. 

 

 

Figure 4.7 Scatter Plot for Actual HHV and Predicted HHV in Linear Regression 

 

From Figure 4.7, it is seen that most of the values were scattered, and this led to a large 

difference between the predicted HHV and the actual HHV. Table 4.9 shows the metric values 

obtained for Linear Regression Model for both the training and testing dataset. 

 

Table 4.9 Training and Testing Results for Linear Regression Model 

Linear 

Regression  
RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Training 
2.0116 4.0466 1.1343 0.8641 0.53% 0.8650 

Testing 
2.5343 6.4224 1.2971 0.8055 0.55% 0.8108 

 

From Table 4.9, the errors for the training dataset were lower than that of the testing dataset. In 
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the training, An R2 of 86.50% was recorded which shows that the predictor variables were able 

to explain 86.50% of the variations in the output variable (Heating Value), whereas in the 

testing the value of R2 decreased to 81.08% which shows that the model developed can only 

explain about 81.08% of the output variable.  

 

Random Forest Regression 

 

A random Forest Regression model was developed for the dataset. The results obtained from 

the model are presented in this section. The line plot produced by the Random Forest Regression 

Model for the actual and anticipated heating levels is shown in Figure 4.10. 

 

 

 

Figure 4.8 Line Plot for Actual and Predicted HHV in Random Forest Regression Model 

 

From Figure 4.8, the predicted values and the actual values are very close together which shows 

a high connection between them, however, this model was not able to predict heating values 

less than 1 110BTU/SCF. Figure 4.9 shows the scatter plot for Actual HHV and Predicted HHV 

in the Random Forest Regression Model. A line of best fit was drawn with an R2 value 

determined. From Figure 4.9, most of the points are on the line of best fit compared to that of 

Linear Regression and hence the error in Random Forest is less than that of Linear Regression. 
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Table 4.10 shows the metric values obtained for the Random Forest Regression Model for both 

the training and testing datasets. 

 

 

Figure 4.9 Scatter Plot for Actual HHV and Predicted HHV in Random Forest  

Regression 

 

Table 4.10 Training and Testing Results for Random Forest Regression Model 

Random 

Forest  
RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Training 
0.5411 0.2928 0.1847 0.9902 0.54% 0.9902 

Testing 
1.6821 2.8295 0.5517 0.9143 0.57% 0.9166 

 

According to Table 4.10, the training dataset's errors were fewer than those for the testing 

dataset. An R2 of 99.02% was obtained during training, indicating that the predictor variables 

could account for 99.02% of the fluctuations in the output variable (Heating Value). This 

indicates that the model did quite well during training, whereas in the testing the value of R2 

decreased to 91.66% which shows that the model developed can only explain about 91.66% of 

the output variable which is better than that of the Linear Regression. 
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Figure 4.10 shows the feature importance in the Random Forest Model. It can be seen from 

Figure 4.10 that, C3 had the highest importance in the prediction of heating value for the 

Random Forest Model whereas NC5 had the least importance. 

 

 

Figure 4.10 Feature Importance for the Random Forest Model 

 

AdaBoost Regression 

 

AdaBoost Regression model was developed for the dataset. The results obtained from the model 

are presented in this section. Figure 4.11 shows the line plot obtained for the actual heating 

value and predicted heating value using AdaBoost Regression Model 
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. 

Figure 4.11 Line Plot for Actual and Predicted HHV in AdaBoost Regression Model 

 

From Figure 4.11, the predicted values and the actual values were not very close together as 

compared to the Random Forest Model and this resulted in a high error margin between the 

predicted HHV and the actual HHV. Furthermore, the model was unable to forecast heating 

levels lower than 1110 BTU/SCF. 

 

Figure 4.12 shows the scatter plot for Actual HHV and Predicted HHV in the AdaBoost 

Regression Model. A line of best fit was drawn with an R2 value determined.  From Figure 4.12, 

it is evident that most of the points are away from the line of best fit hence there is a high error 

since the predicted HHV and the actual HHV are not close to each other. 

 

Table 4.11 shows the metric values obtained for the AdaBoost Regression Model for both the 

training and testing dataset. 
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Figure 4.12 Scatter Plot for Actual HHV and Predicted HHV in AdaBoost Regression 

 

Table 4.11 Training and Testing Results for AdaBoost Regression Model 

AdaBoost 

Regression 
RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Training 
1.9521 3.8105 1.4356 0.8720 0.52% 0.8729 

Testing 
2.0230 4.0926 1.4559 0.8761 0.55% 0.8794 

 

From Table 4.11, the errors for the training dataset were lower than that of the testing dataset. 

In the training, an R2 of 87.29% was recorded which shows that the predictor variables were 

able to explain 87.29% of the variations in the output variable (heating value) in the training of 

the model and this depicts that the model performed very well in the training, whereas in the 

testing the value of R2 increased to 87.94% which shows that the model developed can only 

explain about 87.94% of the output variable which is better than that of the Linear Regression. 

 

Figure 4.13 shows the feature importance of the AdaBoost Regression Model. It can be seen 

from Figure 4.13 that, C3 had the highest importance in the prediction of heating value for the 

AdaBoost Model whereas CO2 had the least importance. 
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Figure 4.13 Feature Importance for the AdaBoost Regression Model 

 

Bagging Regressor 

 

A bagging Regressor model was developed for the dataset. The model's output is reported in 

this part as results. The line plot produced using the Bagging Regressor Model for the actual 

and anticipated heating levels is shown in Figure 4.14. 
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. 

Figure 4.14 Line Plot for Actual and Predicted HHV in Bagging Regressor Model 

 

From Figure 4.14, the predicted values and the actual values were a little close to each other as 

compared to the AdaBoost Regression Model and this resulted in a better model prediction than 

that of AdaBoost Regression. However, this model was not able to predict heating values less 

than 1 110 BTU/SCF. 

 

Figure 4.15 shows the scatter plot for Actual HHV and Predicted HHV in the Bagging 

Regressor Model. A line of best fit was drawn with an R2 value determined. From Figure 4.15, 

it is seen that most of the points lie on the line of best fit which in turn increased the R2 for this 

model and hence made it a better predictor. 

 

Table 4.12 shows the metric values obtained for the Bagging Regressor Model for both the 

training and testing dataset. 
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Figure 4.15 Scatter Plot for Actual HHV and Predicted HHV in Bagging Regressor 

Model 

 

Table 4.12 Training and Testing Results for Bagging Regressor Model 

Bagging 

Regressor  
RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Training 
0.6176 0.3815 0.2062 0.9872 0.54% 0.9872 

Testing 
1.7434 3.0395 0.5837 0.9079 0.57% 0.9105 

 

From Table 4.12, the errors for the training dataset were lower than that of the testing dataset. 

In the training, An R2 of  98.72% was recorded which shows that the predictor variables were 

capable of explaining 98.72% of the variations in the output variable (heating value) during the 

training of the model and this concludes that the model performed very well in the training than 

in testing, whereas in the testing the value of R2 decreased to 91.05% which shows that the 

model developed can only explain about 91.05% of the output variable which is better than the 

prediction model for AdaBoost Regression. 
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Extreme Gradient Boosting Regressor Model 

 

XGBoost Regressor model was developed for the dataset. The results obtained from this model 

are presented in this section. Figure 4.16 shows the line plot obtained for the actual heating 

value and predicted heating value using XGBoost Regressor Model. 

 

 

 

Figure 4.16 Line Plot for Actual and Predicted HHV in XGBoost Regressor Model 

 

From Figure 4.16, the predicted values and the actual values were a little close together as 

compared to the AdaBoost Regression and Linear Regression and this resulted in a better 

prediction for this model than AdaBoost and Linear Regression models with comparatively 

small errors. However, this model was not able to predict heating values less than 1 110 

BTU/SCF because the dataset contained values above that and practically on field, the average 

heating value recorded was above 1 110 BTU/SCF. 

 

Figure 4.17 shows the scatter plot for Actual HHV and Predicted HHV in the AdaBoost 

Regression Model. A line of best fit was drawn with an R2 value determined. From Figure 4.17, 

most points lay on the line of best fit which in turn increased the R2 for this model and hence 
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made it a better predictor. 

Table 4.13 shows the metric values obtained for the XGBoost Regressor Model for both the 

training and testing dataset. 

 

 

Figure 4.17 Scatter Plot for Actual HHV and Predicted HHV in XGBoost Regressor 

Model 

 

Table 4.13 Training and Testing Results for XGBoost Regressor model 

XGBoost 

Regressor 
RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Training 
0.2761 0.0763 0.0234 0.9974 0.54% 0.9975 

Testing 
1.7302 2.9934 0.5393 0.9093 0.57% 0.9118 

 

From Table 4.13, the errors for the training dataset were lower than that of the testing dataset. 

In the training, an R2 of 99.75% was recorded which shows that the predictor variables were 

able to explain 99.75% of the variations in the output variable (heating value) in the training of 

the model and this means that the model performed very well in the training, whereas in the 

testing the value of R2 decreased to 91.18% which shows that the model developed can only 

explain about 91.18% of the output variable which is better than that of the AdaBoost Regressor 
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Model. 

Figure 4.18 shows the feature importance in the XGBoost Regressor Model. It can be seen from 

Figure 4.18 that, C3 had the highest importance in the prediction of heating value for the 

XGBoost Model whereas CO2 had the least importance. 

 

 

Figure 4.18 Feature Importance for the XGBoost Regressor Model 

 

Hybrid Model (Stacking Regressor) 

 

Hybrid model was developed for the dataset. The results obtained from this model are presented 

in this section. Figure 4.19 shows the line plot obtained for the actual heating value and 

predicted heating value using Hybrid Model achieved using the Stacking Regressor from the 

mlxtend.regressor package. 
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Figure 4.19 Line Plot for Actual and Predicted HHV in Stacking Regressor Model 

 

From Figure 4.19, the predicted values and the actual values were a little close together as 

compared to the AdaBoost Regression and Linear Regression and this resulted in a better 

prediction for this model than AdaBoost and Linear Regression models with comparatively 

small errors.  

 

Figure 4.20 shows the scatter plot for Actual HHV and Predicted HHV in the Stacking 

Regressor. A line of best fit was drawn with an R2 value determined. From Figure 4.20, most 

of the points lie on the line of best fit which in turn increased the R2 for this model and hence 

made it a better predictor. 

 

Table 4.14 shows the metric values obtained for the Stacking Regressor for both the training 

and testing dataset. 
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Figure 4.20 Scatter Plot for Actual HHV and Predicted HHV in Stacking Regressor 

Model 

 

Table 4.14 Training and Testing Results for Stacking Regressor Model 

Stacking 

Regressor 
RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Training 
0.2825 0.0798 0.0569 0.9973 0.54% 0.9974 

Testing 
1.7543 3.0777 0.5684 0.9068 0.57% 0.9093 

 

From Table 4.14, the errors for the training dataset were lower than that of the testing dataset. 

In the training, an R2 of 99.74% was recorded which shows that the predictor variables were 

able to explain 99.74% of the variations in the output variable (heating value) in the training of 

the model and this means that the model performed very well in the training, whereas in the 

testing the value of R2 decreased to 90.93% which shows that the model developed can only 

explain about 90.93% of the output variable which is better than that of the AdaBoost 

Regressor, ANN and Linear Regression. 

 

Artificial Neural Networks (ANN) 
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Artificial Neural Networks were developed for the dataset which had many predictor variables 

and one output variable (heating value). The results obtained from this model are presented in 

this section. Figure 4.21 shows the line plot obtained for the actual and predicted heating values 

using Artificial Neural Networks. 

 

 

 

. 

Figure 4.21 Line Plot for Actual and Predicted HHV in ANN Model 

 

From Figure 4.21, the `ANN model gave a moderate prediction for the heating values which 

were close to the actual heating values. 

 

Figure 4.22 shows the scatter plot for Actual HHV and Predicted HHV in the Artificial Neural 

Networks Model. A line of best fit was drawn with an R2 value determined. From Figure 4.22, 

it is seen that most of the points lie on the line of best fit but not as good as compared to other 

models. 
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Table 4.15 shows the metric values obtained for the ANN Model for both the training and 

testing dataset. 

 

 

Figure 4.22 Scatter Plot for Actual HHV and Predicted HHV in ANN Model 

 

Table 4.15 Training and Testing Results for ANN Model 

ANN 

Model 
RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Training 
0.8366 0.6999 0.3781 0.9789 0.03% 0.9790 

Testing 
1.1588 1.3425 0.6149 0.8229 0.05% 0.8273 

 

From Table 4.15, the errors for the training dataset were lower than that of the testing dataset. 

In the training, an R2 of 97.90% was recorded which shows that the predictor variables were 

able to explain 97.90% of the variations in the output variable (heating value) during the training 

of the model and this means that the model performed very well in the training than in testing, 

whereas in the testing the value of R2 decreased to 82.73% which shows that the model 

developed can only explain about 82.73% of the output variable.  Figure 4.23 shows the training 

and validation loss for ANN Model 
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Figure 4.23 Training and Validation Loss in ANN Model 

 

4.3 Comparison of Model Used 

 

Because it is utilised in invoicing, determining the heating value of natural gas is crucial for the 

gas sector. Heating value determination is subject to the estimation of gas composition by the 

Gas Chromatograph. In the gas industry, ISO 6976:2016 and GPA 2172 are known for the 

estimation of heating value. There is instance whereby the Gas Chromatograph is faulty and 

can’t be relied on in the determination of the gas composition. When this happens, many gas 

industries sometimes rely on previous data for billing which is not appropriate, as such there 

should be an alternative for the prediction of heating values when such issues come up. This 

project is geared towards resolving the issue at hand using supervised machine learning 

approach, of which seven different models were trained and tested on a secondary data obtained 

from a gas industry. The results obtained will not only serve as an alternative predictor for 

heating value but also as a verification or check even when the Gas Chromatograph is working 

perfectly. 

 

Table 4.16 shows the metric values obtained for all seven models. Comparatively, all the 

models performed better during the training than the testing of the data.  Since the industry's 
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economics heavily rely on the calculation of heating value, a model with the lowest possible 

error is preferred. For a model, the lower the RMSE, MAE, and MAPE, the higher the accuracy 

of the model. From Table 4.16, the models with the lowest Root Mean Square Error (RMSE) 

were XGBoost Regressor, Random Forest and Stacking Regressor and these gave very good R2 

values compared to the other model. A simple definition of the R2 value is how well the 

independent variables can account for fluctuations in the dependent variable. Random Forest 

gave an R2 of 99.02% and 91.66% respectively for both training and testing, this simply means 

that in training, Random Forest Model was able to explain almost all the variations in the 

heating value and for testing, 91.66% of variations were accounted for which is a good score. 

During the training, both Stacking Regressor and XGBoost Regressor performed better than 

Random Forest with higher R2 values, however Random Forest was the best with highest R2 

Value in the Testing. 

 

The Random Forest model will be chosen as the best model for this study since it recorded the 

least error and had the best coefficient of prediction of all the models when used to estimate our 

heating value. However, an equation that considers data mistakes and can be applied to 

prediction was created using the linear regression model. 
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Table 4.16 Metric Results for All Models 

MODEL 

Training Testing 

RMSE MSE MAE 
Adjusted 

R2 
MAPE R2 RMSE MSE MAE 

Adjusted 

R2 
MAPE R2 

Linear 

Regression 
2.0116 4.0466 1.1343 0.8641 0.5252% 0.8650 2.5342 

6.4224 

 
1.2971 0.8055 0.5541% 0.8108 

Random 

Forest 

Regression 

0.5411 0.2928 0.1847 0.9902 0.5359 % 0.9902 1.6821 2.8295 0.5517 0.9143 0.5694% 0.9166 

AdaBoost 

Regression 
1.9521 3.8105 1.4356 0.8720 0.5193% 0.8729 2.0230 4.0926 1.4559 0.8761 0.5509% 0.8794 

Bagging 

Regressor 
0.6177 0.3815 0.2062 0.9872 0.5361% 0.9873 1.7434 3.0395 0.5837 0.9079 0.5702% 0.9105 

XGBoost 

Regressor 
0.2761 0.0763 0.0234 0.9974 0.5389% 0.9975 1.7302 2.9934 0.5393 0.9093 0.5740% 0.9118 

Stacking 

Regressor 
0.0798 0.2825 0.0569 0.9973 0.5388% 0.9973 1.7543 3.0777 0.5684 0.9068 0.5722% 0.9093 

Artificial 

Neural 

Networks 

0.8366 0.6999 0.3781 0.9789 0.0338% 0.9790 1.1587 1.3425 0.6149 0.8229 0.0546% 0.8273 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 
 

This thesis offers an in-depth knowledge on the accurate prediction of heating value and 

how it plays a very important role in the gas industry as it helps in billing off-takers. As 

there cannot be overreliance in the GC due to a number of times it has failed and possibility 

of failing in the future, the focus of the thesis was to predict the heating value of comingled 

natural gas using the gas composition values and the ISO 6976:2016 approach and also 

supervised machine learning approach. In the event of an unavailable GC, gas industries 

sometimes select previous heating values from a specific date and specific time (historical) 

when the GC worked well to serve as reference for billing rather than real time values. The 

use of Machine Learning models will rather use the trend/pattern of the heating value 

obtained from a selected period of years for the prediction of the heating value hence 

providing a much more accurate value when there is an issue with the GC or the auxiliaries 

to control under billing or overbilling between the aggregator and off taker, and determine 

the actual quality of the natural gas which is the basis of this study. From the research, it 

can be concluded that: 

i. Artificial Neural Network (ANN), AdaBoost Regressor, XGBoost Regressor, Linear 

Regression, Bagging Regressor, Random Forest and Stacking Regressor can be used 

to forecast the heating value with an accuracy of 82.73%, 87.94%, 91.18%, 81.08%, 

91.05%, 91.66% and 90.93% respectively. Random Forest performed better with the 

highest accuracy while Linear Regression showed the least results. 

ii. The mathematical formula obtained for linear regression can be used for predicting 

the heating value of natural gas by accounting for the error. 

iii. Even though the ISO 6976:2016 approach of calculating heating value is laborious 

and time consuming, it can also be used to calculate the heating value of natural gas 

by accounting for uncertainties. 
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5.2 Recommendations 

 

From the research work, it is recommended that: 

i. Future studies can be done with other software such as R and MATLAB to predict 

the heating value of natural gas. 

ii. More data set should be used in future studies to improve the accuracy of the 

prediction. 

iii. Future works using linear regression should satisfy all assumption 

(Multicollinearity, Outliers, Homoscedasticity, and Normality etc.) 
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APPENDICES 

APPENDIX A 

FIRST ONE HUNDRED DATA POINTS USED IN THE PREDICTION 

C1 C2 C3 I-C4 
N-

C4 
I-C5 

N-

C5 
C6+ N2 CO2 HHV 

88.8 5.74 3 0.33 0.6 0.12 0.1 0.08 0.43 0.8 1119.8 

88.88 5.75 2.92 0.33 0.59 0.12 0.1 0.08 0.43 0.8 1118.36 

88.71 5.8 3.02 0.34 0.6 0.12 0.1 0.08 0.43 0.8 1120.71 

88.68 5.8 3.04 0.34 0.61 0.12 0.1 0.08 0.43 0.8 1121.28 

88.65 5.81 3.05 0.34 0.61 0.12 0.1 0.08 0.43 0.81 1121.59 

88.88 5.66 2.99 0.34 0.61 0.12 0.11 0.08 0.43 0.77 1120.33 

89.18 5.47 2.9 0.34 0.62 0.13 0.11 0.09 0.44 0.72 1118.71 

89.31 5.39 2.86 0.34 0.61 0.13 0.11 0.08 0.44 0.72 1117.1 

88.85 5.76 2.92 0.34 0.6 0.12 0.1 0.08 0.43 0.8 1118.95 

88.64 5.83 3.04 0.33 0.61 0.13 0.1 0.08 0.43 0.81 1121.48 

88.6 5.87 3.04 0.33 0.61 0.13 0.1 0.08 0.43 0.82 1121.58 

88.53 5.87 3.11 0.33 0.61 0.13 0.1 0.08 0.43 0.82 1122.76 

88.5 5.87 3.12 0.34 0.62 0.12 0.1 0.08 0.43 0.82 1123.36 

88.61 5.84 3.05 0.34 0.61 0.13 0.1 0.08 0.43 0.82 1121.78 

88.55 5.89 3.03 0.34 0.62 0.12 0.11 0.08 0.42 0.83 1122.22 

88.56 5.87 3.03 0.35 0.62 0.13 0.11 0.08 0.42 0.83 1122.72 

88.59 5.84 3.03 0.34 0.63 0.13 0.11 0.09 0.42 0.82 1122.73 

88.74 5.77 2.96 0.34 0.62 0.13 0.11 0.09 0.42 0.81 1120.88 

88.69 5.81 2.98 0.34 0.62 0.13 0.11 0.09 0.42 0.82 1121.36 

88.63 5.86 2.99 0.33 0.62 0.13 0.11 0.09 0.42 0.82 1121.91 

88.61 5.86 3.01 0.34 0.62 0.12 0.11 0.09 0.42 0.82 1122.08 

88.62 5.83 3.02 0.34 0.62 0.12 0.11 0.09 0.42 0.82 1122.24 

88.58 5.84 3.05 0.34 0.62 0.12 0.11 0.09 0.42 0.83 1122.5 

88.51 5.87 3.08 0.34 0.63 0.12 0.11 0.09 0.42 0.84 1123.36 

88.5 5.88 3.07 0.35 0.63 0.13 0.11 0.09 0.42 0.84 1123.55 

88.55 5.85 3.06 0.34 0.63 0.13 0.11 0.09 0.42 0.84 1123 

88.48 5.91 3.07 0.34 0.63 0.13 0.11 0.09 0.42 0.84 1123.53 

88.46 5.94 3.07 0.34 0.62 0.12 0.11 0.09 0.42 0.84 1123.49 

88.43 5.92 3.1 0.35 0.62 0.13 0.11 0.09 0.42 0.84 1124.26 

88.82 5.68 2.99 0.34 0.63 0.13 0.11 0.09 0.42 0.78 1121.48 

88.98 5.64 2.89 0.34 0.61 0.13 0.11 0.09 0.43 0.79 1118.91 

88.77 5.89 2.89 0.33 0.58 0.12 0.1 0.08 0.43 0.82 1118.6 

88.58 5.93 3.03 0.33 0.59 0.12 0.1 0.07 0.43 0.83 1120.93 

88.66 5.79 3.08 0.33 0.6 0.12 0.1 0.07 0.43 0.82 1121.07 

88.74 5.78 3.03 0.32 0.6 0.12 0.1 0.07 0.43 0.81 1119.9 

88.89 5.73 2.94 0.32 0.59 0.11 0.1 0.07 0.43 0.81 1117.83 

88.76 5.84 2.96 0.33 0.59 0.11 0.1 0.07 0.43 0.81 1119.03 

88.65 5.85 3.06 0.33 0.59 0.11 0.1 0.07 0.43 0.82 1120.7 

88.65 5.83 3.07 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1120.71 
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88.59 5.8 3.14 0.34 0.6 0.11 0.1 0.07 0.43 0.82 1121.93 

88.64 5.8 3.09 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.15 

88.62 5.84 3.07 0.34 0.6 0.11 0.1 0.07 0.43 0.82 1121.11 

88.67 5.81 3.06 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1120.58 

88.62 5.83 3.09 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.21 

88.65 5.8 3.09 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121 

88.57 5.84 3.12 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.89 

88.63 5.82 3.09 0.33 0.6 0.11 0.1 0.07 0.43 0.81 1121.41 

88.64 5.85 3.06 0.33 0.6 0.11 0.1 0.07 0.43 0.81 1120.8 

88.63 5.84 3.07 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.09 

88.61 5.86 3.07 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.05 

88.6 5.86 3.08 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.24 

88.65 5.83 3.07 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1120.8 

88.62 5.83 3.09 0.33 0.6 0.12 0.1 0.07 0.43 0.82 1121.29 

88.63 5.83 3.07 0.33 0.6 0.12 0.1 0.07 0.43 0.82 1121.17 

88.98 5.67 2.93 0.32 0.58 0.11 0.1 0.07 0.43 0.81 1116.74 

88.92 5.71 2.94 0.32 0.58 0.12 0.1 0.07 0.43 0.81 1117.27 

88.77 5.78 3.01 0.32 0.59 0.11 0.1 0.07 0.43 0.82 1119.13 

88.69 5.81 3.05 0.33 0.59 0.12 0.1 0.07 0.43 0.82 1120.21 

88.62 5.83 3.09 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1120.96 

88.63 5.85 3.07 0.33 0.59 0.11 0.1 0.07 0.43 0.82 1120.81 

88.63 5.84 3.08 0.33 0.59 0.11 0.1 0.07 0.43 0.82 1120.85 

88.65 5.82 3.07 0.32 0.6 0.11 0.1 0.07 0.43 0.82 1120.52 

88.62 5.84 3.08 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1120.79 

88.59 5.87 3.08 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.15 

88.58 5.87 3.07 0.33 0.6 0.12 0.1 0.07 0.43 0.82 1121.44 

88.61 5.85 3.07 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.17 

88.6 5.88 3.06 0.33 0.6 0.11 0.1 0.07 0.43 0.82 1121.3 

88.62 5.83 3.07 0.34 0.6 0.12 0.1 0.08 0.43 0.82 1121.46 

88.63 5.84 3.05 0.33 0.6 0.12 0.1 0.08 0.43 0.82 1121.21 

88.63 5.84 3.06 0.34 0.6 0.11 0.1 0.08 0.43 0.81 1121.36 

88.6 5.85 3.07 0.34 0.61 0.12 0.1 0.08 0.43 0.81 1121.96 

88.67 5.8 3.06 0.34 0.61 0.12 0.1 0.08 0.43 0.81 1121.36 

88.41 5.97 3.14 0.34 0.62 0.11 0.1 0.08 0.42 0.82 1123.88 

88.19 6 3.28 0.36 0.63 0.11 0.1 0.08 0.42 0.82 1127.16 

88.15 6.02 3.3 0.35 0.64 0.12 0.11 0.08 0.42 0.82 1127.81 

88.15 6.03 3.29 0.35 0.64 0.12 0.11 0.08 0.42 0.82 1127.61 

88.12 6.02 3.32 0.36 0.64 0.12 0.11 0.08 0.42 0.82 1128.16 

88.11 6 3.34 0.36 0.64 0.12 0.11 0.08 0.42 0.82 1128.41 

88.12 6.02 3.32 0.35 0.64 0.12 0.1 0.08 0.42 0.82 1128.17 

88.19 6 3.28 0.35 0.63 0.12 0.1 0.08 0.42 0.82 1127.13 

88.1 6.02 3.34 0.35 0.64 0.13 0.1 0.08 0.42 0.82 1128.48 

88.12 6.03 3.32 0.36 0.64 0.12 0.1 0.08 0.42 0.82 1127.91 

88.21 5.96 3.3 0.35 0.63 0.11 0.1 0.08 0.42 0.82 1127.01 

88.46 5.86 3.18 0.34 0.62 0.12 0.1 0.08 0.43 0.81 1124.07 

88.65 5.81 3.07 0.33 0.61 0.12 0.1 0.08 0.43 0.81 1121.47 
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88.72 5.8 3.02 0.33 0.6 0.12 0.1 0.08 0.43 0.8 1120.62 

88.1 6.05 3.31 0.35 0.64 0.12 0.1 0.08 0.42 0.83 1127.96 

88.25 5.98 3.25 0.35 0.64 0.12 0.11 0.08 0.42 0.81 1126.98 

88.21 5.99 3.27 0.35 0.64 0.12 0.11 0.08 0.42 0.8 1127.58 

88.32 5.94 3.22 0.35 0.63 0.12 0.11 0.08 0.42 0.8 1126.08 

88.23 5.95 3.29 0.35 0.64 0.12 0.11 0.08 0.42 0.8 1127.58 

88.41 5.88 3.2 0.35 0.63 0.12 0.11 0.08 0.42 0.8 1125.06 
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